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ABSTRACT
In this paper we consider a fractional wave equation for hypoellip-
tic operators with a singular mass term depending on the spacial
variable and prove that it has a very weak solution. Such analysis
can be conveniently realised in the setting of graded Lie groups. The
uniqueness of the very weak solution, and the consistency with the
classical solution are also proved, under suitable considerations. This
extends and improves the results obtained in the first part [Altybay
et al. Fractional Klein-Gordon equation with singular mass. Chaos
Solitons Fractals. 2021;143:Article ID 110579] which was devoted to
the classical Euclidean Klein-Gordon equation.
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1. Introduction

The aimof this paper is to contribute to the study of theKlein-Gordon equation for positive
(left) Rockland operator R (left-invariant hypoelliptic partial differential operator which
is homogeneous of positive degree ν) on a general graded Lie group G, with a possibly
singular mass term depending on the spacial variable; that is for T>0, and for s>0 we
consider the Cauchy problem{

utt(t, x)+ Rsu(t, x)+ m(x)u(t, x) = 0, (t, x) ∈ [0,T] × G,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ G,

(1)

wherem is a non-negative and possibly singular function/distribution.
The setting of Rockland operators on graded Lie groups allows one to consider both

elliptic and subelliptic settings in (1). The simplest example is that of the standard Klein-
Gordon equation, when we takeG = Rd to be the Euclidean space, andR = −� to be the
Laplacian on Rd. However, already on Rd, the setting of (1) allows one to consider more
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general evolutions, for example, taking

R = (−1)m
d∑

j=1

∂2m

∂x2mj
,

for any integerm. Such operators are also Rockland operators on Rd, as we explain in the
next section. However, the general setting of (1) allows one to also consider hypoellip-
tic operators. The simplest example would be G being the Heisenberg group, and R the
positive sub-Laplacian on it. More generally, if G is any stratified group (or a homoge-
neous Carnot group), and X1, . . . ,XN are the generators of its Lie algebra (satisfying the
Hörmander condition), we can consider

R = (−1)m
N∑
j=1

X2m
j ,

for any integerm, where we understand Xj also as the derivative with respect to the vector
field Xj.

The main feature of (1) is that we will not assume any regularity on the mass coefficient
m. Especially, we are interested in irregular m, for example being δ-distribution, or even
δ2, if understood appropriately in the sense of multiplication of distributions. We note that
in this situation the usual notion of weak solutions is not applicable to (1) in view of the
Schwartz impossibility result [1] on the multiplication of distributions.

Thus, in this paper we work with the concept of very weak solutions. More specifically,
we will show its applicability to the Cauchy problem (1) for the Klein-Gordon equation for
the Rockland operatorR on the graded Lie groupGwith a singularmass depending on the
spacial variable. This concept was introduced in [2] to deal with the Schwartz impossibility
result about multiplication of distributions [1], in the context of wave type equations with
singular coefficients. Later, this analysis was applied to other hyperbolic type equations
with singular coefficients [3–6]. The wave type equations with time-dependent coefficients
on graded Lie groups were analysed in [7] for Hölder coefficients, and in [8] for distribu-
tional time-dependent coefficients, using the notion of veryweak solutions. All theseworks
dealwith the time-dependent equations and in the recent papers [9–12], the authors start to
develop the notion of very weak solutions for equations with (irregular) space-depending
coefficients.

The present paper is the extension and improvement of the results obtained in the first
part [9] which was devoted to the classical Klein-Gordon equation. In fact, the setting of
[9] was the Equation (1) for G = Rd and R = −� being the positive Laplacian on the
Euclidean space. Consequently, the results here contain the results of [9] as a special case,
andwe also use this chance to slightly correct the consistency statement given in that paper,
see Remark 5.3, as well as a clarifying Remark 4.7.

2. Preliminaries

Let us briefly recall some basic concepts, terminology and notation on graded Lie groups
that will be useful for the ideas we develop throughout this paper. For a more detailed
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exposition we refer to Folland and Stein [Chapter 1 in [13]], or, to the more recent open
access book, by Fischer and the second author [Chapter 3 in [14]].

LetG be a nilpotent Lie group, and let g be its Lie algebra. Its lower series is the descend-
ing sequence {gi} of ideals defined inductively by g1 = g, gi = [g, gi−1], for i>1. If g
admits a gradation of vector spaces as g = ⊕∞

i=1 gi, where all, but finitely many gi’s are
equal to {0}, and is such that [gi, gj] ⊂ gi+j, for all i, j, thenG is a graded Lie group. Graded
Lie groups are naturally homogeneous Lie groups; that is g is equippedwith a one-parameter
family {Dr}r>0 of automorphisms of g of the form Dr = exp(A logr), with A being a diag-
onalisable linear operator on g with positive eigenvalues. Such automorphisms shall be
called dilations.

We have the following nested subclasses of Lie groups:

nilpotent ⊃ homogeneous ⊃ graded ⊃ stratified ⊃ {Heisenberg, Engel, Cartan}.

The cases of the Heisenberg, Engel and Cartan groups, are examples of graded Lie groups
whose associated representation theory is well-understood in the sense that there exists a
complete and explicit classification of the unitary, irreducible representations on them; see
e.g. [15,16], as well as the analysis in [17,18]. For graded Lie algebras g of dimension n, the
canonical family of dilations, is the one dictated by the gradation of g, and is given by

X(j)i ◦ Dr = rviDr ◦ X(j)i , (2)

where X(j)i ∈ gj, i = 1, . . . , n, and vi’s are the same for all vectors X(j)i ∈ gj. These vi’s are
called the dilations’ weights.

In the case of graded Lie groups, or more generally in the case of nilpotent Lie groups,
the exponential map (on the group) is a diffeomorphism from g onto G, under the
group law that has been defined accordingly to the structure of g due to the Baker-
Campbell-Hausdorff formula; see, e.g. [19]. More generally, this identification allows for
the transmission of ideas from the infinitesimal level of the Lie algebra g to the level of the
group G. Additionally, when g is homogeneous, then, the dilations can be transported to
the group side, while the Lebesgue measure dx on g is the bi-invariant Haar measure on
G, and the number Q that satisfies d(Dr(x)) = rQ dx, that is the sum of the eigenvalues of
the matrix A, shall be called the homogeneous dimension of G.

On the other hand, any element π ∈ Ĝ of the unitary dual of G, with π acting on some
separable Hilbert space Hπ , gives rise to the representation dπ on the space of smooth
vectorsH∞

π on the infinitesimal level; that is we can define

dπ(X)v := lim
t→0

1
t
(π(exp(tX))v − v), X ∈ g, v ∈ H∞

π .

The above definition, due to the Poincaré-Birkhoff-Witt Theorem (see, e.g. [20], see also a
discussion in [14]), that identifies that space of left-invariant operators in gwith the univer-
sal enveloping Lie algebra U(g), can be extended to any T ∈ U(g), i.e. we can write dπ(T);
or, with an abuse of notation, π(T).

A remarkable class among left-invariant operators, that generalises the notion of the
sub-Laplacian on the bigger class of graded groups, is that of Rockland operators, which
are usually denoted byR. The latter is a class of operators that are hypoelliptic on G [21],
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and homogeneous of a certain positive degree. So, by Rockland operators we understand
the homogeneous left-invariant hypoelliptic differential operators on G. For additional char-
acterisations of the Rockland operators, we refer to [22–24], as well as to a presentation
in [14].

We recall that R and π(R), are densely defined on their domains D(G) ⊂ L2(G),
and H∞

π ⊂ Hπ , respectively (cf. [Proposition 4.1.15 in [14]]. The latter implies that the
positivity ofR, as required for our purposes, amounts to the condition

(Rf , f )L2(G) ≥ 0, f ∈ D(G).

We remark that, for a positive Rockland operatorR, the spectrum of the operator π(R),
with π ∈ Ĝ \ {1}, is discrete [25], which allows us to choose an orthonormal basis forHπ

such that the self-adjoint operator π(R) can be identified with the infinite dimensional
matrix with diagonal elements π2

k,k ≡ π2
k , with πk ∈ R+.

Let us now recall that the group Fourier transform of a function f ∈ L1(G) at π ∈ Ĝ is
the bounded operator f̂ (π) (often denoted by π(f )) onHπ given by

(̂f (π)v1, v2)Hπ :=
∫

G

f (x)(π∗(x)v1, v2)Hπ dx, v1, v2 ∈ Hπ .

If f ∈ L2(G) ∩ L1(G), then f̂ (π) is a Hilbert-Schmidt operator, and we have the following
isometry, known as the Plancherel formula∫

G

|f (x)|2 dx =
∫

Ĝ

‖π(f )‖2HS dμ(π), (3)

whereμ stands for the Plancherel measure onG. For a detailed exposition of the Plancherel
Theorem and the relevant theory, we refer to [19,26], or to [Section 1.8, Appendix B.2 in
[14]].

Finally, since the action of a Rockland operatorR is involved in our analysis, let usmake
a brief overview of some related properties.

Definition 2.1 (Homogeneous Sobolev spaces): For s>0, p>1, andR a positive homo-
geneous Rockland operator of degree ν, we define the R-Sobolev spaces as the space of
tempered distributions S ′(G) obtained by the completion of S(G) ∩ Dom(R s

ν ) for the
norm

‖f ‖L̇ps (G) := ‖R
s
ν
p f ‖Lp(G), f ∈ S(G) ∩ Dom(R

s
ν
p ),

whereRp is the maximal restriction ofR to Lp(G).1

Let us mention that, the aboveR-Sobolev spaces do not depend on the specific choice
of R, in the sense that, different choices of the latter produce equivalent norms, see
[Proposition 4.4.20 in [14]].

In the scale of these Sobolev spaces, we recall the next proposition as in [Proposi-
tion 4.4.13 in [14]].
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Proposition 2.2 (Sobolev embeddings): For 1 < q̃0 < q0 < ∞ and for a, b ∈ R such that

b − a = Q
(
1
q̃0

− 1
q0

)
,

we have the continuous inclusions

L̇q̃0b (G) ⊂ L̇q0a (G),

that is, for every f ∈ L̇q̃0b (G), we have f ∈ L̇q0a (G), and there exists some positive constant
C = C(q̃0, q0, a, b) (independent of f) such that

‖f ‖L̇q0a (G) ≤ C‖f ‖
L̇q̃0b (G)

. (4)

In the sequel we will make use of the following notation:

Notation 2.3: • When we write a � b, we will mean that there exists some constant
c>0 (independent of any involved parameter) such that a ≤ cb;

• if α = (α1, . . . ,αn) ∈ Nn is some multi-index, then we denote by

[α] =
n∑

i=1
viαi,

its homogeneous length, where the vi’s stand for the dilations’ weights as in (2), and by

|α| =
n∑
i=1

αi,

the length of it;
• for suitable f ∈ S ′(G) we have introduced the following norm

‖f ‖Hs(G) := ‖f ‖L̇2s (G) + ‖f ‖L2(G);

• when regulisations of functions/distributions on G are considered, they must
be regarded as arising via convolution with Friedrichs-mollifiers; that is, ψ is a
Friedrichs-mollifier, if it is a compactly supported smooth function with

∫
G
ψ dx =

1. Then the regularising net is defined as

ψε(x) = ε−Qψ(Dε−1(x)), ε ∈ (0, 1], (5)

where Q is the homogeneous dimension of G.

3. Estimates for the classical solution

Here and thereafter, we consider a fixed power s>0 of a fixed, positive (in the operator
sense) Rockland operator R that is assumed to be of homogeneous degree ν. Moreover,
the coefficientm in (1) will be regarded to be non-negative on G.
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The next two propositions prove the existence and uniqueness of the classical solution
to the Cauchy problem (1), in the cases where the coefficientm is such thatm ∈ L∞(G) or
m ∈ L

2Q
νs (G), where, in the second case, we must additionally require Q > νs.

Proposition 3.1: Let m ∈ L∞(G), m ≥ 0, and suppose that (u0, u1) ∈ H
sν
2 (G)× L2(G).

Then, there exists a unique solution u ∈ C([0,T];H
sν
2 (G)) ∩ C1([0,T]; L2(G)) to the

Cauchy problem (1), that satisfies the estimate

‖u(t, ·)‖
H

sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G) � (1 + ‖m‖L∞(G)) · {‖u1‖L2(G) + ‖u0‖H sν
2 (G)

}, (6)

uniformly in t ∈ [0,T].

Proof: Multiplying the Equation (1) by ut and integrating over G, we get

�(〈utt(t, ·), ut(t, ·)〉L2(G) + 〈Rsu(t, ·), ut(t, ·)〉L2(G) + 〈m(·)u(t, ·), ut(t, ·)〉L2(G)) = 0, (7)

for all t ∈ [0,T]. It is easy to check that

�(〈utt(t, ·), ut(t, ·)〉L2(G)) = 1
2
∂t〈ut(t, ·), ut(t, ·)〉L2(G),

�(〈Rsu(t, ·), ut(t, ·)〉L2(G)) = 1
2
∂t〈R s

2 u(t, ·),R s
2 u(t, ·)〉L2(G),

and

�(〈m(·)u(t, ·), ut(t, ·)〉L2(G)) = 1
2
∂t〈

√
m(·)u(t, ·),√m(·), u(t, ·)〉L2(G).

Denoting by

E(t) := ‖ut(t, ·)‖2L2(G) + ‖R s
2 u(t, ·)‖2L2(G) + ‖√m(·)u(t, ·)‖2L2(G),

the energy functional estimate of the system (1), the Equation (7) implies that ∂tE(t) = 0,
and consequently also that E(t) = E(0), for all t ∈ [0,T]. By taking into consideration the
estimate

‖√m(·)u0‖2L2(G) ≤ ‖m‖L∞(G)‖u0‖2L2(G), (8)

by the above, it follows that each positive term that E(t) consists of, is bounded itself. That
is, we have that

‖√m(·)u(t, ·)‖2L2(G) � ‖u1‖2L2(G) + ‖R s
2 u0‖2L2(G) + ‖m‖L∞(G)‖u0‖2L2(G), (9)

while also that

‖ut(t, ·)‖2L2(G), ‖R
s
2 u(t, ·)‖2L2(G) � ‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

+ ‖m‖L∞(G)‖u0‖2L2(G)
� (1 + ‖m‖L∞(G)){‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}, (10)
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uniformly in t ∈ [0,T], where we use

‖R s
2 u0‖L2(G), ‖u0‖L2(G) ≤ ‖u0‖H sν

2 (G)
.

Observe that, to prove (6), it remains to show the desired estimate for the norm
‖u(t, ·)‖L2(G). To this end, we first apply the group Fourier transform to (1) with respect to
x ∈ G and for all π ∈ Ĝ, and we get{̂

utt(t,π)+ π(R)s û(t,π) = f̂ (t,π),
û(0,π) = û0(π), ût(0,π) = û1(π),

(11)

where f̂ (t,π) denotes the group Fourier transform of the function f (t, x) := −m(x)u(t, x).
Taking into account thematrix representation ofπ(R), we rewrite thematrix equation (11)
componentwise as the infinite system of equations of the form

ûtt(t,π)k,l + π2s
k · û(t,π)k,l = f̂ (t,π)k,l, (12)

with initial conditions û(0,π)k,l = û0(π)k,l and ût(0,π)k,l = û1(π)k,l, for all π ∈ Ĝ and
for any k, l ∈ N, where now f̂ (t,π)k,l can be regarded as the source term of the second
order differential equation as in (12).

Now, let us decouple the matrix equation in (12) by fixing π ∈ Ĝ, and treat each of the
equations represented in (12) individually. If we denote by

v(t) := û(t,π)k,l, β2s := π2s
k , f (t) := f̂ (t,π)k,l,

and

v0 := û0(π)k,l, v1 := û1(π)k,l,

then (12) becomes {
v′′(t)+ β2s · v(t) = f (t),
v(0) = v0, v′(0) = v1,

(13)

with β > 0. By solving first the homogeneous version of (13), and then by applying
Duhamel’s principle (see e.g. [27]), we get the following representation of the solution of
(13)

v(t) = cos(tβs)v0 + sin(tβs)
βs

v1 +
∫ t

0

sin((t − s)βs)
βs

f (s) ds. (14)

Assuming without loss of generality that T ≥ 1, and using the estimates

| cos(tβs)| ≤ 1, ∀ t ∈ [0,T],

and

| sin(tβs)| ≤ 1,

for large values of the quantities tβs, while for small values of them, the estimates

| sin(tβs)| ≤ tβs ≤ Tβs,
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inequality (14) yields

|v(t)| ≤ |v0| + T|v1| + ‖t − s‖L2[0,T]‖f (t)‖L2[0,T] � |v0| + |v1| + ‖f (t)‖L2[0,T],

wherewehave applied theCauchy-Schwarz inequality.Now the last estimate, if substituting
back our initial functions in t, gives

|̂u(t,π)k,l|2 � |̂u0(π)k,l|2 + |̂u1(π)k,l|2 + ‖̂f (t,π)k,l‖2L2[0,T],

where the latter holds uniformly inπ ∈ Ĝ and for each k, l ∈ N. Recall that for anyHilbert-
Schmidt operator A, one has

‖A‖2HS =
∑
k,l

|〈Aϕk,ϕl〉|2,

for any orthonormal basis {ϕ1,ϕ2, . . .}, summing the above over k, l we get

‖̂u(t,π)k,l‖2HS � ‖̂u0(π)k,l‖2HS + ‖̂u1(π)k,l‖2HS +
∑
k,l

∫ T

0
|̂f (t,π)k,l|2 dt.

Next we integrate the last inequality with respect to the Plancherel measureμ on Ĝ, so that
using the Plancherel identity (3), we obtain

‖u(t, ·)‖2L2(G) � ‖u0‖2L2(G) + ‖u1‖2L2(G) +
∫

G

∑
k,l

∫ T

0
|̂f (t,π)k,l|2 dt dμ(π), (15)

and if we use Lebesgue’s dominated convergence theorem, Fubini’s theorem and the
Plancherel formula we have∫

G

∑
k,l

∫ T

0
|̂f (t,π)k,l|2 dt dμ =

∫ T

0

∫
G

∑
k,l

|̂f (t,π)k,l|2 dμ dt =
∫ T

0
‖f (t, ·)‖2L2(G) dt.

(16)
Now, by (9), and the formula of f we have

‖f (t, ·)‖2L2(G) = ‖m(·)u(t, ·)‖2L2(G)
≤ ‖m‖L∞(G)‖

√
m(·)u(t, ·)‖2L2(G)

� (1 + ‖m‖L∞(G))
2{‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}. (17)

Combining the inequalities (15), (16) and (17) we get

‖u(t, ·)‖2L2(G) � (1 + ‖m‖L∞(G))
2{‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}, (18)

uniformly in t ∈ [0,T]. The claim (6) now follows by (10) and (18). Finally, the uniqueness
of u is an immediate consequence of (6), and the proof is complete. �
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Proposition 3.2: Assume that Q > νs, and let m ∈ L
2Q
νs (G) ∩ L

Q
νs (G), m ≥ 0. If we

suppose that (u0, u1) ∈ H
sν
2 (G)× L2(G) then there exists a unique solution u ∈

C([0,T];H
sν
2 (G)) ∩ C1([0,T]; L2(G)) to the Cauchy problem (1) satisfying the estimate

‖u(t, ·)‖
H

sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G)

�
(
1 + ‖m‖

L
2Q
νs (G)

) (
1 + ‖m‖

L
Q
νs (G)

) 1
2 {

‖u1‖L2(G) + ‖u0‖H sν
2 (G)

}
, (19)

uniformly in t ∈ [0,T].

Proof: Proceeding as in the proof of Proposition 3.1, we have

E(t) = E(0), ∀ t ∈ [0,T], (20)

where the energy estimate E is given by

E(t) = ‖ut(t, ·)‖2L2(G) + ‖R s
2 u(t, ·)‖2L2(G) + ‖√m(·)u(t, ·)‖2L2(G).

Now, applying Hölder’s inequality, we get

‖√mu0‖2L2(G) ≤ ‖m‖Lq′ (G)‖u0‖2L2q(G), (21)

where 1 < q, q′ < ∞, and (q, q′) conjugate exponents, to be chosen later. Observe that if
we apply (4) for u0 ∈ H

sν
2 (G), b = sν

2 , a = 0, and q0 = 2Q
Q−νs , then q̃0 = 2, and we have

‖u0‖Lq0 (G) � ‖R s
2 u0‖L2(G) < ∞. (22)

Choosing 2q = q0 in (21) so that q = Q
Q−νs , we get q

′ = Q
νs , so that

‖√mu0‖2L2(G) � ‖m‖
L
Q
νs (G)

‖R s
2 u0‖2L2(G) < ∞, (23)

and by (20) we can estimate

‖√m(·)u(t, ·)‖2L2(G) ≤ ‖u1‖2L2(G) + ‖u0‖2
H

sν
2 (G)

+ ‖√mu0‖2L2(G)
� ‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

+ ‖m‖
L
Q
νs (G)

‖u0‖2
H

sν
2 (G)

≤
(
1 + ‖m‖

L
Q
νs (G)

) {
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
, (24)

uniformly in t ∈ [0,T]. Additionally, (20), under the estimate (24), implies

‖ut(t, ·)‖2L2(G), ‖R
s
2 u(t, ·)‖2L2(G) �

(
1 + ‖m‖

L
Q
νs (G)

) {
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
. (25)

To show our claim (19), it suffices to show the desired estimate for the solution norm
‖u(t, ·)‖L2(G). First we observe that by the Sobolev embeddings (4) andHölder’s inequality,
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using (23) withm instead of
√
m, and ‖m2‖

L
Q
νs (G)

= ‖m‖2
L
2Q
νs (G)

, one obtains

‖mu(t, ·)‖2L2(G) � ‖m‖2
L
2Q
νs

‖R s
2 u(t, ·)‖2L2(G),

where the last combined with (25) yields

‖mu(t, ·)‖2L2(G) � ‖m‖22Q
νs

(
1 + ‖m‖

L
Q
νs (G)

) {
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

}
. (26)

Finally, using arguments similar to those we developed in Proposition 3.1, together with
the estimate (26) we get

‖u(t, ·)‖2L2(G) ≤ ‖u0‖2L2(G) + ‖u1‖2L2(G) + ‖m(·)u(t, ·)‖2L2(G)
�

{
‖u1‖2L2(G) + ‖u0‖2

H
sν
2 (G)

} {
1 + ‖m‖22Q

νs

(
1 + ‖m‖

L
Q
νs (G)

)}
,

uniformly in t ∈ [0,T]. The uniqueness of u is immediate by the estimate (19), and this
finishes the proof of Proposition 3.2. �

4. Existence and uniqueness of the very weak solution

Here, we consider the case where the mass-term in (1) satisfies some moderateness prop-
erties. The latter is satisfied in cases where, for instance,m has strong singularities, namely
whenm = δ or δ2. This follows by Proposition 4.8 for δ, while we can understand δ2 as an
approximating family or in the Colombeau sense.

Definition 4.1 (Moderateness): (1) LetX be a normed space of functions onG. A net
of functions (fε)ε ∈ X is said to be X-moderate if there exists N ∈ N such that

‖fε‖X � ε−N ,

uniformly in ε ∈ (0, 1].
(2) A net of functions (uε)ε in C([0,T];H

sν
2 (G)) ∩ C1([0,T]; L2(G)) is said to be

C([0,T];H
sν
2 (G)) ∩ C1([0,T]; L2(G))-moderate, or for brevity, C1-moderate, if

there exists N ∈ N such that

sup
t∈[0,T]

{‖u(t, ·)‖
H

sν
2 (G)

+ ‖∂tu(t, ·)‖L2(G)} � ε−N ,

uniformly in ε ∈ (0, 1].
Definition 4.2 (Negligibility): Let Y be a normed space of functions onG. Let (fε)ε , (f̃ε)ε
be two nets. Then, the net (fε − f̃ε)ε is called Y-negligible, if the following condition is
satisfied

‖fε − f̃ε‖Y � εk, (27)

for all k ∈ N, ε ∈ (0, 1]. In the case where f = f (t, x) is a function also depending on t ∈
[0,T], then the negligibility condition (27) can be regarded as

‖fε(t, ·)− f̃ε(t, ·)‖Y � εk, ∀ k ∈ N,

uniformly in t ∈ [0,T]. The constant in the inequality (27) can depend on k but not on ε.
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In Definitions 4.3 and 4.6, we introduce the notion of the unique very weak solution to
the Cauchy problem (1). Our definitions are similar to the one introduced in [2], but here
wemeasuremoderateness and negligibility in terms of Lp(G) orC1-seminorms rather than
in terms of Gevrey-seminorms.

Definition 4.3 (Very weak solution): Let (u0, u1) ∈ H
sν
2 (G)× L2(G). Then, if there

exists a non-negative L∞(G)-moderate (or a L
2Q
νs (G) ∩ L

Q
νs (G)-moderate, if we require

to have Q > νs) approximating net (mε)ε , mε ≥ 0, to m, so that the family (uε)ε ∈
C([0,T];H

sν
2 (G)) ∩ C1([0,T]; L2(G)) which solves the ε-parametrised problem{
∂2t uε(t, x)+ Rsuε(t, x)+ mε(x)uε(t, x) = 0, (t, x) ∈ [0,T] × G,
uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ G,

(28)

for all ε ∈ (0, 1], is C1-moderate, then net (uε)ε is said to be a very weak solution to the
Cauchy problem (1).

Remark 4.4: In Definition 4.3 above we ask for mε to approximate m, to allow for more
flexibility. This should be understood as follows. If m ∈ D′(G) is a distribution, we can
understand it as a regularisation, namely, the assumption in Definition 4.3 is that there
is a Friedrichs mollifier ψ ≥ 0 such thatmε = m ∗ ψε . However, the word approximation
allows formore flexibility, for example, we can in principle generate an approximating fam-
ily with a net m̃ε such that the one we will discuss in (31). Moreover, this context allows
us to start with m being more singular than a distribution: for example, if m = δ2 we can
think of an approximating familymε = ψ2

ε . See also Remark 4.7 for a continuation of this
discussion.

We now formulate the very weak existence result, corresponding to two possibilities of
regularising with families (mε)ε with different properties, corresponding to the existence
results in Propositions 3.1 and 3.2.

Theorem 4.5: Let (u0, u1) ∈ H
sν
2 (G)× L2(G). Then the Cauchy problem (1) has a very

weak solution.

Proof: Let u0, u1 be as in the hypothesis. If (mε)ε is L∞(G)-moderate (or L
2Q
νs (G) ∩

L
Q
νs (G)-moderate), then, sincemε ≥ 0, by using (6) (or (19), respectively) we get

‖uε(t, ·)‖H sν
2 (G)

+ ‖∂tuε(t, ·)‖L2(G) � ε−N , N ∈ N,

for all t ∈ [0,T] and for any ε ∈ (0, 1]. This means that the family of solutions (uε)ε is
C1-moderate, and completes the proof of Theorem 4.5. �

The uniqueness of the very weak solution to the Cauchy problem (1) can be understood
as if a negligible change of the net (mε)ε does not affect the asymptotic behaviour of the
family of the very weak solutions. In other words, negligible changes of the approximation
mε of m lead to negligible changes in the solution family uε , with an appropriate choices
of norms to understand the negligibility. Formally, we have the following definition.
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Definition 4.6: Let X and Y be normed spaces of functions on G. We say that the Cauchy
problem (1) has an (X,Y)-unique very weak solution, if for all X-moderate nets mε ≥
0, m̃ε ≥ 0, such that (mε − m̃ε)ε is Y-negligible, it follows that

‖uε(t, ·)− ũε(t, ·)‖L2(G) ≤ CNε
N , ∀ N ∈ N,

uniformly in t ∈ [0,T], and for all ε ∈ (0, 1], where (uε)ε and (ũε)ε are the families of
solutions corresponding to the ε-parametrised problems{

∂2t uε(t, x)+ Rsuε(t, x)+ mε(x)uε(t, x) = 0, (t, x) ∈ [0,T] × G,
uε(0, x) = u0,ε(x), ∂tuε(0, x) = u1,ε(x), x ∈ G,

(29)

and {
∂2t ũε(t, x)+ Rsũε(t, x)+ m̃ε(x)ũε(t, x) = 0, (t, x) ∈ [0,T] × G,
ũε(0, x) = ũ0,ε(x), ∂tũε(0, x) = ũ1,ε(x), x ∈ G,

(30)

respectively.

Remark 4.7: We note that in Definition 3 in the previous paper [9], the word ‘regularisa-
tion’ needs to be understood, in general, as an approximation not necessarily depending on
the classical convolution and specific mollifiers. In this case, our definition of the unique-
ness of the very weak solutions here includes also the version in Definition 3 in [9], but
Definition 4.6 makes it more rigorous. To clarify this further, we can take, for example,mε
to be a regularisation ofm by a convolution (ifm is a distribution), and take

m̃ε = mε + e−1/ε . (31)

Then the net (mε − m̃ε)ε is L∞-negligible, and so it is suitable to be used in Definition 4.6.
If m = δ2, we can take mε = ψ2

ε for a Friedrichs mollifier ψ , and still, for example, m̃ε
as in (31). We also note that Definition 4.6 can be also interpreted as stability. In fact, in
Definition 4.6 we do not assume mε to approximate m since we can prove the required
property without this assumption (as in Theorems 4.9 and 4.10). This allows for our results
to be applicable to cases like m = δ2, since with this approach we do not need to explain
in which sensemε = ψ2

ε approximatesm = δ2.

We now give some clarification of the moderateness assumption of the regularisations
(or approximations). Let us underline that, the global structure of E ′-distributions, implies
that the assumption on the Lp-moderateness, for p ∈ [1,∞], is natural for nets that arise as
regularisations of a compactly supported distribution inE ′ via convolutionswith amollifier
as in (5).

Proposition 4.8: Let v ∈ E ′(G), and let vε = v ∗ ψε be obtained as the convolution of vwith
amollifierψε as in (5). Then the regularising net (vε)ε is Lp(G)-moderate for any p ∈ [1,∞].

Proof: Recall, that for v ∈ E ′(G)we can findm ∈ N and compactly supported continuous
functions fβ ∈ C(G) such that

v =
∑

|β|≤m

∂β fβ ,
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where |β| denoted the length of the multi-index β . Considering the convolution of v with
a mollifier ψε as in (5) yields

vε = v ∗ ψε =
⎛⎝ ∑

|β|≤m

∂β fβ

⎞⎠ ∗ ψε =
∑

|β|≤m

(
∂β fβ ∗ ψε

)
,

where each term in the above sum can be rewritten as

∂β fβ ∗ ψε = 〈∂β fβ(yx−1),ψε(x)〉 = (−1)|β|〈fβ(yx−1), ∂βψε(x)〉
= (−1)|β|ε−Q〈fβ , ∂βψ(Dε−1(x)〉
= (−1)|β|ε−Q−[β]〈fβ , (∂βψ)(Dε−1(x)〉,

where [β] stands for the homogeneous length of β .
Finally, since fβ ,ψ are compactly supported, we get fβ , (∂βψ)(Dε−1 ·) ∈ Lp(G), for all p,

and this finishes the proof of Proposition 4.8. �

We note that thanks to Proposition 4.8 the assumption of Theorem 4.5 can be relaxed
to (u0, u1) ∈ {H sν

2 (G) ∪ E ′(G)} × {L2(G) ∪ E ′(G)}. The following theorems show the
uniqueness of the very weak solution to the Cauchy problem (1) under different assump-
tions on the nets (mε)ε .

Theorem 4.9: Suppose that (u0, u1) ∈ {H sν
2 (G) ∪ E ′(G)} × {L2(G) ∪ E ′(G)}. Then the

very weak solution to the Cauchy problem (1) is (L∞(G), L∞(G))-unique.

Proof: Let (uε)ε and (ũε)ε be the families of solutions corresponding to the Cauchy prob-
lems (29) and (30), respectively. If we denote by Uε(t, ·) := uε(t, ·)− ũε(t, ·), then Uε
satisfies{

∂2t Uε(t, x)+ RsUε(t, x)+ mε(x)Uε(t, x) = fε(t, x), (t, x) ∈ [0,T] × G,
Uε(0, x) = 0, ∂tUε(0, x) = 0, x ∈ G,

(32)

where fε(t, x) := (m̃ε(x)− mε(x))ũε(t, x).
The solution of the Cauchy problem (32) can be expressed in terms of the solution to

the corresponding homogeneous Cauchy problem using Duhamel’s principle. Indeed, if
for a fixed σ , Vε(t, x; σ) is the solution of the homogeneous problem{

∂2t Vε(t, x; σ)+ RsVε(t, x; σ)+ mεVε(t, x; σ) = 0, in (σ ,T] × G,
Vε(t, x; σ) = 0, ∂tVε(t, x; σ) = fε(σ , x), on {t = σ } × G,

(33)

then Uε is given by Uε(t, x) = ∫ t
0 Vε(t, x; σ) dσ .

Since by Minkowski’s integral inequality we know∥∥∥∥∫ t

0
Vε(t, ·; σ) dσ

∥∥∥∥
L2(G)

≤
∫ t

0
‖Vε(t, ·; σ)‖L2(G) dσ ,

using the energy estimate (6) to control L2(G)-norm of the solution Vε to the homoge-
neous problem (33), and subsequently of Uε , we get

‖Uε(t, ·)‖L2(G) ≤
∫ T

0
‖Vε(t, ·; σ)‖L2(G) dσ
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� (1 + ‖mε‖L∞(G))

∫ T

0
‖fε(σ , ·)‖L2(G) dσ

� (1 + ‖mε‖L∞(G))‖m̃ε − mε‖L∞(G)

∫ T

0
‖ũε(σ , ·)‖L2(G) dσ ,

where we use the estimate

‖fε(σ , ·)‖L2(G) = ‖(m̃ε − mε)(·)ũε(σ , ·)‖L2(G) ≤ ‖m̃ε − mε‖L∞(G)‖ũε(σ , ·)‖L2(G).
Now, using the fact that (mε)ε is L∞(G)-moderate, while also that the net (ũε)ε , as being
a very weak solution to the Cauchy problem (29), is C1-moderate and that (mε − m̃ε)ε is
L∞-negligible, we get that

‖Uε(t, ·)‖L2(G) � ε−N1+N
∫ T

0
ε−N2 dσ = T ε−N1−N2+N ,

for some N1,N2 ∈ N, and for all N ∈ N, ε ∈ (0, 1]. That is, we have
‖Uε(t, ·)‖L2(G) � εk,

for all k ∈ N, and the last shows that the net (uε)ε is the unique very weak solution to the
Cauchy problem (1). �

Alternative to Theorem 4.9 conditions on the nets (mε)ε , (m̃ε)ε that guarantee the very
weakly well-posedness of (1) are given in the following theorem.

Theorem 4.10: Let Q > νs, and suppose that (u0, u1) ∈ {H sν
2 (G) ∪ E ′(G)} × {L2(G) ∪

E ′(G)}. Then the very weak solution to the Cauchy problem (1) is (L∞(G), L
2Q
νs (G))-

unique. Moreover, the very weak solution to the Cauchy problem (1) is also (L
2Q
νs (G) ∩

L
Q
νs (G), L

2Q
νs (G))-unique and (L

2Q
νs (G) ∩ L

Q
νs (G), L∞(G))-unique.

Proof: We will only prove the (L∞(G), L
2Q
νs (G))-uniqueness as the other two uniqueness

statements are similar. Proceeding as we did in the proof of Theorem 4.9, we arrive at

‖Uε(t, ·)‖L2(G) � (1 + ‖mε‖L∞(G))

∫ T

0
‖fε(σ , ·)‖L2(G) dσ

= (1 + ‖mε‖L∞(G))

∫ T

0
‖(m̃ε − mε)(·)ũε(σ , ·)‖L2(G)dσ .

for all t ∈ [0,T]. Additionally, by applying Hölder’s inequality, together with the Sobolev
embeddings (4), we have

‖(m̃ε − mε)(·)ũε(t, ·)‖L2(G) ≤ ‖m̃ε − mε‖L 2Q
νs (G)

‖R s
2 ũε(t, ·)‖L2(G),

where since (ũε), as being the very weak solution corresponding to the L∞(G)-moderate
net (m̃ε)ε , is C1-moderate, we have

‖R s
2 ũε(t, ·)‖L2(G) � ε−N1 , forsome N1 ∈ N.
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Summarising the above, and since

‖m̃ε − mε‖L 2Q
νs (G)

� εN , ∀ N ∈ N,

we obtain

‖Uε(t, ·)‖L2(G) � εk, ∀ k ∈ N,

uniformly in t, and this finishes the proof of Theorem 4.10. �

5. Consistency of the very weak solution with the classical one

The next theorems stress the conditions, on the coefficientm and on the initial data u0, u1,
under which, the classical solution to the Cauchy problem (1) can be recaptured by its very
weak solution. In the statements below, we understand the classical solutions as those given
by Proposition 3.1 or Proposition 3.2, depending on the assumptions. By the ‘regularisa-
tions’ mε = m ∗ ψε below we understand the convolution with non-negative Friedrichs
mollifiers ψ ≥ 0.

Theorem 5.1: Let Q > νs. Consider the Cauchy problem (1), and let (u0, u1) ∈ H
sν
2 (G)×

L2(G). Assume also that m ∈ L
2Q
νs (G) ∩ L

Q
νs (G), m ≥ 0, and that (mε)ε , is a regularisation

of the coefficient m. Then the regularised net (uε)ε converges, as ε → 0, in L2(G) to the
classical solution u given by Proposition 3.2.

Proof: Let u be the classical solution of (1) given by Proposition 3.2, and let (uε) be the
very weak solution of the regularised analogue of it as in (28). Then, we get{

∂2t (u − uε)(t, x)+ Rs(u − uε)(t, x)+ mε(x)(u − uε)(t, x) = ηε(t, x),
(u − uε)(0, x) = 0, ∂t(u − uε)(0, x) = 0,

where (t, x) ∈ [0,T] × G, and ηε(t, x) := (mε(x)− m(x))u(t, x). If we denote by Uε the
difference Uε(t, x) := (u − uε)(t, x), the above can be rewritten equivalently as{

∂2t Uε(t, x)+ RsUε(t, x)+ mε(x)Uε(t, x) = ηε(t, x),
Uε(0, x) = 0, ∂tUε(0, x) = 0.

(34)

Therefore, if we denote by Wε(t, x; σ) the solution to the corresponding homogeneous
problem with the initial data at {t = σ } × G

Wε(t, x; σ) = 0, and ∂tWε(t, x; σ) = ηε(σ , x),

then by Proposition 3.2 we get

‖Wε(t, ·; σ)‖L2(G) � (1 + ‖mε‖L 2Q
νs (G)

)

(
1 + ‖mε‖L Q

νs (G)

)1/2
‖ηε(σ , ·)‖L2(G)

≤ (1 + ‖mε‖L 2Q
νs (G)

)

(
1 + ‖mε‖L Q

νs (G)

)1/2
‖mε − m‖

L
2Q
νs (G)

× ‖R s
2 u(σ , ·)‖L2(G),
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uniformly in t ∈ [σ ,T] and σ ∈ [0,T], wherewe applyHölder’s inequality and the Sobolev
embeddings (4). Since m ∈ L

2Q
νs (G), we have ‖mε − m‖

L
2Q
νs (G)

→ 0, so that taking the
limit of the above as ε → 0, we get

‖Wε(t, ·; σ)‖L2(G) → 0, (35)

uniformly in t ∈ [σ ,T] and σ ∈ [0,T]. Now, Duhamel’s principle allows us to express the
solution to the inhomogeneous problem with respect to the homogeneous one as

Uε(t, x) =
∫ t

0
Wε(t, x; σ) dσ , (36)

so that, by (35), (36), and Minkowski’s integral inequality∥∥∥∥∫ t

0
Wε(t, ·; σ) dσ

∥∥∥∥
L2(G)

≤
∫ t

0
‖Wε(t, ·; σ)‖L2(G) dσ ,

we obtain

‖Uε(t, ·)‖L2(G) ≤ T sup
σ∈[0,T]

‖Wε(t, ·; σ)‖L2(G) → 0, as ε → 0.

This means that uε → u with respect to L2(G)-norm, and this finishes the proof of
Theorem 5.1. �

In the following theorem we denote by C0(G) the space of continuous functions on G

vanishing at infinity, that is, such that for every ε > 0 there exists a compact set K outside
of which we have |f | < δ. We also denote by B(G) the space of simple and compactly
supported functions on G. Both C0(G) and B(G), if endowed with the norm ‖ · ‖L∞(G),
are Banach spaces.

Theorem 5.2: Consider the Cauchy problem (1), and let (u0, u1) ∈ H
sν
2 (G)× L2(G).

Assume also that m ∈ C0(G) ∪ B(G), m ≥ 0, and that (mε)ε , mε ≥ 0, is a regularisation of
the coefficientm. Then the regularised net (uε)ε converges, as ε → 0, in L2(G) to the classical
solution u given by Proposition 3.1.

Before giving the proof of Theorem 5.2, let us make the following observation: If m ∈
C0(G) ∩ B(G), then ‖mε‖L∞(G) ≤ C < ∞, uniformly in ε ∈ (0, 1].

Proof of Theorem 5.2.: First observe that form, (mε)ε as in the hypothesis, we havemε ∈
L∞(G) for each ε ∈ (0, 1]. Now, as in (34), if we denote byWε the solution to the problem{

∂2t Wε(t, x; σ)+ RsWε(t, x; σ)+ mε(x)Wε(t, x; σ) = 0,
Wε(t, x; σ) = 0, ∂tWε(t, x; σ) = ηε(σ , x) on {t = σ } × G,

where ηε(t, x) := (mε(x)− m(x))u(t, x), then by Proposition 3.1 we obtain

‖Wε(t, ·; σ)‖L2(G) � (1 + ‖mε‖L∞(G))‖ηε(σ , ·)‖L2(G)
≤ (1 + ‖mε‖L∞(G))‖mε − m‖L∞(G)‖u(σ , ·)‖L2(G),
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uniformly in t ∈ [σ ,T] and σ ∈ [0,T]. Now, by Lemmas 3.1.58 and 3.1.59 in [14] we have

‖mε − m‖L∞(G) → 0, as ε → 0,

so that by the above we get

‖Wε(t, ·; σ)‖L2(G) → 0, as ε → 0, (37)

uniformly in t ∈ [σ ,T] and σ ∈ [0,T]. Finally, by Duhamel’s principle ifUε is the solution
to the non-homogeneous problem (34), then by (37) we get

‖Uε(t, ·)‖L2(G) → 0,

and this completes the proof of Theorem 5.2. �

Remark 5.3: We note that in Theorem 4 in the paper [9], one wrote the assumption that
m ∈ L∞(Rd) in the consistency result. This may be not sufficient in general. Indeed, to be
more accurate, it is better to ask m to be in the subspace C0(R

d) ∪ B(Rd) of L∞(Rd). In
this way we obtain a correction to the statement of Theorem 4 in [9] as a special case of
Theorem 5.2 with G = Rd andR being the positive Laplacian −�.

Note

1. When p = 2, we will writeR2 = R for the self-adjoint extension ofR on L2(G).
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