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Chaney (2018) presents an intuitive, dynamic model of firm-to-firm trade that defines the func-
tional relationship between aggregate trade ϕ and distance x under three conditions: if

(i) firm size K ∼ Pareto(Kmin, λ) with shape parameter λ ≥ 1 for all firms,

(ii) the average squared distance of exports is an increasing power function of firm size with
power µ,

(iii) λ < 1 + µ,

then the elasticity of aggregate trade with respect to distance is asymptotically constant:1

ϕ(x) ∝
x→∞

1

x1+2(λ−1)/µ . (1)

Moreover, if λ ≈ 1 (firm exporter size approximates Zipf’s law), the model provides an explana-
tion for the distance coefficient in gravity equations often being close to one: ϕ(x) ≈ 1/x.

This note tries and fails to replicate the empirical motivation for conditions (i)-(iii) of Chaney
(2018). It uncovers multiple independent inconsistencies between the described methodology
and its actual implementation. These discrepancies result in outcomes more closely aligned with
conditions (i)-(iii) than those obtained from an exact implementation of the described method-
ology. Furthermore, this note demonstrates that both the parameter restrictions imposed by
conditions (i) and (iii), as well as the functional form requirements set out in conditions (i)-(ii),
are sensitive to sample size and are not simultaneously satisfied in the data. As a result, it be-
comes difficult to pin down ‘the’ asymptotic predicted distance elasticity. Therefore, the aim of
this note is to incite dialogue on possible generalizations of Chaney (2018)’s model specification
that can broaden its empirical support. In this regard, I kindly refer the reader to the reply
from the original author to this article.

1 Replication

A replication of the empirical motivation for conditions (i)-(iii) of Chaney (2018) uncovered
the following inconsistencies between the described methodology and its actual implementa-
tion:2,3
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1Given the stability of the firm size distribution over time, Chaney (2018) interprets the theoretical model
as an explanation for the distance puzzle. See Yotov (2012) for an alternative explanation of the distance puzzle
relying on the differential effects of distance on inter- and intra-national trade.

2See online Appendix A for a detailed overview of the replication exercise with annotated original code.
3All reported standard errors in this note are robust standard errors. See the authors’ reply for a description

of the inconsistency regarding reported standard errors in the original paper.
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1. (Chaney, 2018, Table 1, p. 162) reports a fitted Pareto shape parameter (λ = 1.005,
s.e. = .0288) “using data on all 27,903 French firms that export more than 1 million
French francs in 1992 (≈$200,000)” (Chaney, 2018, p. 162). The actual implementation,
however, additionally omits 7,477 firms. An exact implementation, relying on the complete
dataset, produces a Pareto shape parameter below one (λ = 0.971, s.e. = .0289). This
inconsistency has two implications for the reported results in Table 1. First, a point
estimate of λ below one results in a degenerate equilibrium of the theoretical model where
old firms become “too” large (Chaney, 2018, p.167). Second, the reported µ parameter
in Table 1 is obtained under the sample described in the original contribution (firms with
exports > 1 million French francs in 1992). As a result, five out of the eight rows in Table
1 conflate parameter estimates obtained from different sample sizes.

2. (Chaney, 2018, p.160) states that “As proposition 1 is an asymptotic result, I consider
two specifications of (6): Either with all distances or with only distances above 2,000
kilometers (approximately 1,200 miles, about 80 percent of the sample).” The author’s
code reveals that the distance elasticity ζlong = 1.090 (s.e. = .210) is obtained from using
a cutoff at 1,900 kilometers. Applying the reported cutoff of 2,000 kilometers results in a
distance elasticity of ζlong = 1.185 (s.e. = 0.250).

3. Chaney (2018) visually evaluates the functional form requirements of conditions (i)-(ii),
claiming that “The straight lines in the top and bottom panels of fig. 1 correspond to fitted
regression lines from estimating eqq. (4) and (5) respectively” (Chaney, 2018, footnote 9,
p. 162). This claim is not correct.

3.1. The upper panel of (Chaney, 2018, fig. 1) displays a regression line fitted on restricted
data (see item 1), vertically shifted, and omitting a fitted observation. The difference
between this omitted observation and the (normalized) empirical CDF is 0.53. An
updated visualization reveals that observed deviations from the data are too large to
defend Pareto, and therefore condition (i), providing a good fit to the specified data
sample.

3.2. Similar to the upper panel of (Chaney, 2018, fig. 1), the regression line displayed
in the lower panel is fitted on restricted data and is vertically shifted. An updated
visualization indicates that a simple log-linear specification between firm size and
average squared distance of exports, and therefore condition (ii), does not suffice.

4. When performing the Wald test for all distances, Chaney (2018) relied on the actual
distance elasticity for long distances in the numerator of the Wald test statistic. Correcting
for this inconsistency lowers the p-value from the reported 99.3% (Chaney, 2018, p.162)
to 54.9%.

Overall, of the two figures and eight lines of results presented in (Chaney, 2018, p.161-162)
to motivate the theoretical model assumptions, only two results can be replicated using the
methodology as stated in the paper. The discrepancy between the stated methodology and the
results reported is due to multiple deviations in the STATA code. These discrepancies result
in outcomes more closely aligned with conditions (i)-(iii) than those obtained from an exact
implementation of the described methodology.

Provided the replication failure, this note aims to provide the outcomes obtained from an exact
implementation of the described methodology and evaluate the sensitivity of these outcomes
with respect to sample size. Figure 1 provides an overview of this replication exercise, displaying
the evolution of (a) the estimated Pareto shape parameter (λ) and the power exponent of the
specified firm size - distance relation, increased by one (µ + 1), (b) the predicted distance
elasticity (1 + 2(λ − 1)/µ) and (c) the estimated distance elasticity (ζ), as a function of their
respective minimum bounds used to define the sample.
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Parameter estimates obtained from an exact implementation of the described methodology are
indicated by white squares in Figure 1, while white diamonds indicate parameter estimates as
reported by Chaney (2018). The estimates based on an exact implementation are obtained from
the available full sample of firms and are therefore located on the utter left side of the x-axis.
As described above, this exact implementation results in a point estimate of the Pareto shape
parameter below one, violating condition (i). Still, naively calculating the predicted distance
elasticity provides an elasticity of 0.48 (see panel (c) of Figure 1). Its accompanying confidence
interval indicates that this elasticity is not significantly different from one, neither is this naive
estimate significantly different from the estimated distance elasticity for all (ζall = 0.77) or long
(ζlong = 1.19) distances.4 However, the success of these statistical tests cannot be viewed as a
validation of the theoretical model. The parameter restriction of condition (i) is not satisfied
when the Pareto shape parameter falls below unity, and the functional form requirements set
out in conditions (i)-(ii) are not satisfied for this specific data sample (see item 3.1 and 3.2
above).

Therefore, this note discusses the sensitivity of the theoretical parameter restrictions and func-
tional form requirements to alternative lower bounds that define the sample. First, panel (a)
of Figure 1 demonstrates that the Pareto shape parameter (λ) ranges between 0.97 and 1.74
for alternative export cutoff values. Meanwhile, the power exponent of the specified firm size
- distance relation increased by one (µ + 1) takes values between 1.03 and 1.25. As a result,
condition (iii) only holds for cutoff values of exports smaller than 8.63 million FF. Whereas the
author states that “in practice, condition (iii) is unlikely to be violated.” (Chaney, 2018, p.
156), the range of export cutoff values for which condition (iii) is violated accounts for 94.4% of
total exports above 1 million FF. Additionally imposing the parameter restriction of condition
(i) restricts the sample range where all parameter restrictions hold to samples with cutoff values
spanning between 1.91 to 8.63 million FF, as indicated by the white area in panels (a) and (b)
of figure 1.5 This range accounts for 4.6% of total exports above 1 million FF (between 99.0%
and 94.4% of total exports above 1 million FF), or equivalently, for 9.6% of all exporting firms
(between 16.9% and 7.3%).6

As for the functional form requirements, these are not satisfied within this sample range. The
Pareto assumption for firm size, for instance, is more likely to hold for samples that consider
only the largest 5% (Freund and Pierola, 2015) and/or 1% Head et al. (2014); Bas et al. (2017) of
exporting firms,7 which falls outside the sample range where parameter restrictions are satisfied.
Overall, both parameter restrictions and functional form requirements are sensitive to sample
size and cannot simultaneously be satisfied according to the data.

The sensitivity of model conditions (i)-(iii) to sample size renders theoretical predictions volatile
(see panel (b) of Figure 1). As such, it becomes hard to pin down ‘the’ asymptotic predicted
distance elasticity. Within the theoretically acceptable parameter range, predicted distance
elasticities increase from 1.09 to 2.69. In comparison, point estimates for the distance elasticity
of trade initially oscillate around the value one in function of distance (see panel (c) of Figure

4A Wald test on the equality between the actual and naively predicted distance elasticities of trade attains
a p-value of 59.4% for all distances and 22.7% for long distances.

5The white areas in panel 1a and 1b indicate the sample range that satisfies the parameter restrictions of
conditions (i) the Pareto parameter is larger than one (λ ≥ 1) to avoid a degenerate equilibrium of the theoretical
model where old firms become “too” large (Chaney, 2018, p.167), and (iii) the Pareto shape parameter is small
enough such that the entry of new firms does not exceed the sum of the growth rates of individual firms and the
gross creation of new contacts (λ < 1 + µ).

6This range is further restricted to cutoff values spanning between 1.91 and 4.52 million FF if one requires
the point estimate (µ + 1) to be significantly larger than (λ). The resulting range of cutoff values accounts for
2.1% of total exports above 1 million FF (between 99.0% and 96.9% of total exports above 1 million FF), or
equivalently, for 6.2% of all exporting firms (between 16.9% and 10.7%).

7See also online Appendices B and C.
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1) before diverging for long distances. The reported point estimate of the ‘long’ actual distance
elasticity (for distances above 1,900 kilometers) by Chaney (2018) transpires to be a snapshot
of reality. Consequently, it also becomes hard to pin down ‘the’ asymptotic actual distance
elasticity as a benchmark to compare predicted distance elasticities with.

2 Conclusion

In conclusion, the replication exercise reveals that Chaney (2018)’s theoretical predictions do
not hold up as a general result. The revealed tension between parameter restrictions and func-
tional form requirements can guide further dialogue on alternative model specifications. For
instance, the relied upon Steindl (1965) growth process is, in the context of city size distribu-
tions, perceived as a problematic explanation for Zipf’s law due to its empirically implausible
parametric restrictions (Gabaix, 1999). Also, one could consider more general functional form
specifications for the firm size distribution, bringing two advantages. First, the point estimates
of the distance elasticity reported in panel (c) of Figure 1, similar to distance elasticities repor-
ted by the author in online Appendix Table 4 (Chaney, 2018, Online Appendix p.22), seem to
point at a richer evolution of the distance elasticity than a gradual decrease towards a constant
value (of one). In line with the literature on the variability of the aggregate trade elasticity (the
response of trade flows to a change in trade costs) across country pairs (Melitz and Redding,
2015; Bas et al., 2017), one could consider alternative firm size distributions that help to explain
this evolution. Second, the Pareto/Zipf distribution only covers the right tail of the firm size
distribution, without indication of the length of this right tail. Alternative distributions could
spur research on the functional relation between distance and aggregate trade for both small
and large firms. Given the widespread reliance on the gravity equation for all firm sizes, it is
all the more important to fully understand the implications of this equation.
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Figure 1: Evolution of the parameter estimates and model outcomes as a function of their
respective minimum bounds used to define the sample.

Note: All results obtained from samples of at least 5 observations. aLight-grey capped spikes (I-beams) delineate
the 95% confidence intervals in panel (a) and (c) and 95% bootstrapped confidence intervals for panel (b). bFor
visual purposes, confidence intervals are restricted to take values between -0.9 and 35 in panel (b) and between
-0.9 and 4 in panel (c). cWhite areas indicate the theoretically acceptable parameter point estimates (see also
footnote 8). dWhite squares indicate the parameter estimates and model outcomes obtained from an exact
implementation of the described methodology of Chaney (2018). White diamonds indicate parameter estimates
as reported by Chaney (2018). Note that the predicted elasticity by Chaney (2018) can not be displayed in panel
(b) as it depends on parameters obtained under different cutoff values of exports for sample inclusion.
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Appendix A Implementation inconsistencies

This appendix details the inconsistencies between the described methodology in Chaney (2018)
and the actual implementation. It relies on the code and data provided in the supplemental
materials by Chaney (2018), accessible at doi.org/10.1086/694292. Specifically, it relies on
the STATA code in the location ‘ReplicationFiles/Analysis/Code/Analysis A redux.do’. The
reported code line indicators correspond to the code lines in the original file, while the code
highlighted in red pinpoints the origin of the reported inconsistencies.

1. The minimum firm size, Kmin, is of critical importance to the empirical exercise in Chaney
(2018). It determines the size of the data sample and is a parameter of the Pareto
distribution. Hence, the lower bound influences the ensuing estimation of the Pareto
shape parameter λ, featuring a positive correlation (see, for instance, Head et al. (2014)).
Chaney (2018) chooses to set an arbitrary lower bound at 1 million francs, resulting in a
dataset of 27,968 firms out of a total of 121,581 French exporters in 1992 (Chaney, 2014,
p.3605). However, it appears from the STATA code that a higher cutoff has been used
only for fitting the Pareto distribution:

89 capture quietly reg ln_rank_n ln_exp_n if bin>2

Omitting the first three bins (“if bin>2” in the STATA code) resets the lower bound to
approximately 1.91 million francs, resulting in a dataset of 20,491 firms (± 73% of the
original dataset).

This inconsistency has two implications for the reported results in Table 1. First, relying
on the complete dataset results in a Pareto shape parameter λ below one (λ = 0.971, s.e. =
.0289). A λ below one, though not significantly so, results in a degenerate equilibrium of
the theoretical model where old firms become “too” large (Chaney, 2018, p.167). Second,
the reported µ parameter in Table 1 is obtained under a different sample, specifically the
sample as described in the original contribution (firms with exports > 1 million French
francs in 1992). As a result, five out of the eight rows in Table 1 rely on parameter
estimates obtained from different sample sizes.

2. (Chaney, 2018, p.160) claims, “As proposition 1 is an asymptotic result, I consider two
specifications of (6): Either with all distances or with only distances above 2,000 kilometers
(approximately 1,200 miles, about 80 percent of the sample).”. The code of the author
reveals that the distance elasticity ζlong = −1.090 (s.e. = .210) is obtained from using a
cutoff at 1,900 kilometers:

225 capture quietly reg ln_exports ln_distance ln_imports if dist>1.9

Using the cutoff at 2,000 kilometers results in a distance elasticity of ζlong = −1.185
(s.e. = 0.250) as 2 extra observations (of the 84) are dropped.

3. Chaney (2018) claims that “The straight lines in the top and bottom panels of fig. 1 cor-
respond to fitted regression lines from estimating eqq. (4) and (5) respectively” (Chaney,
2018, footnote 9, p.162). This claim is not correct.

3.1. The upper panel of (Chaney, 2018, fig. 1) displays a straight line that is fitted on
restricted data (“if bin> 2”), omits a fitted observation (“bin==3”), and is vertically
shifted (“local anchor=45”).

458 *fit rank-size regression line

459 capture quietly reg ln_rank_n ln_exp_n if bin>2
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460 capture mat temp=e(b)

461 local lambda=-temp[1,1]

462 local anchor=45

463 local rank anchor=rank n[‘anchor’]

464 local exp anchor=exp n[‘anchor’]

465 gen

rank_n_hat=‘rank anchor’*‘exp anchor’^(‘lambda’)*exp_n^(-‘lambda’)

466

467 *generate rank-size plot on a log-log scale

468 twoway (scatter rank_n exp_n ) ///

469 (line rank_n_hat exp_n if bin>3,sort), ...

Figure 1 demonstrates the implications of the deviations between the authors’ claims
and actions. The replication reveals that the omitted observation from the fit
amounts to 1.19. This value deviates largely from the empirical CDF with a dif-
ference of 0.53, as can be deduced from the right panel of Figure 1. It is hard to
interpret these differences in terms of distribution fit, however, for two reasons.

First, we are comparing a properly normalized empirical CDF with a non-normalized
power-law distribution.1 To represent the Complementary CDF of a properly nor-
malized Pareto distribution, the displayed straight line should pass through the value

one at its lower bound: 1− Pareto(Kmin) =
(
Kmin
Kmin

)λ
= 1. The replication updates

the fit to the complete dataset and displays the resulting Complementary CDF2 as
the dashed orange line in the left panel of Figure 1. We notice that this updated
CDF differs largely from the empirical CDF over a broad range of the data: 13 out
of the 50 bins display a gap greater than 0.1 with a maximum deviation of 0.21, as
can also be observed from the right panel.

Second, a visual inspection of the deviations between a fitted Pareto CDF and the em-
pirical CDF requires a benchmark relative to which these distances can be evaluated.
I propose to rely on the Kolmogorov-Smirnov test to acquire such a benchmark.3

This test provides us with the intuition that the maximum deviation between the
empirical and Pareto CDF, under the null hypothesis that the data follows a Pareto
distribution, would at most attain the value of 0.122 in 95% of the cases. This leads
us to conclude that the observed differences, with a maximum deviation of 0.21, rep-
resent too large an error to defend Pareto being a good fit, at least to this range of
the data.4

1Chaney (2018) estimates the Pareto shape parameter performing an OLS log-log rank-size regression. This
exercise is designed solely to estimate the shape parameter of the Pareto distribution, it is not designed to estimate
a properly normalized Pareto CDF with values ranging between 0 and 1. The claim that “Figure 1 shows that
conditions (i)–(iii) in proposition 1 are approximately satisfied. The top panel shows that the distribution of firm
sizes is well approximated by Zipf’s law ...” (Chaney, 2018, pp. 161-162) was therefore unfounded: no Pareto
distribution was displayed in the original article.

21− Pareto(K) =
(

1
K

)0.971
.

3See online Appendix B for an overview of the performed Kolmogorov-Smirnov test.
4The large deviation of the fitted CDF from the empirical values stands in stark contrast with the high R2

value reported by the author in evidence of Pareto: “The Pareto distribution in condition (i) offers a precise
approximation of the distribution of firm sizes. The R2 from estimating equation (4) is 98.1 percent.” (Chaney,
2018, p.162). This is the consequence of the argument made in footnote 1: an OLS regression fit does not
represent a proper CDF. The R2 obtained from a simple OLS is then not informative on the distribution fit.
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CDF obtained from fitting to all data showcases a large divergence over a broader range of the
data. This can be deduced from the right panel, showcasing the absolute difference between
empirical and fitted values.
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3.2. Similar to the upper panel of (Chaney, 2018, fig. 1), the straight line displayed in the
lower panel is fitted on restricted data (“if bin<37”) and is vertically shifted (“local
anchor=8”):

471 capture quietly reg ln_Delta_n ln_exp_n if bin<37

472 capture mat temp=e(b)

473 local mu=temp[1,1]

474 local anchor=8

475 local Delta anchor=Delta n[‘anchor’]

476 local exp anchor=exp n[‘anchor’]

477 gen Delta_n_hat = ‘Delta anchor’*‘exp anchor’^(-‘mu’)*exp_n^(‘mu’)

The implications of the deviations between the authors’ claims and actions for the
lower panel are displayed in Figure 2. The replicated line has a slope of µ = 0.113
(s.e. = 0.008) and an accompanying R2 of 81.7% for the full sample. This replicated
line is vertically shifted upwards and has a less steep slope relative to the originally
displayed straight line, which had a slope of µ = 0.152 (s.e. = 0.005) and an ac-
companying R2 of 96.5% for the relied upon restricted sample (bin<37).5 Moreover,
a log-quadratic fit to the complete sample increases the R2 to 89.4 percent. This
indicates that a simple log-linear specification between firm size and average squared
distance of exports might not suffice.6
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Figure 2: Original straight line over its fitted (bin<37, full line) and excluded (bin≥37, dashed
line) data range, as well as the replicated log-linear fitted line and a log-quadratic fitted line.

4. Chaney (2018) relies on a Wald test to test the equality between the actual and predicted
distance elasticities of trade. When performing the Wald test for all distances, the au-
thor uses the difference between the predicted distance elasticity and the actual distance
elasticity for long distances (‘theta’ rather than ‘theta all’) as the numerator of the test
statistic:

388 *Wald test for proposition 1 (all distances)

5Note that the claim “Figure 1 shows that conditions (i)–(iii) in proposition 1 are approximately satisfied. ...
The bottom panel shows that the average squared distance of exports is approximately a power function of firm
size, ∆(K) ∝ Kµ with µ = 0.113” (Chaney, 2018, pp. 161-162) was therefore unfounded: the displayed straight
line had a slope of µ = 0.152.

6See online Appendix C for a formal statistical test which confirms this observation.
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389 gen theta_all=(zeta_all-1-2*(lambda-1)/mu)

390 gen theta2_all=theta^2

Correcting for this inconsistency, the reported p-value attains a value of 54.9 percent
rather than the reported 99.3% in the original paper (Chaney, 2018, p.162).
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Appendix B Kolmogorov-Smirnov test

Chaney (2018) relies on both a visual inspection of the upper panel of Figure 1 on p.161 and
the reported R2 in Table 1 on p.162 to evaluate whether the Pareto distribution is a sufficiently
good approximation of the actual firm size distribution, as condition (i) requires:

• “Figure 1 shows that conditions (i)–(iii) in proposition 1 are approximately satisfied. The
top panel shows that the distribution of firm sizes is well approximated by Zipf’s law”
(Chaney, 2018, pp. 161-162)

• “Table 1 presents formal statistical tests for conditions (i)–(iii) and proposition 1.
The Pareto distribution in condition (i) offers a precise approximation of the distribution
of firm sizes. The R2 from estimating equation (4) is 98.1 percent.” (Chaney, 2018, p.162)

However, a visual inspection of the deviations between a fitted Pareto CDF and the empirical
CDF requires a benchmark relative to which these distances can be evaluated. Moreover, the
reported R2 is obtained from an estimation procedure solely designed to estimate the shape
parameter of the Pareto distribution, not to estimate a properly normalized Pareto CDF. The
obtained R2 can then not be informative on whether the Pareto distribution offers a precise
approximation of the firm size distribution observed in the data (which is properly normal-
ized).

To resolve these two shortcomings, I propose to rely on the Kolmogorov-Smirnov test. The
Kolmogorov-Smirnov statistic quantifies the distance between the empirical distribution func-
tion (F (Kb))

7 and the cumulative distribution function of the Pareto distribution (Pareto(Kb))
as follows:

KS = sup
Kb

|F (Kb)− Pareto(Kb|Kmin, λ)| . (1)

There exists, to my knowledge, no critical values for this test when the parameters of the Pareto
distribution are determined from binned data. Therefore, we need to rely on a parametric
bootstrap:

1. H0 : F (·) = Pareto(·|Kmin, λ̂);

2. Draw B bootstrap samples of size N from Pareto(·|Kmin, λ̂) and construct bins of equal
log width as Chaney (2018), with the number of bins equal to the number of bins in the
original data;

3. Obtain an estimate of the shape parameter of the Pareto distribution for each bootstrap
sample of firm sizes, λ̂∗;

4. For each sample of the parametric distribution, calculate the KS statistic

KS∗ = sup
K∗b

|F (K∗b )− Pareto(K∗b |Kmin, λ
∗)| ; (2)

7Note that (Chaney, 2018, p.159) specifies this empirical distribution function as F (Kb) = 1−
∑50

b′=b

∑
i 1[i∈b′]∑50

b′′=1

∑
i 1[i∈b′′] .

In the actual implementation, however, the author uses another specification F (Kb) = 1 −
∑50

b′=b

∑
i 1[i∈b′]−0.5∑50

b′′=1

∑
i 1[i∈b′′] ,

as becomes obvious from the STATA code (See codefile Analysis A.do, line 123). As we only have access to
the binned dataset and as the influence of this deviation on the KS-test statistic is small, we continue using the
second specification as used by the author for his implementation.
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5. One can then retrieve specific percentiles of the set of bootstrapped KS-statistics as well
as the p-value, which is defined as

p̂ =
1

B + 1

[∑
B

1 (KS∗ ≥ KS) + 1

]
. (3)

This bootstrap procedure provides us with an indication of the likelihood of observing a de-
viation between the empirical and Pareto CDF as large as KS under the null hypothesis. As
such, we attain a benchmark relative to which visual deviations between an empirical CDF
and a properly normalized Pareto CDF can be interpreted, as well as an alternative formal
statistical test for the functional form requirement set out in condition (i).

We perform the bootstrap test over the first 15 bins as lower bounds for inclusion in the sample.
Each bootstrap test is performed with B = 10, 000 replications and sample size equal to the
remaining original sample size after setting the respective bins as lower bounds. The results of
the tests are reported in Table 1. The test statistics are large for lower bins as sample cutoffs,
with errors of at least 0.2 on a CDF range between 0 and 1. These large errors result in a
statistically significant rejection of the null hypothesis, as can be deduced from the reported
p-values. When the full sample is used, the reported percentiles of the set of bootstrapped KS-
statistics provide us with the intuition that the maximum deviation between the empirical and
Pareto CDF under the null hypothesis would at most take a value of 0.122 in 95% of the cases.
This leads us to conclude that the observed differences represent too large an error to defend
Pareto being a good fit, at least for these values of sample cutoffs. The KS-statistics decrease as
the lower bounds increase, however. When considering only 7.29% of 121,581 exporting firms
in the sample, we obtain a p-value of 0.094 so that we cannot reject the assumption that the
observed data originates from a Pareto distribution. This result is in line with earlier literature
that considers only the largest 5% (Freund and Pierola, 2015) and/or 1% (Head et al., 2014;
Bas et al., 2017) of exporting firms to fit a Pareto distribution.8

8Please note that the presented formal statistical test relies on binned data and it is therefore unclear how
powerful the test is.
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Table 1: Kolmogorov-Smirnov test over different bins as lower bounds for inclusion in the
sample.

Selected firms Perc. firmsa KS P-Value P90
b P95

b P99
b

Firms above 1.00 million FF
(bin 0 and above)

23.00 0.207 0.000 0.114 0.122 0.141

Firms above 1.24 million FF
(bin 1 and above)

20.81 0.200 0.000 0.116 0.124 0.144

Firms above 1.54 million FF
(bin 2 and above)

18.77 0.193 0.000 0.117 0.126 0.146

Firms above 1.91 million FF
(bin 3 and above)

16.85 0.188 0.000 0.119 0.128 0.148

Firms above 2.37 million FF
(bin 4 and above)

15.14 0.182 0.001 0.120 0.129 0.150

Firms above 2.94 million FF
(bin 5 and above)

13.53 0.172 0.003 0.121 0.131 0.154

Firms above 3.64 million FF
(bin 6 and above)

12.04 0.164 0.006 0.123 0.133 0.155

Firms above 4.52 million FF
(bin 7 and above)

10.66 0.155 0.011 0.125 0.135 0.157

Firms above 5.61 million FF
(bin 8 and above)

9.40 0.150 0.020 0.126 0.137 0.159

Firms above 6.96 million FF
(bin 9 and above)

8.31 0.141 0.041 0.128 0.138 0.162

Firms above 8.63 million FF
(bin 10 and above)

7.29 0.131 0.094 0.130 0.140 0.165

Firms above 10.71 million FF
(bin 11 and above)

6.34 0.121 0.196 0.132 0.142 0.170

Firms above 13.28 million FF
(bin 12 and above)

5.48 0.115 0.294 0.133 0.144 0.173

Firms above 16.48 million FF
(bin 13 and above)

4.73 0.112 0.358 0.135 0.147 0.177

Firms above 20.44 million FF
(bin 14 and above)

4.08 0.109 0.441 0.138 0.150 0.182

Firms above 25.36 million FF
(bin 15 and above)

3.50 0.103 0.596 0.141 0.153 0.182

Note: Rows colored in gray indicate the sample ranges for which the parameter restrictions imposed by
conditions (i) and (iii) do not hold. aPerc. firms indicates the number of selected firms as a percentage of
all 121,581 exporting firms. bPx indicates the xth percentile of the set of bootstrapped KS-statistics.
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Appendix C Ramsey (1969)-RESET test

Chaney (2018) relies on both a visual inspection of the lower panel of Figure 1 on p.161 and
the reported R2 in Table 1 on p.162 to evaluate whether a log-linear specification is sufficient
to model the relationship between the average squared distance of exports (∆(Kb)) and firm
size (Kb), as condition (ii) requires:

• “The bottom panel shows that the average squared distance of exports is approximately
a power function of firm size, ∆(K) ∝ Kµ with µ = 0.113, as in condition (ii).” (Chaney,
2018, p.162)

• “The relationship between firm size and the average squared distance of exports is close
to the log-linear relation of condition (ii). The R2 from estimating equation (5) is 81.7
percent” (Chaney, 2018, p.162)

However, the displayed straight line in the bottom panel of Figure 1 is obtained from fitting
a restricted data sample. This resulted in a displayed straight line with an actual slope of
µ = 0.152 and an R2 of 96.5% for this restricted sample. Moreover, a log-quadratic fit to the
complete sample can increase the R2 to 89.4%. This raises the question whether a log-linear
specification is sufficient to model the relationship between the average squared distance of
exports and firm size, as in (Chaney, 2018, eq. (8) p. 160):

ln∆(Kb) = a+ µln(Kb) + εb.

We test whether this is the case relying on the Ramsey (1969)-RESET test. Specifically, we re-
estimate the previous regression with up to four powers (α = 2, . . . , 4) of the fit to the dependent

variable
(

̂ln∆(Kb)
)α

:

ln∆(Kb) = a+ µln(Kb) + t2

(
̂ln∆(Kb)

)2
+ . . .+ t4

(
̂ln∆(Kb)

)4
+ εb,

and perform an F-test under the null hypothesis that the coefficients on the added covariates
are jointly zero:9

H0 : 0 = t2 = t3 = t4. (4)

If this null hypothesis is rejected, then the regression is misspecified, and the log-linear relation-
ship between the average squared distance of exports and firm size is deemed insufficient.

We conduct the Ramsey (1969)-RESET test under the null hypothesis that the average squared
distance of exports is a power function of firm size over different lower bounds of bin membership
for inclusion in the sample. The results are reported in Table 2. One can observe that the test
statistics are large, resulting in a statistically significant rejection of the hypothesis that a simple
log-linear specification between firm size and average squared distance of exports suffices. The
test statistics are decreasing with increasing lower bounds, however. When we only consider
4.08% of 121,581 exporting firms in the sample, we obtain a p-value of 0.076 so that we cannot
reject the assumption of a log-linear relation between the average squared distance of exports
and firm size.

9This test is performed in stata using the postestimation command “estat ovtest”.
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Table 2: Ramsey (1969)-RESET test over different bins as lower bounds for inclusion in the
sample.

Selected firms Perc. firmsa RESET P-Value

Firms above 1.00 million FF
(bin 0 and above)

23.00 15.98 0.000

Firms above 1.24 million FF
(bin 1 and above)

20.81 14.97 0.000

Firms above 1.54 million FF
(bin 2 and above)

18.77 13.77 0.000

Firms above 1.91 million FF
(bin 3 and above)

16.85 12.57 0.000

Firms above 2.37 million FF
(bin 4 and above)

15.14 11.49 0.000

Firms above 2.94 million FF
(bin 5 and above)

13.53 10.44 0.000

Firms above 3.64 million FF
(bin 6 and above)

12.04 9.25 0.000

Firms above 4.52 million FF
(bin 7 and above)

10.66 7.94 0.000

Firms above 5.61 million FF
(bin 8 and above)

9.40 6.75 0.001

Firms above 6.96 million FF
(bin 9 and above)

8.31 6.36 0.002

Firms above 8.63 million FF
(bin 10 and above)

7.29 5.41 0.004

Firms above 10.71 million FF
(bin 11 and above)

6.34 4.64 0.008

Firms above 13.28 million FF
(bin 12 and above)

5.48 3.88 0.018

Firms above 16.48 million FF
(bin 13 and above)

4.73 3.35 0.032

Firms above 20.44 million FF
(bin 14 and above)

4.08 2.54 0.076

Firms above 25.36 million FF
(bin 15 and above)

3.50 2.00 0.136

Note: Rows colored in gray indicate the sample ranges for which the parameter restrictions
imposed by conditions (i) and (iii) do not hold. aPerc. firms indicates the number of selected
firms as a percentage of all 121,581 exporting firms.
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