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Abstract. This paper deals with the inequalities comparing the norm of a function on

a compact hypergroup and the norm of its Fourier coefficients. We prove the classical

Paley inequality in the setting of compact hypergroups which further gives the Hardy-

Littlewood and Hausdorff-Young-Paley inequalities in the noncommutative context. We

establish Hörmander’s Lp-Lq Fourier multiplier theorem on compact hypergroups for 1 <

p ≤ 2 ≤ q < ∞ as an application of the Hausdorff-Young-Paley inequality. We examine

our results for the hypergroups constructed from the conjugacy classes of compact Lie

groups and for a class of countable compact hypergroups.

1. Introduction

The inequalities which involve functions and their Fourier coefficients played a pivotal

role in Fourier analysis as well as in its applications to several different areas. This paper

contributes to some of the classical inequalities of this nature, namely, Hardy-Littlewood

inequality, Paley inequality and Hausdorff-Young-Paley inequality, and their applications

to the theory of Fourier multiplier in the non-commutative setting. The first inequality

we consider is the Hardy-Littlewood inequality proved by Hardy and Littlewood for the

torus T ([23]). They proved that for each 1 ≤ p ≤ 2 there exists a constant Cp > 0 such

that (∑
n∈Z

|f̂(n)|p (1 + |n|)p−2
) 1

p

≤ Cp‖f‖Lp(T), f ∈ Lp(T).

2010 Mathematics Subject Classification. Primary 43A62, 43A22 Secondary 33C45, 43A90.

Key words and phrases. Paley inequality; Hardy-Littlewood inequality; Hausdorff-Paley inequality;

Compact hypergroups; Conjugacy classes of compact Lie groups; Fourier multipliers; Lp-Lq boundedness;

compact countable hypergroups.

1



2 VISHVESH KUMAR AND MICHAEL RUZHANSKY

Hewitt and Ross [24] extended this inequality to compact abelian groups using the struc-

ture theory of groups. Recently, the second author with his coauthors explored the non-

commutative version of the Hardy-Littlewood inequality in the setting of compact homoge-

neous spaces [1, 3] and compact quantum groups [2] (see also [49]). The Hardy-Littlewood

inequality also has an application to Sobolev embedding theorems and to the boundedness

of Fourier multipliers [49, 10, 3]. Compact Riemannian symmetric spaces can be viewed

as homogeneous spaces of compact Lie groups. It is well-known that the spherical analysis

on Riemannian symmetric spaces is interconnected with the analysis on the double coset

spaces which are special examples of hypergroups for which a convolution structure can

be defined on the space of all bounded Borel measures. Our goal is to investigate the

Hardy-Littlewood, Paley and Hausdorff-Young-Paley inequalities and their applications

to the boundedness of Fourier multipliers in the context of compact hypergroups. The re-

sults of this paper are not only applicable to compact double coset spaces but also to the

large class of other examples, for instance, the space of group orbits, space of conjugacy

classes of compact (Lie) groups and countable compact hypergroups [11]. In particular,

the results of this paper are also true for several interesting examples including Jacobi

hypergroups with Jacobi polynomials as characters [20], compact hypergroup structure

on the fundamental alcove with Heckman-Opdam polynomials as characters [38], and

multivariant disk hypergroups [39, 8]

Hewitt and Ross [24] used structure theory of compact abelian groups and in [3], the au-

thors used the eigenvalue counting formula for the Laplace operator on compact manifolds

to derive the Hardy-Littlewood inequality. When working with compact hypergroups, we

do not have such luxury. In this case, we obtain the following Hardy-Littlewood inequality

(see Theorem 3.5):

Theorem 1.1. Let 1 < p ≤ 2 and let K be a compact hypergroup and K̂ the set of

inequivalent continuous representations π of K. We denote by kπ the hyperdimension of

π and assume that a sequence {µπ}π∈K̂ grows sufficiently fast, that is,

∑
π∈K̂

k2π
|µπ|β

<∞ for some β ≥ 0.
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Then we have ∑
π∈K̂

k2π|µπ|β(p−2)
(
‖f̂(π)‖HS√

kπ

)p

. ‖f‖Lp(K).

When K is the hypergroup of conjugacy classes of the compact Lie group SU(2), Theo-

rem 1.1 gives the following Hardy-Littlewood inequality for the commutative hypergroup

Conj(SU)(2). This is also a natural analogue of the Hardy-Littlewood inequality for T

(see Theorem 5.2):

Theorem 1.2. If 1 < p ≤ 2 and f ∈ Lp(Conj(SU)(2)), then we have∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p ≤ Cp‖f‖Lp(Conj(SU)(2)). (1)

The inequality (1) can be interpreted in the following form similar to the Hardy-

Littlewood inequality on T:∑
l∈ 1

2
N0

(2l + 1)5(p−2)(2l + 1)2|f̂(l)|p ≤ Cp‖f‖Lp(Conj(SU)(2)). (2)

In contrast to the case of T, an extra term (2l+ 1)2 appears in (2). But this is natural as

the Plancherel measure ω on 1
2
N0, the dual of Conj(SU)(2), is given by ω(l) = (2l+1)2 for

l ∈ 1
2
N0 while for T, the Plancherel measure of the dual group Z is the counting measure.

Corollary 1.3. If 2 ≤ p <∞ and
∑

l∈ 1
2
N0

(2l + 1)5p−8|f̂(l)|p <∞ then

f ∈ Lp(Conj(SU)(2)).

Moreover, we have

‖f‖Lp(Conj(SU)(2)) ≤ Cp
∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p.

For p = 2, Theorem 1.2 and Corollary 1.3 boil down to the Plancherel theorem for

the hypergroup Conj(SU)(2). Therefore, these follow the philosophy of Hardy and Little-

wood [23] who argue that the Hardy-Littlewood inequality is a suitable extension of the

Plancherel theorem in the case of T.

Another set of interesting examples of commutative infinite hypergroups which we will

investigate is the family of countable compact hypergroups studied by Dunkl and Ramirez

[16]. Recently, in [28, 29] the first author with Singh and Ross studied classification results
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of such classes of hypergroups arising from the discrete semigroups and investigated ap-

plications of these results to the Ramsey theory [30]. Interestingly, the property of being

countable infinite and compact simultaneously is a purely hypergroups theoretical prop-

erty as any infinite compact group can never be countable. We also obtain the following

analogue of the Hardy-Littlewood inequality for this class of hypergroups Ha (see Section

5.2 for the definition).

The Hardy-Littlewood inequality is obtained by the following Paley inequality for com-

pact hypergroups (see Theorem 3.1):

Theorem 1.4. Let K be a compact hypergroup and let 1 < p ≤ 2. If ϕ(π) is a positive

sequence over K̂ such that the quantity

Mϕ := sup
y>0

y
∑
π∈K̂

ϕ(π)≥y

k2π

is finite, then we have∑
π∈K̂

k2π

(
‖f̂(π)‖HS√

kπ

)p

ϕ(π)2−p

 1
p

.M
2−p
p

ϕ ‖f‖Lp(K).

The Paley inequality describes the growth of the Fourier transform of a function in terms

of its Lp-norm. Interpolating the Paley inequality with the Hausdorff-Young inequality one

can obtain the following Hörmander’s version of the Hausdorff-Young-Paley inequality,∫
Rn

|(Ff)(ξ)φ(ξ)
1
r
− 1
p′ |r dξ

 1
r

≤ ‖f‖Lp(Rn), 1 < p ≤ r ≤ p′ <∞, 1 < p < 2.

Also, as a consequence of the Hausdorff-Young-Paley inequality, Hörmander [26, page 106]

proves that the condition

sup
t>0

tb|{ξ ∈ Rn : m(ξ) ≥ t}| <∞, 1

p
− 1

q
=

1

b
,

where 1 < p ≤ 2 ≤ q <∞ and 1 < b <∞, implies the existence of a bounded extension

of a Fourier multiplier Tm with symbol m from Lp(Rn) to Lq(Rn). Recently, the second

author and R. Akylzhanov extended Hörmander’s classical results to unimodular locally

compact groups and to homogeneous spaces [3, 4]. In [4], the key idea behind the extension
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of Hörmander’s theorem is the reformulation of this theorem as follows:

‖Tm‖Lp(Rn)→Lq(Rn) . sup
s>0

s

(∫
{ξ∈Rn:m(ξ)≥s}

dξ

) 1
p
− 1
q

' ‖m‖Lr,∞(Rn) ' ‖Tm‖Lr,∞(VN(Rn)),

where 1
r

= 1
p
− 1

q
, ‖m‖Lr,∞(Rn) is the Lorentz norm of m, and ‖Tm‖Lr,∞(VN(Rn)) is the norm

of the operator Tm in the Lorentz space on the group von Neumann algebra VN(Rn) of

Rn. Then one can use the Lorentz spaces and group von Neumann algebra techniques for

extending it to general locally compact unimodular groups. The unimodularity assumption

has its own advantages such as the existence of the canonical trace on the group von

Neumann algebra and, consequently, the Plancherel formula and the Hausdorff-Young

inequality. It was also pointed out that the unimodularity can in principle be avoided by

using the Tomita-Takesaki modular theory and the Haagerup reduction technique.

By interpolating the Hausdorff-Young inequality and the Paley inequality we get the

following Hausdorff-Young-Paley inequality for compact hypergroups (see Theorem 3.8):

Theorem 1.5. Let K be a compact hypergroup and let 1 < p ≤ b ≤ p′ <∞. If a positive

sequence ϕ(π), π ∈ K̂, satisfies the condition

Mϕ := sup
y>0

y
∑
π∈K̂

ϕ(π)≥y

k2π <∞,

then we have ∑
π∈K̂

k2π

(
‖f̂(π)‖HS√

kπ
ϕ(π)

1
b
− 1
p′

)b
 1

b

.M
1
b
− 1
p′

ϕ ‖f‖Lp(K).

As a consequence of the Hausdorff-Young-Paley inequality we prove the Lp-Lq bound-

edness of Fourier multipliers on compact hypergroups (see Theorem 4.1) as a natural

analogue of Hörmander’s theorem (see [26]).

Theorem 1.6. Let K be a compact hypergroup and let 1 < p ≤ 2 ≤ q < ∞. Let A be a

left Fourier multiplier with symbol σA. Then we have

‖A‖Lp(K)→Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
p
− 1
q

.
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The organisation of the paper is as follows. In the next section, we discuss the basics

of the Fourier analysis on compact hypergroups. Section 3 is the heart of the paper

where we shall prove the Paley, Hardy-Littlewood and Hausdorff-Young-Paley inequalities

for compact hypergroups. Section 4 is devoted to establishing the Hörmander multiplier

theorem for compact hypergroups. In the last section, we discuss our results for countable

compact hypergroups and for the hypergroups arising from conjugacy classes of compact

Lie groups.

Throughout the paper, we denote by N the set of natural numbers and set N0 = N∪{0}.

For notational convenience, we take empty sums to be zero. We shall also use the notation

P . Q to indicate P ≤ cQ for a suitable constant c > 0.

2. Preliminaries

For the basics of compact hypergroups one can refer to standard books, monographs

and research papers [15, 27, 11, 40, 41, 45, 46]. In [27], Jewett refers to hypergroups as

convos. However we mention here certain results we need.

2.1. Definitions and representations of compact hypergroups. We begin this sec-

tion with the definition of a compact hypergroup.

Definition 2.1. A compact hypergroup is a non empty compact Hausdorff space K with

a weakly continuous, associative convolution ∗ on the Banach space M(K) of all bounded

regular Borel measures on K such that (M(K), ∗) becomes a Banach algebra and the

following properties hold:

(i) For any x, y ∈ K, the convolution δx ∗ δy is a probability measure with compact

support, where δx is the point mass measure at x. Also, the mapping (x, y) 7→

supp(δx∗δy) is continuous from K×K to the space C(K) of all nonempty compact

subsets of K equipped with the Michael (Vietoris) topology (see [36] for details).

(ii) There exists a unique element e ∈ K such that δx ∗ δe = δe ∗ δx = δx for every

x ∈ K.

(iii) There is a homeomophism x 7→ x̌ on K of order two which induces an involution

on M(K) where µ̌(E) = µ(Ě) with Ě defined as Ě := {x̌ : x ∈ E} for any Borel

set E, and e ∈ supp(δx ∗ δy) if and only if x = y̌.
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Note that the weak continuity assures that the convolution of bounded measures on a

hypergroup is uniquely determined by the convolution of point measures. A compact hy-

pergroup is called a commutative compact hypergroup if the convolution is commutative.

A compact hypergroup K is called hermitian if the involution on K is the identity map,

i.e., x̌ = x for all x ∈ K. Note that a hermitian hypergroup is commutative. Every com-

pact group is a trivial example of a compact hypergroup. Other essential and non-trivial

examples are double coset hypergroups G//H asing from a Gelfand pair (G,H) for a

compact group G and a closed subgroup H [27], conjugacy classes of compact Lie groups

[46, 11], countable compact hypergroups [16, 11], Jacobi hypergroups [19, 11], hypergroup

joins [47] of compact hypergroups by finite hypergroups [5, 11].

A left Haar measure λ on K is a non-zero positive Radon measure such that

∫
K

f(x ∗ y)dλ(y) =

∫
K

f(y) dλ(y) (∀x ∈ K, f ∈ Cc(K)),

where we used the notation f(x ∗ y) = (δx ∗ δy)(f). It is well known that a Haar measure

is unique if it exists [27]. Throughout this article, a left Haar measure is simply called

a Haar measure. We would like to make a remark here that it is still not known if a

general hypergroup has a Haar measure but several important class of hypergroups in-

cluding commutative hypergroups, compact hypergroups, discrete hypergroups, nilpotent

hypergroups possess a Haar measure [27, 11, 48, 6].

An irreducible representation π of K is an irreducible ∗- algebra representation of M(K)

into L(Hπ), the algebra of all bounded linear operators on some Hilbert space Hπ, such

that

(i) π(δe) = I and

(ii) for every u, v ∈ Hπ, the mapping µ 7→ 〈π(µ)u, v〉 is continuous from M(K)+ to

C, where M(K)+ is the set of all those measures in M(K) which are non-negative

and is equipped with the weak (cone) topology.

In [27], it was also included in the definition of a representation that π must be norm

decreasing, that is, ‖π(µ)‖op ≤ ‖µ‖, where ‖ · ‖op denotes the operator norm on L(Hπ),

but it follows as a consequence of the above definition. For any x ∈ K, we also write π(δx)

as π(x). Therefore, we get ‖π(x)‖op ≤ ‖δx‖ = 1.
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2.2. Fourier analysis on compact hypergroups. Let K be a compact hypergroup

with the normalized Haar measure λ and let K̂ be the set of irreducible inequivalent con-

tinuous representations of K. Throughout this paper we will assume that K is metrizable

which is equivalent to the condition that K̂ is countable [17]. The set K̂ equipped with the

discrete topology is called the dual space of K. Vrem [46] showed that every irreducible

representation (π,Hπ) of a compact hypergroup is finite dimensional. For any π ∈ K̂, the

map x 7→ 〈π(x)u, v〉 for u, v ∈ Hπ is called a matrix coefficient function and is denoted

by πu,v. Let π(x) = [πi,j]dπ×dπ be the matrix representation of any (π,Hπ) of dimension

dπ with respect to an orthonormal basis {ei}dπi=1 of Hπ. For each π ∈ K̂ there exists a

constant kπ ≥ dπ such that for each pair π, π′ we have

∫
K

πi,j(x)π′m,l(x) dλ(x) =


1
kπ

when i = m, j = l, andπ = π′,

0 otherwise.
(3)

If K is a compact group then kπ = dπ [46, Theorem 2.6]. The constant kπ is called the

hyperdimension of the representation π (see [5]). The function x 7→ χπ(x) =: Tr(π(x)) is

called the (hypergroup) character and it is a continuous function. The following relation

for characters can be derived from the orthogonality relation (3) of matrix coefficients

∫
K

χπ(x)χπ′(x)dλ(x) =


dπ
kπ

if π = π′,

0 otherwise,
(4)

for all π, π′ ∈ K̂. Therefore, ‖χπ‖2L2(K) = dπ
kπ
.

We introduce the `p Schatten space `psch(K̂), which is defined in Hewitt and Ross [25]

and studied by Vrem [45]. Let Σ be the space of matrix coefficients, that is,

Σ(K) = {σ : π 7→ σ(π) ∈ Cdπ×dπ : π ∈ K̂} =
∏
π∈K̂

Cdπ×dπ . (5)

Then `psch(K̂) is defined as the set of all σ ∈ Σ(K) with the finite

‖σ‖`psch(K̂) :=

∑
π∈K̂

kπ‖σ(π)‖pSp

 1
p

, 1 ≤ p <∞, (6)

and

‖σ‖`∞sch(K̂) := sup
π∈K̂
‖σ(π)‖L(Hπ),
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where the Schatten p-norm ‖σ‖Sp of a matrix σ ∈ Cdπ×dπ with its singular numbers sj is

defined as ‖σ‖Sp :=
(∑dπ

j=1 s
p
j

) 1
p
.

We denote by Σc(K̂) the set of all σ ∈ Σ(K) such that #{π ∈ K̂ : σ(π) 6= 0} <∞ and

by Σ0(K) the set of all σ ∈ Σ(K) such that #{π ∈ K̂ : ‖σ(π)‖L(Hπ) ≥ ε} < ∞ for all

ε > 0. For each π ∈ K̂, the Fourier transform f̂ of f ∈ L1(K) is defined as

f̂(π) =

∫
K

f(x)π̄(x) dλ(x),

where π̄(x) = π(x̌) is the conjugate representation of π. Vrem [46] proved that the map

f 7→ f̂ is a norm decreasing ∗-isomorphism of L1(K) onto a dense subalgebra of Σ0(K).

For f ∈ L2(K), we have

f =
∑
π∈K̂

kπ

dπ∑
i,j=1

f̂(π)i,jπi,j (7)

and the series converges in L2(K), see [46, Corollary 2.10]. Hence, we have the following

Plancherel identity

‖f‖22 =
∑
π∈K̂

kπ

dπ∑
i,j=1

|f̂(π)i,j|2 =
∑
π∈K̂

kπ‖f̂(π)‖2HS = ‖f̂‖2
`2sch(K̂)

.

The following Hausdorff-Young inequality holds for Fourier transform on compact hy-

pergroups ([45]).

Theorem 2.2. Let 1 < p ≤ 2 with 1
p

+ 1
p′

= 1. For any f ∈ Lp(K) we have the following

inequality ∑
π∈K̂

kπ‖f̂(π)‖p
′

Sp

 1
p′

= ‖f̂‖
`p
′

sch(K̂)
≤ ‖f‖Lp(K). (8)

Recently, the first author with R. Sarma [31] also obtained a Hausdorff-Young inequality

using different norm which was useful to study the Hausdorff-Young inequality for Orlicz

spaces [31]. We will discuss it in the next section in more detail.

2.3. Commutative compact hypergroups. In this section we assume that a compact

hypergroup K is commutative. Then every representation of K is one dimensional. The

dual space of K defined as follows

K̂ =
{
χ ∈ Cb(K) : χ 6= 0, χ(m̌) = χ(m), (δm ∗ δn)(χ) = χ(m)χ(n) for all m,n ∈ K

}
.
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An element in K̂ will be called a character. We equip K̂ with the uniform convergence

on compact sets. In the case of a compact hypergroups K, the dual space K̂ is discrete.

In general, K̂ may not have a dual hypergroup structure with respect to the pointwise

product [27, Example 9.1 C] but it holds for most “natural” hypergroups including the

conjugacy classes of compact groups. Then the Fourier transform on L1(K,λ) is defined

by

f̂(χ) :=

∫
K

f(x)χ(x) dλ(x), χ ∈ K̂.

The Fourier transform is injective and there exists a Radon measure ω on K̂, called the

Plancherel measure on K̂ such that the map f 7→ f̂ extends to an isometric isomorphism

from L2(K, dλ) onto L2(K̂, dω), that is,∑
χ∈K̂

|f̂(χ)|2dω(χ) =

∫
K

|f(x)|2 dλ(x). (9)

In this case, the Fourier series of f given by (7) takes the form

f =
∑
χ∈K̂

kχ f̂(χ)χ. (10)

It follows from the orthogonality relation of characters (4) that the set {k
1
2
χχ}χ∈K̂ forms

an orthonormal basis of L2(K, dλ). It is also known that ω(χ) = kχ for each χ ∈ K̂ (see [5,

Proposition 1.2]). If K is a compact commutative group then kχ = dχ = 1 for all χ ∈ K̂;

and therefore Plancherel measure on K̂ is constant 1.

3. Hausdorff-Young-Paley and Hardy-Littlewood inequalities on

compact hypergroups

In this section, we will study the Paley inequality, the Hausdorff-Young-Paley inequality

and the Hardy-Littlewood inequality for compact hypergroups. By abusing the notation,

the measure of a set E with respect to measure ν will be denoted by ν(E), ν({E}), or by

ν{E}. At times, we will denote Lp(K,λ) by Lp(K) for simplicity.

3.1. Paley inequality on compact hypergroups. In this subsection, we prove the

Paley inequality for compact hypergroups. The Paley inequality is an important inequality

in itself but also plays a vital role in obtaining the Hardy-Littlewood inequality and the

Hausdorff-Young-Paley inequality for compact hypergroups. We follow the method of [3].
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Theorem 3.1. Let K be a compact hypergroup and let 1 < p ≤ 2. Let ϕ : K̂ → (0,∞) be

a function such that

Mϕ := sup
y>0

y
∑
π∈K̂

ϕ(π)≥y

k2π <∞. (11)

Then, for all f ∈ Lp(K), we have∑
π∈K̂

k2π

(
‖f̂(π)‖HS√

kπ

)p

ϕ(π)2−p

 1
p

.M
2−p
p

ϕ ‖f‖Lp(K). (12)

Proof. Let us consider the measure on ν on the dual space K̂ of K given by

ν({π}) = ϕ(π)2k2π, π ∈ K̂.

Define the space Lp(K̂, ν), 1 ≤ p < ∞, as the space of all real or complex sequences

a : π 7→ aπ such that

‖a‖Lp(K̂,ν) =

∑
π∈K̂

|aπ|pν(π)

 1
p

<∞.

We will show that the sublinear operator A : Lp(K,λ)→ Lp(K̂, ν) defined by

Af :=

(
‖f̂(π)‖HS√
kπ ϕ(π)

)
π∈K̂

is well defined and bounded for 1 < p ≤ 2. In other words, we will get the following

estimate which will eventually give us the required estimate (12),

‖Af‖Lp(K̂,ν) =

∑
π∈K̂

(
‖f̂(π)‖HS√
kπϕ(π)

)p

ν(π)

 1
p

.M
2−p
p

ϕ ‖f‖Lp(K), (13)

where Mϕ := supy>0 y
∑

π∈K̂
ϕ(π)≥y

k2π. To prove the above estimate (13) it is enough to show

that A is of weak type (1, 1) and of weak type (2, 2), thanks to Marcinkiewicz interpolation

theorem. In fact, we show that, with the distribution function νK̂ , that

νK̂(y;Af) ≤
M1‖f‖L1(K)

y
with the norm M1 = Mϕ, (14)

νK̂(y;Af) ≤
(
M2‖f‖L2(K)

y

)2

with the norm M2 = 1, (15)

where νK̂(y;Af) is defined by νK̂(y;Af) :=
∑

π∈K̂
|(Af)(π)|≥y

ν(π), y > 0.
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First, we show that A is of weak type (1, 1) with norm M1 = Mϕ; more precisely we

show that

νK̂(y;Af) = ν

{
π ∈ K̂ :

‖f̂(π)‖HS√
kπϕ(π)

> y

}
.
Mϕ‖f‖L1(K)

y
, (16)

where ν
{
π ∈ K̂ : ‖f̂(π)‖HS√

kπϕ(π)
> y
}

can be interpreted as the sum of ν(π) taken over those

π ∈ K̂ such that ‖f̂(π)‖HS√
kπϕ(π)

> y. By the defintion of the Fourier transform and the fact that

π is a norm decreasing ∗-homomorphism, i.e., ‖π(x̌)‖op ≤ 1 for all x ∈ K, we have

‖f̂(π)‖HS ≤ ‖f‖L1(K)‖π(x̌)‖HS ≤ ‖f‖L1(K)

√
dπ‖π(x̌)‖op ≤

√
dπ‖f‖L1(K).

Therefore, by using dπ ≤ kπ, we get

y <
‖f̂(π)‖HS√
kπϕ(π)

≤
√
dπ‖f‖L1(K)√
kπϕ(π)

≤
‖f‖L1(K)

ϕ(π)
.

This inequality yields that{
π ∈ K̂ :

‖f̂(π)‖HS√
kπϕ(π)

> y

}
⊂
{
π ∈ K̂ :

‖f‖L1(K)

ϕ(π)
> y

}
for any y > 0. So

ν

{
π ∈ K̂ :

‖f̂(π)‖HS√
kπϕ(π)

> y

}
≤ ν

{
π ∈ K̂ :

‖f‖L1(K)

ϕ(π)
> y

}
.

Setting w =
‖f‖L1(K)

y
, we have

ν

{
π ∈ K̂ :

‖f̂(π)‖HS√
kπϕ(π)

> y

}
≤

∑
π∈K̂

ϕ(π)≤w

ϕ(π)2k2π.

We claim that ∑
π∈K̂

ϕ(π)≤w

ϕ(π)2k2π .Mϕw. (17)

In fact, we have ∑
π∈K̂

ϕ(π)≤w

ϕ(π)2k2π =
∑
π∈K̂

ϕ(π)≤w

k2π

∫ ϕ2(π)

0

dτ.

By interchanging sum and integration we have∑
π∈K̂

ϕ(π)≤w

k2π

∫ ϕ2(π)

0

dτ =

∫ w2

0

dτ
∑
π∈K̂

τ
1
2≤ϕ(π)≤w

k2π.
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Next, by making substitution τ = t2, we have∫ w2

0

dτ
∑
π∈K̂

τ
1
2≤ϕ(π)≤w

k2π = 2

∫ w

0

dt t
∑
π∈K̂

t≤ϕ(π)≤w

k2π ≤ 2

∫ w

0

dt t
∑
π∈K̂
t≤ϕ(π)

k2π.

Since

t
∑
π∈K̂
t≤ϕ(π)

k2π ≤ sup
t>0

t
∑
π∈K̂
t≤ϕ(π)

k2π = Mϕ

is finite by the assumption, we get

2

∫ w

0

dt t
∑
π∈K̂
t≤ϕ(π)

k2π .Mϕw.

Therefore, we get the required estimate (16)

νK̂(y;Af) = ν

{
π ∈ K̂ :

‖f̂(π)‖HS√
kπϕ(π)

> y

}
.
Mϕ‖f‖L1(K)

y
.

Now, we will prove that A is of weak type (2, 2), that is, the equality (15). By using

Plancherel’s identity we get

y2νK̂(y;Af) ≤ ‖Af‖2
L2(K̂,ν)

=
∑
π∈K̂

k2π

(
‖f̂(π)‖HS√
kπϕ(π)

)2

ϕ(π)2

=
∑
π∈K̂

kπ‖f̂(π)‖2HS = ‖f‖2L2(K).

Thus A is of weak type (2, 2) with norm M2 ≤ 1. Thus we have proved (15) and (14). Thus,

by using the Marcinkiewicz interpolation theorem with p1 = 1, p2 = 2 and 1
p

= 1− θ + θ
2

we now obtain∑
π∈K̂

(
‖f̂(π)‖HS√
kπϕ(π)

)p

ϕ(π)2k2π

 1
p

= ‖Af‖Lp(K̂,ν) .M
2−p
p

ϕ ‖f‖Lp(K).

This completes the proof. �

Remark 1. One may notice that instead of the Schatten p-norm we used the Hilbert-

Schmidt norm in Theorem 3.1. This is because the Hilbert-Schmidt norm gives sharp

inequality in the Paley inequality as already noticed in [3] for compact homogeneous

spaces and in [49] for compact quantum groups. We will see this for compact hypergroups

from the discussion below.
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Now, we will define and discuss an another important family of Lebesgue spaces `p(K̂)

on K̂ defined by using the Hilbert-Schmidt norm ‖ ·‖HS instead of Schatten p-norm ‖ ·‖Sp

on the space of (dπ × dπ)-dimensional matrices.

The space `p(K̂) ⊂ Σ(K) is the set of all σ ∈ Σ(K) with finite sum

‖σ‖`p(K̂) :=

∑
π∈K̂

k
(2− p

2
)

π ‖σ(π)‖pHS

 1
p

, 1 ≤ p <∞, (18)

and

‖σ‖`∞(K̂) := sup
π∈K̂

k
− 1

2
π ‖σ(π)‖HS.

Remark 2. These `p-spaces `p(K̂) were introduced in [42, Chapter 10] in the context of

compact Lie groups. Recently, these spaces have been studied in more details by the second

author and his collaborators [42, 1, 2, 32, 17, 13]. In particular, it was shown in [13] that

the space `p(Ĝ) and the Hausdorff-Young inequality for it become useful for investigating

convergence properties of the Fourier series and the characterisation of Gevrey-Roumieu

ultradifferentiable functions and Gevrey-Beurling ultradifferentiable functions on compact

homogeneous manifolds.

The following proposition presents the relation between both norms on Lebesgue spaces

on K̂.

Proposition 3.2. For 1 ≤ p ≤ 2, we have the following continuous embeddings as well

as the estimates: `p(K̂) ↪→ `psch(K̂) and ‖σ‖`psch(K̂) ≤ ‖σ‖`p(K̂) for all σ ∈ Σ(K). For

2 ≤ p ≤ ∞, we have `psch(K̂) ↪→ `p(K̂) and ‖σ‖`p(K̂) ≤ ‖σ‖`psch(K̂) for all σ ∈ Σ(K).

Proof. For p = 2, since ‖ · ‖S2 = ‖ · ‖HS, the assertion is obvious. Let 1 ≤ p < 2. Since

σ(π) ∈ Cdπ×dπ , denoting sj its singular number, by the Hölder inequality we have

‖σ(π)‖pSp =
dπ∑
j=1

spj ≤

(
dπ∑
j=1

1

) 2−p
2
(

dπ∑
j=1

s
p 2
p

j

) p
2

= d
2−p
2

π ‖σ(π)‖pHS. (19)

Consequently, it follows that

‖σ‖p
`psch(K̂)

=
∑
π∈K̂

kπ‖σ(π)‖pSp ≤
∑
π∈K̂

kπd
2−p
2

π ‖σ(π)‖pHS ≤
∑
π∈K̂

kπk
2−p
2

π ‖σ(π)‖pHS = ‖σ‖p
`p(K̂)

.
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Now, for 2 < p <∞, we have

‖σ(π)‖2HS =
dπ∑
j=1

s2j ≤

(
dπ∑
j=1

1

) p−2
p
(

dπ∑
j=1

s
2 p
2
j

) 2
p

= d
p−2
p

π ‖σ(π)‖2Sp , (20)

and thus

‖σ(π)‖HS ≤ d
p−2
2p
π ‖σ(π)‖Sp .

Therefore, we have

‖σ‖`p(K̂) =
∑
π∈k̂

k
(2− p

2
)

π ‖σ(π)‖pHS ≤
∑
π∈K̂

k
(2− p

2
)

π d
p−2
2

π ‖σ(π)‖pSp ≤
∑
π∈k̂

kπ‖σ(π)‖pSp = ‖σ‖p
`psch(K̂)

.

Finally, for p =∞, the inequality

‖σ(π)‖HS ≤ k
1
2
π ‖σ(π)‖L(Hπ)

implies

‖σ‖`∞(K̂) = sup
π∈K̂

k
− 1

2
π ‖σ(π)‖HS ≤ sup

π∈K̂
‖σ(π)‖L(Hπ) = ‖σ‖`∞sch(K̂),

completing the proof. �

The following Hausdorff-Young inequality for Fourier transform on compact hyper-

groups was recently obtained by the first author and R. Sarma [31].

Theorem 3.3. Let 1 ≤ p ≤ 2 with 1
p

+ 1
p′

= 1. For any f ∈ Lp(K) we have the following

inequality ∑
π∈K̂

k
2− p

′
2

π ‖f̂(π)‖p
′

HS

 1
p′

= ‖f̂‖`p′ (K̂) ≤ ‖f‖Lp(K). (21)

In the view of Proposition 3.2 one can see that the Hausdorff-Young inequality (8)

using the Schatten p-norm is sharper than the inequality (21). In [31], Theorem 3.3 is

further used to define Orlicz space on dual of compact hypergroups and to obtained the

Hausdorff-Young inequality for Orlicz spaces on compact hypergroup.

The Paley inequality can be reduced to the familiar form using Schatten p-norms. The

proof of it is immediate from the inequality (19) and the fact that dπ ≤ kπ.
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Corollary 3.4. Let K be a compact hypergroup and let 1 < p ≤ 2. If ϕ : K̂ → (0,∞) is

a function satisfying condition (11) of Theorem 3.1 then there exist a universal constant

C = C(p) such that

∑
π∈Ĝ

kπ‖f̂(π)‖pSp ϕ(π)2−p

 1
p

≤ C‖f‖Lp(K). (22)

3.2. Hardy-Littlewood inequality on compact hypergroups. In this section, we ap-

ply the Paley inequality to get the Hardy-Littlewood inequality on compact hypergroups.

This approach has been recently employed to prove the Hardy-Littlewood inequality in

the context of the compact Lie group SU(2) in [1], compact homogeneous manifolds in [3],

and compact quantum groups in [2, 49]. The philosophy to derive the Hardy-Littlewood

inequality is to choose a function ϕ suitably, so that the condition (11) of Theorem 3.1 is

satisfied. For a Laplacian ∆G on a compact Lie group G, we have that for a fixed ξ ∈ Ĝ,

all ξij, 1 ≤ i, j ≤ dξ, are eigenfunctions of −∆G with the same eigenvalue, which we denote

by |ξ|2, so that we have

−∆Gξij(x) = |ξ|2ξij(x) 1 ≤ i, j ≤ dξ.

We denote 〈ξ〉 := (1+|ξ|2)1/2, which is the eigenvalue of the operator (1−∆G)
1
2 . In the case

of a compact Lie group G of dimension n, in [3] the authors took ϕ(π) = 〈π〉−n. Although,

for SU(2) this was proved by repeating the proof of the Paley inequality and estimating the

bound explicitly ([1]). In the case of compact quantum groups, the proof of this inequality

has been achieved by using the geometric information of compact quantum groups like

spectral triples [2] and the natural length function on the dual of compact quantum groups

[49]. Since the compact hypergroups in general are not equipped with any geometric or

differential structure, we prove the following the Hardy-Littlewood inequality for compact

hypergroups.

Theorem 3.5. Let 1 < p ≤ 2 and let K be a compact hypergroup. Assume that a positive

function π 7→ µπ on K̂ grows sufficiently fast, that is,

∑
π∈K̂

k2π
|µπ|β

<∞ for some β ≥ 0. (23)



HARDY-LITTLEWOOD INEQUALITY AND Lp-Lq FOURIER MULTIPLIERS 17

Then we have ∑
π∈K̂

k2π|µπ|β(p−2)
(
‖f̂(π)‖HS√

kπ

)p

. ‖f‖Lp(K). (24)

Proof. By the assumption, we know that

C :=
∑
π∈K̂

k2π
|µπ|β

<∞.

Then we have

C ≥
∑
π∈K̂
|µπ |β≤ 1

t

k2π
|µπ|β

≥ t
∑
π∈K̂
|µπ |β≤ 1

t

k2π = t
∑
π∈K̂

1

|µπ |β
≥t

k2π,

and consequently we have

sup
t>0

t
∑
π∈K̂

1

|µπ |β
≥t

k2π ≤ C <∞.

Then, as an application of Theorem 3.1 with ϕ(π) = 1
|µπ |β , π ∈ K̂, we get the required

estimate (24). �

In the case when K is abelian, Theorem 3.5 takes the following form.

Theorem 3.6. Let 1 < p ≤ 2 and let K be a compact abelian hypergroup. Assume that a

positive function χ 7→ µχ on K̂ satisfies the condition∑
χ∈K̂

k2χ
|µχ|β

<∞ for some β ≥ 0. (25)

Then we have ∑
χ∈K̂

k
2− p

2
χ |µχ|β(p−2)|f̂(χ)|p . ‖f‖Lp(K). (26)

Remark 3. We would like to note here that in the case when K is a compact Lie group, the

natural choices of π 7→ µπ is π 7→ 〈π〉. But for this choice of µπ the quantity
∑

π∈K̂
d2π
〈π〉β

in this case, is not finite for β = n := dim(G), as proved by the second author and

Dasgupta [13]. So this does not give the Hardy-Littlewood inequality for compact Lie

groups, in particular, for Tn ([3]). Surprisingly, the quantity
∑

π∈K̂
k2π
|µπ |β is finite with a

natural choice of π 7→ µπ and β for (pure) hypergroups including conjugacy classes of

compact Lie groups and countable compact hypergroups as shown in the last section and

consequently, provides the Hardy-Littlewood inequality for these compact hypergroups.
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3.3. Hausdorff-Young-Paley inequality on compact hypergroups. In this sub-

section, we prove the Hausdorff-Young-Paley inequality for compact hypergroups. The

Hausdorff-Young-Paley inequality is an important inequality in itself but it serves as an

essential tool to prove an Lp-Lq Fourier multiplier theorem for compact hypergroups.

The following theorem obtained by Bergh and Lofstrom [9] is useful in the proof of the

Hausdorff-Young-Paley inequality.

Theorem 3.7. Let dµ0(x) = ω0(x)dµ(x), dµ1(x) = ω1(x)dµ(x). Suppose that 0 < p0, p1 <

∞. If a continuous linear operator A admits bounded extensions, A : Lp(Y, µ)→ Lp0(ω0)

and A : Lp(Y, µ) → Lp1(ω1), then there exists a bounded extension A : Lp(Y, µ) → Lb(ω̃)

of A, where 0 < θ < 1, 1
b

= 1−θ
p0

+ θ
p1

and ω̃ = ω
b(1−θ)
p0

0 ω
bθ
p1
1 .

Now, we are ready to state the Hausdorff-Young-Paley inequality for compact hyper-

groups, and we follow the idea of [3] for the proof.

Theorem 3.8. Let K be a compact hypergroup and let 1 < p ≤ b ≤ p′ < ∞, where p′ is

the Lebesgue conjugate of p. If a function ϕ : K̂ → (0,∞) satisfies the condition

Mϕ := sup
y>0

y
∑
π∈K̂

ϕ(π)≥y

k2π <∞ (27)

then we have ∑
π∈Ĝ

k2π

(
‖f̂(π)‖HS√

kπ
ϕ(π)

1
b
− 1
p′

)b
 1

b

.M
1
b
− 1
p′

ϕ ‖f‖Lp(K). (28)

Proof. We consider a sublinear operator A : Lp(K)→ `p(K̂, ω̃) which takes a function f

to its Fourier coefficient f̂(π) ∈ Cdπ×dπ divided by
√
kπ, that is,

f 7→ Af :=

{
f̂(π)√
kπ

}
π∈K̂

.

Here the space `p(K̂, ω̃) is the set of all σ ∈ Σ(K) with finite

‖a‖`p(K̂,ω̃) :=

∑
π∈K̂

‖a(π)‖pHS ω̃(π)

 1
p

,

and ω̃ is a scalar sequence on K̂. Then the desired result follows from Theorem 3.7 if

we consider the left hand side of the inequalities (12) and (21) as `p(K̂, ω̃i)-norm of Af,
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where the weights ωi, i = 1, 2 are given by ω0(π) = k2πϕ(π)2−p and ω1(π) = k2π, π ∈ K̂,

respectively. �

4. Lp-Lq-boundedness of Fourier multipliers on compact hypergroups

In this section, we prove the Lp-Lq boundedness of Fourier multipliers on compact

hypergroups as a natural analogue of Hörmander’s theorem (see [26]). We will apply

the Hausdorff-Young-Paley inequality in Theorem 3.8 to provide a sufficient condition

for the Lp-Lq boundedness of Fourier multipliers for the range 1 < p ≤ 2 ≤ q < ∞.

This approach was developed by the second author with R. Akylzhanov to prove the

Lp-Lq boundedness of Fourier multipliers on locally compact groups [4] by using the von-

Neumann algebra machinery. In [37], this theorem was proved for the torus T by using a

different method. We begin this section by recalling the definition of Fourier multipliers

on compact hypergroups.

An operator A which is invariant under the left translations will be called a left Fourier

multiplier. The left invariant operators can be characterised using the Fourier transform

[45, 43]. Indeed, if A is a left Fourier multiplier then there exists a function σA : K̂ →

Cdπ×dπ , known as the symbol associated with A, such that

Âf(π) = σA(π)f̂(π), π ∈ K̂,

for all suitable functions f on K. In the next result, we show that if the symbol σA of

a Fourier multipliers A defined on Cc(K) satisfies certain Hörmander’s condition, then

A can be extended as a bounded linear operator from Lp(K) to Lq(K) for the range

1 < p ≤ 2 ≤ q < ∞. The Plancherel formula provides a condition on symbol σA for the

L2-L2-boundedness of Fourier multiplier A. Indeed, we have ‖A‖L2(K)→L2(K) ≤ ‖σA‖`∞(K̂).

Therefore, we restrict ourselves to the case when p and q are both not equal to 2. For the

proof we follow the idea of [3].

Theorem 4.1. Let K be a compact hypergroup and let 1 < p ≤ 2 ≤ q <∞ with p and q

both not equal to 2. Let A be a left Fourier multiplier with symbol σA. Then we have

‖A‖Lp(K)→Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
p
− 1
q

. (29)
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Proof. Let us first consider the case when p ≤ q′ (where 1
q

+ 1
q′

= 1). Since q′ ≤ 2, for

f ∈ Cc(K), the Hausdorff-Young inequality gives

‖Af‖Lq(K) ≤ ‖Âf‖`q′ (K̂) = ‖σAf̂‖`q′ (K̂) =

∑
π∈K̂

k2π

(
‖σA(π)f̂(π)‖HS√

kπ

)q′
 1

q′

(30)

≤

∑
π∈K̂

k2π‖σA(π)‖q′op

(
‖f̂(π)‖HS√

kπ

)q′
 1

q′

. (31)

The case q′ ≤ p = (p′)′ can be reduced to the case p ≤ q′ as follows. The Lp-duality (see

[1, Theorem 4.2]) yields

‖A‖Lp(K)→Lq(K) = ‖A∗‖Lq′ (K)→Lp′ (K).

Also, the symbol σA∗(π) of the adjoint operator A∗ is equal to σ∗A, i.e.,

σA∗(π) = σA(π)∗, π ∈ K̂,

and its operator norm ‖σA∗(π)‖op is equal to ‖σA(π)‖op.

We set σ(π) = ‖σA(π)‖ropIdπ , π ∈ K̂, where 1
r

= q−p
pq
, and it is easy to see that

‖σ(π)‖op = ‖σA(π)‖rop.

Now, its time to apply Theorem 3.8 with ϕ(π) = ‖σ(π)‖op, π ∈ K̂, and b = q′. Since the

assumption of Theorem 3.8 is satisfied and 1
q′
− 1

p′
= 1

p
− 1

q
= 1

r
, we obtain

∑
π∈K̂

k2π‖σA(π)‖q′op

(
‖f̂(π)‖HS√

kπ

)q′
 1

q′

.

sup
y>0

y
∑
π∈K̂

‖σ(π)‖op≥y

k2π


1
r

‖f‖Lp(K), f ∈ Lp(K).

(32)

Further, it can be easily checked thatsup
y>0

y
∑
π∈K̂

‖σ(π)‖op≥y

k2π


1
r

=

sup
y>0

y
∑
π∈K̂

‖σA(π)‖rop≥y

k2π


1
r

=

sup
y>0

yr
∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
r

= sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
r

.
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Therefore,

‖Af‖Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
r

‖f‖Lp(K)

and hence

‖A‖Lp(K)→Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
p
− 1
q

,

which completes the proof. �

Remark 4. Recall that if ω(M) :=
∑

π∈M k2π, M ⊆ K̂, is the Plancherel measure on K̂

then we can interpret the condition (29) in a similar form as in Hörmander’s theorem for

Rn ([26]) as follows:

‖A‖Lp(K)→Lq(K) ≤ sup
s>0

{
s ω{π ∈ K̂ : ‖σA(π)‖op > s}

} 1
p
− 1
q
. (33)

Corollary 4.2. Let 1 < p, q <∞ and suppose that A is a Fourier multiplier with symbol

σA on a compact hypergroup K. If 1 < p, q ≤ 2, then

‖A‖Lp(K)→Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
p
− 1

2

,

while for 2 ≤ p, q <∞ we have

‖A‖Lp(K)→Lq(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
q′−

1
2

.

Proof. Let us assume that 1 < p, q ≤ 2. Using the compactness ofK, we have ‖A‖Lp(K)→Lq(K) .

‖A‖Lp(K)→L2(K) and therefore, Theorem 4.1 gives

‖A‖Lp(K)→Lq(K) . ‖A‖Lp(K)→L2(K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
p
− 1

2

.
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Now, let us assume that 2 ≤ p, q <∞. Then 1 < p′, q′ ≤ 2, and using the first part of the

proof we deduce

‖A‖Lp(K)→Lq(K) = ‖A∗‖Lq′ (K)→Lp′ (K) . sup
y>0

y

 ∑
π∈K̂

‖σA(π)‖op≥y

k2π


1
q′−

1
2

.

Thus, we finish the proof. �

5. Examples of hypergroups

In this section we discuss the results obtained in previous sections and prove some new

results for two important classes of hypergroups, namely, the conjugacy classes of the

compact non-abelian Lie group SU(2) and countable compact hypergroups introduced

and studied by Dunkl and Ramirez in [16].

5.1. Conjugacy classes of compact Lie groups. LetG be a compact non-abelian (Lie)

group. Denote the set of all conjugacy classes of G by Conj(G), that is, Conj(G) := {Cx :

x ∈ G}, where for each x ∈ G the conjugacy class Cx of x is given by Cx := {yxy−1 : y ∈

G}. The set Conj(G) equipped with the topology induced by the natural map q : x 7→ Cx,

is a compact Hausdorff space. Conj(G) becomes a commutative hypergroup [27, Section

8] with respect to the convolution defined, for x, y ∈ G, by

δCx ∗ δCy =

∫
G

∫
G

δCtxt−1sys−1 dt ds.

For π ∈ Ĝ let dπ denote the dimension of π and ψπ the trace of π. Then ψπ is called

the character of π, but the hypergroup character χπ of Conj(G) is defined as χπ ◦ q =

d−1π ψπ, where q is the natural map x 7→ Cx. Then the dual ̂Conj(G) of the commutative

hypergroup Conj(G) is given by: ̂Conj(G) := {χπ : π ∈ Ĝ}. In fact, the map π 7→ d2πψπ is

a bijection between Ĝ and ̂Conj(G). The Haar measure ω of ̂Conj(G) is induced from the

one on G and thus, ω(χπ) := kχπ = d2π.

In the sequel of the paper we will consider the case when G = SU(2), the compact

group of all 2 × 2 special unitary matrices. The representation theory of SU(2) is well

established. One can refer to [25, 44, 42] for more details. Conj(SU(2)) is identified with
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[0, 1] where t in [0, 1] corresponds to the conjugacy class containing the matrixexp (iπt) 0

0 exp (−iπt)

 ,
(see [27, 15.4]). The dual of SU(2) can be represented by

{πl ∈ Hom(SU(2),U(2l + 1)) : l ∈ 1

2
N0},

where U(d) is the d× d unitary matrix group. The number l ∈ 1
2
N0 is called the quantum

number. The character ψl, defined as the trace of πl, is given by

ψl(t) =
sin(2l + 1)πt

sin πt
.

Therefore, since dπ = 2l + 1, the set ̂Conj(SU(2)) of hypergroup characters is given by

{(2l + 1)−1ψl : l ∈ 1
2
N0} and kχl = (2l + 1)2.

The Paley inequality in Theorem 3.1 takes the following form in the setting of the

compact abelian hypergroup Conj(SU(2)).

Theorem 5.1. Let 1 < p ≤ 2 and let {ϕ(l)}l∈ 1
2
N0

be a positive sequence such that

Mϕ := sup
y>0

y
∑
l∈ 1

2N0
ϕ(l)≥y

(2l + 1)4 <∞.

Then we have ∑
l∈ 1

2
N0

(2l + 1)4−pf̂(l)ϕ(l)2−p .M2−p
ϕ ‖f‖pLp(Conj(SU(2))).

We have the following Hardy-Littlewood inequality.

Theorem 5.2. If 1 < p ≤ 2 and f ∈ Lp(Conj(SU)(2)), then there exists a universal

constant C = C(p) such that∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p ≤ C‖f‖Lp(Conj(SU)(2)). (34)

Proof. Take β = 3 = dim(SU(2)) and {µχπ}π∈ ̂Conj(SU)(2)
:= {(2l + 1)2}l∈ 1

2
N0
. Then the

condition (25) turns out to be∑
l∈ 1

2
N0

(2l + 1)4

(|(2l + 1)2|)3
=
∑
l∈ 1

2
N0

1

(2l + 1)2
=
π2

6

which is finite. Therefore, (34) follows from Theorem 3.6. �
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Remark 5. We would like to recall here the Hardy-Littlewood inequality on the compact

Lie group SU(2) obtained by the second author and R. Akylzhanov in [1], which says that

for 1 < p ≤ 2 and f ∈ Lp(SU(2)) we have∑
l∈ 1

2
N0

(2l + 1)
5
2
p−4‖f̂(l)‖HS ≤ Cp‖f‖Lp(SU(2)).

In view of this inequality, the Hardy-Littlewood inequality for the compact commutative

hypergroup Conj(SU(2)) above is a suitable analogue because in Conj(SU(2)) the dimen-

sion (2l+ 1) of the representation πl is replaced by hyperdimension (2l+ 1)2 of πl and the

Fourier transform f̂ at l ∈ 1
2
N0 is scalar and thus ‖f̂(l)‖HS is just |f̂(l)|.

Using the duality, we get the following corollary.

Corollary 5.3. If 2 ≤ p <∞ and
∑

l∈ 1
2
N0

(2l + 1)5p−8|f̂(l)|p <∞ then

f ∈ Lp(Conj(SU)(2)).

Moreover, we have

‖f‖Lp(Conj(SU)(2)) ≤ C(p)
∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p.

Proof. Using the duality of Lp-spaces, we have

‖f‖Lp(Conj(SU)(2)) = sup
g∈Lp′ (Conj(SU)(2))
‖g‖

Lp
′
(Conj(SU)(2))

≤1

∣∣∣∣∫
Conj(SU)(2)

f(x) g(x) dλ(x)

∣∣∣∣ .
Now, by the Plancherel identity (9), we get∫

Conj(SU)(2)

f(x)g(x) dλ(x) =
∑
l∈ 1

2
N0

(2l + 1)2f̂(l) ĝ(l).

By noting that (2l + 1)2 = (2l + 1)
2
(

5
2
− 4
p
+ 5

2
− 4
p′

)
and applying the Hölder inequality, for

any g ∈ Lp′(Conj(SU)(2)), we have∣∣∣∣∣∣
∑
l∈ 1

2
N0

(2l + 1)2f̂(l) ĝ(l)

∣∣∣∣∣∣ ≤
∑
l∈ 1

2
N0

(2l + 1)5−
8
p |f̂(l)|(2l + 1)5−

8
p |ĝ(l)|

≤

∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p
 1

p
∑
l∈ 1

2
N0

(2l + 1)5p
′−8|ĝ(l)|p′

 1
p′
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≤ C(p)

∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p
 1

p

‖g‖Lp′ (Conj(SU)(2),

where we used Theorem 5.2 in the last inequality. Therefore, by (9) we have

∣∣∣∣∫
Conj(SU)(2)

f(x) g(x) dλ(x)

∣∣∣∣ ≤ C(p)

∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p
 1

p

‖g‖Lp′ (Conj(SU)(2).

Thus, by taking supremum over all g ∈ Lp′(Conj(SU)(2)) with ‖g‖Lp′ (Conj(SU)(2)) ≤ 1, we

get

‖f‖Lp(Conj(SU)(2)) ≤ C(p)

∑
l∈ 1

2
N0

(2l + 1)5p−8|f̂(l)|p
 1

p

,

which completes the proof. �

5.2. Countable compact hypergroups. Dunkl and Ramirez [16] studied an interesting

class of countable hypergroups. Let N∗0 = {0, 1, 2, . . . ,∞} be the one-point compactifica-

tion of N0. They defined a convolution structure ∗ on N∗0 for every 0 < a ≤ 1
2
, which makes

N∗0 a (hermitian) countable compact hypergroup Ha. For a prime p, let ∆p be the ring of

p-adic integers and W be its group of units, that is, {x = x0 + x1p + . . . + xnp
n + . . . ∈

∆p : xj = 0, 1, . . . , p− 1 for j ≥ 0 andx0 6= 0}. W acts on ∆p by multiplication and Ha for

a = 1
p
, derives its structure from the W-orbits in ∆p. In fact, the convolution is given as

follows: for m,n ∈ N0, define

δm ∗ δn = δmin{m,n} ifm 6= n,

δm ∗ δ∞ = δ∞ ∗ δm = δm, δ∞ ∗ δ∞ = δ∞, and for m = n,

δm ∗ δm(t) =



0 t < m,

1−2a
1−a t = m,

ak t = m+ k > m,

0 t =∞.

The Haar measure λ on Ha is given by

λ({k}) = ak(1− a) for k <∞, λ({∞}) = 0.
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The dual space Ĥa of Ha is given by {χn : n ∈ N0}, where, for k ∈ Ha,

χn(k) =


0 if k < n− 1,

a
a−1 if k = n− 1,

1 if k ≥ n (or k =∞).

Then the convolution ‘∗’ on N0 is identified with the one on Ĥa, which is

δχm ∗ δχn = δχmax{m,n} for m 6= n,

δχ0 ∗ δχ0 = δχ0 , δχ1 ∗ δχ1 =
a

1− a
δχ0 +

1− 2a

1− a
δχ1 ,

δχn ∗ δχn =
an

1− a
δχ0 +

n−1∑
k=1

an−kδχk +
1− 2a

1− a
δχn forn ≥ 2.

Then Ĥa turns into a hermitian discrete hypergroup. We see that kχπ = a−n(1 − a) and

the Plancherel measure ω on Ĥa is given by

ω(χ0) = 1 and ω(χn) = (1− a)a−n for n ≥ 1.

The Paley inequality for the Dunkl-Ramirez hypergroup Ha is then given by the following

theorem.

Theorem 5.4. Let 1 < p ≤ 2 and let {ϕ(n)}n∈N0 be a positive sequence such that

Mϕ := sup
y>0

y
∑
n∈N

ϕ(n)≥y

(1− a)2a−2n + ϕ(0) <∞.

Then we have ∑
n∈N

(a−n(1− a))2−
p
2 f̂(n)ϕ(n)2−p .M2−p

ϕ ‖f‖pLp(Ha).

We have the following Hardy-Littlewood inequality for Ha.

Theorem 5.5. If 1 < p ≤ 2 then there exists a constant C = C(p) such that

f(0) +
∑
n∈N

((1− a)a−n)p(
5
2
− 4
p
)|f̂(n)|p ≤ C‖f‖Lp(Ha). (35)
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Proof. We apply Theorem 3.6 to get the inequality (35) above. The condition (25) for

β = 3 by choosing the sequence {µχn}n∈N := {(1 − a)a−n}n∈N with µχ0 = 1 turns out to

be ∑
n∈N0

k2χn
|µχn|β

=
∑
n∈N0

(1− a)2a−2n

(1− a)3a−3n
=

1

1− a
∑
n∈N0

an =
1

(1− a)2
,

which is finite. Therefore, (35) follows from Theorem 3.6. �

The proof of the following corollary is similar to Corollary 5.3 in the previous subsection.

Corollary 5.6. If 2 ≤ p <∞ and f(0) +
∑

n∈N((1− a)a−n)p(
5
2
− 4
p
)|f̂(n)|p <∞, then

f ∈ Lp(Ha).

Moreover, we have

‖f‖Lp(Ha) ≤ Cp

(
f(0) +

∑
n∈N

((1− a)a−n)p(
5
2
− 4
p
)|f̂(n)|p

)
.
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Sci. Ser. A 278 (1974) 21-24.

[9] J. Bergh and J. Lofstrom, Interpolation spaces, Grundlehren der mathematischen

Wissenschaften, (1976).
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[26] L. Hörmander, Estimates for translation invariant operators in Lp spaces. Acta Math.,

104 (1960) 93-140

[27] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math., 18 (1975)

1-101.

[28] V. Kumar, K. A. Ross and A. I. Singh, Hypergroup deformations of semigroups,

Semigroup Forum 99(1) (2019), 169-195.

[29] V. Kumar, K. A. Ross and A. I. Singh, An addendum to “Hypergroup deformations

of semigroups”, Semigroup Forum 99(1) (2019), 196-197.

[30] V. Kumar, K. A. Ross and A. I. Singh, Ramsey theory for hypergroups. Semigroup

Forum (2019). https://doi.org/10.1007/s00233-019-10009-0

[31] V. Kumar and R. Sarma, The Hausdorff-Young inequality for Orlicz spaces on com-

pact hypergroups, Colloquium Mathematicum 160 (2020), 41-51.

[32] V. Kumar and M. Ruzhansky, Hausdorff-Young inequality for Orlicz spaces on com-

pact homogeneous manifolds, Indag. Math. (N.S.) 31(2) (2020) 266-276.

[33] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Math., 3 (1983), 185–209.

[34] J. E. Littlewood and R. E. A. Paley, Theorems on Fourier series and power series,

J. London Math. Soc. 6 (1931), 230–233

[35] J. E. Littlewood and R. E. A. Paley, Theorems on Fourier series and power series

(II). Proc. London Mat. Soc., 42 (1937), 52–89.

[36] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951)

152-182.

[37] E. Nursultanov and N. T. Tleukhanova, Lower and upper bounds for the norm of

multipliers of multiple trigonometric Fourier series in Lebesgue spaces, Funktsional.

Anal. i Prilozhen., 34(2) (2000) 86-88.

[38] H. Remling and M. Rösler, Convolution algebras for Heckman-Opdam polynomials

derived from compact Grassmannians, J. Approx. Theory 197 (2015), 30-48.

[39] M. Rösler and M. Voit, A multivariate version of the disk convolution, J. Math. Anal.

Appl. 435(1) (2016), 701-717.

[40] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc., 243 (1978) 251-269.



30 VISHVESH KUMAR AND MICHAEL RUZHANSKY

[41] K. A. Ross, Hypergroups and centers of measure algebras, Symposia Mathematica,

Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Local-

mente Compatti, INDAM, Rome, 1976), Academic Press, London, (1977) 189–203.

[42] M. Ruzhansky and V. Turunen, Pseudo-differential Operators and Symmetries:

Background Analysis and Advanced Topics. Birkhaüser-Verlag, Basel (2010).
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