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Abstract. In this paper, we study some operator theoretical properties of pseudo-differential
operators with operator-valued symbols on the Heisenberg motion group. Specifically, we in-
vestigate L2-Lp boundedness of pseudo-differential operators on the Heisenberg motion group
for the range 2 ≤ p ≤ ∞. We also provide a necessary and sufficient condition on the operator-
valued symbols in terms of λ-Weyl transforms such that the corresponding pseudo-differential
operators on the Heisenberg motion group are in the class of Hilbert–Schmidt operators. As a
consequence, we obtain a characterization of the trace class pseudo-differential operators on the
Heisenberg motion group and provide a trace formula for these trace class operators.

1. Introduction

The theory of pseudo-differential operators was originated with the works of Kohn and Niren-
berg [20] and Hörmander [19]. The study of pseudo-differential operators plays an important
role in modern mathematics due to its applications in various areas of harmonic analysis, ge-
ometry, PDE, mathematical physics, time-frequency analysis, imagin,g and computations, see
[19, 29, 16] and references therein.

Let σ be a measurable function on Rn × Rn. Then the classical (global) pseudo-differential
operator Tσ on Rn associated with the symbol σ is defined by

(Tσf) (x) = (2π)−n/2

∫
Rn

eix·ξσ(x, ξ)f̂(ξ)dξ, x ∈ Rn,

for all f in the Schwartz space S (Rn), provided that the integral exists. Here f̂ denotes the
Euclidean Fourier transform of f and is defined by

f̂(ξ) = (2π)−n/2

∫
Rn

e−ix·ξf(x)dx, ξ ∈ Rn.

The formation of a pseudo-differential operator on Rn is mainly based on the Fourier inversion
formula for the Fourier transform and can be done by inserting a symbol on the phase space
Rn × Rn in the Fourier inversion formula. To extend pseudo-differential operators to other
settings, one observes that the second Rn in the Cartesian product Rn × Rn is the dual of the
additive group Rn. These observations allow us to extend the definition of pseudo-differential
operators to other groups G, provided we have an explicit formula for the dual of G and an
explicit Fourier inversion formula on G. Using this approach, the global theory of pseudo-
differential operators on other classes of groups, such as S1,Z, affine groups, compact (Lie)
groups, homogeneous spaces of compact (Lie) groups, Heisenberg groups, graded Lie groups,
step two nilpotent Lie groups, and locally compact type I groups has been widely studied by
several researchers [8, 15, 16, 4, 21, 34, 23, 6, 5].

The global theory of pseudo-differential operators on the Heisenberg group was developed by
Ruzhansky and Fischer in [15]. Later, the authors introduced the theory of pseudo-differential
operators in a more general settings, for example on graded Lie groups [16]. Further, the global
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quantization on unimodular type I locally compact groups and on nilpotent Lie groups were
studied by Ruzhansky and Mantoiu in [24] and [25], respectively.

The boundedness and the operator theoretical properties of pseudo-differential play a phe-
nomenal role in the study of partial differential equations and spectral theory. There is a vast
literature available on these topics, which is difficult to mention; we refer to recent papers
[8, 9, 4, 21, 5, 11, 3]. In particular, to mention the operator theoretical properties such as the
belongingness of pseudo-differential operators in the class of Hilbert-Schmidt and more general
Schatten class of operators on compact groups and manifold, we refer to [34, 26, 12, 13, 14, 21].
These types of results have also been extended to non-compact (non-abelian) groups by several
researchers. Dasgupta and Wong [7] obtained necessary and sufficient conditions on symbols
such that the corresponding pseudo-differential operators on the Heisenberg group belong to
the Hilbert-Schmidt class, which was further extended by Dasgupta and the first author for
abstract Heisenberg groups [8]. Such type of properties for pseudo-differential on H-type groups
and on the Affine groups are given in [35] and [10], respectively. Recently, trace class and
Hilbert-Schmidt pseudo differential operators on step two nilpotent Lie groups were discussed
by the authors in [22]. Motivated by these previous studies as well as the recent developments on
λ-Weyl transform on the Heisenberg motion group [18, 17], in this paper, we study and extend
some of the aforementioned results to the setting of the Heisenberg motion group. The λ-Weyl
transform plays an important role in the proof of our results.

In this paper, we study some operator theoretical properties of pseudo-differential operators
on the Heisenberg motion group G = Hn⋊K, where Hn is the Heisenberg group and K = U(n),
the group of n × n complex unitary matrices. One of the main goal of this note is to study
L2−Lp, 2 ≤ p ≤ ∞, estimates of pseudo-differential operator on the Heisenberg motion group G.
We also provide sufficient and necessary conditions on the symbol τ such that the corresponding
pseudo-differential operator Tτ on G is a Hilbert–Schmidt operator. We give a characterization
of the trace class pseudo-differential operators on G and provide a trace formula for these trace
class operators. The main results of this paper are as follows:

Theorem 1.1. Let τ be a operator-valued symbol on G×G′ such that∑
σ∈K̂

dσ

∫
R\{0}

∫
G
∥τ(z, t, k, λ, σ)∥pSp′

|λ|n dλ dzdtdk <∞

for 2 ≤ p < ∞ with p′ being the Lebesgue conjugate of p. Then the pseudo-differential operator
Tτ : L2(G) → Lp(G) is a bounded operator. Moreover,

∥Tτ∥B(L2(G),Lp(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥2Sp′

dzdtdk

} 2
p

|λ|ndλ

1/2

.

The proof of this result can be found in Section 3. We extend the above result for p = ∞ as
follows.

Theorem 1.2. Let τ be a operator-valued symbol on G×G′ such that∑
σ∈K̂

dσ

∫
R\{0}

∥∥τ(·, ·, ·, λ, σ)∥S1∥2L∞(G) |λ|
n dλ <∞.

Then the pseudo-differential operator Tτ : L2(G) → L∞(G) is a bounded operator. Further, we
have

∥Tτ∥B(L2(G),L∞(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥2
L∞(G)

|λ|ndλ

1/2

.

See Section 3 for the proof of the above theorem. Next, by deriving an equality (Proposition
2.4) for the trace class λ-Weyl transform with symbol in L2(Cn × K), we prove the following
result.



PSEUDO DIFFERENTIAL OPERATORS ON HEISENBERG MOTION GROUP 3

Theorem 1.3. Let τ be a symbol such that it satisfies the hypotheses of Theorem 3.4. Then the
corresponding pseudo-differential operator Tτ is a Hilbert–Schmidt operator if and only if

τ(z, t, k, λ, σ) = ρλσ(z, t, k)W
λ
σ

(
α(z, t, k)−λ

)
,

where (z, t, k, λ, σ) ∈ G × G′ and α : G → L2(G) is a weakly continuous mapping such that it
satisfies

(i)

∫
G
∥α(z, t, k) (·, ·, ·, ·)∥L2(G) dzdkdt <∞,

(ii) sup
(z,t,k,t)∈G×G′×R∗

∥Fα(z, t, k)(·, λ, ·)∥L2(G×) <∞,

(iii)

∫
R\{0}

∥Fα(z, t, k)(·, λ, ·)∥L2(G×) |λ|
ndλ <∞, ∀(z, t, k) ∈ G.

The proof of this theorem can be found in Section 4.
Apart from the introduction, this paper is organized as follows: In Section 2, we recall basic

harmonic analysis on the Heisenberg motion group G and define the pseudo-differential operators
on G. We note here that our quantization can be seen as a particular case of the quantization
defined by Ruzhansky and Mantoiu in [24]. We also derive some properties of the λ-Weyl
transform on G. In Section 3, we investigate L2 − Lp estimates of pseudo-differential operators
on G for 2 ≤ p ≤ ∞. We also prove that if two symbols under some suitable conditions give
rise to same pseudo-differential operator then the symbols must be same. In Section 4, we
obtain a necessary and sufficient condition on the symbol τ such that the corresponding pseudo-
differential operator Tτ on G is a Hilbert–Schmidt operator. We present a characterization for
the trace class pseudo-differential operators on the Heisenberg motion group G and find a trace
formula for these trace class operators. Finally, we end this paper by providing a concluding
remark and future work aspects.

2. Preliminaries

2.1. Harmonic analysis on the Heisenberg motion group. In this subsection, we recall
some basics of harmonic analysis on the Heisenberg motion group to make the paper self-
contained. A complete account of representation theory of the Heisenberg motion group can be
found in [31, 28, 2, 18, 27]. However, we mainly adopt the notation and terminology given in
[18].

We first recall Heisenberg group Hn. The Heisenberg group Hn = Cn × R is a step two
nilpotent Lie group equipped with the group law

(z, t) · (w, s) =
(
z + w, t+ s+

1

2
Im(z · w̄)

)
, (z, t), (w, s) ∈ Hn,

By Stone–von Neumann theorem, the set of infinite dimensional irreducible unitary representa-
tions of Hn can be parameterized by R∗ = R\{0}. For each λ ∈ R∗, the Schrödinger represen-
tation πλ of Hn is defined by

πλ(z, t)φ(ξ) = eiλteiλ(x·ξ+
1
2
x·y)φ(ξ + y), z = x+ iy,

where φ ∈ L2 (Rn). For a more detailed study on the Heisenberg group, we refer to [32, 31, 15,
16]. The group U(n) of n× n complex unitary matrices acts on Hn by the automorphisms

σ(z, t) = (σz, t), σ ∈ U(n).

The Heisenberg motion group G is then the semi direct product of Hn with the unitary group
K = U(n) by the group law

(z, t, k1) · (w, s, k2) =
(
z + k1w, t+ s− 1

2
Im (k1w · z̄) , k1k2

)
.
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The functions on Hn can be viewed as right K-invariant functions on the Heisenberg motion
group G. Since a right K-invariant function on G can be thought as a function on Hn, the Haar
measure on G is given by dg = dzdtdk, where dzdt and dk are the normalized Haar measure on
Hn and K respectively. For k ∈ K, we have another set of representations of the Heisenberg
group Hn by πλ,k(z, t) = πλ(kz, t). Since πλ,k agrees with πλ on the center of Hn, it follows from
Stone–Von Neumann theorem for the Schrödinger representation that πλ,k is equivalent to πλ.
This implies that there exists an intertwining operator µλ(k) satisfying

πλ(kz, t) = µλ(k)πλ(z, t)µλ(k)
∗.

The operator valued function µλ can be chosen so that it becomes a unitary representation
of K on L2 (Rn) and is known as metaplectic representation [1]. In general, the metaplectic
representation is a projective representation of the symplectic group but if one restricts the
metaplectic representation to U(n), then the constants can be redefined so that it becomes a
unitary representation of U(n). Let (σ,Hσ) be an irreducible unitary representation of K and

Hσ = span{eσj : 1 ≤ j ≤ dσ}. For k ∈ K, the matrix coefficients of the representation σ ∈ K̂ are
given by

φσ
ij(k) =

〈
σ(k)eσj , e

σ
i

〉
, i, j = 1, . . . , dσ.

Consider the functions

ϕλα(x) = |λ|
n
4 ϕα(

√
|λ|x), α ∈ Nn,

where ϕα’s are the Hermite functions on Rn. Then for each λ ∈ R∗, the set
{
ϕλα : α ∈ Nn

}
forms an orthonormal basis for L2 (Rn). Let P λ

m = span
{
ϕλα : |α| = m

}
. Then µλ becomes an

irreducible unitary representation of K on P λ
m. The action of µλ can be realized on P λ

m by the
following

µλ(k)ϕ
λ
γ =

∑
|α|=|γ|

ξλαγ(k)ϕ
λ
α,

where ξλαγ ’s are the matrix coefficients of µλ(k). Define a bilinear form ϕλα ⊗ eσj on L2 (Rn)×Hσ

by ϕλα ⊗ eσj = ϕλαe
σ
j . Then the set

{
ϕλα ⊗ eσj : α ∈ Nn, 1 ≤ j ≤ dσ

}
forms an orthonormal basis

for L2 (Rn)⊗Hσ. Let us write H2
σ for the space L2 (Rn)⊗Hσ.

For λ ̸= 0, a representation ρλσ of G on the space H2
σ defined by the following way

ρλσ(z, t, k) = πλ(z, t)µλ(k)⊗ σ(k), (z, t, k) ∈ G,

Then ρλσ are all possible irreducible unitary representations ofG those participate in the Plancherel
formula [28]. We denote the partial dual of the group G as

G′ ∼= R∗ × K̂.

The group Fourier transform of f ∈ L1(G) is defined by

f̂(λ, σ) =

∫
K

∫
R

∫
Cn

f(z, t, k)ρλσ(z, t, k) dzdtdk,

where (λ, σ) ∈ R∗ × K̂. Then f̂(λ, σ) is a bounded linear operator on H2
σ. Let

fλ(z, k) =

∫
R
f(z, t, k)eiλt dt (1)

be the inverse Fourier transform of the function f in the t variable. Then the group Fourier
transform of f can be expressed as

f̂(λ, σ) =

∫
K

∫
Cn

fλ(z, k)ρλσ(z, k) dzdk, (2)
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where ρλσ(z, k) = ρλσ(z, 0, k). Moreover, f̂(λ, σ) is a Hilbert–Schmidt operator on H2
σ and its

satisfies the following versions of Plancherel formula∫
K

∫
Hn

|f(z, t, k)|2 dzdtdk = (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥2S2
|λ|n dλ

for f ∈ L2(G), where S2 represent the space of all Hilbert-Schmidt operators on H2
σ (see Section

2.2 below for more details on S2).
For f ∈ L1 ∩ L2 (G) , the following Fourier inversion formula on G holds

f(z, t, k) = (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z, t, k)f̂(λ, σ)
)
|λ|n dλ, (z, t, k) ∈ G.

Let B
(
H2

σ

)
denote the C∗-algebra of all bounded linear operators on H2

σ. The operator-valued

symbol or simply a symbol τ is a mapping τ : G × G′ → B(H2
σ). Then, we define the pseudo-

differential operator Tτ : L2(G) → L2(G) corresponding to the symbol τ by

(Tτf)(z, t, k) = (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z, t, k)τ(z, t, k, λ, σ)f̂(λ, σ)
)
|λ|ndλ (3)

for all f ∈ S(G) and (z, t, k) ∈ G.

2.2. Schatten–von Neumann classes. If X is a complex Hilbert space, a linear compact
operator T : X → X belongs to the r-Schatten–von Neumann class Sr(X ) if

∞∑
n=1

(sn(T ))
r <∞,

where sn(T ) denote the singular values of T, i.e. the eigenvalues of |T | =
√
T ∗T with multiplic-

ities counted. For 1 ≤ r <∞, the class Sr(X ) is a Banach space endowed with the norm

∥T∥Sr =

( ∞∑
n=1

(sn(T ))
r

) 1
r

.

For 0 < r < 1, the ∥ · ∥Sr as above only defines a quasi-norm with respect to which Sr(X )
is complete. An operator belonging to the class S1(X ) (and S2(X )) is known as Trace class
operator (and Hilbert–Schmidt operator).

Another equivalent definition of Hilbert-Schmidt operators also given in terms of orthonormal
basis by the following. Let H be a complex and separable Hilbert space with respect to the inner
product ⟨·, ·⟩H. Also let {ϕk, k = 1, 2, ..} be an orthonormal basis for the Hilbert space H. Then
an operator A ∈ B(H) is a Hilbert–Schmidt operator if for any orthonormal basis {ϕk}∞k=1 of H
we have

∑
k ∥Tϕk∥H <∞. In this case, the Hilbert–Schmidt norm on S2 is defined by

∥A∥S2 =

( ∞∑
k=1

⟨Aψk, Aψk⟩H

) 1
2

.

For 1 ≤ p ≤ q ≤ ∞, from the definition of the Schatten-von Neumann classes, it follows that
Sp ⊆ Sq and consequently, for all A ∈ Sp, we have

∥A∥Sq ≤ ∥A∥Sp .
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2.3. λ-Weyl transform. In this subsection, we recall some basic definitions and important
properties of λ-Weyl transform associated to a symbol on L2(G×), where G× = Cn ×K. The
authors in [18] studied unboundedness properties of λ-Weyl transforms on G. For a detailed
study on λ-Weyl transforms on the Heisenberg motion group, we refer to [2, 17, 28]. We also
refer to the book of Wong [33] for Weyl transform on Rn.

For (λ, σ) ∈ G′ ∼= R∗ × K̂, the λ-Weyl transform W λ
σ on L1 (G×) is defined by (see [2])

W λ
σ (F ) =

∫
K

∫
Cn

F (z, k)ρλσ(z, k) dzdk,

where ρλσ(z, k) = ρλσ(z, 0, k). Then by the definition of group Fourier transform (2), we have

f̂(λ, σ) =W λ
σ (f

λ), (4)

where fλ is defined in (1). Since f̂(λ, σ) is a bounded linear operator on H2
σ, W

λ
σ (F ) is a

bounded operator if F ∈ L1 (G×) . On the other hand, if F ∈ L2 (G×), then W λ
σ (F ) becomes a

Hilbert–Schmidt operator satisfying the following Plancherel formula (see [17])∫
K

∫
Cn

|F (z, k)|2dzdk = (2π)−n|λ|n
∑
σ∈K̂

dσ

∥∥∥W λ
σ (F )

∥∥∥2
S2

. (5)

For F1, F2 ∈ L1 ∩ L2 (G×), the λ-twisted convolutions of F1 and F2 is defined by

F1 ×λ F2(g) =

∫
G×

F1

(
gg′−1

)
F2

(
g′
)
e−

i
2
λ Im(kw·z̄)dg′,

where g = (z, k) and g′ = (w, s) ∈ G×. For λ = 1, the λ-twisted convolutions called twisted
convolutions and denote it by F1×F2. By Proposition 3.1 of [2], we have the following properties
related to the λ-Weyl transform W λ

σ .

Theorem 2.1. Let F1, F2 ∈ L1 ∩ L2 (G×) . Then

(a) W λ
σ (F1)

∗ =W λ
σ (F ∗

1 ) , where F
∗
1 (z, k) = F1 ((z, k)−1),

(b) W λ
σ (F1 ×λ F2) =W λ

σ (F1)W
λ
σ (F2).

Using the Plancherel formula (5) and part (b) of Theorem 2.1 with the appropriate use of
Cauchy-Schwarz inequality, the space

(
L2(G×),×λ

)
is a Banach ∗-algebra. Further, using the

relation (4) and Plancherel formula (5), the λ-Weyl transformW λ
σ is a isomorphism from L2(G×)

onto the space of all Hilbert–Schmidt operators on H2
σ denoted by S2

(
H2

σ

)
. Therefore, for any

A ∈ S2
(
H2

σ

)
, there exists a unique F ∈ L2(G×) such that A =W λ

σ (F ).
Let us define a set

Zλ := {F ∈ L2(G×) : ∃ F1, F2 ∈ L2(G×) such that F = F1 ×λ F2 }.

Now we present the following theorems on the characterization of trace class λ-Weyl transform
on G.

Theorem 2.2. Let W λ
σ (F ) be the λ-Weyl transform associated with F ∈ L2(G×). Then W λ

σ (F )
is a trace class operator if and only if F ∈ Zλ.

Theorem 2.3. Zλ is a dense subspace of L2(G×).

The proof of Theorem 2.2 and Theorem 2.3 follows similar line given in section 4 of [8]. The
following estimate will be used in Section 3 to prove one of our main results.

Proposition 2.4. Let F = F1 ×λ F2 for some F1, F2 ∈ L2(G×). Then∑
σ∈K̂

dσ tr
(
W λ

σ (F )
)
= (2π)n|λ|−n

∫
G×

F2(z, k)F1((−k−1z, k−1)) dzdk.
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Proof. Since F = F1 ×λ F2, from part (b) of Theorem 2.1, we get

W λ
σ (F ) =W λ

σ (F1)W
λ
σ (F2) =W λ

σ (F1 ×λ F2).

SinceW λ
σ (F ) is a trace class operator and hence a Hilbert-Schmidt operator onH2

σ. Let {ϕk : k ∈ N}
is an orthonormal basis for H2

σ. Then using part (a) of Theorem 2.1, we obtain∑
σ∈K̂

dσ tr
(
W λ

σ (F )
)
=
∑
σ∈K̂

dσ
∑
k∈N

〈
W λ

σ (F )ϕk, ϕk

〉
=
∑
σ∈K̂

dσ
∑
k∈N

〈
W λ

σ (F1)W
λ
σ (F2)ϕk, ϕk

〉
=
∑
σ∈K̂

dσ
∑
k∈N

〈
W λ

σ (F2)ϕk,W
λ
σ (F1)

∗ϕk

〉
=
∑
σ∈K̂

dσ
∑
k∈N

〈
W λ

σ (F2)ϕk,W
λ
σ (F

∗
1 )ϕk

〉
=
∑
σ∈K̂

dσ

〈
W λ

σ (F2),W
λ
σ (F

∗
1 )
〉
S2

= (2π)n|λ|−n ⟨F2, F
∗
1 ⟩L2(G×) .

Then ∑
σ∈K̂

dσ tr
(
W λ

σ (F )
)
= (2π)n|λ|−n

∫
G×

F2(z, k)F1((z, k)
−1)dzdk

= (2π)n|λ|−n

∫
G×

F2(z, k)F1((−k−1z, k−1))dzdk.

□

3. Boundedness

This section is devoted to study the L2 − Lp boundedness of pseudo-differential operators
on the Heisenberg motion group G. We also prove that if two symbols with some additional
conditions give arise to same pseudo-differential operator then symbol must be same.

The following theorem is about the L2-boundedness of pseudo-differential operators on G. In
fact, a more general result in terms of Schatten–von Neumann class follows from Corollary 3.18
of [24]. Indeed, we have the following property.

Theorem 3.1. Let 1 ≤ p ≤ 2 with Lebesgue conjugate p′ and let τ : G × G′ → Sp be a
operator-valued symbol such that∑

σ∈K̂

dσ

∫
R\{0}

∫
G
∥τ(z, t, k, λ, σ)∥pSp

|λ|n dλ dzdtdk <∞.

Then the pseudo-differential operator Tτ : L2(G) → L2(G) is in the p′-Schatten class Sp′(G). In
particular, the pseudo-differential operator Tτ : L2 (G) → L2 (G) is a bounded operator.

In the next, we investigate a more general result, L2 − Lp-estimates for pseudo-differential
operators on the Heisenberg motion group G for 2 ≤ p <∞.

Theorem 3.2. Let τ be a operator-valued symbol on G×G′ such that∑
σ∈K̂

dσ

∫
R\{0}

∫
G
∥τ(z, t, k, λ, σ)∥pSp′

|λ|n dλ dzdtdk <∞
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for 2 ≤ p < ∞ and p′ be the Lebesgue conjugate of p. Then the pseudo-differential operator
Tτ : L2(G) → Lp(G) is a bounded operator. Moreover,

∥Tτ∥B(L2(G),Lp(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥2Sp′

dzdtdk

} 2
p

|λ|ndλ

1/2

.

Proof. Let f ∈ L2 (G) . Then by Minkowski’s integral inequality, Hölder’s inequality and Plancherel
theorem, we have

∥Tτf∥Lp(G) =

{∫
G
|(Tτf)(z, t, k)|p dzdtdk

}1/p

= (2π)−n


∫
G

∣∣∣∣∣∣
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z, t, k)τ(z, t, k, λ, σ)f̂(λ, σ)
)
|λ|ndλ

∣∣∣∣∣∣
p

dzdtdk


1/p

≤ (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

{∫
G

∣∣∣tr((ρλσ)∗(z, t, k)τ(z, t, k, λ, σ)f̂(λ, σ))∣∣∣p dzdtdk}1/p

|λ|ndλ

≤ (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥pSp′

∥f̂(λ, σ)∥pSp
dzdtdk

}1/p

|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥Sp

{∫
G
∥τ(z, t, k, λ, σ)∥pSp′

dzdtdk

}1/p

|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥S2

{∫
G
∥τ(z, t, k, λ, σ)∥pSp′

dzdtdk

}1/p

|λ|ndλ

≤ (2π)−n

∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥2S2
|λ|ndλ


1
2

×

∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥2Sp′

dzdtdk

} 2
p

|λ|ndλ

1/2

= ∥f∥L2(G)

∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥2Sp′

dzdtdk

} 2
p

|λ|ndλ

1/2

.

This shows that Tτ : L2 (G) → Lp (G) is a bounded operator. Moreover, we get

∥Tτ∥B(L2(G),Lp(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

{∫
G
∥τ(z, t, k, λ, σ)∥2Sp′

dzdtdk

} 2
p

|λ|ndλ

1/2

.

□

In the next, we study the remaining case when p = ∞.

Theorem 3.3. Let τ be a operator-valued symbol on G×G′ such that∑
σ∈K̂

dσ

∫
R\{0}

∥∥τ(·, ·, ·, λ, σ)∥S1∥2L∞(G) |λ|
n dλ <∞.
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Then the pseudo-differential operator Tτ : L2(G) → L∞(G) is a bounded operator. Further, we
have

∥Tτ∥B(L2(G),L∞(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥2
L∞(G)

|λ|ndλ

1/2

.

Proof. Let f ∈ L2 (G) . Then, using Minkowski’s integral inequality, Hölder’s inequality and
Plancherel theorem, we have

∥Tτf∥L∞(G) = (2π)−n

∥∥∥∥∥∥
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(·, ·, ·)τ(·, ·, ·, λ, σ)f̂(λ, σ)
)
|λ|ndλ

∥∥∥∥∥∥
L∞(G)

≤ (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥tr((ρλσ)∗(·, ·, ·)τ(·, ·, ·, λ, σ)f̂(λ, σ))∥∥∥
L∞(G)

|λ|ndλ

≤ (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1∥f̂(λ, σ)∥S∞

∥∥
L∞(G)

|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥S∞

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥
L∞(G)

|λ|ndλ

≤ (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥S2

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥
L∞(G)

|λ|ndλ

≤ (2π)−n

∑
σ∈K̂

dσ

∫
R\{0}

∥f̂(λ, σ)∥2S2
|λ|ndλ


1
2

×

∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥2
L∞(G)

|λ|ndλ

1/2

≤ ∥f∥L2(G)

∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥2
L∞(G)

|λ|ndλ

1/2

.

This shows that Tτ : L2 (G) → L∞ (G) is a bounded operator. Moreover, we have

∥Tτ∥B(L2(G),L∞(G)) ≤

∑
σ∈K̂

dσ

∫
R\{0}

∥∥∥τ(·, ·, ·, λ, σ)∥S1

∥∥2
L∞(G)

|λ|ndλ

1/2

.

□

In the next theorem we show that if two symbols with some conditions give arise to same
pseudo-differential operator then symbols must be same.

Theorem 3.4. Let τ : G×G′ → S2 be a symbol such that it satisfies the following properties:

(i)
∑
σ∈K̂

dσ

∫
R\{0}

∫
G
∥τ(z, t, k, λ, σ)∥2S2

|λ|n dλdzdtdk <∞.

(ii)
∑
σ∈K̂

dσ

∫
R\{0}

∥τ(z, t, k, λ, σ)∥S2 |λ|ndλ <∞, (z, t, k) ∈ G

(iii) sup
(z,t,k,λ,σ)∈G×G′

∥τ(z, t, k, λ, σ)∥S2 <∞,

(iv) the mapping G×G′ ∋ (z, t, k, λ, σ) 7→ (ρλσ)
∗(z, t, k)τ(z, t, k, λ, σ) ∈ S2 is weakly continuous.



10 VISHVESH KUMAR AND SHYAM SWARUP MONDAL

Then, Tτf = 0 for all f in L2 (G) if and only if τ(z, t, k, λ, σ) = 0 for almost all (z, t, k, λ, σ) ∈
G×G′.

Proof. First assume that Tτf = 0 for all f in L2 (G) . For (z, t, k) ∈ G, let us consider the
function f(z,t,k) ∈ L2(G) by

f̂(z,t,k)(λ, σ) = τ(z, t, k, λ, σ)∗ρλσ(z, t, k)

for all (λ, σ) ∈ G′. Therefore, for all (z′, t′, k′) ∈ G, we have(
Tτf(z,t,k)

) (
z′, t′, k′

)
= (2π)−n

∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z′, t′, k′)τ(z′, t′, k′, λ, σ)f̂(z,t,k)(λ, σ)
)
|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
[
(ρλσ)

∗(z′, t′, k′)τ(z′, t′, k′, λ, σ)

× τ(z, t, k, λ, σ)∗ρλσ(z, t, k)
]
|λ|ndλ.

Take (z0, t0, k0) ∈ G. By the weakly continuous mapping property (iv), we have

tr
(
(ρλσ)

∗(z′, t′, k′)τ(z′, t′, k′, λ, σ)τ(z, t, k, λ, σ)∗ρλσ(z, t, k)
)

→ tr
(
(ρλσ)

∗(z0, t0, k0)τ(z0, t0, k0, λ, σ)τ(z, t, k, λ, σ)
∗ρλσ(z, t, k)

)
as (z′, t′, k′) → (z0, t0, k0) in G. Now using the property (iii), there exists a constant C such that
for all (z′, t′, k′, λ, σ) ∈ G×G′, we have∣∣∣tr((ρλσ)∗(z′, t′, k′)τ(z′, t′, k′, λ, σ)τ(z, t, k, λ, σ)∗ρλσ(z, t, k))∣∣∣

≤ C∥τ(z, t, k, λ, σ)∥S2 .

Since ∑
σ∈K̂

dσ

∫
R\{0}

∥τ(z, t, k, λ, σ)∥S2 |λ|ndλ <∞

for all (z, t, k) ∈ G, by Lebesgue’s dominated convergence theorem, we have∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z′, t′, k′)τ(z′, t′, k′, λ, σ)f̂(z,t,k)(λ, σ)
)
|λ|ndλ

→
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z0, t0, k0)τ(z0, t0, k0, λ, σ)f̂(z,t,k)(λ, σ)
)
|λ|ndλ

as (z′, t′, k′) → (z0, t0, k0) in G. This shows that Tτf(x,y,z,t) is continuous on G. Letting

(z0, t0, k0) = (z, t, k) and using the property that Tτf = 0 for all f in L2 (G), we get(
Tτf(z,t,k)

)
(z, t, k)

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr (τ(z, t, k, λ, σ)τ(z, t, k, λ, σ)∗) |λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

∥τ(z, t, k, λ, σ)∥S2 |λ|ndλ = 0

This implies that ∥τ(z, t, k, λ, σ)∥S2 = 0 for almost all (λ, σ) ∈ G′. Thus the symbol τ(z, t, k, λ, σ) =
0 for almost all (z, t, k, λ, σ) ∈ G×G′.

Conversely, if τ(z, t, k, λ, σ) = 0 for almost all (z, t, k, λ, σ) ∈ G×G′, then from the definition
(3) of Tτ , it is obvious that Tτf = 0 for all f in L2 (G) . □
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4. Hilbert–Schmidt operators

In this section, we characterize the Hilbert–Schmidt pseudo-differential operators in terms of
their corresponding symbols. We obtain a necessary and sufficient condition on the operator
valued symbols τ such that the corresponding pseudo-differential operator Tτ on the Heisenberg
motion group G are in the class of Hilbert–Schmidt operators.

Note that fλ defined in (1) is the inverse Fourier transform of f in t variable or Fourier
transform of f with respect to the center of G. Therefore, one can write fλ in the following
form:

fλ(z, k) =
(
F−1f

)
(z, λ, k) = (Ff) (z,−λ, k),

where F denote the Fourier transform with respect to center of G. Now we are ready to state
and prove the following result.

Theorem 4.1. Let τ be a symbol such that it satisfies the hypotheses of Theorem 3.4. Then the
corresponding pseudo-differential operator Tτ is a Hilbert–Schmidt operator if and only if

τ(z, t, k, λ, σ) = ρλσ(z, t, k)W
λ
σ

(
α(z, t, k)−λ

)
,

where (z, t, k, λ, σ) ∈ G × G′ and α : G → L2(G) is a weakly continuous mapping such that it
satisfies

(i)

∫
G
∥α(z, t, k) (·, ·, ·, ·)∥L2(G) dzdkdt <∞,

(ii) sup
(z,t,k,t)∈G×G′×R∗

∥Fα(z, t, k)(·, λ, ·)∥L2(G×) <∞,

(iii)

∫
R\{0}

∥Fα(z, t, k)(·, λ, ·)∥L2(G×) |λ|
ndλ <∞, (z, t, k) ∈ G.

Proof. Let f ∈ S(G). Then for all (z, t, k) ∈ G

Tτ (z, t, k) = (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z, t, k) τ(z, t, k, λ, σ) f̂(λ, σ)
)
|λ|ndλ.

Using the expression of τ and the fact that f̂(λ, σ) =W λ
σ (f

λ), we get

Tτ (z, t, k) = (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
(ρλσ)

∗(z, t, k) ρλσ(z, t, k)W
λ
σ (α(z, t, k)

−λ)W λ
σ (f

λ)
)
|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
W λ

σ (α(z, t, k)
−λ)W λ

σ (f
λ)
)
|λ|ndλ

= (2π)−n
∑
σ∈K̂

dσ

∫
R\{0}

tr
(
W λ

σ

(
α(z, t, k)−λ ×λ f

λ
))

|λ|ndλ.

Now, using Theorem 2.4, for all (z, t, k) ∈ G, we obtain

Tτ (z, t, k) =

∫
R\{0}

∫
G×

α(z, t, k)−λ(−k−1
1 z1, k

−1
1 ) fλ(z1, k1) dz1dk1dλ

=

∫
R\{0}

∫
G×

(Fα(z, t, k))(−k−1
1 z1, λ, k

−1
1 ) (Ff)(z1,−λ, k1) dz1dk1dλ

=

∫
R\{0}

∫
G×

α(z, t, k)(−k−1
1 z1, t1, k

−1
1 ) f(z1, t1, k1) dz1dk1dt1.

This shows that Tτ is an almost everywhere integral operator with kernel

K (z, t, k, z1, t1, k1) = α(z, t, k)(−k−1
1 z1, t1, k

−1
1 ), (6)
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where (z, t, k), (z1, t1, k1) ∈ G. Using Fubini’s theorem and Plancherel theorem, we get∫
G

∫
G
|K (z, t, k, z1, t1, k1)|2 dzdtdk dz1dt1dk1

=

∫
G

∫
G

∣∣α(z, t, k)(−k−1
1 z1, t1, k

−1
1 )
∣∣2 dzdtdk dz1dt1dk1

=

∫
G
∥α(z, t, k) (·, ·, ·, ·)∥L2(G) dzdkdt <∞.

Therefore, Tτ : L2(G) → L2(G) is a Hilbert–Schmidt operator.
Conversely, suppose that Tτ : L2(G) → L2(G) is a Hilbert–Schmidt operator. Then there

exists a function α ∈ L2 (G×G) such that for all f ∈ L2(G), we have

Tτ (z, t, k) =

∫
G
α(z, t, k)(z1, t1, k1)f(z1, t1, k1)dt1, (z, t, k) ∈ G.

Let α : G→ L2(G) be the mapping defined by

α(z, t, k)(z1, t1, k1) = α(z, t, k, z1, t1, k1),

where (z, t, k), (z1, t1, k1) ∈ G. Then, from (5), we get∑
σ∈K̂

dσ∥τ(z, t, k, λ, σ)∥S2 = (2π)n|λ|−n ∥Fα(z, t, k)(·, λ, ·)∥L2(G×) .

Now, reversing the argument for sufficiency and using Theorem 3.4, we get the converse part
and this completes the proof the the theorem. □

As an immediate consequence of the Theorem 4.1 above, in the following corollary, we present
a result related to trace class pseudo-differential operators on G and find its trace formula.

Corollary 4.2. Let α ∈ L2 (G×G) such that∫
G
|α(z, t, k)(z, t, k)| dzdtdk <∞.

Let τ : G × G′ → B(H2
σ) be the symbol defined as in Theorem 4.1. Then Tτ : L2 (G) → L2 (G)

is a trace class operator. Moreover, its trace is given by

tr (Tτ ) =

∫
G
α(z, t, k)(−k−1z, t, k−1) dzdtdk

Proof. The proof of Corollary 4.2 follows from the formula (6) on the kernel of the pseudo-
differential operator in the proof of the Theorem 4.1. □

Next we obtain a necessary and sufficient condition on the symbol τ so that the corresponding
pseudo-differential operator Tτ is a trace class operator and we derive the trace formula of the
operator Tτ . Indeed, we have the following result.

Corollary 4.3. Let τ : G×G′ → S2 be a symbol such that it satisfying the conditions of Theorem
3.4. Then Tτ is a trace class operator if and only if

τ(z, t, k, λ, σ) = ρλσ(z, t, k)W
λ
σ

(
α(z, t, k)−λ

)
,

where (z, t, k, λ, σ) ∈ G × G′, α : G → L2(G) is a mapping such that it satisfies the conditions
of Theorem 4.1 and

α(z, t, k)(z1, t1, k1) =

∫
G
α1(z, t, k)(z2, t2, k2)α2(z2, t2, k2)(z1, t1, k1)dz2dt2dk2,

for all (z, t, k), (z1, t1, k1) ∈ G, here α1 : G→ L2(G) and α2 : G→ L2(G) satisfies the conditions∫
G
∥α1(z, t, k)∥2L2(G) dqdt <∞,

∫
G
∥α2(z, t, k)∥2L2(G) dqdt <∞.
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Moreover, if Tτ : L2(G) → L2(G) is a trace class operator, then we have the trace formula

tr (Tτ ) =

∫
G
α(z, t, k)(z, t, k) dzdtdk

=

∫
G

∫
G

∫
G
α1(z, t, k)(z2, t2, k2)α2(z2, t2, k2)(z, t, k) dzdtdk dz2dt2dk2.

Proof. The proof follows from the expression of the kernel of pseudo-differential operators in
Theorem 4.1 and the fact that every trace class operator can be written as a product of two
Hilbert–Schmidt operators. □

5. Discussion and Conclusions

This article takes up the L2-Lp boundedness problem of pseudo-differential operators on the
Heisenberg motion group for the range 2 ≤ p ≤ ∞. Using the λ-Weyl transform, we provided
a necessary and sufficient condition on the operator-valued symbols such that the associated
pseudo-differential operators on the Heisenberg motion group are in the class of Hilbert–Schmidt
operators. Further, it will be interesting to investigate Lp−Lp or Lp−Lq boundedness of pseudo-
differential operators on the Heisenberg motion group for the range 1 ≤ p, q ≤ ∞.
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[19] L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Springer-Verlag,

Berlin (1985). 1

[20] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure

Appl. Math. 18, 269-305 (1965). 1

[21] V. Kumar, Pseudo-differential operators on homogeneous spaces of compact and Hausdorff

groups, Forum Math. 31(2), 275-282 (2019). 1, 2

[22] V. Kumar and S. S. Mondal, Trace class and Hilbert-Schmidt pseudo differential operators

on step two nilpotent Lie groups, Bull. Sci. math. 171, 103015 (2021). 2

[23] V. Kumar and S. S. Mondal, Schatten class and nuclear pseudo-differential operators on

homogeneous spaces of compact groups, Monatsh Math 197, 149-176 (2022). 1

[24] M. Mantoiu and M. Ruzhansky, Pseudo-differential operators, Wigner transform and Weyl

systems on type I locally compact groups, Doc. Math. 22, 1539-1592 (2017). 2, 3, 7

[25] M. Mantoiu and M. Ruzhansky, Quantizations on nilpotent Lie groups and algebras having

flat coadjoint orbits, J. Geom. Anal. 29(3), 2823-2861 (2019). 2



PSEUDO DIFFERENTIAL OPERATORS ON HEISENBERG MOTION GROUP 15

[26] S. Molahajloo and M. Pirhayati, Traces of pseudo-differential operators on compact and

Hausdorff groups, J. Pseudo-Differ. Oper. Appl. 4(3), 361-369 (2013). 2

[27] P. K. Ratnakumar, R. Rawat and S. Thangavelu, A restriction theorem for the Heisenberg

motion group, Studia Math. 126, 1-12 (1997). 3

[28] S. Sen, Segal-Bargmann transform and Paley-Wiener theorems on Heisenberg motion

groups, Adv. Pure Appl. Math. 7(1), 13-28 (2016). 3, 4, 6

[29] M. Ruzhansky and V. Turunen, Pseudo-differential Operators and Symmetries: Background

Analysis and Advanced Topics, Birkhäuser-Verlag, Basel (2010). 1
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