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Abstract. Given a compact (Hausdorff) group G and a closed subgroup H of G, in
this paper we present symbolic criteria for pseudo-differential operators on the compact
homogeneous space G/H characterizing the Schatten-von Neumann classes Sr(L

2(G/H))
for all 0 < r ≤ ∞. We go on to provide a symbolic characterization for r-nuclear, 0 < r ≤
1, pseudo-differential operators on Lp(G/H) with applications to adjoint, product and
trace formulae. The criteria here are given in terms of matrix-valued symbols defined on

noncommutative analogue of phase space G/H× Ĝ/H. Finally, we present an application
of aforementioned results in the context of the heat kernels.

1. Introduction

The theory of pseudo-differential operators is one of the most significant tools in math-
ematics to study the problems of partial differential equations [23]. The study of pseudo-
differential operators was initiated by Kohn and Nirenberg [29]. Ruzhansky and Turunen
[38, 39] studied (global) pseudo-differential operators with matrix-valued symbols on com-
pact (Lie) groups. They introduced symbol classes and symbolic calculus for matrix-valued
symbols on compact Lie groups and presented plentiful applications of this global the-
ory. After that, the theory of pseudo-differential operators with matrix-valued symbols on
compact (Hausdorff) groups, compact homogeneous spaces, compact manifolds is broadly
studied by several authors [3, 4, 5, 9, 11, 12, 13, 14, 15, 20, 30, 31, 33, 34, 38, 44] in many
different contexts.

Let G be a compact (Hausdorff) group and let H be a closed subgroup of G. In this
paper, we mainly address the following three problems: (i) To find criteria for pseudo-
differential operators to be in r-Schatten-von Neumann class Sr of operators on L2(G/H)
for 0 < r ≤ ∞; (ii) to find criteria for pseudo-differential operators from Lp1(G/H) into
Lp2(G/H) to be r-nuclear, 0 < r ≤ 1, for 1 ≤ p1, p2 < ∞; and (iii) applications to find
a trace formula and to provide criteria for the heat kernels to be nuclear on Lp(G/H).
In order to do this, we use the global quantization for compact homogeneous spaces as a
non-commutative analogue of the Kohn-Nirenberg quantization of operators on Rn.

Recently, several researchers started an extensive investigation to give criteria for oper-
ators belonging to r-Schatten-von Neumann class and to the class of r-nuclear operators
in terms of their symbols with lower regularity [2, 13, 16, 41, 42]. Ruzhansky and Delgado
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[13, 15] successfully drop the regularity condition at least in their setting using matrix-
valued symbols. Inspired by the work of Delgado and Ruzhansky, we present symbolic
criteria for pseudo-differential operators on G/H to be r-Schatten-von Neumann class us-

ing the matrix-valued symbols defined on G/H × Ĝ/H, a noncommutative analogue of
phase space. It is well known that in the setting of Hilbert spaces, the class of r-nuclear
operators agrees with the r-Schatten-von Neumann class of operators [36]. In general, for
trace class operators on Hilbert spaces, the trace of an operator given by integration of
its integral kernel over the diagonal is equal to the sum of its eigenvalues. However, this
property fails in Banach spaces. The importance of r-nuclear operators lies in the seminal
work of Grothendieck, who proved that, for 2/3-nuclear operators, the trace in Lp-spaces
agrees with the sum of all the eigenvalues with multiplicities counted. Therefore, the no-
tion of r-nuclear operators becomes useful. One of the interesting questions is to find
good criteria for ensuring the r-nuclearity of operators on Lp-spaces. But this needs to be
formulated differently than those on Hilbert spaces and has to take into account the im-
possibility of certain kernel formulations in view of Carleman’s example [6] (also see [13]).
In view of this, we will establish conditions imposed on symbols instead of kernels ensuring
the r-nuclearity of the corresponding operators. The initiative of finding the necessary
and sufficient conditions for pseudo-differential operators to be r-nuclear was started by
Delgado and Wong [17]. The main tool used for such a characterization is a theorem of
Delgado [12]. A multilinear version of this result was recently proved by the first author
and D. Cardona to study the nuclearity of multilinear pseudo-differential operators on the
lattice and the torus [4, 5]. Delgado and Ruzhansky [13] studied the Lp-nuclearity and
traces of pseudo-differential operators on compact Lie groups using the global symbolic
calculus developed by Ruzhansky and Turunen [38]. Later, they with their collaborators
extended these results to more general compact homogeneous spaces and compact mani-
folds [12, 13, 14, 15]. On the other hand, Wong and his collaborators extended the results
of [17] in the settings of abstract compact groups without differential structure [19, 20]. In
particular, characterizations of nuclear operators in terms of decomposition of symbol via
the Fourier transform were investigated by Ghaemi, Jamalpour Birgani and Wong [19] for
S1 and for arbitrary compact groups [20].

The homogeneous spaces of abstract compact groups play an important role in mathe-
matical physics, geometric analysis, constructive approximation, and coherent state trans-
form, see [24, 25, 26, 27, 28, 29] and references therein. Pseudo-differential operators on
homogeneous spaces of compact groups (without differential structure) studied by the first
author [30] (see also [38]). We use the operator-valued Fourier transform on homoge-
neous spaces of compact groups developed by Ghani Farashahi [18]. Using this Fourier
transform, we define global pseudo-differential operators on homogeneous spaces of com-
pact groups and study the r-Schatten-von Neumann class of operators on L2(G/H) and
r-nuclear operators on Lp-spaces on compact homogeneous spaces. Our results can be seen
as a complement as well as a generalization of [13, 19].

We begin this paper by recapitulating some basic facts about the Fourier analysis on
homogeneous spaces of compact groups from [18] in Section 2. Although, a parallel theory
of homogeneous spaces of compact Lie groups can be found in the classical book of Vilenkin
[43] and recent papers and books [1, 10, 16, 35]. Later in this section, we present a global
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quantization (Ruzhansky and Turunen [38]) on homogeneous spaces of compact groups
related to matrix-valued symbols. In Section 3, we give symbolic criteria of r-Schatten-von
Neumann class of operators defined on L2(G/H). In Section 4, we start our investigation on
r-nuclear operators. We begin this section by providing sufficient conditions for operators
to be r-nuclear in terms of conditions on symbols. We also present a characterization of
r-nuclear pseudo-differential operators on Lp-spaces for homogeneous spaces of compact
groups. We calculate the nuclear trace of related pseudo-differential operators. In Section
5, we find symbols of the adjoint of r-nuclear pseudo-differential operators on homogeneous
spaces of compact groups and provide a characterization for self-adjointness. We also
compute symbol of the product of a nuclear operator and a bounded linear operator. We
end this paper by presenting applications of our results in the context of the heat kernels.

2. Fourier analysis and the global quantization on homogeneous spaces of
compact groups

We begin this section by recalling some basic and important concepts of harmonic analy-
sis on homogeneous spaces of compact (Hausdorff) groups from [18] which is almost similar
to the theory given in [1] and [43] (see also [10, 16, 35] for homogeneous spaces of compact
Lie groups).

Throughout the paper, we assume that G is a compact (Hausdorff) group with the
normalized Haar measure dx and H is a closed subgroup of G with the probability Haar
measure dh. The left coset space G/H can be seen as a homogeneous space with respect
to the action of G on G/H given by left multiplication. Let C(Ω) denote the space of all
continuous functions on a compact Hausdorff space Ω. Define TH : C(G) → C(G/H) by

TH(f)(xH) =

∫
H
f(xh) dh, xH ∈ G/H.

Then TH is an onto map. The homogeneous space G/H has a unique normalized G-
invariant positive Radon measure µ such that the Weil formula∫

G/H
TH(f)(xH) dµ(xH) =

∫
G
f(x) dx

holds. The map TH can be extended to L2(G/H,µ) and is a partial isometry on L2(G/H)
with ⟨TH(f), TH(g)⟩L2(G/H,µ) = ⟨f, g⟩L2(G) for all f, g ∈ L2(G).

Let (π,Hπ) be a continuous unitary representation of a compact group G on a Hilbert
space Hπ. It is well-known that any irreducible representation (π,Hπ) of G is finite dimen-
sional with the dimension dπ (say). Consider an operator-valued integral

T π
H :=

∫
H
π(h) dh

defined in the weak sense, i.e., ⟨T π
Hu, v⟩ =

∫
H⟨π(h)u, v⟩ dh, for all u, v ∈ Hπ. Note that, T

π
H

is a bounded linear operator on Hπ with norm bounded by one. Further, T π
H is a partial

isometric orthogonal projection and T π
H is an identity operator if and only if π(h) = I for

all h ∈ H (see [18]).
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Definition 2.1. Let H be a closed subgroup of a compact group G. Then the dual Ĝ/H of

G/H is a subset of Ĝ given by

Ĝ/H :=
{
π ∈ Ĝ : T π

H ̸= 0
}
=

{
π ∈ Ĝ :

∫
H
π(h) dh ̸= 0

}
.

We note here that the set Ĝ/H is the set of all type 1 representations of G with respect

to H which was denoted by Ĝ0 in [35, 43].

Let π ∈ Ĝ/H. Then the functions πH
ζ,ξ : G/H → C defined by

πH
ζ,ξ(xH) := ⟨π(x)T π

Hζ, ξ⟩ , xH ∈ G/H,

for ξ, ζ ∈ Hπ, are calledH-matrix elements of (π,Hπ). If {e1, e2, . . . , edπ} is an orthonormal
basis for Hπ then we denote ⟨π(x)T π

Hei, ej⟩ by πH
ij (xH). Using the orthogonality relation

of matrix coefficients of G and the fact TH (πζ,ξ) = πH
ζ,ξ, we have〈

πH
i,j , ξ

H
k,l

〉
L2(G/H,µ)

=
1

dπ
δπξδikδjl.

Let φ ∈ L1(G/H,µ) and π ∈ Ĝ/H. Then the group Fourier transform FG/H(φ) of φ at
π is a bounded linear operator defined by

FG/H(φ)(π) = φ̂(π) :=

∫
G/H

φ(xH)Γπ(xH)∗ dµ(xH)(2.1)

on the Hilbert space Hπ, where for xH ∈ G/H the notation Γπ(xH) stands for a bounded
linear operator on Hπ satisfying

⟨ζ,Γπ(xH)ξ⟩ = ⟨ζ, π(x)T π
Hξ⟩

for all ζ, ξ ∈ Hπ. Note that, from the notation of Γπ(xH), the H-matrix coefficients
πH
i,j(xH) are same as Γπ(xH)ij . Moreover, if φ ∈ L2(G/H) then φ̂(π) is a Hilbert-Schmidt

operator on Hπ and satisfies the following Plancherel formula as stated in next theorem.

Theorem 2.2. For φ ∈ L2(G/H,µ), we have∑
[π]∈Ĝ/H

dπ∥φ̂(π)∥2S2
= ∥φ∥2L2(G/H,µ),

where ∥.∥S2 stands for the Hilbert-Schmidt norm on the space of all Hilbert-Schmidt oper-
ators on Hπ.

Theorem 2.3. For φ ∈ L2(G/H,µ), the following Fourier inversion formula holds

φ(xH) =
∑

[π]∈Ĝ/H

dπ Tr[φ̂(π)π(x)T
π
H ], for µ− a.e. xH ∈ G/H.(2.2)

We would like to record the following lemma whose proof is similar to [13, Lemma 2.5]
by using the fact that the operator T π

H is norm bounded by one.
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Lemma 2.4. Let G/H be a compact homogeneous space with the normalized measure µ

and let π ∈ Ĝ/H. Then, for all 1 ≤ i, j ≤ dπ, we have

∥Γπ(·)ij∥Lq(G/H) ≤

d
− 1

q
π , if 2 ≤ q ≤ ∞,

d
− 1

2
π , if 1 ≤ q ≤ 2,

with the convention that for q = ∞ we have d
− 1

q
π = 1.

Given a continuous linear operator T : C(G/H) → C(G/H), its matrix-valued global
symbol σT (xH, π) ∈ Cdπ×dπ is defined by

T π
HσT (xH, π) = π(x)∗(TΓπ)(xH),(2.3)

where TΓπ stands for the action of T on the matrix components of Γπ(xH). Setting
(TΓπ(xH))mn = (T (Γπmn))(xH), we have

(T π
HσT (xH, π))mn :=

dπ∑
k=1

πkm(x)(TΓπ(xH))kn,

where 1 ≤ m,n ≤ dπ.
Assume that σT is a matrix-valued global symbol for a continuous linear operator T :

C(G/H) → C(G/H) as above. Then we can recover the operator T by using the Fourier
inversion formula as follows:

Tf(xH) = T

 ∑
[π]∈Ĝ/H

dπ Tr(π(x)T
π
H f̂(π))


=

∑
[π]∈Ĝ/H

dπ Tr(TΓπ(xH) f̂(π)).

Using (2.3) and the relation π(x)T π
H = Γπ(xH), we get

Tf(xH) =
∑

[π]∈Ĝ/H

dπ Tr(Γπ(xH)σT (xH, π)f̂(π))(2.4)

for all f ∈ C(G/H), µ-a.e. xH ∈ G/H and the sum is independent of the representation

from each equivalence class [π] ∈ Ĝ/H. We will also write T = Op(σT ) for the operator
T given by the formula (2.4). The operator T = Op(σT ) will be called pseudo-differential
operator corresponding to matrix-valued symbol σT . For more details and consistent devel-
opment of this quantization on compact Lie group and the corresponding symbolic calculus,
we refer [38] and [39].

Remark 2.5. Let H be a closed normal subgroup of the compact group G and let µ be the
normalized G-invariant measure over the left quotient group G/H associated to the Weil

formula. Then µ is a Haar measure on the compact (quotient) group G/H and Ĝ/H =

H⊥ := {π ∈ Ĝ : π(h) = I for all h ∈ H}. Moreover, the Fourier transform (2.1), inverse
Fourier transform (2.2) and pseudo-differential operator defined by (2.4) coincide with the
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classical Fourier transform, inverse Fourier transform and pseudo-differential operator on
the compact group G/H, respectively.

3. r-Schatten-von Neumann class of pseudo-differential operators on
L2(G/H)

This section is devoted to the study of r-Schatten-von Neumann class of pseudo-differential
operators on the Hilbert space L2(G/H). We begin this section with the definition of r-
Schatten-von Neumann class of operators.

Let H be a complex Hilbert space. A linear compact operator A : H → H belongs to
the r-Schatten-von Neumann class Sr(H) if

∞∑
n=1

(sn(A))r < ∞,

where sn(A) denote the singular values of A, i.e., the eigenvalues of |A| =
√
A∗A with

multiplicities counted.
For 1 ≤ r < ∞, the class Sr(H) is a Banach space endowed with the norm

∥A∥Sr =

( ∞∑
n=1

(sn(A))r
) 1

r

.

For 0 < r < 1, ∥ ·∥Sr only defines a quasi-norm with respect to which Sr(H) is complete.
An operator belongs to the class S1(H) is known as a Trace class operator. Also, an
operator belongs to S2(H) is known as a Hilbert-Schmidt operator.

Let L2(G/H×Ĝ/H) denotes the space of all matrix-valued functions σA on G/H×Ĝ/H
such that

∥σA∥L2(G/H×Ĝ/H)
=

∫
G/H

∑
[ξ]∈Ĝ/H

dξ∥σA(xH, ξ)T ξ
H∥2S2

dµ(xH)


1
2

< ∞.

The following theorem gives a characterization of Hilbert-Schmidt pseudo-differential op-
erators on G/H. We remark here that the following theorem is already proved by the first
author in [30] using a different method.

Theorem 3.1. Let T : L2(G/H) → L2(G/H) be a continuous linear operator with matrix-

valued symbol σT on G/H × Ĝ/H. Then T is a Hilbert-Schmidt operator if and only if

σT ∈ L2(G/H × Ĝ/H). Moreover, we have

∥T∥S2 = ∥σT ∥L2(G/H×Ĝ/H)
.

Proof. For all f ∈ L2(G/H), we have

Tf(xH) =
∑

[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)f̂(ξ))
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=

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(wH)∗)f(wH) dµ(wH)

=

∫
G/H

K(xH,wH)f(wH) dµ(wH),

where the kernel K(xH,wH) is given by

K(xH,wH) =
∑

[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(wH)∗), xH,wH ∈ G/H.

Then

∥T∥2S2 =

∫
G/H

∫
G/H

|K(xH, yH)|2 dµ(xH) dµ(yH)

=

∫
G/H

∫
G/H

|K(xH, xz−1H)|2 dµ(xH) dµ(zH).

Note that

K(xH, xz−1H) =
∑

[ξ]∈Ĝ/H

dξ Tr
(
Γξ(xH)σT (xH, ξ)Γξ(xz

−1H)∗
)

=
∑

[ξ]∈Ĝ/H

dξ Tr
(
Γξ(zH)σT (xH, ξ)T ξ

H

)
=
(
F−1τ(xH, ·)

)
(zH),

where τ(xH, ξ) = σT (xH, ξ)T ξ
H . Therefore, using Plancherel’s formula, we have

∥T∥2S2 =

∫
G/H

∫
G/H

|K(xH, xz−1H)|2dµ(xH) dµ(zH)

=

∫
G/H

∫
G/H

|F−1τ(xH, ·)(zH)|2dµ(xH) dµ(zH)

=

∫
G/H

∑
[ξ]∈Ĝ/H

dξ∥τ(xH, ξ)∥2S2
dµ(xH)

=

∫
G/H

∑
[ξ]∈Ĝ/H

dξ∥σT (xH, ξ)T ξ
H∥2S2

dµ(xH)

= ∥σT ∥L2(G/H×Ĝ/H)
.

□

The following lemma is a consequence of the definition of r-Schatten-von Neumann class
(see [15]).

Lemma 3.2. Let A : H → H be a linear compact operator. Let 0 < r, t < ∞. Then
A ∈ Sr(H) if and only if |A|

r
t ∈ St(H). Moreover, ∥A∥rSr

= ∥|A|
r
t ∥tSt

.
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The corollary below is the main result of this section which present a characterization of a
pseudo-differential operator on L2(G/H) to be an r-Schatten-von Neumann class operator.
The proof follows from Lemma 3.2 with t = 2 and Theorem 3.1.

Corollary 3.3. Let T : L2(G/H) → L2(G/H) be a continuous linear operator with matrix-

valued symbol σT on G/H × Ĝ/H. Then T ∈ Sr

(
L2(G/H)

)
if and only if∫

G/H

∑
[ξ]∈Ĝ/H

dξ∥σ|T |
r
2
(xH, ξ)T ξ

H∥2S2
dµ(xH) < ∞.

4. Characterizations and traces of r-nuclear, 0 < r ≤ 1, pseudo-differential
operators on Lp(G/H)

This section is devoted to the study of r-nuclear operators on Banach spaces Lp(G/H).
Here we present a symbolic characterization of r-nuclear operators and give a formula for
the nuclear trace of such operators. We begin this section by recalling the basic notions of
nuclear operators on Banach spaces.

Let 0 < r ≤ 1 and T be a bounded linear operator from a complex Banach space X
into another complex Banach space Y such that there exist sequences {x′n}

∞
n=1 in the dual

space X ′ of X and {yn}∞n=1 in Y such that
∑∞

n=1 ∥x′n∥
r
X′ ∥yn∥rY < ∞ and

Tx =

∞∑
n=1

x′n(x)yn, x ∈ X.

Then we call T : X → Y a r-nuclear operator and if X = Y, then its nuclear trace Tr(T )
is given by

Tr(T ) =
∞∑
n=1

x′n (yn) .

The definition of r-nuclear operators is independent of the choices of the sequences {x′n}
∞
n=1

and {yn}∞n=1 . An 1-nuclear operators will be simply called a nuclear operator. The following
theorem is a characterization of r-nuclear operators on σ-finite measure spaces [12].

Theorem 4.1. Let 0 < r ≤ 1. Let (X1, µ1) and (X2, µ2) be two σ-finite measure spaces.
Then a bounded linear operator T : Lp1 (X1, µ1) → Lp2 (X2, µ2) , 1 ≤ p1, p2 < ∞, is

r-nuclear if and only if there exist sequences {gn}∞n=1 in Lp′1 (X1, µ1) and {hn}∞n=1 in
Lp2 (X2, µ2) such that for all f ∈ Lp1 (X1, µ1)

(Tf)(x) =

∫
X1

K(x, y)f(y)dµ1(y), x ∈ X2,

where

K(x, y) =

∞∑
n=1

hn(x)gn(y), x ∈ X2, y ∈ X1,

and
∞∑
n=1

∥gn∥rLp1
′
(X1,µ1)

∥hn∥rLp2 (X2,µ2)
< ∞.
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Let 0 < r ≤ 1. Let (X,µ) be a σ-finite measure space. Let T : Lp(X,µ) → Lp(X,µ),
1 ≤ p < ∞, be a r-nuclear operator. Then by Theorem 4.1, we can find sequences {gn}∞n=1

in Lp′(X,µ) and {hn}∞n=1 in Lp(X,µ) such that

∞∑
n=1

∥gn∥rLp′ (X,µ)
∥hn∥rLp(X,µ) < ∞

and for all f ∈ Lp(X,µ), we have

(Tf)(x) =

∫
X
K(x, y)f(y) dµ(y), x ∈ X,

where

K(x, y) =
∞∑
n=1

hn(x)gn(y), x, y ∈ X,

and it satisfies ∫
X
|K(x, y)| dµ(y) ≤

∞∑
n=1

∥gn∥rLp′ (X,µ)
∥hn∥rLp(X,µ) .

The nuclear trace Tr(T ) of T : Lp(X,µ) → Lp(X,µ) is given by

Tr(T ) =

∫
X
K(x, x) dµ(x).(4.1)

Now, we present a characterization of r-nuclear pseudo-differential operators from Lp1(G/H)
into Lp2(G/H).

Theorem 4.2. Let 0 < r ≤ 1 and let T : Lp1(G/H) → Lp2(G/H), 1 ≤ p1, p2 < ∞, be a

continuous linear operator with matrix-valued symbol σT on G/H× Ĝ/H. Suppose that σT
satisfies ∑

[ξ]∈Ĝ/H

d
2+ r

p̃1
ξ ∥∥σT (·, ξ)t∥op(ℓ∞, ℓ∞)∥rLp2 (G/H) < ∞,

where p̃1 = min{2, p1}. Then the operator T is r-nuclear.

Proof. Since the operator T can be written as

Tf(xH) =

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(wH)∗)f(wH) dµ(wH),

the kernel of T is given by

K(xH,wH) =
∑

[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(wH)∗).

Now we write

Tr(Γξ(xH)σT (xH, ξ)Γξ(wH)∗) =

dξ∑
i,j=1

(Γξ(xH)σT (xH, ξ))ijΓξ(wH)ij ,

and set that hξ,ij(xH) = dξ(Γξ(xH)σT (xH, ξ))ij and gξ,ij(wH) = (Γξ(wH)∗)ji = Γξ(wH)ij .
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We observe that

(Γξ(xH)σT (xH, ξ))ij =

dξ∑
k=1

Γξ(xH)ik σT (xH, ξ)kj =

dξ∑
k=1

(σT (xH, ξ))tjk Γξ(xH)ik.

By taking into account that |Γξ(xH)ik| ≤ 1, we get

|(Γξ(xH)σT (xH, ξ))ij | =

∣∣∣∣∣∣
dξ∑
k=1

(σT (xH, ξ))tjk Γξ(xH)ik

∣∣∣∣∣∣
≤ ∥σT (xH, ξ)t∥op(ℓ∞,ℓ∞)∥(Γξ(xH)i1,Γξ(xH)i2, . . . ,Γξ(xH)idξ)∥ℓ∞
≤ ∥σT (xH, ξ)t∥op(ℓ∞,ℓ∞).

Therefore,

∥hξ,ij(·)∥rLp2 (G/H) = ∥dξ (Γξ(·)σT (·, ξ))ij∥rLp2 (G/H)

≤ drξ∥∥σT (·, ξ)t∥op(ℓ∞,ℓ∞)∥Lp2 (G/H).

If p′1 denotes the Lebesgue conjugate of p1, then we have 1
p̃1
+ 1

q̃1
= 1, where q̃1 = max{2, p′1}.

By Lemma 2.4, we have ∥Γξ(·)∥r
Lp′1 (G/H)

≤ d
− r

p̃′1
ξ . Thus

∑
[ξ],i,j

∥gξ,ij(·)∥r
Lp′1 (G/H)

∥hξ,ij(·)∥rLp2 (G/H) ≤
∑
[ξ]

d
− r

p̃′1
ξ drξd

2
ξ∥∥σT (·, ξ)t∥op(ℓ∞,ℓ∞)∥Lp2 (G/H)

≤
∑
[ξ]

d
2+ r

p̃1
ξ ∥∥σT (·, ξ)t∥op(ℓ∞,ℓ∞)∥Lp2 (G/H) < ∞.

Hence, by invoking Theorem 4.1, it follows that T is r-nuclear. □

Next theorem gives a necessary and sufficient condition for an operator to be r-nuclear
in terms of its symbolic decomposition.

Theorem 4.3. Let 0 < r ≤ 1 and let T : Lp1(G/H) → Lp2(G/H), 1 ≤ p1, p2 < ∞, be a

continuous linear operator with matrix-valued symbol σT on G/H × Ĝ/H. Then T is r-

nuclear if and only if there exist sequences {gk}∞k=1 ∈ Lp′1(G/H) and {hk}∞k=1 ∈ Lp2(G/H)
such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and

T ξ
HσT (xH, ξ) = ξ(x)∗

∞∑
k=1

hk(xH)ĝk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H.

Proof. Suppose that T : Lp1(G/H) → Lp2(G/H) is r-nuclear for 1 ≤ p1, p2 < ∞. Then by

Theorem 4.1, there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1 in Lp2(G/H) such
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that
∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and for all f ∈ Lp1(G/H), we have

(Tf) (xH) =
∑

[π]∈Ĝ/H

dπ Tr(Γπ(xH)σT (xH, π)f̂(π))

=
∑

[π]∈Ĝ/H

dπ

dπ∑
i,j=1

(Γπ(xH)σT (xH, π))ij f̂(π)ji

=

∫
G/H

∑
[π]∈Ĝ/H

dπ

dπ∑
i,j=1

(Γπ(xH)σT (xH, π))ijΓπ(wH)ijf(wH) dµ(wH)

=

∫
G/H

( ∞∑
k=1

hk(xH)gk(wH)

)
f(wH) dµ(wH)(4.2)

for all xH ∈ G/H. Let ξ be a fixed but arbitrary element in Ĝ/H. Then for 1 ≤ m,n ≤ dξ,
we define the function f on G/H by

f(wH) = Γξ(wH)nm, wH ∈ G/H.

Since ∫
G/H

Γξ(wH)nmΓπ(wH)ij dµ(wH) =
1

dξ

if and only if π = ξ, i = n and j = m, and is zero otherwise, it follows from (4.2) that

(Γξ(xH)σT (xH, ξ))nm =

∞∑
k=1

hk(xH)

(∫
G/H

gk(wH) Γξ(wH)nm dµ(wH)

)

=

∞∑
k=1

hk(xH)
(
ĝk(ξ)

)
mn

.

Therefore,

T ξ
HσT (xH, ξ) = ξ(x)∗

∞∑
k=1

hk(xH)ĝk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H.

Conversely, suppose that there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1 in
Lp2(G/H) such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and

T ξ
HσT (xH, ξ) = ξ(x)∗

∞∑
k=1

hk(xH)ĝk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H.
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Then, for all f ∈ Lp1(G/H), we have

(Tf) (xH) =
∑

[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)f̂(ξ))

=
∑

[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

(Γξ(xH)σT (xH, ξ))nmf̂(ξ)mn

=
∑

[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

( ∞∑
k=1

hk(xH)ĝk(ξ)
∗
nm

)
f̂(ξ)mn

=
∑

[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

( ∞∑
k=1

hk(xH)ĝk(ξ)mn

)
f̂(ξ)mn

=
∑

[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

∞∑
k=1

hk(xH)

(∫
G/H

gk(wH)Γξ(wH)nm dµ(wH)

)
f̂(ξ)mn

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

Γξ(wH)nmf̂(ξ)mn

 ∞∑
k=1

hk(xH)gk(wH) dµ(wH)

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(wH)f̂(ξ))

 ∞∑
k=1

hk(xH)gk(wH) dµ(wH)

=

∫
G/H

( ∞∑
k=1

hk(xH)gk(wH)

)
f(wH) dµ(wH)

for all xH ∈ G/H. Therefore by Theorem 4.1, it follows that T is r-nuclear. □

In the next theorem, we will give another characterization of r-nuclear operators from
Lp1(G/H) into Lp2(G/H) in order to find the trace of r-nuclear operators from Lp(G/H)
into Lp(G/H).

Theorem 4.4. Let 0 < r ≤ 1 and let T : Lp1(G/H) → Lp2(G/H), 1 ≤ p1, p2 < ∞, be a

continuous linear operator with matrix-valued symbol σT on G/H×Ĝ/H. Then the operator

T is r-nuclear if and only if there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1 in
Lp2(G/H) such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and ∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(yH)∗) =
∞∑
k=1

hk(xH)gk(yH).
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Proof. Suppose that T : Lp1(G/H) → Lp2(G/H) is a r-nuclear operator for 1 ≤ p1, p2 <

∞. Then by Theorem 4.3, there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1 in
Lp2(G/H) such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and

(Γξ(xH)σT (xH, ξ))nm =
∞∑
k=1

hk(xH)
(
ĝk(ξ)

)
mn

, (xH, ξ) ∈ G/H × Ĝ/H

for all n,m with 1 ≤ n,m ≤ dξ. Let yH ∈ G/H. Then

(Γξ(xH)σT (xH, ξ))nmΓξ(yH)nm =

∞∑
k=1

hk(xH)
(
ĝk(ξ)

)
mn

Γξ(yH)nm

=

∫
G/H

Γξ(zH)nmΓξ(yH)nm

∞∑
k=1

hk(xH)gk(zH)dµ(zH).

consequently

dξ∑
m,n=1

(Γξ(xH)σT (xH, ξ))nmΓξ(yH)nm

=

∫
G/H

 dξ∑
m,n=1

Γξ(zH)nmΓξ(yH)nm

 ∞∑
k=1

hk(xH)gk(zH)dµ(zH).

Therefore, for all xH, yH ∈ G/H, we get∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(yH)∗)

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ Tr (Γξ(zH)Γξ(yH)∗)

 ∞∑
k=1

hk(xH)gk(zH)dµ(zH)

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξTr (Γξ(yH)Γξ(zH)∗)

 ∞∑
k=1

hk(xH)gk(zH)dµ(zH)

=
∞∑
k=1

hk(xH)

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξTr (Γξ(yH)Γξ(zH)∗)gk(zH)


=

∞∑
k=1

hk(xH)

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξTr
(
Γξ(yH)Γξ(zH)∗gk(zH)

)
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=
∞∑
k=1

hk(xH)

 ∑
[ξ]∈Ĝ/H

dξ Tr
(
Γξ(yH)ĝ(ξ)

) =
∞∑
k=1

hk(xH)
(
g(yH)

)

=
∞∑
k=1

hk(xH)gk(yH)

for all xH, yH in G/H.

Conversely, let {gk}∞k=1 and {hk}∞k=1 be sequences in Lp′1(G/H) and Lp2(G/H) such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞

and for all xH and yH in G/H, we have∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σ(xH, ξ)Γξ(yH)∗) =

∞∑
k=1

hk(xH)gk(yH).

Then, for all f ∈ Lp1(G/H), we get

(Tσf) (xH) =
∑

[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σ(xH, ξ)f̂(ξ))

=
∑

[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

(Γξ(xH)σ(xH, ξ))mnf̂(ξ)nm

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

(Γξ(xH)σ(xH, ξ))mnΓξ(yH)mn

 f(yH) dµ(yH)

=

∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σ(xH, ξ)Γξ(yH)∗)

 f(yH) dµ(yH)

=

∫
G/H

( ∞∑
k=1

hk(xH)gk(yH)

)
f(yH) dµ(yH)

for all xH ∈ G/H. This completes the proof of the theorem. □

An immediate consequence of Theorem 4.4 gives the trace of a r-nuclear pseudo-differential
operator on Lp(G/H) for 1 ≤ p < ∞. Indeed, we have the following result.

Corollary 4.5. Let 0 < r ≤ 1 and let T : Lp(G/H) → Lp(G/H), 1 ≤ p < ∞, be a r-

nuclear operator with matrix-valued symbol σT on G/H × Ĝ/H. Then the nuclear trace of
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T is given by

Tr (T ) =

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(T
ξ
HσT (xH, ξ))dµ(xH).

Proof. Using trace formula (4.1) and Theorem 4.4, we have

Tr (T ) =

∫
G/H

∞∑
k=1

hk(xH)gk(xH)dµ(xH)

=

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(xH)σT (xH, ξ)Γξ(xH)∗).

Since T ξ
H is an orthogonal projection, we obtain

Tr (T ) =

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(T
ξ
HσT (xH, ξ))dµ(xH).

□

5. Adjoint and product of r-nuclear pseudo-differential operators

In this section we give a formula for symbols of the adjoints of r-nuclear pseudo-
differential operators from Lp1(G/H) into Lp2(G/H) for 1 ≤ p1, p2 < ∞, where G is a
compact Hausdorff group and H be a closed subgroup of G.

Theorem 5.1. Let 0 < r ≤ 1 and let T : Lp1(G/H) → Lp2(G/H), 1 ≤ p1, p2 < ∞, be a

r-nuclear continuous linear operator with matrix-valued symbol σT on G/H × Ĝ/H. Then

the adjoint T ∗ of T is also a r-nuclear operator from Lp′2(G/H) into Lp′1(G/H) with symbol
τ given by

T ξ
Hτ(xH, ξ) = ξ(x)∗

∞∑
k=1

gk(xH)ĥk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H,

where {gk}∞k=1 and {hk}∞k=1 are two sequences in Lp′1(G/H) and Lp2(G/H) respectively
such that

∞∑
k=1

∥hk∥rLp2 (G/H) ∥gk∥
r
Lp1

′
(G/H)

< ∞.

Proof. For f ∈ Lp1(G/H) and g ∈ Lp′2(G/H), from the definition of the adjoint of an
operator, we have∫

G/H
(Tf) (xH)g(xH) dµ(xH) =

∫
G/H

f(xH)(T ∗g) (xH) dµ(xH).
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Therefore, ∫
G/H

(∫
G/H

∑
[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

(Γξ(xH)σT (xH, ξ))mn

× Γξ(yH)mnf(yH) dµ(yH)

)
g(xH) dµ(xH)(5.1)

=

∫
G/H

f(xH)

(∫
G/H

∑
[ξ]∈Ĝ/H

dξ

dξ∑
m,n=1

(Γξ(xH)τ(xH, ξ))mn

× Γξ(yH)mng(yH) dµ(yH)

)
dµ(xH).

Let γ and η be elements in Ĝ/H. Then for 1 ≤ i, j ≤ dγ and 1 ≤ p, q ≤ dη, we define the
functions f and g on G/H by

f(xH) = Γγ(xH)ij , xH ∈ G/H,

and

g(xH) = Γη(xH)pq, xH ∈ G/H.

Thus, from the relation (5.1), it folllows that∫
G/H

(Γγ(xH)σT (xH, γ))ijΓη(xH)pq dµ(xH)

=

∫
G/H

Γγ(xH)ij(Γη(xH)τ(xH, η))pq dµ(xH)

and so ∫
G/H

(Γγ(xH)σT (xH, γ))ijΓη(xH)pq dµ(xH)

=

∫
G/H

(Γη(xH)τ(xH, η))pqΓγ(xH)ij dµ(xH).

This implies that

(((Γγ(·)σT (·, γ))ij)∧(η))qp = (((Γη(·)τ(·, η))pq)∧(γ))ji(5.2)

for 1 ≤ i, j ≤ dγ , 1 ≤ p, q ≤ dη and all γ and η in Ĝ/H. Since T : Lp1(G/H) → Lp2(G/H)

is r-nuclear, from Theorem 4.3, there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1
in Lp2(G/H) such that

∞∑
k=1

∥hk∥rLp2 (G/H) ∥gk∥
r
Lp1

′
(G/H)

< ∞
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and for all (yH, γ) ∈ G/H × Ĝ/H, we have

(Γγ(yH)σT (yH, γ))ij =
∞∑
k=1

hk(yH)
(
ĝk(γ)

)
ji
.

Then

(Γη(xH)τ(xH, η))pq =
∑

[γ]∈Ĝ/H

dγ Tr[Γγ(xH)((Γη(·)τ(·, η))pq)∧(γ)]

=
∑

[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij(((Γη(·)τ(·, η))pq)∧(γ))ji.

for all (xH, η) ∈ G/H × Ĝ/H. Therefore, by (5.2), for all (xH, η) ∈ G/H × Ĝ/H, we get

(Γη(xH)τ(xH, η))pq

=
∑

[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij(((Γγ(·)σT (·, γ))ij)∧(η))qp

=
∑

[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij

∫
G/H

(Γγ(yH)σT (yH, γ))ijΓη(yH)pq dµ(yH)

=
∑

[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij

∫
G/H

∞∑
k=1

hk(yH)(ĝk(γ))jiΓη(yH)pq dµ(yH)

=

∞∑
k=1

(∫
G/H

hk(yH)Γη(yH)pq dµ(yH)

) ∑
[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij(ĝk(γ))ji

=
∞∑
k=1

ĥk(η)qp
∑

[γ]∈Ĝ/H

dγ∑
i,j=1

dγ(Γγ(xH))ij(ĝk(γ))ji

=

∞∑
k=1

ĥk(η)qp
∑

[γ]∈Ĝ/H

dγ Tr(Γγ(xH)ĝk(γ))

=
∞∑
k=1

ĥk(η)qpgk(xH) =
∞∑
k=1

ĥk(η)
∗
pqgk(xH)

for all 1 ≤ p, q ≤ dη. Thus, for all (xH, η) ∈ G/H × Ĝ/H, we get

Γη(xH)τ(xH, η) =

∞∑
k=1

ĥk(η)
∗ gk(xH)
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and hence

T η
Hτ(xH, η) = η(x)∗

∞∑
k=1

ĥk(η)
∗ gk(xH).

□

As an application of Theorem 4.3 and Theorem 5.1, in the next corollary, we give a
criterion for the self-adjointness of r-nuclear pseudo-differential operators.

Corollary 5.2. Let 0 < r ≤ 1 and let T : L2(G/H) → L2(G/H) be a r-nuclear continuous

linear operator with matrix-valued symbol σT on G/H × Ĝ/H. Then T is self-adjoint if
and only if there exist sequences {gk}∞k=1 and {hk}∞k=1 in L2(G/H) such that

∞∑
k=1

∥hk∥rL2(G/H) ∥gk∥
r
L2(G/H) < ∞,

∞∑
k=1

hk(xH)ĝk(ξ)
∗ =

∞∑
k=1

ĥk(ξ)
∗ gk(xH), (xH, ξ) ∈ G/H × Ĝ/H,

and

T ξ
HσT (xH, ξ) = ξ(x)∗

∞∑
k=1

hk(xH)ĝk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H.

We can give another formula for the adjoints of r-nuclear operators in terms of symbols.
Indeed, we have the following theorem.

Theorem 5.3. Let 0 < r ≤ 1. Let σT be a matrix-valued function on G/H × Ĝ/H such
that the corresponding pseudo-differential operator T : Lp1(G/H) → Lp2(G/H) is r-nuclear

for 1 ≤ p1, p2 < ∞. Then the symbol τ of the adjoint T ∗ : Lp′2(G/H) → Lp′1(G/H) is given
by

T ξ
Hτ(xH, ξ) = ξ(x)∗

∑
[η]∈Ĝ/H

dη

∫
G/H

Tr[(Γη(yH)σT (yH, η))∗Γη(xH)]Γξ(yH)dµ(yH)

which is eventually same as

T ξ
Hτ(xH, ξ) = ξ(x)∗

∑
[η]∈Ĝ/H

dη

(
Tr(σT (·, η)∗Γη(·)∗Γη(xH))

∧
(ξ)
)∗

for all (xH, ξ) ∈ G/H × Ĝ/H.

Proof. Suppose that T : Lp1(G/H) → Lp2(G/H) is r-nuclear operator for 1 ≤ p1, p2 <

∞. Then by Theorem 4.3, there exist sequences {gk}∞k=1 in Lp′1(G/H) and {hk}∞k=1 in
Lp2(G/H) such that

∞∑
k=1

∥gk∥r
Lp′1 (G/H)

∥hk∥rLp2 (G/H) < ∞
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and for all (yH, η) ∈ G/H × Ĝ/H, we have

Γη(yH)σT (yH, η) =

∞∑
k=1

hk(yH)ĝk(η)
∗

or

(Γη(yH)σT (yH, η))∗ =
∞∑
k=1

hk(yH)ĝk(η).

Let (xH, ξ) ∈ G/H × Ĝ/H. Then∫
G/H

Tr[(Γη(yH)σT (yH, η))∗Γη(xH)]Γξ(yH) dµ(yH)

=

∫
G/H

Tr

[ ∞∑
k=1

hk(yH)ĝk(η)Γη(xH)

]
Γξ(yH) dµ(yH)

=
∞∑
k=1

Tr(ĝk(η)Γη(xH))

∫
G/H

hk(yH)Γξ(yH) dµ(yH)

=
∞∑
k=1

ĥk(ξ)
∗Tr[ĝk(η)Γη(xH)].

Then by Theorem 5.1, we obtain∑
[η]∈Ĝ/H

dη

∫
G/H

Tr[(Γη(yH)σT (yH, η))∗Γη(xH)]Γξ(yH) dµ(yH)

=
∑

[η]∈Ĝ/H

dη

( ∞∑
k=1

ĥk(ξ)
∗Tr[ĝk(η)Γη(xH)]

)

=
∞∑
k=1

ĥk(ξ)
∗
∑

[η]∈Ĝ/H

dη Tr[ĝk(η)Γη(xH)]

=

∞∑
k=1

ĥk(ξ)
∗gk(xH) = Γξ(xH)τ(xH, ξ)

for all (xH, ξ) ∈ G/H × Ĝ/H. □

Another criterion for the self-adjointness of r-nuclear pseudo-differential operators on
homogeneous space of compact groups is as follows.

Corollary 5.4. Let 0 < r ≤ 1. Let σT be a matrix-valued function on G/H × Ĝ/H such
that T : L2(G/H) → L2(G/H) is r-nuclear. Then T : L2(G/H) → L2(G/H) is self-adjoint
if and only if

T ξ
HσT (xH, ξ) = ξ(x)∗

∑
[η]∈Ĝ/H

dη

(
Tr(σT (·, η)∗Γη(·)∗Γη(xH))

∧
(ξ)
)∗
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for all (xH, ξ) ∈ G/H × Ĝ/H.

Next, we show that the product of a nuclear pseudo-differential operator on Lp(G/H)
with a bounded operator again a nuclear pseudo-differential operator on Lp(G/H) for
1 ≤ p < ∞, where G is a compact (Hausdorff) group and H is a closed subgroup of G.
We present a formula for the symbol of the product operator. The main theorem of this
section is the following one.

Theorem 5.5. Let T : Lp(G/H) → Lp(G/H), 1 ≤ p < ∞, be a nuclear operator with a
matrix valued symbol σT and let S : Lp(G/H) → Lp(G/H) be a bounded linear operator
with symbol σS. Then ST : Lp(G/H) → Lp(G/H) is a nuclear operator with symbol λ
given by

T ξ
Hλ(xH, ξ) = ξ(x)∗

∞∑
k=1

h′k(xH)ĝk(ξ)
∗

for all (xH, ξ) ∈ G/H × Ĝ/H, where {gk}∞k=1 and {hk}∞k=1 are two sequences in Lp′(G/H)
and Lp(G/H) respectively such that

∑∞
k=1 ∥gk∥Lp′ (G/H) ∥hk∥Lp(G/H) < ∞ with

h′k(xH) =
∑

[η]∈Ĝ/H

dη Tr
[
Γη(xH)σS(xH, η)ĥk(η)

]
, xH ∈ G/H.

Proof. Since T : Lp(G/H) → Lp(G/H) is a nuclear pseudo-differential operator for 1 ≤ p <

∞, from Theorem 4.3, there exist sequences {gk}∞k=1 ∈ Lp′(G/H) and {hk}∞k=1 ∈ Lp(G/H)
such that

∞∑
k=1

∥gk∥Lp′ (G/H) ∥hk∥Lp(G/H) < ∞

and

T ξ
HσT (xH, ξ) = ξ(x)∗

∞∑
k=1

hk(xH)ĝk(ξ)
∗, (xH, ξ) ∈ G/H × Ĝ/H.

Let f ∈ Lp(G/H). Then

(STf)(xH) =
∑

[η]∈Ĝ/H

dη Tr(Γη(xH)σS(xH, η)T̂ f(η))

=
∑

[η]∈Ĝ/H

dη Tr

[
Γη(xH)σS(xH, η)

(∫
G/H

Tf(yH)Γη(yH)∗dµ(yH)

)]

=
∑

[η]∈Ĝ/H

dη Tr [Γη(xH)σS(xH, η)

×
∫
G/H

 ∑
[ξ]∈Ĝ/H

dξ Tr(Γξ(yH)σT (yH, ξ)f̂(ξ))

Γη(yH)∗dµ(yH)
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for all xH ∈ G/H. Using the nuclearity of T , we have

(STf)(xH) =
∑

[η]∈Ĝ/H

dη Tr

Γη(xH)σS(xH, η)

∫
G/H

∑
[ξ]∈Ĝ/H

dξ

× Tr

( ∞∑
k=1

hk(yH)ĝk(ξ)
∗f̂(ξ)

)
Γη(yH)∗dµ(yH)

]

=
∑

[η]∈Ĝ/H

dη Tr

Γη(xH)σS(xH, η)
∑

[ξ]∈Ĝ/H

∞∑
k=1

dξ Tr
(
ĝk(ξ)

∗f̂(ξ)
)

×
∫
G/H

hk(yH)Γη(yH)∗dµ(yH)

]

=
∑

[η]∈Ĝ/H

dη Tr

Γη(xH)σS(xH, η)
∑

[ξ]∈Ĝ/H

∞∑
k=1

dξĥk(η) Tr
(
ĝk(ξ)

∗f̂(ξ)
)

=
∑

[η]∈Ĝ/H

∞∑
k=1

∑
[ξ]∈Ĝ/H

dξdη Tr
[
Γη(xH)σS(xH, η)ĥk(η)

]
Tr
(
ĝk(ξ)

∗f̂(ξ)
)

=
∑

[ξ]∈Ĝ/H

dξ Tr
(
Γξ(xH)λ(xH, ξ)f̂(ξ)

)
,

where

T ξ
Hλ(xH, ξ) = ξ(x)∗

∞∑
k=1

∑
[η]∈Ĝ/H

dη Tr
[
Γη(xH)σS(xH, η)ĥk(η)

]
ĝk(ξ)

∗

= ξ(x)∗
∞∑
k=1

h′k(xH)ĝk(ξ)
∗

for all (xH, ξ) ∈ G/H × Ĝ/H and

h′k(xH) =
∑

[η]∈Ĝ/H

dη Tr
[
Γη(xH)σS(xH, η)ĥk(η)

]
, xH ∈ G/H.

□

6. Applications to the heat kernels on G/H

In this section, we assume that G is a compact Lie group and H is a closed subgroup
of G. Let LG be the Laplace-Beltrami operator (or the Casimir element of the universal
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enveloping algebra) on G. For every [ξ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions
of LG with same eigenvalue denoted by −λ2

[ξ]. Therefore,

−LGξij = −λ2
[ξ]ξij for all 1 ≤ i, j ≤ dξ.

Let −LG/H : C∞(G/H) → C∞(G/H) be the differential operator on G/H obtained by

−LG acting on functions that are constant on cosets of G, i.e., such that −L̃G/Hf = −LGf̃

for f ∈ C∞(G/H), where for f ∈ C∞(G/H), f̃ ∈ C∞(G) is the lifting of f given by f̃(x) =
f(xH). The operator−LG/H has the eigenspace Γξij (xH) for 1 ≤ i, j ≤ dξ corresponding to

the common eigenvalue−λ2
[ξ]. For more details on−LG/H , see [35]. We make use the symbol

of the heat kernel e−tLG/H . Indeed, by taking into account σ
e
−tLG/H (xH, ξ) = e−t|ξ|2T ξ

H ,

where |ξ| = λ2
[ξ], we have

e−tLG/Hf(xH) =
∑

[ξ]∈Ĝ/H

dξTr(Γξ(xH)σ
e
−tLG/H (xH, ξ)f̂(ξ))

=
∑

[ξ]∈Ĝ/H

dξTr(Γξ(xH)e
−tλ2

[ξ]T ξ
H f̂(ξ))

=
∑

[ξ]∈Ĝ/H

dξe
−tλ2

[ξ]Tr(Γξ(xH)f̂(ξ)).

Now, we show that the nuclearity of the heat kernel on Lp-spaces.

Theorem 6.1. Let G be a compact Lie group and let H be closed subgroup of G. Then
the heat kernel e−tLG/H : Lp1(G/H) → Lp2(G/H) is nuclear for every t > 0 and all
1 ≤ p1, p2 < ∞. Moreover, if 0 < r ≤ 1, then e−tLG/H : Lp(G/H) → Lp(G/H) is r-nuclear
operator for every t > 0 and 1 ≤ p < ∞. In particular, on each Lp(G/H), we have the
following nuclear trace formula

Tr (e−tLG/H ) =
∑

[ξ]∈Ĝ/H

dξe
−tλ2

[ξ] Tr (T ξ
H).

Proof. The kernel of e−tLG/H is given by

Kt(x, y) =
∑

[ξ]∈Ĝ/H

dξe
−tλ2

[ξ] Tr(Γξ(xH)Γ(yH)∗)

=
∑

[ξ]∈Ĝ/H

dξe
−tλ2

[ξ] Tr(Γξ(xH)ξ(y)∗)

with

Tr(Γξ(xH)ξ(y)∗) =

dξ∑
i,j

Γξ(xH)ij ξ(y)ij .

We set

hξ,ij = dξe
−tλ2

[ξ]Γξ(xH)ij gξ,ij = ξ(y)ij .
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Let p′1 denotes the Lebesgue conjugate of p1 and q̃1 = max {2, p′1}. Then by Lemma 2.4,
we get

∥gξ,ij∥Lp′1 (G/H)
= ∥ξij∥Lp′1 (G/H)

≤ ∥Γξ(·)ij∥Lp′1 (G/H)
≤ d

− 1
q̃1

ξ .

Also, we have

∥hξ,ij∥Lp2 (G/H) = ∥dξe
−tλ2

[ξ]Γξ(xH)ij∥Lp2 (G/H)

≤ ∥dξe
−tλ2

[ξ]∥Γξ(·)∥op∥Lp2 (G/H) ≤ dξe
−tλ2

[ξ] .

Therefore, ∑
[ξ],i,j

∥gξ,ij(·)∥Lp′1 (G/H)
∥hξ,ij(·)∥Lp2 (G/H) ≤

∑
[ξ]∈Ĝ/H

d2ξd
− 1

q̃1
ξ e

−tλ2
[ξ] < ∞,

where the last convergence follows from any of the Weyl formula, see, for example [10].
Therefore, e−tLG/H is a nuclear operator. Similarly one can prove r-nuclearity of e−tLG/H .

By Corollary 4.5 and by using the fact that measure µ on G/H is normalized, the nuclear
trace formula of e−tLG/H given by

Tr(e−tLG/H ) =

∫
G/H

∑
[ξ]∈Ĝ/H

dξ Tr(e
−tλ2

[ξ]T ξ
H) =

∑
[ξ]∈Ĝ/H

dξe
−tλ2

[ξ] Tr(T ξ
H).

□
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[26] V. V. Kisil, Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic

actions of SL2(R), Imperial College Press, London (2012).

[27] V. V. Kisil, Erlangen program at large: an overview, In: Advances in applied analysis,

Trends Math., Birkhäuser/Springer Basel AG, Basel, 1-94 (2012).

[28] V. V. Kisil, Calculus of operators: covariant transform and relative convolutions,

Banach J. Math. Anal. 8(2), 156-184 (2014) .

[29] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm.

Pure Appl. Math. 18, 269-305 (1965).

[30] V. Kumar, Pseudo-differential operators on homogeneous spaces of compact and Haus-

dorff groups, Forum Math. 31(2), 275-282 (2019).

[31] V. Kumar and M. W. Wong, C∗-algebras, H∗-algebras and trace ideals of pseudo-

differential operators on locally compact, Hausdorff and abelian groups, J. Pseudo-

Differ. Oper. Appl. 10(2), 269-283 (2019).

[32] R. Lipsman, Non-abelian Fourier analysis, Bull. Sci. Math.(2) 98(4), 209-233 (1974).

[33] S. Molahajloo and M. Pirhayati, Traces of pseudo-differential operators on compact

and Hausdorff groups, J. Pseudo-Differ. Oper. Appl. 4(3), 361-369 (2013).

[34] S. Molahajloo and K. L. Wong, Pseudo-differential operators on finite abelian groups,

J. Pseudo-Differ. Oper. Appl. 6(1), 1-9 (2015).

25



[35] E. Nursultanov, M. Ruzhansky and S. Tikhonov, Nikolskii inequality and Besov,

Triebel-Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds,

Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) 16(3), 981-1017 (2016).

[36] R. Oloff, p-normierte Operatorenideale, Beiträge Anal. (4), 105-108 (1972).
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