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Abstract: In order to meet requirements in machine design, modularity is often brought forward as
a way to cope with load variations and adaptability of the architecture. The considered modular
drivetrain consists of several identical induction motors, called motor modules, in cascade on the
same shaft. However, implementing a modular drivetrain design evidently has an impact on the
performance of the application. New opportunities may arise, such as improved motion dynamics
and tolerance to failures. However, on other aspects, e.g., torsional vibrations and synchronization,
performance can be negatively influenced. By adding multiple actuators in the drivetrain, additional
sources of torque ripple are introduced. The aim of this article is first to investigate the impact of
using a modular design on the torsional vibrations in the drivetrain, and second to mitigate these
vibrations via an interleaving strategy of the PWM (pulse-width modulation) signals. Simulations and
experimental data show that the modular setup requires a proper control strategy in order to ensure
that the torsional vibrations in the system remain within the range of a traditional non-modular
design. Interleaving of the PWM carrier waveforms in the different motor modules is proposed as a
control method to mitigate the torsional vibrations identified in the modular drivetrain. This strategy
results in a drivetrain setup that slightly outperforms the benchmark in terms of torsional vibrations.

Keywords: modular drivetrain; torsional vibration; interleaving control

1. Introduction

During the design of industrial machines, the objective and performance are often
strictly defined [1]. In order to achieve optimal machine performance, process rates and
load cases need to be kept tightly within that design range. Within those set boundaries,
alterations to the process are usually difficult. Because industrial applications show a
trend towards more customization [2], there is a need for more flexible drivetrain solutions.
Flexibility means that such drivetrain solutions should enable the easy creation of different
power or speed variants without the need to design a new motor each time.

Modularity seems a promising solution to handle the request for flexibility and to
combat the constraints in traditional machine design [3,4]. While the design process could
benefit from a modular approach, modularity impacts drivetrain performance.

Torsional vibrations are important factors in many mechatronic processes, impacting
machine performance [5], and therefore design. The influence of torsional vibrations on the
lifetime, cost, and performance of a drivetrain has been demonstrated in [6,7]. When using
a modular setup, the behaviour of the system towards torsional vibrations is affected by
this design. In [8], the negative effects of cascaded motors regarding torsional oscillations
was explored. Through the use of a soft start mechanism, oscillations during start-up were
suppressed. This paper investigates the effect on torsional vibrations of switching to a
modular drivetrain.
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1.1. Modularity

A modular drivetrain is often defined as a configuration of individual mechatronic
function modules, where each part of the mechatronic application is expressed as a module.
Power electronics, electrical machines, and mechanical systems are in this case seen as
individual modules [1,9]. The overall drivetrain consists of a combination of several
modules, as proposed by [4,10]. The use of this definition of modularity has already been
widely implemented in many industrial applications, including weaving looms [11], crane
applications [12], electric vehicles [13-15], and power electronics [16].

In these examples of modularity, the mechatronic system is built as a combination of
several unique modules. However, [17] introduced the concept of defining an identical
modular module that is repeated several times to form the drivetrain. The module consists
of an electric motor, a power electronic converter to control the motor, and part of the
mechanical drivetrain, which can interact with other modules and/or the load application.
For larger load cases, several modules can be coupled to create the desired sizing of the
drivetrain. The benefits of using this modular approach were researched by [18], and
promising results regarding motion dynamics and tolerance to failures were found.

1.2. Torsional Vibrations

Torsional vibrations can have negative consequences on drivetrain performance. Ef-
forts to mitigate these vibrations can be realized through either passive or active means [19].
Passive approaches use the inertial and/or damping properties of the drivetrain to dissip-
ate the vibrations. This includes introducing series elasticity [20], viscous damping [21],
flywheels [22], or centrifugal pendulum absorbers [23] in the drivetrain. Passive methods
can, however, lead to increased energy consumption [7], reduce the system dynamics, or
only work within a narrow frequency range [24].

Active methods, on the other hand, try to weaken the undesired vibrations through
controller strategies. Control methods are usually based on state feedback or adaptive
filters [25,26]. An active magnetic bearing was used in [27] to reduce vibrations with
overhung rotors. In many cases, however, torsional displacement is not easily measured
in the drivetrain. Torque sensors are expensive, and not easily mounted in a transmission.
In [28], model-based estimators were used as a virtual sensor. Active vibration damping
methods have already been implemented in hybrid electric powertrains [19] and electric
vehicles [29,30]. The above-mentioned techniques, however, always consider a single
source of vibrations, and therefore are not readily applicable in the modular approach.

In the modular drivetrain design, multiple identical motors are used. As electromech-
anical actuators are a source of torque ripple [31-33], the modular approach requires
attention to torsional vibrations. Efforts to mitigate the resulting torsional vibrations in
a modular drivetrain are investigated here. In [34], interleaving was proposed to reduce
torque ripple in a multiphase motor. In this paper, the interleaving strategy is implemented
to reduce torque ripple across several cascaded actuators in a modular drivetrain.

A use case for the modular design approach where torsional vibrations are of import-
ance can be found in applications where a long shaft is used for power transfer, for example,
a weaving loom. The driveshaft of a weaving loom is driven by one or more motors [11].
A common issue with these machines is torsional vibration across the shaft, resulting in
desynchronization of the weaving process; [35,36] studied the shaft’s torsional dynamics
regarding the shaft penetration factor and transient stability, while [37,38] have proposed
reducing the vibrations across a shaft by modeling a predictive control and adjustable
speed control. However, this research involves a single input-single output drivetrain, and
thus is not directly applicable to a modular drivetrain. Synchronization of actuators was
explored in [39,40], although focusing on speed and angular position synchronization, not
on the induced torque ripple. Another use case for a modular approach is electric vehicles.
While multi-motor drive systems have already been used in this context, the focus in the
literature to date has mainly been on torque distribution [41] and energy management
optimization [42].
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1.3. Outline of This Paper

The aim of this article is, first, to investigate the impact of using a modular design on
the torsional vibrations in the drivetrain, and second, to mitigate these vibrations using an
interleaving strategy of the PWM signals. Weaving looms and electric vehicles have been
introduced as excellent examples that could benefit from a modular approach; however,
they are complicated drivetrains with many factors that influence the behaviour of the
application. In order to demonstrate the use of modularity and the effect on torsional
vibrations, a simplified drivetrain is presented. In Section 2, the mechanical modular
drivetrain used in our research is explained. Section 3 elaborates on the motor model and
shows simulation results regarding the performance with respect to the torsional vibrations
of the modular drivetrain. The interleaving control strategy used to mitigate the assessed
negative impact of using a modular drivetrain is explained in Section 4. In order to support
the claimed simulation results, the results of validation measurements are provided in
Section 5. Section 6 discusses the presented simulations and measurements, and Section 7
concludes with an overview of the findings.

2. Mechanical Driveline

Modularity was previously defined as a system that consists of modules that are
repeated several times. In this case, the module, or component block, is composed of an
electrical and a mechanical element. The electrical part consists of an asynchronous motor
with a speed and current cascade controller and power electronic inverter to generate the
PWM signals for motor control. The mechanical element is a shaft interconnected with
couplings to link the modules together. The mechanical driveline, illustrated in Figure 1, is
created with two modular modules and a load. A third induction motor is used to generate
the load torque. The inertia of the motor represents the load inertia. The modelling was
carried out in Matlab/Simscape. |, k, b represent the component’s inertia, stiffness and
damping, respectively; the subscripts M;, L, C;, and S; indicate the used component, i.e.,
the motor, load, coupling, or shaft, respectively; T shows the torque; and 6 shows the
position of the motors and load.
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Figure 1. Dynamic model of the drivetrain.

2.1. Dynamic Model

The dynamic behaviour of the mechanical components of the driveline was modelled
by taking the inertia, stiffness, and damping of each element into account. The component
flexibilities were implemented for each coupling and shaft as a two inertia-spring—-damper
system. This method was chosen over more complex methods such as FEM because it
provides an adequate representation and reduces calculation effort. The motor shaft inertias
were modelled as well. The torsional flexibility of the motor shaft is not taken into account
here, as torsional displacement is not expected at the motor shaft.

The model proposed in Figure 1 results in a seven inertia system. While describing
such a model is possible, it unnecessarily increases calculation time. Because the goal was
to model the modular drivetrain, each module was simplified to an inertia-spring-damper
system. The model can thus be rewritten as a three-inertia system, two modules, and a
load, as illustrated in Figure 2. This simplification was carried out according to (1), and the
approach is further validated in Section 2.2, where it is shown that the drivetrain indeed
acts as a three-inertia system.
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Figure 2. Symplified dynamic model of the drivetrain as a three-inertia system.
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The simplified 3DOF (degrees of freedom) model can then be described with the
equations of motion (2), similar to the 2DOF model presented by [43]. It is important to
note that this model assumes linear system behaviour. High torsion amplitudes and torsion
moments, where the behaviour becomes non-linear, are not taken into account.

Taa = J20m2 — b1(0ain — Oai2) — k1 (6an — Oai2) + b2 (0ai2 — 01) + ko (6a2 — 01)  (2)

{ T = J10a1 + b1(6an — Oai2) + k1 (61 — O2)
Ty = J30L — ba(Opin — 01) — ka(Op12 — 61)

The eigenvalues A1, Ay, and A3 can be calculated with the free vibration system of (2)
according to (3) [44]:

det[JIK— A[I]] =0 3)

J, K, and the inertia and stiffness matrices are described in (4), and [I] is an identity matrix.

Ji 0 0 k1 —kq 0
J=10 L 0|, K=|-ki ki+kx —k 4
0 0 Js 0 -k K

From the eigenvalues, the undamped natural frequencies (f1, f» and f3) of the system
can be found with (5). For this system, the undamped natural frequencies, calculated with
the values from Table 1, are found at 0, 74, and 161 Hz:

VA
fi—ﬁ @)

In order to use the dynamical model, the parameters from (1) must be specified. Inertia
and stiffness values are easily calculated or found in datasheet information. The damping
parameters can be calculated according to (6). However, implementing the correct damping
ratio (¢) is difficult. Therefore, in order to properly implement damping into the dynamical
behaviour of the mechanical model, a test setup was used to identify the parameters of
the dynamic system through frequency response analysis, converting (2) to a transfer func-
tion model. After Laplace transformation and implementing Cramer’s rule, the relations
between torques and angular speeds are provided in (7), with s the complex variable in



Machines 2022, 10, 429

50f18

the complex frequency domain. The transfer functions (G;;) are described in Appendix A
Equation (A1):

ck;
bi = ﬂifl (6)
Omi1(s) = Gu1(s)Tan (s) + Gia(s) Tia(s) + Gia(s) Ti.(s)
Om2(s) = Ga1(s)Timi (s) + Gaa(s) Tz (s) 4 Gas(s) Tr(s) ()

01.(s) = Ga1(5) Tan (s) + Ga2(s) Tmz (s) + Gaa(s) T (s)

2.2. Dynamical Behaviour Validation

To obtain proper damping characteristics, frequency response measurements were
performed with the setup shown in Figure 3, built up in the same manner as the schematic
model from Figure 1. The first module has a steel shaft with a diameter of 18 mm and a
length of 108 mm. The second module uses a torque sensor (Lorenz DR-2112) as a shaft. All
components are connected with backlash-free servo couplings (KTR Radex-NC). The motor
in the first module is equipped with an encoder to measure angular position.

The system transfer function, represented by a Bode plot, was identified using the
Matlab Signal processing toolbox. A random uniformly-distributed torque signal at motor
M1 was used as the input signal, while the encoder speed was used as the output. This
makes it possible to estimate the system transfer function, Gi1(s), in (7). During this
measurement, motor M2 and the load motor are not energized, and remain connected.
In this way, the mechanical system stays identical. Performing this experiment to identify
one transfer function provides enough information to estimate all functions. While different
excitations propagate differently, the identification is unchanged.

Figure 3. Test setup used for experimental validation: left, the mechanical drivetrain; right, the in-
verters and data acquisition system.

A random torque signal with a magnitude of 20% of the nominal motor torque was
applied on motor M1 through field-oriented control. A uniformly distributed random
offset of £3.5% was used. A 1 ms sampling time was used. By fitting the damping ratio, ¢,
in (6), the damping behaviour of the model can be closely matched to the real setup. Small
alterations to the parameters found in the component datasheets were made to fine-tune
the model further. The final model parameters used after fitting are listed in Table 1.

In Figure 4, the Bode plots from physical measurement and the theoretical model are
compared with each other. It is clear that the measured and estimated transfer functions have
a similar characterization, with the system resonance modes at 74 and 161 Hz. Note that the
measured frequencies above 200 Hz show high oscillations. This is caused by the limitations
of the measurement method, and does not properly represent the actual behaviour.
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Table 1. Mechanical model parameters after identification.

J1 [kgm?] 0.0121

Jo [kgm?] 0.0123

J3 [kgm?] 0.0495

k1 [Nm/rad] 4350

ko [Nm/rad] 5144

by [Nms/rad] 0.116

by [Nms/rad] 0.134
— 20l I I I Measured | |

% - [{ - Theoretical
o 0F ~ausy \ g
Rt T // \\j\#m ]
= N A/
B 40} "“.%f‘ ' P ——k 1
< 60} : =
10 10! 102 107
Frequency [Hz|
100 + e 7
= Sl
% 0L | ! J
= |

—100 ‘_“'H-.._-_—» S S W "'M\wﬂ Ei 1 i M |

10° 10! 10° 10° 10*
Frequency [Hz]

Figure 4. System identification Bode measurement and simulation with random torque input at
motor M1 and measured speed output at M1. Measurement with a sample time of 1 ms; resonance
modes of the system at 74 and 161 Hz.

3. Motor Control

To model the asynchronous motors, we used an available motor model according
to (8) in Matlab/Simscape Electrical [45]. The standard two level inverter was modelled as
depicted in Figure 5. The inverter had a switching frequency of 4 kHz. A field-oriented
control was used for each motor. Current control was individual for each module. A PI
cascade controller was used for speed regulation. Both modules share the same speed
feedback from the encoder positioned at motor M1, as shown in Figure 3.

Ugs = whlﬂse % — wipgs + Rsigs

Ugs = wblase % — wipgs + Rsiqs

V0 = 51— % + Ry

Vi = T Wi — (w — wr)pgr + Ryigy = 0

Vgr = %1“56 djtw — (W — wr)Pgr + Ryigr =0 ®)

Yas = Lesigs + Lmiar
ll«’qs = Lssiqs + Lmiqr
4’05 = LSSiOS

Yar = Lyrigr + Linigs
qu = eriqr + Lmiqs
T = Ebdsiqs - l,bqsids

With vy, v45, and vps the d-axis, g-axis, and zero-sequence stator voltages, v, and vy,
the d-axis and g-axis rotor voltages, {55, 55, and ¢, the d-axis, g-axis and zero-sequence
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stator flux linkages, ¢s, and ¥, the d-axis and g-axis rotor flux linkages, iz, igs, and
ios the d-axis, g-axis, and zero-sequence stator currents, iz, and iy the d-axis and g-axis
rotor currents, Ry and R, the stator and rotor resistance, Lss and L,, the stator and rotor
inductances, L;, the magnetizing inductance, and T the rotor torque. An overview of the
parameters can be found in Table 2.

L ] ] ]
& a6
IGBT 1 IGBT 2 IGBT 3
Ve : —_— J J R
] ] E:-Mctor M1
@ @ R @ [£1] Power messrementt
FGBTJ FGBT:’W IGBTe\‘
| |

Lanvs Lon s E> Lons >

Figure 5. Power electronics model in Simscape.

Table 2. Motor model parameters.

Rs [Q)] 0.625
R, [Q] 0.469
Lgs [mH] 57.0
L, [mH] 55.4
L [mH] 54.1

The motor model does not take any efficiency losses or slot harmonics into account.
However, a power electronic inverter with sinusoidal PWM introduces an electromagnetic
torque ripple that causes an exciting force on the mechanical drivetrain.

To showcase this, simulations with the model were carried out. Steady state behaviour
at a constant speed of 500 rpm was studied. A 5 Nm load was set at the load motor. In the
modular scenario, both motors M1 and M2 are used and share the load. In Figure 6, the
frequency spectrum of the torque input from motor M2 during the modular scenario is
shown. A torque ripple at the PWM switching frequency of 4 kHz is visible. An excitation of
the first mechanical resonance, at 74 Hz, is visible as well. For motor M1, similar behaviour
is observed.

—
wt

—
T
I

Amplitude [Nm)]

0 ! { L L aal
10° 10! 10° 10% 10*
Frequency [Hz|

Figure 6. Simulated torque output from motor M2 during the synchronized control modular scenario.
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To evaluate the performance of the modular setup, a benchmark scenario was chosen.
Here, only motor M1 is energized and carries the load. Motor M2 remains mechanically
connected in order to maintain the same mechanical drivetrain, and is not used. In Figure 7a
the torque at the load during the benchmark is shown. The high-frequency torque ripple
at 4 kHz is dampened by the mechanical system, and only a vibration at the resonance
frequency remains. The torque ripple has an amplitude of 0.24 Nm. When observing the
same signal during the modular scenario, as depicted in Figure 7b, the ripple increases
by 91% to 0.46 Nm. Furthermore, a harmonic of the resonance frequency (2- fy) emerges.
It can thus be concluded that the use of a modular setup has a negative effect on the
torsional vibration behaviour of the drivetrain. An effort to reduce this torque ripple is
necessary in order to keep the modular drivetrain design competitive with traditional
machine performance.

= (a)

:i‘ T T T T T T T

~oaf =)

=

=02+ :

= |

a“ 0 LN L L L L L L L L

- 50 100 150 200 250 300 350 400 450 500
Frequency [Hz|

El (b)

P2 : : : r : r : r

?‘ 0.4 F ‘ Tr, modular, synchronized control|q

=

= 0.2+ :

=l J

=0 . | | | I | L |

= 50 100 150 200 250 300 350 400 450 500
Frequency [Hz]

El (c)

ﬁ T T T T T T - T - T

- 0.4 F | T, modular, interleaving control |

T

= 021 .

é“ 0 L L I h L L . L . L

= 50 100 150 200 250 300 350 400 450 500

Frequency [Hz]

Figure 7. Simulated torque ripple amplitude monitored at the load in (a) the benchmark scenario,
0.24 Nm at the resonance mode; (b) the modular scenario, 0.46 Nm; (c) the modular scenario with
interleaving control, 0.20 Nm.

4. Interleaving for Mechanical Resonance Reduction

The proposed technique to mitigate the negative impact on the electromagnetic torque
produced by the current ripple due to the PWM modulation involves interleaving of the
PWM carrier waveforms in the different motor modules. Interleaving has previously been
used to control the torque ripple at the PWM frequency of a multiphase motor in [33,34];
by taking a two-segmented motor system and implementing a phase-shift in the PWM
generation of one of the segments, the torque ripple was reduced. The impact on the driven
mechanics was not analysed.

In the present paper, however, two standard three-phase induction motors were
used. A phase-shift between the PWM generation of both motors is proposed, as shown
in Figure 8. The torque ripple of each motor is thus not altered, and the impact on the
mechanical system level can be investigated. The idea here was to delay the PWM carrier
of motor M2 relative to motor M1, thereby offsetting the torque oscillation with respect to
motor M1 and bringing both ripples into counter-phase.
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Torque [Nm]
Torque [Nm]

Time [ms] Time [ms]

Figure 8. Theoretical electromagnetic motor torque ripple in modular scenario: (a) with synchronized

control; (b) with interleaving control.

4.1. Theoretical Impact of Interleaving on Mechanical Resonances

To investigate the functionality of interleaving, a transfer function model of the mech-
anical drivetrain was created according to (9) in order to describe the relationship between
the input torques of the motors and the output torque at the load. The model consisted of
two transfer functions; G;(s) describes the behaviour of a torque input at motor M1 to the
load output, while G;(s) describes the same for a torque input at motor M2. For a linear
system, adding both outputs provides the total torque output of the system. The Bode
characteristics of both transfer functions are shown in Figure 9; the transfer functions are
described in Appendix A Equation (A3).

Tout = G1(s) * Tar1 + Ga(s) * Tarz )

=50+

—100 ]

Amplitude [dB]

—150 . =
10! 102 104 101

Frequency [Hz]

—100 +

—200 +

Phasc [7]

—300

—400 s .
10! 10° 10% 104

Frequency [Hz]

Figure 9. Bode plot of transfer functions G;(s) and G;(s).

The goal of using an interleaving strategy is to impact the behaviour at the mechanical
resonance frequencies. For the first mode, at 74 Hz, both signals are equally amplified
and in phase; thus, if the phase of one of the signals is shifted 180 degrees, both signals at
74 Hz will counteract one another. However, for the second mode, at 161 Hz, both signals
are already in counter-phase. The shift will therefore cause the signals to amplify each
other. Because the impact at the lower frequency has been shown to be more common,
this possible benefit is more advantageous than the drawback at the second resonance
mode. At the PWM frequency of 4 kHz, both transfer functions weaken the input signal
significantly, and show little impact on the output.
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To confirm this approach, the interleaving strategy was first used on a simple si-
nusoidal input. Both motor inputs received a sinusoidal input according to (10) with a
frequency of 4 kHz and amplitude of 10 Nm, while the torque at the load was monitored.
The torque input signal of motor M2 was shifted by an angle ¢, and the impact of this shift
was observed.

{ Ty = A xsin(wt) (10)
Tavo = A xsin(wt + ¢)

In Figure 10, the result when ¢ = 0 is shown. Both signals are synchronized. It can be
seen that this results in a transient oscillation at the mechanical resonance frequencies of
the system; the 4 kHz is weakened by the mechanics. After the transient period, a small
oscillation at 4 kHz remains, and no effect is visible at the mechanical resonance frequency.

(a)

Ty |

Torque [Nm]

—0.2 A

0 0.5 1 1.5
Time [s]
(b)

(3]
¥
a
w

Ty
0.02 1 g

0.0 L -

A\
N A

Amplitude [Nm)]

0 == L
" 10! 10? 10% 104
Frequency [Hz]

Figure 10. Simulated torque output measured at the load from synchronized sinusoidal torque inputs
with pulsation of 4 kHz; (a) shows the time domain data and (b) shows the signal frequency spectrum.

The interleaving strategy, with ¢ = 7, is shown in Figure 11. Here, similar behaviour
is visible. After the transient phase, the resonance oscillations die out. Only the weakened
sinusoidal input remains. Again, in the steady state of the simulation no effect of the
interleaving strategy is visible, as the high frequency is significantly weakened by the
mechanical structure. The benefit of the interleaving strategy is visible in the transient
phase of this simulation. Using this technique, the oscillation is much smaller in amplitude
at the first resonance mode and slightly increased at the second mode, as would be expected
by observing the bode characteristics in Figure 9. It can therefore be concluded that the
interleaving strategy only has a beneficial impact on the mechanical resonance of the system
during transient behaviour.

In this implementation of interleaving, a delay of half the signal frequency was chosen.
To determine whether or not this was the optimal choice, different delay lengths were
compared. In Figure 12, the amplitude of the first resonance mode is compared for various
values of ¢ from 0 to 27t. By shifting the second motor signal with a varying offset, a clear
minimum was found at half the signal frequency.
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Ty |

Torgue [Nm|

0 0.5 1 L5 2 2.5 3
Time [s]

(b)

0.02 1 —

0.01L ]

Amplitnde [Nm]

0 s %
10" 10! 10° 10% 104
Frequency [Hz]

Figure 11. Simulated torque output measured at the load from sinusoidal torque inputs with pulsation
of 4 kHz. The second input is shifted with half a period; (a) shows the time domain data and (b)
shows the signal frequency spectrum.
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Figure 12. Simulated amplitude at first resonance frequency in the monitored torque at the load as a
function of delay length.

4.2. Implementation of Interleaving Control on a Modular Drivetrain

In the modular drivetrain under consideration, the PWM generation for the power
electronic inverters is the source of the torque ripple; a ripple in the motor current is
thereby produced, which in turn results in a ripple in the torque generation. This creates a
mechanical resonance oscillation in the drivetrain, even in steady state speed conditions.
Therefore, the interleaving strategy could improve the behaviour of the drivetrain and
counteract these oscillations.

Figure 7c shows the load torque output during the simulation of the modular drivetrain
when the interleaving control strategy is used. Here, the torque ripple is reduced to
0.20 Nm, which is 17% lower than during the benchmark scenario. With this simulation,
it can be concluded that the interleaving control strategy has a similar impact on the
modular drivetrain, as outlined in Section 4.1. The oscillations from both motor inputs
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are brought into counterphase through the interleaving control, and the overall impact at
the first resonance mode is thus reduced. However, it should be noted that when using
the interleaving control strategy, a harmonic of this resonance frequency (2* fn) becomes
more pronounced. The harmonic (2*fy) oscillation is increased because this frequency
is close to the second resonance mode, and therefore the two oscillations are brought
back into phase with each other by interleaving, as illustrated in Figure 9. The impact on
the system is therefore increased. Based on these simulation results, it can be concluded
that the interleaving control strategy improves the torsional vibration behaviour of a
modular design, and makes it competitive with a traditional machine design regarding this
performance indicator.

The previous simulations were carried out with a controller PWM switching frequency
of 4 kHz. This was chosen to match the operating conditions of the setup used in Section 5.
However, modern power electronics make it possible to run a motor controller at higher
PWM switching frequencies. In order to evaluate the impact of the PWM switching
frequency on the torsional vibrations in a modular drivetrain, the simulations showcased
in Figure 7 were repeated with a switching frequency of 10 kHz.

In these simulations, it was observed that the overall torque ripple introduced by the
motors had a smaller amplitude. As the PWM switching frequency increases, the resulting
motor current ripple decreases. Therefore, the resulting torque ripple can be expected to
be smaller. Figure 13 shows the frequency spectrum of the torque input from motor M2.
The 10 kHz switching frequency is clearly present, though with a 60% smaller amplitude
when compared to the simulations at 4 kHz in Figure 6.
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Figure 13. Simulated torque output from motor M2 during the synchronized control modular scenario
with a switching frequency of 10 kHz.

The comparison between the benchmark and modular drivetrains at 10 kHz is illus-
trated in Figure 14. Similar to the previous simulations shown in the modular scenario
without any form of torque ripple control, there was a 36% increase in torsional vibrations at
the first resonance. When implementing the interleaving control strategy, these vibrations
were reduced by 81% compared with the benchmark, a much better result than the 17%
reduction simulated at 4 kHz. This indicates that a modular drivetrain design could have a
significant beneficial effect on torsional vibrations over traditional designs.
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Figure 14. Simulated torque ripple amplitude at 10 kHz PWM switching frequency in (a) the
benchmark scenario, 0.11 Nm at the resonance mode; (b) the synchronized control modular scenario,
0.15 Nm; (c) the interleaving control modular scenario, 0.02 Nm.

5. Experimental Validation
5.1. Setup

The simulation results comparing the modular drivetrain design against the bench-
mark were experimentally validated using the setup shown in Figure 3. Two 3 kW induction
motors were used as the motor modules, while the third, a 5.5 kW induction motor, func-
tioned as the load. The load motor was driven through a Siemens Sinamics industrial
drive, while the modular motors were driven through two Semikron Semiteach inverters.
A dSPACE Microlabbox was used to operate the setup. Field-oriented motor control, in-
cluding speed and current feedback and PWM generation for the two modular motors,
was implemented on the Microlabbox. In this manner, interleaving was implemented in
the setup. The motor currents of the two modular motors were measured through six
current sensors. An incremental encoder at the first motor was used for speed feedback.
A load torque setpoint was communicated over CAN to the Siemens Sinamics 5120 drive.
The experiment was performed at 500 rpm with a load of 5 Nm. Steady state behaviour
was analysed through a torque sensor (Lorenz DR-2112).

5.2. Measurements

In Figure 15a, the frequency spectrum of the measured load torque during the bench-
mark testing is shown. Here, only motor 1 was used to drive the load; while motor two
was mechanically connected, it was not energized. The first mechanical resonance is clearly
triggered with an amplitude of 0.21 Nm. The second resonance is not significantly influ-
enced. Other frequencies, at 55 Hz and 60 Hz, are present; however, as these change at
different speeds, it can be concluded that this was caused by noise and /or imbalances in
the mechanical setup. The focus is therefore on the resonance frequencies.

When comparing this benchmark result to the synchronized modular setup, as depic-
ted in Figure 15b, it can be clearly seem that the mechanism is triggered more significantly.
The first resonance frequency now has an amplitude of 0.34 Nm, an increase of 62% com-
pared to the benchmark measurement. Furthermore, the second resonance is clearly visible.
This results in a less desirable drivetrain, similar to the simulations.

When implementing the interleaving strategy, the mechanical resonances are reduced,
as shown in Figure 15c. The first resonance is reduced to 0.19 Nm, 10% below the original
benchmark result. The second resonance, however, is not significantly impacted by the
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interleaving control when compared to the synchronized modular setup. The negative
impact from interleaving in simulations at the second resonance mode is thus not observed.
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Figure 15. Measured torque ripple amplitude at 4 kHz PWM switching frequency in (a) the bench-
mark scenario, 0.21 Nm at the resonance mode; (b) the synchronized control modular scenario,
0.34 Nm; (c) the interleaving control modular scenario, 0.19 Nm.

As stated in Section 4.1, an interleaving control strategy provides an improvement
in the functionality of the modular drivetrain regarding torsional vibrations. The best
result was found with a delay of half the switching frequency, as shown in Figure 12.
In order to validate that the optimum is indeed found when using a delay of half the
switching frequency of the drive, the interleaving control was repeated with different delays.
In Figure 16, the results with various delays are shown. Experimentally, the minimum was
again found when using half the switching time.
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Figure 16. Torque amplitude measured at the first resonance mode with different delay times of the
interleaving control.
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6. Discussion

The goal of this paper is to investigate the impact of a modular design on the torsional
vibrations in the drivetrain. A negative impact is observed in the modular design when
no control measures were used. Interleaving is proposed as a control strategy to mitigate
this negative impact. Table 3 summarizes the most important findings of this paper with
respect to interleaving in modular drivetrains. The measured drivetrain performance is in
line with the simulated behaviour. Overall torsional vibrations at the resonance frequency
are slightly lower than in the simulations, e.g., 0.21 Nm measured vs. 0.24 Nm simulated
in the benchmark scenario. The behaviour of the modular drivetrain with synchronized
control did not impact the performance as negatively as was expected from simulation.
Nevertheless, an increase in vibrations of 62% was observed, which is unacceptable. In-
terleaving proved an effective method to mitigate this negative impact, and reduced the
vibrations by 10% compared to the benchmark.

Validation of the simulations using a PWM switching frequency of 10 kHz was not
possible due to the limitations of the setup. However, because simulations with a PWM
switching frequency of 4 kHz can properly represent the measured behaviour, it is assumed
that the simulations with a PWM switching frequency of 10 kHz conducted with the same
model represent a decent portrayal of the expected behaviour, thus demonstrating that if a
higher switching frequency is used, the interleaving strategy can act as an active method to
dampen torsional vibrations in the mechanical drivetrain.

The performed simulations and measurements were focused on the available setup.
The results, however, are not limited to this particular drivetrain, and are more widely
applicable in modular systems. The above-mentioned examples, such as weaving looms
and electric vehicles, likewise face challenges with torsional vibrations. For each drivetrain
that can be modelled with the presented model in Figure 2, the technique of interleaving
can be implemented in these applications and should result in similar improvements in
drivetrain performance concerning torsional vibrations.

Table 3. Torque ripple amplitude at the resonance mode comparing simulations with a PWM
switching frequency of 4 and 10 kHz with measurements at a PWM switching frequency of 4 kHz.

4 kHz 10 kHz
Simulated Measured Simulated
Benchmark 0.24 Nm 0.21 Nm 0.11 Nm
Modular, 0.46 Nm (+91%) 0.34 Nm (+62%) 0.15 Nm (+36%)
synchronized
_ Modulay, 0.20 Nm (—17%) 0.19 Nm (—10%) 0.02 Nm (—81%)
interleaving

The presented results used steady-state conditions, i.e., constant speed and constant
load torque, to evaluate the performance of a modular drivetrain. In subsequent research,
more dynamic load cases might be investigated. Implementing a variable load that changes
with angular position and/or using varying speed conditions could further highlight the
benefits of a modular drivetrain over traditional machine designs in more industry-relevant
operational conditions.

7. Conclusions

Modularity is presented in the literature as a novel approach to machine drivetrain
design. It shows promising results in creating machines that are more easily adapted to
varying load cases. However, using a modular setup has an impact on the performance
of the drivetrain. This paper presented the torsional vibrations behaviour of a simplified
modular setup. A model of a mechanical drivetrain and electric drives was used to simulate
drivetrain behaviour in order to investigate this issue. It was determined that a modular
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system introduces a negative impact on the drivetrain’s torsional vibrations if the control
of the modular drivetrain is not properly implemented.

Interleaving was proposed as a control method to mitigate the negative impact created
by the additional source of torque ripple in modular drivetrains. Simulations and exper-
imental validation demonstrated that a modular drivetrain with interleaving control is
able to match and even outperform the set benchmark scenario. Therefore, it is concluded
that modular drivetrains show competitive potential compared to traditional designs with
respect to the issue of torsional vibration.
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Appendix A. Transfer Functions
The system transfer functions used in (7):

G11 (S) = ;{Ml((s)) _ I3 s*+(aba+]5 (b1+b2)) S +(a k2+b£b2+]3 (ky+k2)) 24 (b ka+by ky ) s-+ky ko
M1(S .
GlZ(S) = iMl((S)) _ Bh S+ (Jsk1+b1 bZ)ZZ+(b1 ko+bo k) s+kq ko
M2(S 1
Giz(s) = g-Ml((S% — bibys+(by k2)A+b2k1)s+k1 ky
[pa (s 1
G (s) = % = Ga(s)
Gxn(s) = ;}"MZ((S)) _ st (hbatfab) s+ (1 k2+]3Ak1+b1 by) 52+ (by ka-+by Ky ) 54K Ky a1
M2(S 1
Gs(s) = iMz((S)) _ Lib S+ (Jikotby bz)iJr(bl ko+by k) s+kq ko
M3 (s 1
0
Ga(s) = 77y = Gials)
Gaz(s) = 1"9,\;2(2) = Gn3(s)
Gas(s) = 0L(s) _ Nilas*+(Jabit]i (bi+b2)) P+ (Jaki+by ba+y (kitka)) s+ (by ka+by ki) s+ki ko
3 Trma(s) A
With A;:
M=N)2Jss® + (Jsbr (i + ) + iba (o + Ja)) s* + sk (h + J2) + Juka (2 + J3) + baba (i + ]2+ J3)) 8+ 2
(biky+b2k1) (i + T2+ J3)s* +kika (Ju+ 2 + J3) s
The transfer functions used in (9):
Gi(s) = %ZI 8 _ Lbih S+ (B kA]2+b1 ka) s+ 5 k1 ko -
Go(s) = Jau(s) _ hlsbas+ (i Jskatlsbaba) 24 (b katbaka) stTski ko
2 TMz(S) AZ
With Az
M=nhhs*+O(hh+hB) +b(h+hB)sS+ ke (h+h ) +ki(iJs+]) +biby (i + )2+ ]3)) s*+ A
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