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Abstract 

Background: Burden of disease analyses quantify population health and provide comprehensive overviews of the 
health status of countries or specific population groups. The comparative risk assessment (CRA) methodology is 
commonly used to estimate the share of the burden attributable to risk factors. The aim of this paper is to identify 
and address some selected important challenges associated with CRA, illustrated by examples, and to discuss ways 
to handle them. Further, the main challenges are addressed and finally, similarities and differences between CRA and 
health impact assessments (HIA) are discussed, as these concepts are sometimes referred to synonymously but have 
distinctly different applications.

Results: CRAs are very data demanding. One key element is the exposure-response relationship described e.g. by 
a mathematical function. Combining estimates to arrive at coherent functions is challenging due to the large vari-
ability in risk exposure definitions and data quality. Also, the uncertainty attached to this data is difficult to account 
for. Another key issue along the CRA-steps is to define a theoretical minimal risk exposure level for each risk factor. 
In some cases, this level is evident and self-explanatory (e.g., zero smoking), but often more difficult to define and 
justify (e.g., ideal consumption of whole grains). CRA combine all relevant information and allow to estimate popula-
tion attributable fractions (PAFs) quantifying the proportion of disease burden attributable to exposure. Among many 
available formulae for PAFs, it is important to use the one that allows consistency between definitions, units of the 
exposure data, and the exposure response functions. When combined effects of different risk factors are of interest, 
the non-additive nature of PAFs and possible mediation effects need to be reflected. Further, as attributable burden is 
typically calculated based on current exposure and current health outcomes, the time dimensions of risk and out-
comes may become inconsistent. Finally, the evidence of the association between exposure and outcome can be 
heterogeneous which needs to be considered when interpreting CRA results.

Conclusions: The methodological challenges make transparent reporting of input and process data in CRA a neces-
sary prerequisite. The evidence for causality between included risk-outcome pairs has to be well established to inform 
public health practice.
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Background
Burden of disease (BoD) analyses quantify the current 
level of population health and provide comprehensive 
overviews of the health status for countries or specific 
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population groups. Since the first Global Burden of Dis-
ease (GBD) study published in the early 1990s, many 
countries have used BoD estimates to guide health policy 
decisions, as well as intervention and prevention meas-
ures to improve population health [1–4].

Public health systems can generally be adjusted to 
manage the identified burden from specific diseases and 
injuries flagged by BoD analyses on population scale. 
However, to reduce the disease burden and influence 
future health, it is essential to identify which risk factors 
are the key drivers of ill-health and death. One integral 
component of many BoD assessments is the attribution 
of disease burden to selected risk factors [5].

Risk-specific estimates unveil potentials to improve 
health and prevent disease and disability. The list of risk 
factors which in best case are modifiable through preven-
tion and intervention measures is extensive. For instance, 
the GBD study framework has classified the included 
risks according to three major risk factor groups: a) 
metabolic, b) behavioral, and c) environmental and occu-
pational risk factors [6]. The GBD 2019 study estimated 
that around 48% of the overall disease burden in 2019, 
measured in Disability-Adjusted Life Years (DALYs) can 
be attributed to the currently considered risk factors [6]. 
With about 831 million DALYs, the behavioral risk fac-
tors present the highest attributable burden, followed by 
463 and 397 million DALYs for metabolic and the group 
of environmental and occupational risks, respectively 
[7]. Looking at the single risk factors globally, the high-
est attributable burden for 2019 was estimated for high 
systolic blood pressure (ca. 235 million DALYs), smok-
ing (ca. 200 million DALYs) and high fasting plasma 
glucose (ca. 172 million DALY) [6]. The list of included 
risk factors is not exhaustive. However, missing data or 
insufficient evidence on the association between risk and 
outcome sometimes hamper the inclusion of further risk 
factors.

The aim of this paper is to identify and address some of 
the important challenges associated with the use of the 
comparative risk assessment (CRA) methodology, illus-
trated by selected examples and to discuss ways to handle 
them. We also use the example of social determinants to 
discuss difficulties that can arise when we want to expand 
the perspective and capture a broader set of risks in one 
common framework.

Methods
We consulted and reviewed the main literature with 
respect to the CRA methodology and explain the main 
challenges when using this methodology with exam-
ples that should help the novice user to understand the 
concept and being aware of the pitfalls. We therefore 
screened the literature for risk-specific examples that 

present the challenges and possible solutions in the most 
educative way.

Results
In BoD studies CRA methodology is commonly used to 
estimate the share of burden attributable to selected risk 
factors [8]. The general idea of the CRA is to compare a 
current harmful risk factor exposure level in the popula-
tion against an alternative (or “counterfactual”) exposure 
situation where the selected risk factor is reduced to the 
so-called Theoretical Minimum Risk Exposure Level 
(TMREL). For example, the TMREL could correspond to 
zero smoking, the lowest observed concentration of par-
ticulate matter in ambient air, or sufficiently high levels 
of whole grain consumption [9].

In general, the estimation of the fraction of disease 
attributable to a risk factor follows five consecutive steps, 
in the following described using illustrative examples (see 
also Fig.  1 for a simplified visual representation of the 
processes leading to estimates of attributable burden). 
Each of the steps comes with specific methodological 
and computational challenges, as exemplified. The differ-
ent steps of the CRA are explained using the well-known 
example of smoking.

Step 1: definition of exposure (e.g., what kind of risk 
factor should be covered and how should the exposure 
be quantified?). In the case of smoking the exposure can 
be defined as actively smoking different types of tobacco 
(e.g. cigarette, pipe, e-cigarette). If one aims at a national 
burden of disease study one should consider all relevant 
tobacco types, because these can vary regionally all over 
the world.

Step 2: exposure assessment (e.g., how to measure or 
model the exposure of a population towards a risk fac-
tor?). In the case of smoking the exposure can hardly be 
measured adequately in the entire population. There-
fore, representative samples can be used to estimate the 
overall smoking exposure of the population. Here, the 
exposure can be assessed by questionnaires, asking peo-
ple about their smoking behavior. The smoking behav-
ior can be quantified by cigarettes or packs smoked per 
day. An alternative could be to look for relevant mark-
ers (e.g. cotinine) of smoking in blood or urine samples, 
which is clearly more cost intensive as compared to the 
questionnaire.

Step 3: identification of risk-outcome-pairs (e.g., which 
health outcomes are causally related to the risk factor?)

In the case of smoking it is important to identify 
the relevant studies that quantify the increased risk of 
smoking for certain health outcomes. Here, for exam-
ple prospective or retrospective cohort or case control 
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studies can help to identify the health outcomes caus-
ally related to smoking.

Step 4: quantification of the association between out-
come and risk (e.g., how does the risk increase with 
increasing levels of exposure to a risk factor?)

In the case of smoking the quantitative information 
on the association between outcome and risk can be 
extracted from the relevant epidemiological studies. 
The CRA allows to use relative risks (RR) or hazard 
ratios interpreted as relative risks. This information is 
necessary to later estimate the attributable disease bur-
den by using the PAF.

Step 5: calculation of the attributable burden of dis-
ease (e.g., how to align definitions of relative risk and 
disease burden, how to account for combinations of 
risk factors?)

In the case of smoking it is necessary to first estimate 
the burden due to the relevant health outcomes. So, 
first the population level burden of disease estimates 
for e.g. lung cancer need to be quantified. This number 
is then multiplied by the PAF which represents a per-
cental share of disease burden attributable to a certain 
risk factor.

Even though these five steps are generally universal for 
all risk factors, they pose different challenges for different 
risk factors when using the CRA framework. After hav-
ing introduced the challenges, we apply these insights to 
the case of social determinants, an emerging topic within 
BoD literature. Finally, we discuss similarities and differ-
ences between CRA and HIA, as these concepts are often 
confused.

Challenges and potential solutions
As many sets of estimates for risk factor attributable bur-
den exist, it is of great value to know the pitfalls of such 
assessments. Especially for less experienced users the 
results of such assessments seem to be easy to under-
stand and ad hoc comparable. It is however important to 
be aware of different components that can considerably 
impact the results. Here we present some selected impor-
tant challenges of the CRA approach.

Identification of risk outcome pairs and the underlying 
causality
One key element of any CRA is the identification of the 
risk-outcome pairs for the considered risk factor(s). In 
general, a risk factor can be conceived as any exposure 
that increases the risk of developing a certain health out-
come. In addition to the behavioural, metabolic, as well 
as occupational and environmental exposures as classi-
fied by the GBD study, a wide variety of other exposures 
may be considered as risk factors. For instance, infec-
tious diseases may be considered as risk factors for ill 
health and mortality, as can genetic predispositions or 
socioeconomic status. Even health outcomes themselves 
(e.g. hypertension) can serve as risk factors for other 
health outcomes, adding to the complexity of the causal 
pathways.

Irrespective of the nature of the considered risk-out-
come pair, an important first step is to establish causal-
ity. Indeed, the mere fact of finding the respective risk 
factor among patients, or finding a significant associa-
tion in survey data, does not suffice to assume that the 

Fig. 1 Flow diagram of the processes leading to attributable burden estimates (adopted from [10])
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risk factor was the cause of the health outcome. The gold 
standard for concluding on causality is often considered 
to be a randomized controlled trial (RCT); in reality, 
however, it is not always possible, due to ethical or prac-
tical constraints, to perform RCTs for many risk-out-
come pairs. Concluding on causality is therefore based 
on the strength of evidence that is brought by a variety 
of studies, each on its own not able to provide a definite 
answer. A commonly used framework to assess causality 
is the one proposed by Sir Austin Bradford-Hill [11]. For 
instance, the GBD study uses the World Cancer Research 
Fund criteria for “convincing or probable evidence” to 
include risk-outcome pairs [6]. These criteria are also 
influenced by the Bradford-Hill criteria. There is how-
ever ongoing discussion on the issue of causality when 
estimating the PAF and also the use of novel methodolo-
gies such as causal Bayesian frameworks is increasingly 
propagated [12, 13].

One example of a risk-outcome-pair from the GBD 
study is the causal association between ambient particu-
late matter and lung cancer. The evidence for the causal 
link between particulate matter and lung cancer was 
shown consistently in many studies. The evidence is con-
vincing and was shown in epidemiological and toxicolog-
ical assessments.

Definition of exposure and exposure assessment
A critical component in the CRA is the exposure assess-
ment. The ways to estimate the exposure differ by risk 
factors and the data available in the relevant settings. 
Critical questions arise and need to be addressed when 
dealing with exposure assessment and the definition of 
exposure. How are humans exposed to the risk factor? 
Which pathways are relevant and which media should 
be analyzed to measure the appropriate exposure level? 
Using the example of air pollution and more specific par-
ticulate matter (PM) pollution it is already important to 
define the relevant size of the particles. Particulate matter 
can be split into more course particles  (PM10), finer par-
ticles referred to as fine particulate matter  (PM2.5), and 
the fraction of ultrafine particles (UFP) with aerodynamic 
diameter of 0.1 μm and smaller. Thus, defining the parti-
cle size  which constitutes the health risk is vital for the 
CRA in this case. This choice sets the scene for all further 
steps and guides the estimation process.

Exposure misclassification
Even though exposure at population level is a neces-
sary component of a CRA, the basis for such estimates 
are often epidemiologic studies where individual’s expo-
sures to the risk factors of interest are captured. There 
are different ways to approximate the personal exposure 
of study participants with different levels of uncertainty. 

Depending on the selected risk factor the exposure can 
be detected by e.g. testing bodily fluids such as blood 
or urine for contaminants or their metabolites, using 
(standardized) questionnaires, measure the air quality 
surrounding the participant or using complicated models 
to approximate personal exposure. Using the example of 
air pollution several approaches can be used, which may 
yield varying results.

In the optimal case the study participants would wear 
personal measuring devices 24 hours and 7 days a week 
for several years. Based on this, longitudinal cohort stud-
ies may detect whether people developing or not devel-
oping health complaints were exposed to different levels 
of air pollution. Such designs would be costly, to a cer-
tain extent not realistic and particularly not available 
currently. It is also questionable whether using personal 
devices for several years is appropriate from an ethical 
point of view. Thus, other options need to be considered. 
In environmental epidemiology studies tackling air pollu-
tion, outdoor air pollutant concentrations are combined 
with the residential addresses of study participants. Com-
mon limitations of this approach are that only outdoor 
ambient air pollution is assessed, while the indoor-out-
door relationship of concentrations, as well as the par-
ticipants’ spatial mobility or time activity patterns, are 
rarely accounted for. The first factor might have a diverse 
impact because studies show, that air quality levels for 
e.g. PM or nitrogen dioxide can vary between out- and 
indoors, due to different settings and especially different 
building characteristics e.g. ventilation rates and personal 
behavior e.g. cooking or smoking indoors [14]. Using 
only outdoor concentrations in the assessment of expo-
sure can lead to an overestimation of the exposure [15]. 
Korhonen et al. 2019 estimated that taking into account 
infiltration in the residential outdoor based exposure 
model decreased the exposure estimates by up to 32% on 
average in the five European cities included in the study 
[15]. Considering infiltration might be even more impor-
tant in future due to changes in building stock towards 
tighter buildings for increased energy efficiency, and 
consequently reduced infiltration of outdoor generated 
particles indoors [16]. Further, impacts of local indoor 
sources such as cooking or heating are not well captured 
in current epidemiologic studies. These increased con-
centrations however, represent temporary peaks and are 
probably less relevant for the long-term exposure.

The second argument especially holds when e.g. the 
home address and the working address have distinctly 
different exposure patterns (such as living in the coun-
try side but working in the city center). This impacts the 
overall long-term exposure, but such differentiations in 
exposure patterns are not yet well adjusted for in epi-
demiologic studies. Also, the exposure might change 
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because of the relocation of participants throughout 
their life span, so that the current living address does 
not necessarily represent the actual exposure from the 
last couple of years. This can be considered in epide-
miologic studies by asking the participants about their 
address history. It is sometimes argued that all factors 
may level out when combined. Nonetheless, as stud-
ies with long term follow-up using personal measure-
ments are not available currently, and unlikely in the 
near future, approximating personal exposure by using 
area level exposure data is considered most appropri-
ate. However, when interpreting results, such and other 
comparable limitations for each specific risk factor 
need to be considered carefully.

Identifying the exposure response relationships
Choosing an adequate exposure-response function 
(ERF) poses another key challenge in CRA and has a 
great impact on the resulting burden of disease. ERFs 
are also among the most significant sources of uncer-
tainty in CRA because they provide the information 
about the strength of the association and about the 
size of risk increase at certain levels of exposure [17]. 
To define an ERF in most cases epidemiological stud-
ies which include effect measures, such as relative risks, 
odds ratios, or hazard ratios at certain exposure lev-
els (e.g. concentration of particulate matter, number 
of cigarette pack-years) are mathematically combined 
to provide the information about the risk increase per 
unit increase of exposure to a certain risk factor. In an 
optimal case, the ERF is based on a systematic review 
and meta-analysis of recent studies. The units depend 
on the selected risk factor and can be e.g. concentra-
tion levels of particulate matter in μg/m3 or the num-
ber of cigarettes smoked per day or the amount of fruits 
eaten. A crucial prerequisite is that the definitions and 
units of the ERF and the exposure data need to match, 
otherwise incorrect results will be obtained.

The uncertainty associated with the ERF originates 
from the statistical uncertainty of a single ERF, but often 
also from the existence of multiple ERF for the same risk-
outcome pair. Lehtomäki et  al. 2020 compared two log-
linear ERF with no threshold values applied and three 
sets of non-linear IER (Integrated Exposure Response) 
functions including thresholds for  PM2.5 mortality in the 
five Nordic countries using same exposure and baseline 
health data. They found that the number of deaths attrib-
utable to  PM2.5 in the Nordic area varied from 1800 to 
18,000 depending on the chosen ERF. The Nordic area 
is especially sensitive to threshold values at the lower 
bound of the ERF because the concentrations are at rela-
tively low levels [18].

Definition of the theoretical minimal risk exposure level
The definition of the TMREL is an often-underappreci-
ated element in CRA. For some risk-outcome pairs, the 
choice is very evident. For instance, smoking unequivo-
cally increases the risk of lung cancer, hence the TMREL 
would correspond to zero tobacco use. For other risk-
outcome pairs, the zero-exposure level should not be 
considered as the TMREL, e.g. blood pressure where a 
level of systolic blood pressure at 120 mmHg is consid-
ered optimal, or the consumption of whole grains, where 
dose-response meta-analyses show that higher consump-
tion levels are associated with decreasing risks.

In the context of air pollution, the identification of a 
TMREL is also one of the key questions in CRAs [19, 20]. 
For  PM2.5 exposure and mortality, there are several ERFs 
presented and they vary regarding coefficients, shapes 
and possible thresholds. The WHO HRAPIE (Heath Risk 
of Air Pollution in Europe) working group for instance 
recommended quantifying the  PM2.5 related mortality 
without a threshold (i.e. calculating the burden of dis-
ease for the whole exposure range) [21]. However, the 
integrated-exposure response functions (IER) and global 
exposure mortality model (GEMM) include theoretical 
thresholds under which burden of disease is not esti-
mated due to the lack of knowledge about the shape of 
the ERF at the lowest exposure levels [22, 23]. Here the 
thresholds are defined as the lowest observed concentra-
tions in the included cohort studies. It is also still under 
debate whether effects of natural particulate matter emis-
sions such as sand storm related particulate matter, which 
has a different chemical composition should be consid-
ered in CRA. Nonetheless, defining the TMREL remains 
a crucial step and the uncertainty, as indicated by the rel-
evant epidemiologic studies should be considered when 
interpreting the results. Meaningful, and when it comes 
to defining prevention and intervention measures, also 
feasible “lowest” risk level should be considered.

Calculation of population attributable fractions
Formally, the population attributable fraction (PAF) is 
defined as the proportion of cases for an outcome (e.g. 
lung cancer) of interest that can be attributed to an his-
torical exposure to any given risk factor among the entire 
population (e.g. smoking):

In CRA, e.g. the number of incident cases (I) (e.g. lung 
cancer) in the total (current) and unexposed (counter-
factual) population, is obtained by combining informa-
tion on the exposure distribution (e.g. how many people 
smoke certain amounts of cigarettes) and the relative risk 
linking exposure to outcome incidence:

PAF =
Ipop − Iunexposed

Ipop
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Where P(x) is the observed exposure distribution, P ’ (x) 
the counterfactual exposure distribtuion, and RR(x) the 
relative risk at a certain point on the ERF.

For a categorical exposure (e.g. weight status classified 
as normal weight, overweight, obesity), the continuous 
version of the PAF formula reduces to a discrete version:

Where Pi is the observed prevalence of exposure class 
i, P’i is the counterfactual prevalence of exposure class i, 
and RRi the relative risk of exposure class i compared to 
the reference class.

When there are only two exposure classes (e.g. smok-
ing classified as smoker vs non-smoker), the formula fur-
ther reduces:

Often, one of the two exposure classes is considered the 
TMREL, hence P ’  = 1 (as in the smoker vs non-smoker 
example), then the formula further reduces to Levin’s 
formula:

Finally, if the exposure reflects an average population 
level exposure (e.g., air pollution), then the entire popula-
tion is exposed to this risk, hence P = 1, and the formula 
reduces to its most simple form:

The different versions of the PAF formula thus reflect 
different definitions and units of the exposure and relative 
risk function. It is crucial to apply the correct formula to 
the available data, and to ensure that the definitions and 
units of the exposure data and relative risk functions are 
consistent.

Combined effects of risk factors
In a majority of CRA, attributable burden is estimated 
on the basis of the effect ascribed to a single risk factor, 
without considering possible interactions and combined 
effects of risk factors on population health. In reality, 
people are exposed to multiple risk factors or other pro-
tective or harmful health determinants that may or may 
not interact or accumulate towards health outcomes. 

PAF =

∫

P(x)RR(x)dx −
∫

P′(x)RR(x)dx
∫

P(x)RR(x)dx

PAF =

∑n
i=1

PiRRi −
∑n

i=1
P′

iRRi
∑n

i=1
PiRRi

PAF =

(

P − P′
)

(RR− 1)

P(RR− 1)+ 1

PAF =
P(RR− 1)

P(RR− 1)+ 1

PAF =
RR− 1

RR

Especially, in CRA of comprehensive burden of disease 
studies in which various risk factors are often considered, 
one has to account for these multiple exposure settings 
in order to correctly estimate the joint burden of dif-
ferent risk factors and not overestimate the population 
health impact. The considered determinants can have an 
influence on the same endpoints and the PAF should not 
just be casually added up without further processing. A 
simple sum would attribute too much impact to specific 
determinants, with the possibility to add up to more than 
100% of the actual overall burden. For instance, ischemic 
heart disease is related to many different risk factors (e.g. 
dietary risks, smoking, air pollution) and its sum would 
almost reach 270% (see Table  1). Similarly, risk factors 
for lung cancer would add up to 133%. To correct for 
these factors, the PAF can be multiplicatively combined 
with the same endpoint ensuring that the value of the 
combined PAF does not exceed 1. This is done under the 
assumption that the effects of determinants occur inde-
pendently considering the same endpoints. Though there 
is dependency among risk factors, for example smoking 
and alcohol occur in individuals almost double as much 
compared to independent occurrence [24], taking this 
into account when calculating a combined PAF requires 
far more data. The formula to calculate a combined PAF 
for a certain disease is therefore:

Where the combined PAF is a result of the multiplica-
tion over the PAF for each risk factor i.

(1)PAFcombi = 1−

∏

i
(1− PAFi)

Table 1 Level 2 risk factors for ischemic heart disease, and 
tracheal, bronchus and lung cancer, European Union, 2019 (as % 
of DALYs) [7]

Risk factor: Ischemic heart 
disease

Tracheal, 
bronchus, and 
lung cancer

Dietary risks 56% 4%

High systolic blood pressure 56%

High LDL cholesterol 48%

High fasting plasma glucose 29% 10%

Tobacco 27% 73%

High body-mass index 25%

Air pollution 10% 9%

Low physical activity 6%

Kidney dysfunction 12%

Other environmental risks 2% 6%

Alcohol use −2%

Occupational risks 23%

Non-adjusted sum 269% 125%
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In an optimal scenario the use of relative risks that are 
adjusted for other concurrent risk factors would probably 
yield the best estimates for the combined effects. Cohort 
studies and case-control-studies should increase the 
number of controlled confounders to deliver better risk 
estimates. Currently the use of univariate relative risks 
combined with a multiplicative adjustment of the PAF 
seems to be a pragmatic way to overcome the overesti-
mation of risk factor attributable burden.

Mediation represents an additional challenge when 
generating estimates for the joint effect of risk factors, 
where the effect of one risk factor, partly or fully, goes 
through that of another risk factor. For instance, the GBD 
study assumes that the effect of low milk consumption 
entirely goes through the associated low calcium intake. 
Generating joint estimates of low milk and low calcium 
consumption would thus require corrections that go 
beyond the effect of the multiplicative model. The GBD 
study addresses this issue by incorporating mediation 
factors in the multiplicative model:

Where MFm is the mediation factor for mediator m of 
risk factor i.

In the example of low milk and low calcium intake, the 
mediation factor for milk (calcium) is set to 1; as a result, 
the PAF for the joint effect equals the PAF of low cal-
cium intake only. For other pairs, where the effect is not 
entirely mediated through one of the pair members, the 
mediation factor lies between 0 and 1.

Consistency in time dimension of risk and outcomes
It is likely that CRA is performed using the current expo-
sure to a risk factor in a certain year to estimate the PAF 
and thus the attributable burden in that same year. Con-
sequently, exposure and effect are captured at the same 
time, the year of analysis. However, in general, CRA is 
designed to attribute disease burden to past exposure. 
Having an effect from a risk factor immediately after 
exposure might be correct for acute adverse outcomes 
mostly connected to comparably high exposures. For 
long-term effects, such as those for smoking or air pol-
lution, this assumption does not hold, as these risks 
work on longer time-frames and health effect result from 
chronic and cumulative exposures. Where possible CRA 
users should obtain not only the exposure to such risk 
factors in the year of interest but also estimate the histor-
ical cumulative exposure for example the average amount 
of cigarettes smoked during the life time of a person 
measured by using the indicator “pack-years” addressing 
the cumulative smoking history.

PAFcombi = 1−

∏

i

(

1− PAF1

∏

m

(1−MFm)

)

Heterogeneous evidence for the association between risks 
and outcomes
The CRA methodology used in the GBD 2019 study 
comprises a large set of risk factors with considerable 
variation in data availability and quality to inform the 
estimates. This also holds for other assessments where 
many risk factors are covered and when no transparent 
description of the input data sources is available. The 
missing transparency hampers a meaningful comparison 
of risk factors. At the end of most assessments, estimates 
of attributable disease burden are provided with a mean 
value of e.g. attributable DALYs, and in the best case 
accompanied by an uncertainty or confidence interval 
that quantifies the precision of the estimate. While the 
intervals indicate the uncertainties in the model param-
eters, it mostly remains unclear which component of 
the model led to these uncertainties. Especially, the evi-
dence of the relative risk information can vary largely. 
For some risk-factors such as some single dietary risk-
outcome-pairs in the GBD 2019 study, estimates come 
from randomized controlled trials. For other risks, such 
as particulate matter, risk estimates are from observa-
tional cohort studies. In the GBD 2019 study, risk esti-
mates from various study designs are pooled to arrive at 
risk-outcome-pair specific effect estimates. While this 
improves the overall evidence compared to using single 
study estimates, it leaves ambiguity around the number 
and quality of the studies that provide input.

Also, some primary studies provide relative risk esti-
mates by age and sex, while others do not. This can leave 
differences in risk sizes between age and sex undetected. 
CRA should preferably use stratified risk estimates where 
available to avoid under- or overestimation of attributable 
disease burden. As shown above, the impact of the RR, be 
it a single RR or RR combined in an ERF can be consider-
able and can lead to skewed comparisons. However, the 
granularity of risk estimates for risk-outcome pairs again 
is strongly linked to the stratification options provided by 
the underlying epidemiologic studies.

Another major challenge is that in many cases, the 
same relative risk estimate is used for both mortality 
and morbidity. Indisputably, these limitations are mostly 
related to the underlying epidemiologic studies fed into 
the model, and not to the CRA concept per se. However, 
the source of the RR estimates and its quality should be 
rated objectively and stated as a mandatory reporting 
component in CRA studies.

This heterogeneity in the evidence underlying the PAF 
and the burden estimates often leads to implicit assump-
tions and extrapolations. While this heterogeneity is inev-
itable, it is important to make these assumptions explicit, 
and to discuss possible limitations or develop alternative 
scenarios to quantify the associated uncertainties.
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Considering social determinants as risk factors in the CRA 
concept
In the available CRA estimates, also from the GBD-study, 
the focus remains on the classical risk factors from the 
four domains, metabolism, behaviour, occupational 
and environment. Increasingly, social determinants are 
recognized as important drivers of population health 
and health inequalities within and between population 
groups. Social determinants are therefore highly relevant 
for burden of disease studies, but arguably not yet con-
sidered adequately in CRAs. We therefore discuss the 
challenges when using CRA for estimating the burden 
attributable to social determinants.

Social determinants impact health through material, 
psychosocial, and cultural-behavioural pathways [25]. 
Socially patterned exposure to many of the risks across 
the three risk factor groups used in the GBD study illus-
trate the relevance of considering social inequality in 
CRA frameworks [26]. Beyond socially patterned expo-
sure to behavioural risk factors, or material risk brought 
by absolute levels of poverty, low social position relative 
to others is also considered a risk factor on its own. These 
multidimensional links between social determinants and 
health outcomes pose several challenges when including 
social determinants in CRA, where the ultimate goal is to 
standardize assessments of risk factor impacts on popu-
lation health. Some examples of such challenges are illus-
trated in the following, using “education” as an example 
of a social health determinant.

Identification of risk outcome pairs and the underlying 
causality
Available CRA assessments have so far focussed on bio-
medical risk models where it is assumed that risk-out-
come pairs are universal throughout populations. As 
health inequalities emerge in the intersection between 
social structures, individual actions, and biological pro-
cesses, there is a need to also include socially embedded 
and situated risk factors. However, this will pose chal-
lenges to the existing CRA modelling frameworks. For 
example, commonly used frameworks to assess causal-
ity, such as those offered by Bradford-Hill [11], and later 
frameworks have not been developed with social inequal-
ity as risk in mind. This should invite discussion on how 
such a causal framework could take shape.

Definition of the exposure and exposure assessment
What is the key feature of education that links it to 
health? Number of years of education? The level of edu-
cation? The quality of education? Your own education or 
parental education? Attaining a diploma? Better grades 
than your peers? Is it the end sum of declarative knowl-
edge or attaining general formative skills that later can be 

applied to life challenges? The literature is inconsistent 
on the matter, but in a CRA framework it should ideally 
be defined in a way that captures its essence, consistently 
and comparatively across regions and over time [27].

Inequalities in health between socio-economic groups 
are not restricted to differences between the most privi-
leged and the most disadvantaged groups, but exist 
across social gradients [28–30]. This should favor a con-
tinuous measure of education. Number of years of edu-
cation which has been shown to predict mortality and 
morbidity in a number of settings [31–33], although 
study results vary between subgroups and in mediation 
analyses [34]. Data availability at considerable geospatial 
resolutions lends further pragmatic support for using 
education as indicator for mapping social inequalities 
globally.

Identifying the exposure response relationships
Relative risk of disease given the exposure to a risk at a 
certain exposure level is required for calculating the PAF. 
The complex causal relationships between SES and out-
comes complicate this, as also seen for other risk factors. 
Education (or other variables reflecting social inequal-
ity) can be conceptualized as a risk marker or higher 
level indicator that impact on a range of other exposures 
and risk behaviours more proximal to the health effects. 
If such hierarchical levels and mediation remain unac-
counted for, large PAFs ascribed to education as a com-
pound risk factor could be expected. It is yet not clear at 
what level social inequality should be included in a CRA 
framework and how models could partition its roles as 
both a risk marker and a risk factor, with burden esti-
mates reflecting the conceptual choices correctly. This 
issue is related to the challenges described earlier, where 
mediation in causal pathways and combination of risks 
towards producing adverse health outcomes complicates 
attributing burden to single risk factors. Social inequal-
ity will in many respects operate through mediation and 
combinations of health behaviours that may result in dis-
eases. Beyond this issue, the large time-span of relevance 
in the impact of social inequality is not unique, but chal-
lenging both for the primary studies needed to identify 
relative risk estimates, but also when identifying the right 
pairing between time of population exposure levels and 
the respective time of outcome identification.

Definition of the theoretical minimal risk exposure level
Compared to a unidirectional risk factor like smoking (0 
smoking carries the minimum risk level), the TMREL for 
social inequality or a given indicator seems less certain. 
For education and in relative terms: Is no inequality in 
number of years of education carrying the minimal risk? 
Would that be uniform across outcomes and settings? 
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And in absolute terms, is a given number of years of 
education likely to provide the lowest risk for adverse 
health outcomes? Again, as the CRA framework attempts 
to standardize risk over time and place, identifying a 
TMREL seems a conceptual and practical challenge.

In summary, social inequality in health is a core pub-
lic health challenge and a risk factor for adverse health 
outcomes. Yet, more conceptual and empirical work 
is needed for social inequality to be included in CRA 
frameworks. How to assess and appraise causal roles of 
social inequality on health outcomes alongside other risk 
factors seems an important step. Many of the challenges 
will likely increase beyond using education as indicator, 
not at least due to sparser and less comparable data from 
existent observational studies. The ideal, but unfeasible 
approach would be to produce BoD-estimates strati-
fied by social groups, as it currently done for sex and age 
groups. This would require stratified relative risks and 
exposure data, again resting on some of the same chal-
lenges with definitions, data and comparability.

Comparative risk assessment versus health impact 
assessment
Both the CRA method and HIA are increasingly used. 
The CRA methodology is often confused with that of a 
HIA. They, however, serve different purposes and are 
based on different methodological frameworks. We 
therefore highlight the differences to help the novice 
users disentangle these concepts.

The main purpose of CRA is to generate comprehen-
sive and comparable estimates of the current burden 
associated with risk factors and the historical exposure to 
these risk factors. On the other hand HIA aims to apply 
existing evidence and consider input from stakeholders 
to determine the potential effects of proposed policies, 
plans or interventions. Thus, a HIA is more a prospective 
tool that provides estimates of changes in disease bur-
den related to changes in exposure resulting form given 
measures.

CRA provide theoretical estimates of the relative 
impact of risk factors. The estimates should probably 
serve more as “heuristics” than as “measured truths”. Fur-
thermore, the definition of the TMREL merely reflects a 
hypothetical ideal world, without considering what is fea-
sible or desirable. HIA, on the other hand, aims to sup-
port decision making by estimating the potential effect of 
realistic policy scenarios. Confusingly, however, the term 
HIA is sometimes also used for studies that aim to assess 
the health impact of risk factors.

Historically, the World Health Report (WHR) 2000 
proposed BoD as a tool for monitoring health system 
performance in achieving health system goals of health 
outcome improvement and their equitable distribution 

[35]. The performance of health systems is of course 
dependent on the health system policies, programs and 
interventions implemented along their effectiveness as 
well as their intersectoral activities in ensuring positive 
outcomes of actions in other sectors as well [36]. Over 
the years, various concepts and tools such as effective 
coverage and WHO-CHOICE [37] have been used to 
provide direct links between health system interven-
tions and both current and predicted future health 
system outcomes. A logical development in the same 
direction has been the extension of these BoD based 
approaches to measure health system performance also 
in achieving universal health coverage [38, 39].

In parallel, the HIA methodology has been promoted 
as a key instrument to safeguard public health [40, 41]. 
HIAs have been successfully and extensively used in 
urban planning, to assess the impacts of air pollution 
and transport [42–46] but also in other areas such as 
smoke free workplace policy and impact of health pro-
motion campaigns [47].

Methodologically, HIA sets out to systematically 
judge the potential health effects of proposed policies, 
programs, or projects on population health and the dis-
tribution of those effects within a population by use of 
mixed-methods. HIA is thus intended to inform deci-
sion-makers by predicting the consequences in imple-
menting different options, thereby enabling them to 
choose the option most beneficial for health and health 
equity [47]. HIA therefore ideally produces a practi-
cal set of recommendations for various policy options 
that can be incorporated into decision making process 
[46, 48]. As high proportion of HIAs focused on urban 
planning, traffic, agricultural policies and other areas 
outside the core focus of health systems, HIA is a sig-
nificant Health in All Policies tool [49]. In this capacity 
it also helps to link progress in other sectors to achieve-
ment of the health-related SDGs while also providing 
evidence on effective interventions to improve popula-
tion health outcomes and equity by action of other sec-
tors [50–52].

In the increasingly connected world and with health 
systems relying ever more on community role and 
engagement in design and delivery health care services 
for strengthening person-centered health care sys-
tems HIA sets a good example. Namely, while there are 
numerous HIA frameworks, a common feature is system-
atic engagement of communities in scoping and assess-
ing health impacts of the planned interventions [53]. 
HIA thus provide a model for how to create ‘knowledge 
spaces’ in which different perspectives and information 
can be brought around the table to create more demo-
cratic approaches to planning policies [54] while also 
providing a platform to bring BoD and CRA information 
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to the communities thus, providing the link between high 
level policies and impact on members of the population.

Conclusions and recommendations
Overall, the CRA methodology provides a set of stand-
ardized approaches to estimate the disease burden attrib-
utable to risk factors. Such estimates are vital to inform 
health policy decision makers on the key health determi-
nants forming the current and also future health of popu-
lations. Knowing which risk factors are associated with 
the highest disease burden provides additional informa-
tion for guiding prevention and intervention measures 
aiming at improving the health status of entire popula-
tions. However, key challenges are still to be tackled to 
see the whole picture. Only about one half of the over-
all disease burden is currently attributable to risk fac-
tors, and as shown in the paper, the position in the causal 
chain of events is not clear for all risk factors and it is 
likely that not all relevant risk factors and risk-outcome-
pairs have been considered yet.

Given the different methodological challenges associ-
ated with CRA, it is indispensable to transparently report 
the input and process data of the models used in the 
CRA. It is also recommended to provide additional infor-
mation on the evidence behind the associations of the 
selected risk-outcome-pairs to allow the reader to judge 
about the robustness of estimates and carefully compare 
estimates of different risks. Ad hoc comparisons espe-
cially of estimates provided by different CRA should be 
handled with caution and conclusions only drawn when 
having a transparent overview about the assumptions 
used. HIA can serve as potential addition to CRA as they 
provide information on how the current burden of dis-
ease will change in case of selected prevention and inter-
vention options. This kind of forward-looking analyses 
can help decision makers to choose the options which are 
connected to highest benefits for the health of the popu-
lation under study.
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