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Abstract
Current theories propose that our sense of curiosity is determined by the learning progress
or information gain that our cognitive system expects to make. However, few studies have
explicitly tried to quantify subjective information gain and link it to measures of curiosity.
Here, we asked people to report their curiosity about the intrinsically engaging perceptual
‘puzzles’ known as Mooney images, and to report on the strength of their aha experience
upon revealing the solution image (curiosity relief). We also asked our participants (279) to
make a guess concerning the solution of the image, and used the distribution of these
guesses to compute the crowdsourced semantic entropy (or ambiguity) of the images, as a
measure of the potential for information gain. Our results confirm that curiosity and, even
more so, aha experience is substantially associated with this semantic information gain
measure. These findings support the expected information gain theory of curiosity and
suggest that the aha experience or intrinsic reward is driven by the actual information gain.
In an unannounced memory part, we also established that the often reported influence of
curiosity on memory is fully mediated by the aha experience or curiosity relief. We discuss
the implications of our results for the burgeoning fields of curiosity and psychoaesthetics.
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Introduction
Why do we need a sense of curiosity? One plausible answer emerging from the recent
revival of curiosity research (Gottlieb & Oudeyer, 2018; Kidd & Hayden, 2015) is that
learning is costly. We need some sense of whether we will be able to make progress in
learning the structure of our world, or we will just be wasting valuable computational
resources. We need to navigate to activities or environments that will reveal learnable
regularities and avoid spending limited resources on input variability that is either due to
mere noise or to regularities that are just too complex given the mental models
(competence) we currently possess. This is the role of curiosity defined as a type of
motivation that is inherent within information processing, no matter the immediate adaptive
value of the processed information (Hunt, 1981; Livson, 1967).
Indeed, from very early on in development, infants show a keen sensitivity for this. For
example, 17-month-old infants intuitively attend more to learnable than to unlearnable
artificial grammars, hence avoiding to labor in vain on inputs without learnable patterns
(Gerken et al., 2011). Similarly, in the so-called Goldilocks effect, very young infants
selectively pay attention to visual or auditory materials of intermediate predictability (Kidd
et al., 2012, 2014), again preventing a waste of computational resources on inputs that are
already known (too simple) or unknowable (too unpredictable). These early signs of
curiosity, measured by looking time, align with measures of interest and curiosity later in
life, often showing a similar focus on materials (be it artworks or artificial stimuli) of
medium complexity (Berlyne, 1966; Day, 1981).
These strands of evidence, together with work in developmental robotics and computational
neuroscience (Gottlieb et al., 2013; Schmidhuber, 2009), have converged on a concept of
curiosity as expected learning progress or information gain. It casts curiosity as a
metacognitive feeling based on specific information-theoretic principles and directing us to
the best opportunities for learning. It is metacognitive because it is rooted in an evaluation
of whether there is sufficient ground to (continue trying to) learn particular materials
(Metcalfe et al., 2020). In other words, it “indicates when there’s a match between the
presented learning material and the learner’s readiness to encode it” (Wade & Kidd, 2019),
ensuring that we remain as much as possible in the so-called “zone of proximal
development” (Vygotsky, 1962), the optimal region of learning. This concept of curiosity
goes beyond the influential “information gap” theory (Loewenstein, 1994). Indeed, it is not
sufficient to notice a gap in your knowledge (uncertainty) to become curious. In addition,
curiosity requires a meta-cognitive expectation that the gap is bridgeable with current
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capacities, in other words, that the uncertainty is resolvable, so we can ‘cope’ with it (see
also, Silvia, 2005).
An account based on learning progress or information gain can explain why we often are
most curious about medium uncertainty. Indeed, we can usually expect to make progress
here, because medium uncertainty often implies we have at least some mental models for this
domain. However, crucially, such an account does not enforce an inverted U-shape relation
between uncertainty and curiosity. Indeed, contrary to the seminal works of Berlyne and
Loewenstein, an information gain account predicts a monotonically increasing relation
between uncertainty and curiosity, as long as the uncertainty in question is expected to be
reducible. Evidently, the potential for learning progress increases with uncertainty.
The evidence for intermediate uncertainty being most curiosity-inducing is indeed mixed.
While some studies have found support for medium uncertainty or confidence about a
solution (Baranes et al., 2015; Kang et al., 2009; Marvin & Shohamy, 2016), usually in the
context of curiosity about trivia questions, others showed that curiosity or exploration
monotonically increases with uncertainty (van Lieshout et al., 2018). These inconsistencies
may be due in part to a lack of consideration for the expected reducibility of the uncertainty
studied (subjective appraisal of one’s coping potential). However, another major difficulty is
the quantification of subjective uncertainty (and expected information gain) as such.
Self-reported confidence ratings or objective stimulus-based uncertainty measures at best
crudely approximate and at worst seriously misestimate that parameter.
Here, we use a new way of quantifying subjective uncertainty and information gain, for
stimuli that have not been used before in curiosity research, namely Mooney images.
Mooney images (Mooney & Ferguson, 1951), the most famous example of which is the
‘camouflaged’ Dalmatian, are constructed by blurring and thresholding natural grayscale
images to arrive at irregular black-and-white patchworks, often impossible to recognize
without extra cues (see Figure 1). These images have already given us many insights into
our visual system (e.g., Dolan et al., 1997; Gorlin et al., 2012; Hegdé & Kersten, 2010) and
they have a couple of features that make them extremely suited for curiosity research as well.
Mooney images are naturally engaging perceptual ‘puzzles’ for participants. They can elicit a
strong tip-of-the-tongue feeling (the feeling of being on the brink of resolution), associated
with curiosity (Metcalfe et al., 2020). In other words, they often give a sense that the
uncertainty is reducible with continued sampling (eye fixations) and mental effort. With the
best instances of Mooney images, perceivers also experience a strong phenomenological shift
when eventually they autonomously discover (or are shown) the solution: One cannot
‘unsee’ it when again confronted with the same Mooney image (cf. one-shot learning;
Giovannelli et al., 2010; Ishikawa & Mogi, 2011). The disambiguation is usually
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accompanied by an Aha-Erlebnis (Kounios & Beeman, 2014), a positive feeling of insight
and relief.

Figure 1: Mooney or two-tone image (left) and its grayscale source (solution) image (right).

The extent to which the experience of these images follows that prototypical Mooney
character, i.e., the instant ‘click’ of recognition and the strong aha experience, depends on
both individual factors (e.g., previous experience), as well as image-based factors (notably
the level of ‘support’ for the solution). However, very little is known about the specific
factors determining the positive aha experience. One tempting hypothesis is that where
curiosity gauges expected information gain, the aha marks actual information gain: the
intrinsic reward of curiosity relief. Information gain quantifies the reduction in uncertainty
after the solution is known (it is also known as relative entropy, with entropy being the
information-theoretic measure of uncertainty; Cover & Thomas, 1991). Theoretically, the
idea is that a perceiver’s visual system has a particular probability distribution over candidate
hypotheses or possible “hidden causes” for a given Mooney image. However, at this stage, its
meaning is still ambiguous. Once the solution is known, all probability mass is concentrated
on one best-supported hidden cause that explains the image features well (virtually zero
uncertainty). In other words, the shift in the probability distribution over the hypothesis
space should be proportional to the aha experience. Assuming that the posterior entropy is
indeed zero, the initial entropy can be used as an estimate of the information gain or
reduction in entropy (the shift). Still, this entropy cannot be directly measured for any
particular subject and image combination (i.e., we do not know yet how such distributions
are encoded in neural activity). Here, we approximated this semantic entropy of an image
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by ‘crowdsourcing’ the distribution based on the counts of the guesses made by our total
sample of participants. Under the assumption that curiosity measures expected uncertainty
reduction (or information gain) and the relief (aha) is proportional to the actual uncertainty
reduction, we asked to what extent people’s curiosity before the reveal accurately predicts
their post-reveal aha experience, and whether both indeed correlate with semantic entropy.
Another outstanding question in curiosity research concerns the relation of curiosity with
memory. Given curiosity’s above-mentioned role in making learning more efficient, a
positive influence of curiosity on memory is to be expected. Indeed, several studies have
gathered evidence that items for which participants reported higher curiosity, were also
better remembered, sometimes up to weeks later (Gruber et al., 2014; Kang et al., 2009).
However, a recent study suggests this effect might not be quite as strong as one would
expect (Wade & Kidd, 2019). Importantly, most of these studies did not measure the
participants’ reaction upon revealing the answer or solution for the item. Specifically, the
intrinsic reward of curiosity relief could be a crucial mediator of the encoding strength in
memory. While one study found a positive correlation between amygdala activity at reveal
and solution memory for Mooney images (Ludmer et al., 2011), no previous study related
the strength of the positive aha experience to memory. To sum up, we use Mooney images
to investigate whether curiosity and curiosity relief are driven by subjective uncertainty and
(potential) information gain, and whether curiosity and curiosity relief have independent
effects on memory.

Methods

Participants
280 first-year psychology students (242 women) completed the study for course credits, 194
from collective testing sessions, and 86 from individual web-based sessions. The procedure
was exactly the same for both. One participant was removed because she responded with the
exact same level of curiosity on all images (making it impossible to compute z-scores).
This study was approved by the Social and Societal Ethical Committee of the KU Leuven
and all participants gave explicit informed consent.

Stimuli
The prototypical Mooney images cannot be recognized without cues or sufficient time and
effort, but become instantly recognizable as soon as the grayscale source image has been
revealed once. Upon recognition, a strong phenomenological shift takes place when the
observer is confronted with the Mooney again. In the prototypical cases, one cannot ‘unsee’
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it (even after considerable delay), and a positive Aha-Erlebnis is felt with this perceptual
‘insight’. However, there is considerable individual variability in these characteristics (i.e.,
different people will experience the Mooney-effect for different images, to a different
extent). For all these reasons, there is no automated way to create such images and not all
grayscale source images are equally suited to generate Mooney versions (depending on
lighting, object segmentation, background texture, etc.). Hence, we used a combination of
automatized Mooney generation, hand selection, and piloting to create and narrow down
the stimulus set.
First, a very large set of Mooney images was created from grayscale images (‘solutions’) by
the procedure and code modified from Imamoglu et al. (2012), using source images from the
Caltech 256 (Griffin et al., 2007) and MemCat (Goetschalckx & Wagemans, 2019) image
databases. The former is a validated set of at least 80 different images for 256 everyday object
categories, which has been used to benchmark object recognition in AI systems. The latter is
an image set consisting of five broader semantic categories (animal, sports, food, landscapes,
vehicles), with 2K exemplars each, further divided into different subcategories (e.g., bear,
pigeon, cat, etc. for the animal category). The actual “Mooneyfication” process consists of
grayscaling, low-pass filtering, and thresholding an image such that grayscale values below a
certain value become white and those above this value become black (hence two tones). The
optimal threshold is determined by Otsu’s method, which maximizes the variance between
the two classes of pixels which are separated by the threshold (equivalently, it minimizes
intra-class variance) (van der Walt et al., 2014).
To reduce the set size and obtain good Mooney candidates, we first eliminated images 1)
that contained less or more than one identifiable foreground object, 2) that had little or no
discernible structure after Mooneyfication (i.e. excluding images that had few, very large
patches of black or white), or 3) in which the object was still overly obvious after
Mooneyfication. The remaining 755 candidate Mooneys were presented (in two one-hour
sessions) to 8 motivated participants. In this pretest, we only asked people whether (y/n) they
recognized the object and to what extent seeing the solution induced an aha-experience (on
a 7-point scale). Based on the results, we removed those images that were recognized
without help by most participants (images with >.8 recognition rate) and kept those that
generated at least some aha experience (images with >3.7 aha strength). Only Mooney
images with low initial recognition rate and high post-solution aha were selected for the
current study. The images all had a width and height between 250 pixels and 750 pixels. All
stimulus creation and selection procedures are documented in the Open Science Framework
(see Analysis section).
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Figure 2: Flow chart of the procedure of part 1, with our measurements in rectangles and the corresponding

theoretical concepts (and equations) in lozenges. The probability distribution plots represent semantic entropy

before (Ht) and after (Ht+1) the solution has been shown (Prob.=Probability; E=Expected).

Procedure
In the first part of the study (Figure 2), participants were shown a fixation cross (200ms) and
then a Mooney image for 3s followed by two 7-point rating scales. On one scale they
indicated the curiosity they felt when seeing the image (“indifferent” to “very curious”), and
on the other how confident they were about the solution of the image (“no clue at all” to
“very certain about my answer”). On the next screen, participants were encouraged to make
their guess concerning the content of the Mooney with a typed response. Participants were
informed in the instructions that all images depicted objects from one of the following
broad-level categories: animals, inanimate objects, plants, sports, vehicles, and food. Hence,
a good guess means knowing more than these broad labels for a given image. We used
examples (e.g., when a parrot is depicted, “parrot” or “bird” is correct, but not “animal”) to
indicate that we were looking for basic- or subordinate-level categories. After making their
guess, the solution (grayscale image) was shown (2s), followed by the Mooney image again
(2s). This is the moment the participant will (or will not) experience the phenomenological
shift. Immediately afterward, they were required to indicate the strength of their aha
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experience, again on a 7-point rating scale (from “absent” to “very intense”). The aha
experience is further described in the instructions as the “positive feeling of the ‘click’ you
sometimes experience when the pieces of the ‘puzzle’ fall together and you suddenly have
‘insight’ in the image”. Each participant received a random set of 80 Mooney images (never
more than 3 from the same category) out of the total set of 203.
In the second part, participants saw all images again (for 2s), supplemented by 20 new
Mooney images, all in random order. Now, the task was to remember (y/n) whether they
had seen the Mooney image already in part one (familiarity) and to remember the solution
(another open response). After this unannounced memory part, participants filled out four
questionnaires: two about different dimensions of trait curiosity, one about autism traits
(AQ-short; Hoekstra et al., 2011), and the Need for Closure scale (Roets & Van Hiel, 2011).
The latter measures a tendency to want cognitive closure and avoid ambiguity or confusion,
which we reasoned may influence one’s response to ambiguous Mooney images. The
AQ-short measures (subclinical) autism-like traits, which some studies suggest may alter
Mooney perception (Król & Król, 2019; Loth et al., 2010). The Five-Dimensional Curiosity
Scale Revised (5DCR; Kashdan et al., 2020) is a validated questionnaire assessing five
dimensions of curiosity (joyous exploration, deprivation sensitivity, stress tolerance,
thrill-seeking, and social curiosity). However, it does not include a perceptual curiosity
dimension, so we included the 10 items of the Perceptual Curiosity Scale (PCS; Litman et
al., 2005). Although trait curiosity might be a domain-general concept, we suspected trait
perceptual curiosity would be more related to the type of state curiosity induced by our
Mooney task.

Analysis
The open responses (first guesses pre-reveal and solution memory responses in the second
phase) were corrected programmatically with a fuzzy matching algorithm comparing
responses with pre-generated lists of valid responses, as described in Van de Cruys et al.
(2018), accounting for variations in spelling or typos. Our sampling of 80 images per
participant (out of the set of 203) gave us an average of 110 observations per image. One
participant had no variation at all on the curiosity measure, and was therefore excluded from
further analyses. All analyses except for the participant-based ones (relating to the
questionnaires) were done on raw scale scores as well as (participant-based) z-transformed
ones to account for individual differences in the use of the scales. Unless noted otherwise, all
correlations are Pearson correlations on the z-transformed scores. We clearly indicate when
analyses are post hoc, so corrected alpha-values apply. In terms of statistical tests, we used
Generalized Estimating Equations (McNeish et al., 2016) as implemented in the Python
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Statsmodels library (Seabold & Perktold, 2010) to correct for clustering of data points within
participants. These have the advantage of making a smaller number of assumptions than
hierarchical (generalized) linear models and the resulting beta’s are interpreted identically to
conventional (logistic) regression as the slope connecting the predictor to the dependent
variable.
The semantic entropy measure was computed as follows. Each guess on a trial (pre-reveal
guesses only) is compared to the list of used labels. If the guess is not in the list of labels (or if
the list is still empty), a new possible label is created for this image, to which all other guesses
for this image (by other participants) are compared (always using fuzzy-matching, see
Methods). Frequencies of all labels in the list are used to compute proportions of the label in
the total number of guesses (i.e. summed up frequencies of all the different guesses for a
given image). Note that empty responses are also tallied towards the total. These
‘probabilities’ were then used to compute the information entropy for an image as Shannon
defined it: 

𝐻(𝑋) =− ∑ 𝑃(𝑥
𝑖
)𝑙𝑜𝑔(𝑃(𝑥

𝑖
))

Where xi is the i-th guess in the list of used guesses. In this way, we attain a crowdsourced
subjective uncertainty of an image. Note that this analysis only uses the raw guesses and
totally disregards the ground truth for the image (guess accuracy).
In addition to the semantic entropy measure, we also assessed several measures of perceptual
entropy calculated directly from the Mooney and grayscale images to investigate whether
any low-level image statistics influence curiosity and aha ratings or memory accuracy. We
included five measures in total – pixel entropy, edge density, PHOG complexity, anisotropy,
and self-similarity – which have been found to relate to subjective ratings of complexity,
interest, and pleasure (Grebenkina et al., 2018; Lyssenko et al., 2016; Van Geert &
Wagemans, 2020). We refer to the supplementary materials for a brief explanation of how
these measures are computed. We also calculated the structural similarity between the
Mooney image and its grayscale solution as a measure of the physical match between the
grayscale image and its Mooney counterpart. We hypothesized that the strength of the
match would be related to the obviousness of the Mooney’s solution, thus perhaps playing a
role in the accuracy of the initial recognition of the Mooney or the strength of the aha
experience. Structural similarity was calculated using the “ssim” function in Matlab (Wang
et al., 2004).
All data and code for running the experiments, for deriving the image-based and semantic
entropy measures, and for all analyses and plots, are available at osf.io/hm2kb. At the same
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location, our Mooney stimulus set is made available for future studies, as well as an
interactive data explorer. The latter allows the reader to experience the Mooney images and
their resolution across the dimensions we measured. Information on inter-rater reliability
can be found in the supplementary materials.

Results

Semantic entropy
Our first hypothesis concerned the effect of semantic entropy on curiosity and aha
experience, tested in an analysis that disregards the accuracy of guesses. Indeed, most people
made a guess on most trials (on average 76% of trials), but mean accuracy was only .22 (in
the pre-reveal part). We created the semantic entropy measure using the number of different
guesses and their frequency (across participants) for a given image (see Analysis). It is a proxy
for the entropy of the subjective probability distribution over the hypothesis space for an
image, possibly capturing the guesses that may be implicit in many participants but were not
given (or even not conscious). We hypothesized that such an entropy measure would be
proportional to curiosity, but it is usually hard to compute for a particular individual being
confronted with a non-artificial stimulus (see also, Holm, 2017; Nicki, 1970). Of course,
since our probabilities are based on the ‘votes’ from the whole group, our crowdsourced
entropy measure should not be considered a direct measure of subjective entropy either, but
rather an approximation of it. Related to that, the correlation between the semantic entropy
of an image and the average confidence is only -.28 (p < .001). This shows these are different
measures of uncertainty: for one guess versus a potential distribution. Indeed medium
confidence may mean one sees different partial solutions (with similar confidence in each
guess) or sees one solution for which the support in the image is not high.
We found that semantic entropy correlated substantially with curiosity (r = .38, p < .001) and
aha (r = .55, p < .001; Figure 3), similar to confidence. However, confidence correlates more
with curiosity (r = .78, p < .001) than with aha (r = .57, p < .001), while the reverse is true for
semantic entropy (test of correlation difference: z = -3.38, p = .001; see Diedenhofen &
Musch, 2015). This is consistent with aha being proportional to actual information gain,
while curiosity tracks only an imperfect expectation of information gain. Indeed, (semantic)
entropy represents a potential for learning progress, in that a highly spread out distribution
of hypotheses (high entropy) will, after reveal, collapse into a distribution with concentrated
probability mass on one particular hypothesis (i.e., posterior entropy is necessarily zero). It is
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this shift in distribution that represents information gain and that we have identified as a
determinant of the strength of the positive aha experience.

Figure 3: Average aha plotted as a function of the semantic entropy of a Mooney image. Dots are individual

images, the solid line is the linear best fit. The shaded area is a 95% confidence interval for the regression.

In addition, the potential of multiple plausible hypotheses for a Mooney suggests it is an
engaging image (a measure of its ‘poly-interpretability’), so semantic entropy may be a
better basis to select prototypical Mooney images. It might be even better than average aha
itself, because of the large individual differences in aha (see supplementary materials).
Notably, this measure of uncertainty at the ‘meaningful object candidate’ level turns out to
have no correlations whatsoever with the low-level image complexity measures (all
correlations lower than .05). Although it is sometimes implied that low-level measures
capture the general complexity of an image, our findings show these measures really capture
different things. The image cues that give rise to (multiple) interpretations seem to still
escape us.
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Curiosity, confidence, and aha
Next, we looked at the relation between confidence or certainty about the guess and
curiosity. We find no evidence for a U-shaped relation as often reported in studies using
trivia questions (verified with the “two lines” procedure; Simonsohn, 2018), but rather a
significant monotonously decreasing relation, with people experiencing more curiosity the
less confident they were about their guess (r = -.33; p < .001; see Figure 4). We also looked
at what people are curious about: “the contents of the perceived information gap, or simply
the confirmation of whether or not their best guesses are correct” (Wade & Kidd, 2019).
Clearly, people were also, in fact even more, curious when they did not make a guess
(t(8409.55) = 16.91; p < .001; see also supplementary figure 1). As a sanity check, we also
could confirm that the more confident people were about their guess, the more likely they
were indeed accurate (r = .5; p < .001).

12



Figure 4: Standardized curiosity rating as a function of standardized confidence rating. Dots are individual trials,

the solid line is the linear best fit. The shaded area (too small to see here) is a 95% confidence interval for the

regression.

We could also confirm that people’s curiosity (pre-reveal) predicts the strength of their
(post-reveal) aha-experience (r = .28; p < .001, Figure 5). Assuming curiosity is indeed a
measure of expected learning gain, while the aha experience marks the actual gains one has
made, it seems that, through their curiosity, people indeed have some (imperfect) sense of
future learning progress. This was even more obvious on a per-image analysis: images that
on average elicited higher curiosity were also the ones that tended to elicit higher aha
experiences (r = .68; p < .001, Figure 5). Note that these findings are modulated by accuracy,
in the sense that, quite logically, accurate, high confidence trials give little or no curiosity or
aha. Indeed, with regard to the relation between confidence and aha experience, we can see
that only for accurate guesses, aha really goes down with confidence (for incorrect guesses: r
= -.02, p = .008; for correct guesses: r = -.31; p < .001; see Figure 6), meaning that if you
were highly confident of your guess and it turned out to be right, you have decreased aha.
In those cases, the solution was likely too obvious, and you did not gain any new
knowledge. If your guess was inaccurate, your confidence about it does not matter much in
the aha experience, i.e., if you were highly confident of an inaccurate guess, there is no cost
or benefit in strength of aha.
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Figure 5: Standardized aha rating as a function of standardized curiosity rating (left panel). Dots are individual

trials, the solid line is the linear best fit. The shaded area is a 95% confidence interval for the regression. In the

right panel, each dot is an image, and average curiosity of this image is plotted by its average aha rating.

Figure 6: Standardized aha rating as a function of standardized confidence rating (left). Dots are individual trials,

the solid line is the linear best fit. The shaded area is a 95% confidence interval for the regression. Data is

plotted separately for accurate (red)  and inaccurate trials (blue).

Curiosity, aha, and memory
Our next question is whether people indeed have better memory for images that induced
greater curiosity and aha. In general, accuracy increased on average by 35 percentage points
in the memory phase, compared to the pre-reveal phase (mean accuracy from .22 to .57).
We found indeed that aha is predictive of better solution memory accuracy (r = .12; p < .001;
see Figure 7) and that this is also the case, but less so, for curiosity (r = .04; p < .01). Note
that for this analysis, we obviously removed the trials of the images for which participants
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were already accurate the first time around. We confirmed this with a model including
every measure from the first phase (accuracy, confidence, curiosity, and aha) as a predictor
for dependent variable solution memory. While the main effects of aha (B = .25; z = 11.66; p
< .001), confidence (B = .17; z = 8.82 ; p < .001), accuracy (B = 1.64; z = 31.23; p < .001), and
the interaction between aha and accuracy (B = -.34; z = -6.22; p < .001) were significant, the
effect of curiosity was not significant (B = .03; z = 1.77; p = .07). However, when aha was
dropped from the model, the effect of curiosity did become significant (B = .07; z = 4.33; p <
.001). Finally, the influence of aha on solution memory was confirmed using per-image
data, again only including incorrect trials from Part 1, showing that those images that were
(on average) better remembered, were the ones that elicited greater aha experiences in part 1
(r = .31; p < .001). Finally, participants with higher average aha scores (across images) tended
to also have better memory, though this correlation was smaller (r = .13; p = .03). It suggests
that most of the effect of aha on memory takes place within individuals, and between
images, as one might expect. We will not report the findings on Mooney familiarity (old
vs. new Mooney) memory in detail as correlations with curiosity and aha were
systematically smaller and/or insignificant, suggesting particularly the solution memory is
influenced by our predictors (these results can be found online at osf.io/hm2kb).
In a post hoc analysis, we added a computed variable representing the deviation of aha rating
compared to a local baseline (moving window average of aha ratings in the previous 10
trials). If we control for aha, confidence and curiosity, only this aha deviation measure
remains significant (B = .1; z = 4.07; p < .001) with regard to predicting solution memory. It
seems then that if aha is a measure of intrinsic reward associated with the relief of curiosity
(with information gain), particularly the (information) reward prediction error compared to
the currently expected information reward (which seems to be continuously updated)
influences memory (see also Marvin & Shohamy, 2016).

15



Figure 7: The likelihood of remembering an image correctly (given the Mooney version in part two) as a

function of standardized aha rating (from part one). Dots are individual trials, the solid line is the logistic fit.

The shaded area is a 95% confidence interval for the regression.

In sum, our findings so far suggest that the greater their aha experience, the more strongly
people encoded the image. The Mooney images that elicit a strong aha may be the “best” in
terms of information gain, giving us the largest perceptual shift and the best solution
memory. However, the impact of curiosity on memory was not very large. In fact, a
mediation analysis (Imai et al., 2010) revealed that the effect of curiosity on solution memory
is significantly mediated by aha experience (causal mediation effect: B = .01, p < .001) such
that the direct effect of curiosity on memory is negligible (B = -.003, p = .29 ). This suggests
that previous studies finding an effect of curiosity level of items on memory for those items
might have missed this mediation, if they did not measure the experience (of appreciation or
aha) upon revealing the missing information. Still, our study also confirms curiosity predicts
this appreciation, so arguably curiosity is a good measure of how cognitively engaged one is
or will be with the item, which in turn predicts memory (cf. the elaboration effect of
memory; Craik & Tulving, 1975). Related to this, if we only consider inaccurate first
guesses, we find higher strengths of aha experience when one has actually made a guess
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(t(9221.23) = -6.04, p< .001), suggesting that more engagement, in addition to expectation
violation (wrong guess) has considerable influence on aha (and so memory). However,
contrary to Brod and Breitwieser (2019) who report that making a prediction increases
curiosity, we did not find a positive effect of engagement (making a guess) on curiosity
(cf. supra). In fact, we find the opposite effect: people are more curious when they do not
make a prediction. This could be due to differences in baseline engagement (interest) in the
stimulus materials (numerical trivia facts in Brod and Breitwieser) or, as highlighted in the
introduction, with a strong expectation of solvability (uncertainty reduction) because
solutions were always provided.

State and trait curiosity
We were also interested in whether a person’s average state curiosity as measured in our task
is correlated with a person’s trait curiosity as measured by validated questionnaires on trait
curiosity. We indeed find that one’s average state curiosity is positively predictive of one’s
score on the 5DCR, but only very mildly so (r = .13; p = .03). Surprisingly, this correlation
seems to be driven largely by a relation with the social curiosity subscales, as the correlations
with the other subscales were all insignificant (overt social curiosity r = .177; p = .003; covert
social curiosity r = .14; p = .016; all other subscales: p > .15). However, also the separate trait
perceptual curiosity scale correlated significantly, though again very mildly, with average
state curiosity (r = .15, p = .01), as expected for a perceptual task like ours. Given those small
correlations, we can conclude that our form of induced state curiosity is not captured well
by the trait curiosity measures. Interestingly, participants that had higher average curiosity
(or aha) did not have a higher memory accuracy (r = -.003, p = .91) which implies that the
effects of curiosity or aha on memory take place within persons, as the information gain
account would predict. Finally, neither the Need for Closure Scale nor the Autism Quotient
questionnaire (AQ-28) correlated with task curiosity.

The contribution of low-level image statistics
Finally, we explored the effect of those low-level image complexity measures on the
strength of curiosity, aha, and in (memory) accuracy. We computed multiple measures of
image complexity (see Analysis) for both the Mooney image and the corresponding
grayscale image. In addition, we computed the structural similarity between the Mooney
image and its corresponding grayscale image, which we expected would be able to capture
part of the ease of resolution or the obviousness of the solution in the Mooney. Structural
similarity had no effect on first guess accuracy (r = -.02; p = .83), but it was related to
post-reveal solution memory (r = .19, p = .007; first part inaccurate guesses only; Figure 8),
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suggesting that it is not so much a measure of obviousness of meaningful structure, but that
it may only help to make similar features become actual cues after you have already seen the
solution. However, structural similarity was not correlated with aha experience (r = .06, p =
.39), nor with curiosity or confidence, implying that it does not capture the processing
characteristics that determine aha experience. Top-down influences (not captured by
low-level measures such as structural similarity) may have a more important role here. With
regard to our complexity measures, our analysis should be considered exploratory. Although
relations have been found between preference and interest and various computed
complexity measures for (abstract) artworks (Lyssenko et al., 2016) or arrays of objects (Van
Geert & Wagemans, 2020), our analyses did not reveal (Bonferroni-corrected) significant
correlations between curiosity or aha and any of our complexity measures. The only
correlations that survived corrections were between complexity measures (primarily:
anisotropy of the Mooney, anisotropy of the grayscale, edge entropy of the grayscale), and
familiarity memory (old vs. new Mooney), such that familiarity memory was more accurate
for less complex images. Interestingly, measures concerned both the Mooney and grayscale
versions, meaning that Mooney familiarity accuracy varied with characteristics of the
corresponding solution. Correlations with solution memory accuracy pointed in the same
direction but did not survive our strict correction. In sum, low-level image statistics explain
little of the variance in aha, curiosity, or memory.
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Figure 8: Average memory accuracy plotted as a function of the structural similarity between Mooney image

and grayscale solution (source) image. Dots are individual images, the solid line is the linear best fit. The shaded

area is a 95% confidence interval for the regression. Data is plotted separately for accurate (red)  and inaccurate

trials (blue).

Discussion
The key contributions of our study can be summed up in five points. First, we found clear
evidence that curiosity (relief) tracks semantic information gain, consistent with current
theories of curiosity based on expected learning progress. Second, our analyses indicate that
the effect of curiosity on (incidental) solution memory is mediated by aha or curiosity relief,
which may imply that curiosity facilitates memory, but only if the relief (actual gain) aligns
with or exceeds curiosity (expected gain). Third, we show that the strength of ‘state’
perceptual curiosity reflects a domain-general individual trait curiosity only to a very limited
extent, as measured by established curiosity questionnaires. Fourth, low-level image-based
statistics do not explain much of the variance in curiosity, aha, memory, or semantic
interpretability (semantic entropy). This suggests that these image statistics have limited
importance in understanding complex evaluations such as curiosity and (aesthetic)
appreciation, which has been likened to the aha experience (Muth & Carbon, 2013). Fifth
and finally, we provide a new set of stimuli for research on perception and curiosity, with
reference data on multiple dimensions (most notably semantic entropy) that can be used in
future studies into the neural or psychophysiological correlates of curiosity and curiosity
relief.
Any experimental ‘task’ on curiosity will technically be a bit contrived because a ‘task’ is
imposed, while curiosity provides a sense of what ‘tasks’ to engage in to begin with (but see,
Geana et al., 2016). This implies an unavoidable degree of motivational impurity in studies
on curiosity or intrinsic motivation, since “any instruction intended to entice subjects to
work on a task carries with it an implication that the experimenter will be pleased if the
subject does so and displeased if the subject does not” (Walker, 1981). For this reason, we
started out with intrinsically engaging visual stimuli, that may be more suited for studying
curiosity than the oft-used trivia questions. Two earlier studies used image materials but in
blurred (low-pass filtered) versions, instead of the thresholded (Mooney) images that we
used. Nicki (1970) found that medium blur leads to maximum uncertainty about object
identity, using guesses and confidence ratings of one individual. Still, consistent with our
findings, he further reports that curiosity, as measured by the preference to see the unblurred
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object (rather than an unrelated but comparable clear image) after being presented with the
blurred object, follows an inverted U-shaped function of blurredness. Jepma et al. (2012)
similarly used images with an intermediate degree of blur, but did not make trial by trial
measurements of curiosity (or relief). They did report that resolving blurred images led to
improved incidental memory, consistent with our findings.
Van Lieshout et al. (2018) studied curiosity in a lottery task, in which participants were
confronted with a vase of marbles of two different colors and in different proportions, to
manipulate uncertainty. Participants could win monetary rewards based on the outcome of
the draw from the vase, and their curiosity about the outcome was measured either through
self-report or through their willingness to wait to see the outcome. As in the current study,
their results showed that curiosity was a monotonically increasing function of uncertainty,
computed as the outcome uncertainty for a given vase (as well as independently varied
reward probability). Note that this is a purely passive observation task because participants
could not influence outcomes in any way. This is slightly different from our task, given that
it was possible to influence outcomes using eye movements and self-generating possible
solutions (at least for the time the Mooney image was on-screen). If anything this should
increase curiosity.
Indeed, the availability of actions to gather more information (i.e., exploration) is crucial,
because, as indicated in the introduction, it heightens the sense of (expected) reducibility of
uncertainty that we identified as crucial in curiosity. In line with the recent predictive
processing (also called active inference) accounts of the brain (Clark, 2015; Hohwy, 2013),
this implies a proactive stance of the brain (agent) not only inferring the hidden causes of the
current input (e.g. the object that ‘generated’ the Mooney image) but also predicting the
uncertainty that is to come, as well as whether that uncertainty is expected to be resolvable.
The latter is called epistemic value (or information gain) and is evaluated in order to select
future actions so as to minimize (expected) uncertainty (Friston et al., 2017; Schwartenbeck
et al., 2013; Seth et al., 2020). Without going into the computational technicalities of this
account of curiosity, it brings two important corrections on classical theories of curiosity
(Berlyne, 1966; Loewenstein, 1994). The latter were drawing on classical information
theory centered on the idea of passive receivers, while active inference emphasizes the active
contributions of agents. First, this means that it is not some unspecific or objective
uncertainty that matters for curiosity but rather the subjective uncertainty, which is always
relative to a particular model. Consequently, expected learning progress is not only based on
current sensory evidence but also on prior knowledge formed by similar experiences (Wade
& Kidd, 2019). As van Lieshout et al. (2018) remark this may explain why studies based on
trivia questions found moderate uncertainty to be most curiosity-inducing: Participants
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might just not have had mental models for many of the topics of the questions (so no
interest). Second, the active inference account makes apparent that curiosity is not just a
function of perception but also of the potential for action. It is captured by expectations on
the resolvability of uncertainty, and it is another reason why the maxim of moderate
uncertainty may not hold. Future studies using our Mooney stimuli could systematically
address whether the possibility for action or so-called ‘epistemic foraging’ (exploration to
learn about the structure of sensory inputs, see e.g., Clark, 2018), modulates curiosity. For
example, participants could actively control partial revealing of information, by gradually
blending in the solution with the Mooney image. Another limitation of the current study is
that we did not ask participants to explicitly judge the expected solvability (reducibility of
the uncertainty) of the Mooney images, because it might have influenced the curiosity
measure. Future studies could select a subset of high curiosity-inducing and low
curiosity-inducing images to verify whether these indeed differ reliably in the extent to
which people estimate that they would be able to solve them given unlimited viewing time.
Given that we eventually provided the solution for all of the images, participants might have
judged reducibility to be similar for all images. However, given that information gain
explains only part of the variance in curiosity, it is conceivable that differences in
reducibility did play a role here.
Let us now turn to the interpretation of the aha-related results. In fact, the aha experience is
often connected to aesthetic appreciation and preference. For example, Muth and Carbon
(2013) found that having the insight or Aha-Erlebnis for a Mooney image increases
subsequent liking of the image. And indeed, the literature on preference or (aesthetic)
appreciation and curiosity or interest is highly overlapping, both in theoretical ideas
(cf. inverted U-curve) and empirical measurements (e.g., preference is used to measure both
curiosity and appreciation). This has historically always been the case, and for good reasons.
Our conceptualization in terms of expected (curiosity) and actual (aha or appreciation)
information gain solidifies this connection. Hence, we discuss aha as a form of intrinsic
reward causing the appreciation of visual images, while acknowledging that the aha
phenomenon may only explain part of what makes us like images (aesthetically).
The inventive early work on appreciation or liking focused on geometric patterns for which
objective entropy (complexity) could still be quantified (e.g., Terwilliger, 1963). Consistent
with the reasoning on learning progress, the results show a clear influence of learning and a
preference for patterns that deviate systematically from what one is used to (and has
presumably learned already). The objective entropy that is most pleasurable might indeed be
a moving target because it is subjective entropy that counts. Interestingly, Terwilliger
(1963) already noted that 1) even for these ‘simple’ patterns, there are multiple ways to

21



quantify ‘objective’ complexity depending on subjective choice of the coding scheme (for an
instructive formal treatment, see Feldman, 2004), and, 2) that proper comparisons were
clouded by familiarity and meaning emerging to different degrees along the entropy
continuum, sometimes in idiosyncratic ways. More recent research has tried to link
objective low-level image entropy of actual artworks or more ecological arrays of objects
with appreciation or interest for these stimuli but has all-in-all led to only modest
correlations (Graham, 2019; Lyssenko et al., 2016; Van Geert & Wagemans, 2020),
consistent with our own findings. Although our stimuli are obviously not actual artworks,
the different low-level entropy measures indeed explain very little variance in meaning and
appreciation (or curiosity). Maybe this should not surprise us, given that the perceptual
features that make something a potential bearer of meaning may require integration on a
more global scale, something that is not adequately captured by the low-level characteristics
we used. Furthermore, the very task we used (identifying the content of images) may have
biased participants to the semantic level, thereby curtailing the effect of lower-level factors
on aha (and curiosity). That said, there is evidence for a default semantics-first processing of
(visual) stimuli (Peterson, 1994; Pinna, 2010), suggesting that our results may generalize
beyond our specific task or materials.
Indeed, in contrast to pixel entropy, semantic entropy of images did strongly predict
appreciation, which matches with findings of semantic instability, ambiguity, or
indeterminacy being conducive to (aesthetic) appreciation (Ishai et al., 2007; Muth et al.,
2016; Muth & Carbon, 2016; Nicki et al., 1979; Pepperell, 2006; Zeki, 2004). However,
because we measured appreciation as the aha experience at a time when the stimulus is
already perfectly disambiguated, our findings throw new light on the reason why
semantically unstable or indeterminate images are often liked more. This is, arguably, the
case because these poly-interpretable, indeterminate images have a greater potential for
information gain. Indeed, we have attributed the strong aha to large shifts in the distribution
of beliefs (in the Bayesian sense) technically known as information gain, relative entropy,
or Kullback–Leibler divergence (see also Itti & Baldi, 2009; Tanner & Itti, 2017). Liking a
stimulus is a function not of the stimulus per se, but of the subjective process of going from a
state of high uncertainty to a state of lower uncertainty (Van de Cruys, 2017; Van de Cruys
& Wagemans, 2011).
That said, information gain at the level of semantic entropy clearly does not capture all
factors involved in the aha experience. Specifically, it does not fully account for the quality
of the end solution: The support in the image for the particular solution. Knowing the
solution compresses our mental representation of the Mooney image: It becomes predictable
so you know which features, patches, or edges in the Mooney image are relevant, which
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belong together and which are irrelevant (e.g. background, shadows,…). If all cues in an
image line up, it is unlikely to be created by a random process, increasing the “eureka”
feeling (Feldman, 2004). This is an additional way in which we reduce entropy or make
learning progress here better (but equivalently) described as predictive or compression
progress (Schmidhuber, 2009). Images vary on this aspect as well, so that the sensory
‘evidence’ in the image will be explained better or worse by the hidden object. One might
conjecture that, if there are definite image cues that lend themselves to multiple
interpretations (cf. high semantic entropy), that also implies these are well-explained by the
actual solution, i.e. can serve well as evidence or ‘support’ for it. However, whether this form
of compression gain can be a source of the positive aha experience would need to be tested
explicitly (e.g. using the paradigm by Król & Król, 2018).
Finally, our findings concerning the modest relations of average state curiosity to
questionnaires about trait curiosity, indicate that the latter clearly need to be validated more
thoroughly based on actual experimentally-induced curiosity (or exploration), instead of
merely using other questionnaires measuring similar constructs. Only then will we be able
to establish whether curiosity is a domain-general trait. Note as well that the information
gain account of curiosity casts serious doubts on whether a domain-general factor would
account for much of the variability. The importance of a variable sense of curiosity sensitive
to actual good learning opportunities is mostly apparent within individuals (as our results
confirm).
Along the same lines, our findings suggest hacking our sense of curiosity to improve
memory (e.g., in education), would only work if curiosity relief (aha) is boosted
accordingly. Marvin and Shohamy (2016) measured both curiosity about and satisfaction
with the answers to different trivia questions and computed the information prediction error
as the discrepancy between the anticipated (the curiosity rating) versus the received
information reward (the satisfaction rating). They found that this information prediction
error predicted subsequent likelihood of remembering the answers. We could not confirm
this in our data (using the difference between curiosity and aha, instead of satisfaction).
Marvin and Shohamy also found that curiosity as such predicts memory too, but do not
report the relation of satisfaction with memory separately, nor whether curiosity’s effects on
memory could be completely mediated by satisfaction, as we found for aha. However,
analogous to Marvin and Shohamy’s (2016) information prediction error findings, our
results seemed to show that memory was a function of the deviation of aha (information
reward) from a recent (running average) baseline of aha. This suggests that people build up
an expected information gain from their experienced gains in the past trials and that the
’information gain prediction error’ of the current trial predicts their memory (more than
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‘raw’ aha).
While we hypothesize that information gain is a key factor in the memory improvements
that we see with increasing curiosity and aha, generic processes may mediate this memory
facilitation. We could not confirm that engagement as measured by whether participants
made a guess or not had an effect on memory, but more granular measures of engagement
(such as eye movement patterns) may reveal such an effect. Given that specifically aha
strength is related to memory, it is telling that the aha usually appears when presented with
the original Mooney image again and it ‘clicks’ after having seen the solution. This may
point to a role for the well-established generation effect (Slamecka & Graf, 1978): the
finding that materials that you yourself inferred or (re)constructed are better retained in
memory.
In conclusion, we seem to be curious about and like experiences which allow the greatest
information gain, or, equivalently, have the most potential to influence our model of the
given perceptual inputs. Causal connections must remain tentative, because our study is
purely correlational, even though semantic entropy and curiosity precede aha by design.
Our findings also shed new light on the interplay between curiosity, information gain, aha,
and memory, showing the usefulness of our stimulus set (and the collected norming data) for
this field.

Supplementary material

Our raw data, stimuli, and experiment/analysis code can be found at https://osf.io/hm2kb/
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