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Abstract

We discuss Shult’s Haircut Theorem, which unifies several recognition theorems for Lie geome-
tries. We point out why the conclusion of the original version (published posthumously without his
final scrutiny) cannot be drawn from the hypotheses and state and prove a corrected version, obtained
by restricting one condition and relaxing two other conditions.

1 Introduction

Polar spaces are point-line geometries associated with groups of classical Lie type. In 1974, together
with Buekenhout, the late Ernest E. Shult introduced these spaces and extended earlier results of Veld-
kamp and Tits to a surprisingly simple and powerful characterisation of geometries of classical groups
in terms of points and lines. Parapolar spaces form a wider class of point-line geometries than polar
spaces. Since almost all point-line geometries of groups of Lie type are parapolar spaces, they provide a
good starting point for recognitions of further geometries of groups of Lie type. This is well explained
in Shult’s celebrated book [8].

Shult’s last work [9] focuses on a unification and combination of several characterisations of parapolar
spaces into one big theorem, using one essential assumption that he called the “Haircut axiom”. The
“Haircut Theorem” appeared in a paper dedicated to Joseph A. Thas on the occasion of the latter’s
70th birthday. After Shult submitted the manuscript, he did not have a chance to finalise the paper for
publication because he became seriously ill before the refereeing process was terminated and passed
away before the paper appeared.

The Haircut Theorem uses a gap in the spectrum of dimensions of the singular subspaces of symplecta
obtained by intersecting them with point-perps. Recently, three of the current authors worked on an-
other type of characterisation of parapolar spaces, mainly of exceptional type, see [6]. Shult’s Haircut
Theorem would induce certain shortcuts in their arguments. However, they stumbled upon some prob-
lems with the statement, and when discussing this with the first author of the current paper, also some
problems with the proof emerged. In Subsection 3.2, we will carefully point out these problems and in
Subsection 4.1, we state a corrected version of the Haircut Theorem. We were unable to keep exactly
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the same assumptions; we have to assume constant symplectic rank. Nevertheless, at the same time we
relaxed two of the other conditions, one of which is the local connectivity (cf. Section 5).

The paper is organized as follows. In Section 2 we introduce notation. In Section 3 we state Shult’s
original version of the Haircut Theorem and discuss the statement, as well as certain parts of the proof.
In Section 4 we state and prove the locally connected case of the revised Haircut Theorem and in the last
section, we drop the assumption on local connectivity.

2 Notation

We refer the reader to [3, 8] for the definitions of polar spaces and parapolar spaces, with the basics
about Tits buildings and their associated point-line geometries. A singular subspace of a parapolar space
is defined as usual (it is a subspace, that is, a set of points containing each line that contains two collinear
points of it, and each pair of its points is collinear). In this paper, polar spaces are assumed to be non-
degenerate and have thick lines, that is, lines of size at least 3. We also assume that their rank is finite and
at least 2, that is, for a given polar space ξ there is a natural number r≥ 2 such that the maximal singular
subspaces of ξ are projective spaces of dimension r− 1 (we view the empty set as a projective space
of dimension −1, each singleton is a projective space of dimension 0 and every thick line is considered
a projective space of dimension 1). We introduce some notation that we will use and at the same time
recall some crucial notions.

A parapolar space will be denoted by Ω or by (P,L ), where P is the point set and L is the set of
lines. We will view each line as a set of points. The axioms of a parapolar space imply that two points
x,y are contained in at most one line. If they are, then we denote this line by xy. There is a family Ξ of
convex subspaces of Ω, called symplecta (or symps for short), each of them isomorphic to a polar space
with the property that each line of Ω is contained in at least one symp. Each polar space is a parapolar
space with Ξ = {P}.

We use standard notation for collinearity, that is, two points x,y in a common line are called collinear,
in symbols x ⊥ y. The set of points collinear or equal to the point x is denoted by x⊥. The collinearity
graph is the graph whose vertex set is the point set and whose adjacency is collinearity. Its diameter is
the diameter of the geometry.

We say that a parapolar space Ω=(P,L ) has constant or uniform symplectic rank r when all symplecta
have rank r. Some prominent examples of parapolar spaces do not have constant symplectic rank, see
below. We will encounter parapolar spaces of constant symplectic rank 2 having singular subspaces
which are not projective spaces. However, if all singular subspaces are projective spaces (which is
always the case if there are no symps of rank 2), then we may define the point residue Ωp, for p ∈P , as
the point-line geometry with point set the set Lp of all lines on p, and with line set Πp the set of singular
planes on p, where each such singular plane is viewed as the set of lines in it on p (line pencils). If Ωp

is a connected geometry, then Ω is locally connected at p. If Ω is locally connected at each point, then
Ω is locally connected.

If two points x,y of Ω do not lie in a common symp, but are collinear to a common point z, then z is
unique with this property and {x,y} is usually called a special pair. If Ωz is defined and connected, then
{x,y} is special if and only if the distance between the lines xz and yz in the collinearity graph of Ωz is
at least 3. If this distance is at least 4, then {x,y} is called an extreme pair, and if such an extreme pair
exists, then Ω is called extreme. If no special pairs exist, then the parapolar space is called strong.

The motivating examples of parapolar spaces come from spherical buildings. For any building (spherical
or not) over a type set I, the J-Grassmannian (referred to as the J-shadow space in [3]), with J ⊆ I, is
the point-line geometry (P,L ) with P the set of simplices (or flags) of type J and with L = {{p ∈
P | p∪F is a chamber} | F simplex of cotype { j} with j ∈ J}.
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In all examples occurring in the present paper |J| = 1. If j is a node of a spherical diagram Xn with
n> 3 which is not an end node in case X= A, then the j-Grassmannian of any building of this type is a
parapolar space, of symplectic rank at least 3 when j is not adjacent to a bond of valency 4. This follows
from Proposition 10.6.8 of [2]. The analysis of points at mutual distance 2 in Theorem 10.2.6 of [2] also
shows that the 1-Grassmannians of the buildings of type Y(1,l,m) mentioned in §3 and depicted below are
parapolar spaces if l,m> 1.

•2l+1 •2l−1 •5 •3 •2 •4 •6

•
1

•2m •2m+2

Figure 1: The Coxeter diagram of type Y(1,l,m) with our labeling

If a building is canonically determined by its (connected and simply-laced) Coxeter diagram Xn and a
(skew) field L, then we denote it by Xn(L). If not, then we denote an arbitrary building of type Xn by
Xn(∗), thus making a distinction between the diagram and the building itself. The j-Grassmannian of
the building Xn(L) is denoted Xn, j(L), and similarly for Xn, j(∗). The 1-Grassmannians of buildings of
type Bn and Dm, for instance, are polar spaces, denoted by Bn,1(∗) and Dm,1(L), where L is a field if
m> 4.

Such point-line geometries are often called Lie incidence geometries. For certain choices of j, the
corresponding j-Grassmannian of a spherical building is called a long root geometry. Without going
into detail we mention that those of exceptional type E are E6,2(K), E7,1(K) and E8,8(K), for any field
K, using the Bourbaki labelling of nodes of connected Dynkin diagrams (which we will do throughout).
The long root geometries Dn,2(K), n≥ 5, are examples of parapolar spaces without constant symplectic
rank (rank 3 and rank n−1 symps occur). The 2- and 3-Grassmannians of buildings of type An, n≥ 4,
are also called line- and plane-Grassmannians, respectively.

A homomorphic image of a parapolar space Ω = (P,L ) is the quotient geometry Ω/G, where G is
a group of automorphisms of Ω, defined as follows. The points of Ω/G are the G-orbits on P . Each
line of Ω/G is the set of G-orbits on P of the set of points of a certain member of L . If no non-trivial
element of G maps a point onto a point at distance at most 4 in the collinearity graph of Ω, then Ω/G is
a parapolar space and we call the homomorphic image admissible. An explicit example is contained in
Section 3. Any admissible homomorphic image of a parapolar space Ω shall be denoted by Ωh.

Other examples of parapolar spaces are the Cartesian product of any set of parapolar spaces, polar spaces
and linear spaces. Here, we only need the Cartesian product of two linear spaces, where a linear space is
a point-line geometry such that every pair of distinct points is contained in a unique line (and we assume
lines to be thick). If Γ1 = (P1,L1) and Γ2 = (P2,L2) are linear spaces, then the Cartesian product
geometry Γ1×Γ2 is the geometry with point set P1×P2 and set of lines {L1×{p2} | L1 ∈L1, p2 ∈
P2}∪{{p1}×L2 | p1 ∈P1,L2 ∈L2}. The symps are the products L1×L2, with Li ∈Li, i = 1,2. The
product of two linear spaces at least one of which is not a projective space is an example of a strong
parapolar space of constant symplectic rank 2 having singular spaces which are not projective.

We are now armed with enough notation to state Shult’s original version of the Haircut Theorem and our
revision.

3 Original version of Shult’s Haircut Theorem and some comments

3



3.1 The statement

We recall the main result from [9]. Below it is stated almost verbatim with the understanding that we
explicitly exclude polar spaces in the hypotheses (since, in [9], they were excluded in the definition of
parapolar spaces), corrected some typos, and often use the notation for buildings and Grassmannians
introduced in Section 2.

Original version of Shult’s Haircut Theorem. Suppose Ω is a parapolar space of symplectic rank
at least 3 that is not a polar space. Although we have not assumed constant symplectic rank, we shall
assume the following:

(i) Each singular space possesses a finite projective dimension. Moreover, there exists an upper bound
to the polar rank of a symplecton, and all symplecta have polar rank at least three.

(ii) We assume the “Haircut axiom”:

(H) If ξ is a symplecton and x is a point not in ξ , then x⊥∩ξ cannot be a hyperplane
of a maximal singular subspace of ξ .

(iii) Ω is a locally connected space.

Then Ω possesses a uniform symplectic rank k and one of the following occurs:

(1) k = 3 and Ω is either a Grassmann space An,k(L), or a homomorphic image A2n−1,n(L)/〈σ〉, where
σ is a polarity of A2n−1(L) of Witt index at most n−5, and L is any skew field.

(2) k = 4 and Ω is a Y1-geometry or a twisted version thereof. In the latter case Ω is extreme. If the
parapolar space Ω is neither extreme nor strong, then it is the long root geometry E6,2(K), for some
field K. If Ω is strong, then it is the half-spin geometry Dn,n(K), n≥ 5, K any field.

(3) k = 5 and Ω is a homomorphic image of the building geometry Em+4,1, m ≥ 2. If m = 4, then Ω is
the Lie incidence geometry E8,1(K), K any field. If m = 3, then Ω is the long root geometry E7,1(K),
K any field. If Ω is a strong parapolar space, then m = 2 and Ω is the Lie incidence geometry
E6,1(K), K any field.

(4) k = 6 and Ω is the Lie incidence geometry E7,7(K), K any field, a strong parapolar space.
(5) k = 7 and Ω is the long root geometry E8,8(K), K any field.

Conversely, all of the listed geometries satisfy the hypotheses.

Clarifications for Case (2). In Section 3.2.1 of [9], Case (2) is made more explicit. Summarized by use
of our own terminology, it states that a Y1-geometry or a twisted version thereof is either

(a) Y(1,l,m),1(∗)h, that is, an admissible homomorphic image of “the” 1-Grassmannian of a building of
type Y(1,l,m) (see Figure 1) for some m> 2 and l > 1 with l ≤ m (the remark that we will make in
the next paragraph on the use of “the” also applies to this sentence), or

(b) a parapolar space all of whose point residues are isomorphic to either A2n−1,n(L), or the homo-
morphic image A2n−1,n(L)/〈σ〉 thereof, where σ is a polarity of A2n−1(L) of Witt index at most
n−5 (this obviously only occurs when n≥ 5), and L is any skew field (and both can occur within
the same Ω).

About Case (a), in 3.2.1 of [9] it is stated that, if l = 2 and m ∈ {3,4} then Ω is the Lie incidence
geometry E7,2(K) or E8,2(K), for some field K. About Case (b), in [9] it is stated that, if l = 2, and if
one can recognize the different types of maximal singular subspaces globally, then Ω is the long root
geometry E6,2(K), for some field K. It is not precisely defined what is meant in the conclusion of (2)
with “a twisted version thereof”. Most probably it means the spaces included in (b) but not in (a),
although it is not clear at all that these can be obtained by some kind of “twist” of those in (a).
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•1 •3 •4 •5 •6

•
2

•n−1 •n

Figure 2: The Coxeter diagram of type En with extended Bourbaki labeling

Clarifications for Case (3). This case corresponds to (quotients of) buildings with Coxeter diagram
En, defined as indicated in Figure 2. The sentence Ω is a homomorphic image of the building geometry
Em+4,1, identifies the type (that is, the diagram) with the building. This makes the statement rather
unclear: The use of “the” preceding “building” points to a unique building of this type; in the other
statements, there is often a field fixed in the background, and so one gets the impression that there is a
unique such building for each field. This is supported by the following quote about that case on page 582
of [8]: The buildings exist, but are they parameterized by the simply-laced diagram and an admissible
division ring? One would suspect so. But this is not true, because, for instance, there are at least two
(affine) buildings of type E9 = Ẽ8 over the field with 2 elements, namely a “2-adic” one and a “function
field” one. We will introduce a notation below that takes this into account.

3.2 Some problems and counterexamples

On the geometries of the conclusion. Apart from the double use of the parameter k in the conclusion
(1), an error in the original version of the Haircut Theorem [9] is the absence of proper admissible
homomorphic images of the Lie incidence geometries Dn,n(K), n≥ 10, E8,1(K), E8,2(K), E7,2(K). Such
images exist whenever we find an automorphism group of the corresponding building which maps every
point of the Lie incidence geometry to a point at distance at least 5 of the original point. In particular this
is satisfied whenever the diameter of the Lie incidence geometry is at least 5, the Coxeter diagram does
not admit any non-trivial symmetry, and there is a non-trivial group of automorphisms such that every
orbit consists of pairwise opposite elements of the building. Here is an explicit example of this situation
for Dn,n(R), for even n≥ 10; see the subsequent paragraph for examples with exceptional types.

Counterexample. We start with a real Euclidean vector space R2n, n ≥ 10 even, and the standard
quadratic form κ(x) = ∑

2n
i=1 x2

i , with [x1,x2, . . . ,x2n] the coordinate-tuple of x with respect to a chosen
basis (e1,e2, . . . ,e2n). We write Bκ for the associated symmetric bilinear form. Then let α be the
diagonal linear map α(x) = [x1, . . . , ,xn,−xn+1, . . . ,−x2n]. Set B(x,y) = Bκ(x,α(y)) and write q(x) =
1
2 B(x,x). Note that B(x,y) = Bκ(x,α(y)) = B(α(x),α(y)). Now let the point set P be the set of all
maximal singular subspaces of R2n with respect to q (which all have dimension n) which intersect
〈e1− en+1, . . . ,en− e2n〉 in a subspace of even vector dimension and let L be the set of lines, where
for any given subspace Y , singular with respect to q and of (affine) dimension n−2, the corresponding
line is the set of all maximal singular subspaces in P containing Y . Then Ω = (P,L ) is a half spin
geometry Dn,n(R).

Since Bκ(x,α(y)) = B(x,y) = 0, for all 1-spaces 〈x〉,〈y〉, singular with respect to q, and contained in a
common member of P , we see that α(X) = X⊥κ , for all X ∈P . Moreover, α2 = 1 and α(X) belongs
to P . Since α(X)∩X = X⊥κ ∩X = {0}, the distance from X to α(X) equals n

2 . Therefore, α induces an
involution P →P , which preserves collinearity in Ω. Hence we have found an order 2 automorphism
of Ω sending each point to a point at (maximal) distance n

2 . Write A = 〈α〉. Since n> 10, the ball around
a point A(p) of Ω/A of radius 2 is equal to the ball around the original p of same radius in Ω. Hence
Axiom (H) holds in Ω/A.

More about quotients of buildings. Besides the absence of proper admissible homomorphic images
of the relevant point-line geometries, the original paper [9] asserts that the corresponding spherical
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buildings do not admit quotient geometries of type M, as defined by Tits in [10]. We quote from
[9], Remark 2.9, verbatim: Geometries G with diagram Dn,E6,E7,E8 are already building geometries.
Whereas this is indeed true for the types Dn and E6, as shown in [10] and [1], respectively, this is cer-
tainly false for both E7 and E8, as shown in [1] (for E7) and [11] (for all spherical types except An, Dn

and E6). Note that the above counterexample does not produce a quotient geometry of type M; the rank
2 residues are destroyed. Conversely, not every “Grassmannian” of a geometry of type M arising from
a quotient of a building with simply laced diagram defines a parapolar space. Indeed, if the diameter
of some k-Grassmannian is at most 4, then a non-trivial quotient can never define a parapolar space “at
node k”. A quotient defines a parapolar space if and only if no point is mapped onto a point at distance
at most 4.

For example, the compact forms of the complex Lie groups of exceptional types E7 and E8 are defined
by Galois involutions σ7 and σ8 of the buildings E7(C) and E8(C), respectively, which map every flag
to an opposite. This defines parapolar spaces E7,2(C)/〈σ7〉, E8,1(C)/〈σ8〉 and E8,2(C)/〈σ8〉. However,
neither E7,7(C)/〈σ7〉, nor E7,1(C)/〈σ7〉, nor E8,8(C)/〈σ8〉 is a parapolar space since, for every field K,
E7,7(K), E7,1(K) and E8,8(K) have diameter 3.

Note that one can also take quotients of buildings as chamber systems; this boils down to quotients of
the I-Grassmannian, where I is the full type set. These Grassmannians have large diameters and some
of these admit quotients that are chamber systems of type M. These quotients need not correspond to
geometries of type M, as can be seen from the counterexample with Dn(R) above.

About the Y1-geometries. In Case (2) of the original version of the Haircut Theorem, it is stated (but
not proved) that, if Ω is neither extreme nor strong, then it is isomorphic to E6,2(K) for some field K. In
fact, it is wrong, as the Lie incidence geometries E7,2(K) and E8,2(K), for any field K, are neither strong
nor extreme. What we can prove is that, if the point residues are isomorphic to A5,3(K), then Ω is the
long root geometry E6,2(K).

About the symplectic rank not required to be constant. The previous errors in [9] can easily be dealt
with. We now point out two errors in the proof which do not seem to be so easily fixed.

The first one occurs in the proof of Lemma 4.1. Suppose we are given a parapolar space Σ satisfying the
hypotheses of the original version of Shult’s Haircut Theorem. Let η be a symp of Σ of maximal polar
rank n. This maximum exists and is at least 3 by (i) of the original version of the Haircut Theorem. Let
A be a singular subspace of dimension n− k−1 ≤ n−3 contained in η . The aim of Lemma 4.1 of [9]
is to show that the residue ΣA of Σ at A (which can be obtained by taking consecutive point residues) is
connected.

Let M be the set of points of ΣA corresponding to the singular subspaces of dimension n− k lying in a
fixed symplecton of polar rank n− k+ 1 and containing A. In the proof of Lemma 4.1, it seems to be
assumed that each connected component of ΣA contains either 0, 1, or all elements of M . This however
requires an argument, which is missing.

We will discuss this in greater detail. The proof of the lemma uses induction on dim(A). The case where
dim(A) =−1 is trivial; and since Σ is locally connected, ΣA is by definition connected when dim(A) = 0.
So we may assume that dim(A)≥ 1. We will even assume that k = n−2, so A is a line L (actually, using
induction, we are allowed to do so, but even regardless of that, it serves as an enlightening example).
Thus, ΣA = ΣL and n> 4.

Suppose that ΣL is not connected and let Γ be the connected component of ΣL containing a plane of η .
Then there are singular planes β and γ in Σ containing L, corresponding to respective points B and C
in ΣL, with B /∈ Γ and C ∈ Γ. In particular, the points B and C are not collinear, i.e., the planes β and
γ are not contained in a singular subspace. It then follows from the parapolar space axioms that β and
γ are jointly contained in a symp ζ of rank 3 (if the rank were higher, B ∈ Γ after all). Now consider a
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point E in Γ which is not collinear to C (this exists since Γ contains the residue at L of the symplecton
η of rank at least 4), which corresponds to a plane ε containing L. The haircut axiom (H) implies that
a point pE ∈ ε \L is collinear to a plane µ in ζ containing L. The point M of ΣL corresponding to µ

then belongs to Γ and is distinct from C since E is collinear to M but not to C. In case ζ is non-thick,
this implies that B = M ∈ Γ, a contradiction. In the thick case, let M be the set of points corresponding
to the planes of ζ containing L. We now arrive at the point where the assumption is used that, if two
distinct points (namely, C and M) of M belong to Γ, then all points of M do, in particular B. However,
as mentioned above, we see no argument to support this conclusion.

The second error occurs in the arguments for the case k = 4, where symps of rank 2 have to be excluded.
It suffices to show that the parapolar space under consideration is strong, and to do this, Lemma 2.3(3)
is invoked, which however requires all symps to have rank at least 3. Again, we do not see how to mend
this.

3.3 Conclusion

The paper [9] appeared without Shult being able to finalise the details of his important main theorem.
The current statement and proof contain some inconsistencies. Taking the above observations into ac-
count, the validity of the theorem as published can be made to hold by simply requiring constant rank
and incorporating the homomorphic images. However, as mentioned before, we prefer to state a slightly
more general version, provided with a full proof.

4 The revised Haircut Theorem and its proof

4.1 Statement of the revised Haircut Theorem

In order to state our revision for the locally connected case, containing a slight extension, we need some
additional notation concerning polar spaces of rank 2, that is, so-called generalized quadrangles. In our
context, these are point-line geometries with thick lines so that each point is contained in at least two
lines, each pair of points is contained in at most one line, and each point x is collinear to a unique point
of any line not containing x (we refer to the latter as the main axiom). We call the generalized quadrangle
thick if every point is contained in at least three lines; non-thick otherwise. In the latter case, every point
is contained in exactly two lines. An ideal subquadrangle Γ′ of a generalized quadrangle Γ is a subset
of points of Γ together with a line set which is the set of all intersections of lines of Γ with Γ′, which
is itself a generalised quadrangle. Note that this implies that any line of Γ either is disjoint from Γ′, or
intersects Γ′ in a line of Γ′, in particular, never in a single point.

Theorem 4.1 (The revised Haircut Theorem—locally connected case). Suppose Ω = (P,L ) is a para-
polar space of constant symplectic rank k at least 2 that is not a polar space. Assume the following three
properties.

(i) If k ≥ 3, then each singular space possesses a finite projective dimension.
(ii) The “Haircut axiom”:

(H) If ξ is a symplecton and x is a point not in ξ , then x⊥∩ξ cannot be a hyperplane
of a maximal singular subspace of ξ .

(iii) If k ≥ 3, then Ω is a locally connected space; if k = 2, then Ω is strong.

Then one of the following occurs:

(0) k = 2 and, if we denote the set of maximal singular subspaces of Ω by Σ and (as before) the set of
symps of Ω by Ξ, then the point-block geometry Γ = (P,Σ) is a (thick or non-thick) generalized
quadrangle with the property that Ξ is a family of proper ideal subquadrangles of Γ such that
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each pair of non-collinear points of Γ is contained in a unique member of Ξ and lines of different
members of Ξ which intersect in at least two points, coincide. Moreover, L is the collection of lines
of members of Ξ.

(1) k = 3 and Ω is either a Grassmann space An,d(L), 2≤ d ≤ n+1
2 , n≥ 4, or an admissible homomor-

phic image A2d−1,d(L)/〈σ〉, where σ is a polarity of A2d−1(L) of Witt index at most d−5, and L is
any skew field.

(2) k = 4 and there are integers l and m with 1 ≤ l ≤ m and m ≥ 2 and a field K such that each point
residue Ωp is isomorphic to either Am+l+1,l+1(K) or A2l+1,l+1(K)/〈σp〉, σp a polarity of Witt index
at most l−4 (possibly) dependent on the choice of the point p. If some point residue is isomorphic
to Am+l+1,l+1(K) with l < m, then they all are and Ω is an admissible homomorphic image of
the 1-Grassmannian of a building of type Y(1,l,m). If some point residue is isomorphic to A5,3(K),
then they all are and Ω is the long root geometry E6,2(K). If Ω is strong, then l = 1 and Ω is
an admissible homomorphic image of the half spin geometry Dm+3,m+3(K), the homomorphisms
being isomorphisms if m ≤ 6. Also, Ω is extreme if and only if some point residue is neither a line
Grassmannian (type Am+2,2) nor a plane Grassmannian (type Am+3,3).

(3) k = 5 and Ω is isomorphic to Em+4,1(∗)h, m ≥ 2. If m = 4, then Ω is an admissible homomorphic
image of the Lie incidence geometry E8,1(K), K any field. If m = 3, then Ω is the long root geometry
E7,1(K), K any field. If Ω is a strong parapolar space, then m = 2 and Ω is the Lie incidence
geometry E6,1(K), K any field.

(4) k = 6 and Ω is the Lie incidence geometry E7,7(K), K any field, a strong parapolar space.
(5) k = 7 and Ω is the long root geometry E8,8(K), K any field.

Conversely, all of the listed geometries satisfy the hypotheses.

If k = 2, then the geometry Γ of (0) is non-thick as soon as a maximal singular subspace is a projective
space. This follows from noting that the parapolar spaces in (0) are so-called imbrex geometries (intro-
duced and classified in [7]) and then using Theorem 3.9 of [7]. If Γ is non-thick, then Ω is the Cartesian
product of two linear spaces, at least one of which does not consist of a unique line.

4.2 Strategy of the proof

We prove Theorem 4.1 in a sequence of lemmas, performing an induction on the symplectic rank k. We
use ideas of [9] but avoid the use of sheaf theory, explained and introduced in [8], since some proofs
using that theory in [8] are either only sketched, or omitted. In general, sheaf theory is used to recognize
certain parapolar spaces from their common point residues. In [6] we have proved some local recognition
theorems, and we will use those and one more, see Lemma 4.6. The proof of the latter resembles that of
Lemma 5.1 of [6], but since there are some essential differences, we include it in full.

The following lemma will enable us to induct on the symplectic rank k.

Lemma 4.2. Let k be a natural number greater than 1 and let Ω be a parapolar space of constant
symplectic rank. Consider the following properties.

(LC) Ω is locally connected;
(S) Ω is strong;

(FD) Ω contains only finite-dimensional singular subspaces;
(NP) Ω is not a polar space;
(SR)k Ω has constant symplectic rank k.

If k > 3, then Ω satisfies (LC), (H), (FD), (NP) and (SR)k if and only if for each point p of Ω, the point
residual Ωp is a parapolar space satisfying (H), (FD), (NP), (SR)k−1 and (S).
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Proof. Let k ≥ 3. First suppose that Ω satisfies (LC), (H), (FD), (NP) and (SR)k. The point residue Ωp

at each point p of Ω is a strong parapolar space of constant symplectic rank k−1, by Lemma 2.3 of [9],
and satisfies (H) by Lemma 2.4 of [9]. Clearly, all singular subspaces of Ωp are finite-dimensional. It
remains to show that Ωp is not a polar space. To see this, let ξ be a symp on p. Since Ω is connected
and not a polar space, there is a point q outside ξ such that q⊥∩ξ contains a point r. If r is not collinear
with p, the local connectivity at r implies that we may assume that q⊥∩ξ contains a line. Replacing r
by the point on this line collinear with p (which exists since ξ is a polar space), we may assume that r is
collinear with p. Again, by connectedness of Ωr, we may assume, without loss of generality, that either
q ∈ p⊥, or q⊥∩ p⊥ contains a line through r. In the former case we have found a line through p not in
ξ ; in the latter case p and q are contained in a symp distinct from ξ and we reach the same conclusion.
This shows that Ωp is not a polar space.

Now suppose that for each point p of Ω, the point residual Ωp is a parapolar space satisfying (H), (FD),
(NP), (SR)k−1 (still k≥ 3), and (S). By definition Ω satisfies (LC). By Lemma 2.4 of [9], Ω satisfies (H).
Clearly, Ω satisfies (FD), (NP) and (SR)k.

Finally, we will use the following improvement of a result of Cooperstein [5], stated in the language and
notation of the present paper, due to the first author.

Lemma 4.3 (Main Theorem of [4]). Suppose Ω is a parapolar space of constant symplectic rank 3 that
is not a polar space. Assume the following properties.

(i) Each singular space possesses a finite projective dimension.
(ii) The Haircut axiom:

(H) If ξ is a symplecton and x is a point not in ξ , then x⊥∩ξ cannot be a line.

(iii) Ω is strong (and hence in particular locally connected).

Then the following occurs.

(1) Ω is either a Grassmann space An,d(L), 2≤ d≤ n+1
2 , n≥ 4, or a homomorphic image A2d−1,d(L)/〈σ〉,

where σ is a polarity of A2d−1(L) of Witt index at most d−5, and L is any skew field.

Conversely, the listed geometries satisfy the hypotheses.

We are now ready to embark on the proof of Theorem 4.1.

4.3 The cases k = 2,3 of Theorem 4.1

The proof of the next lemma exploits ideas used in [4], by the first author, and ideas used in [7], by the
third and fourth author. It completely settles the case k = 2 of Theorem 4.1.

Lemma 4.4 (Case k = 2 of Theorem 4.1). Suppose that Ω is a parapolar space of constant symplectic
rank 2 that is not a polar space. Assume that Ω satisfies the assumptions of Theorem 4.1, that is,

(ii) The Haircut axiom for rank 2:

(H2) If ξ is a symplecton and x is a point not in ξ , then x⊥∩ξ cannot be a point.

(iii) Ω is strong.

Then the conclusion of Case (0) (for k = 2) of Theorem 4.1 holds.

Conversely, the geometries Ω obtained from generalized quadrangles Γ as described in conclusion (0)
of Theorem 4.1 satisfy the hypotheses of the theorem.
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Proof. Suppose Ω = (P,L ) is a strong parapolar space of constant symplectic rank 2 satisfying (H2)
that is not a polar space. Since Ω is connected, each point lies on a line, and so each maximal singular
subspace (whose existence is a direct consequence of Zorn’s lemma) strictly contains a point. We first
show that Γ = (P,Σ) is a generalized quadrangle satisfying the properties stated in seven steps.

Claim 4.4.1. Two distinct maximal singular subspaces M1,M2 ∈ Σ intersect in at most one point.
Suppose for a contradiction that M1,M2 have a line L in common. Consider any point pi ∈Mi\L, i= 1,2.
If p1 /∈ p⊥2 , then they are together with L contained in a symp, contradicting the fact that symps have
rank 2. Hence p1 ⊥ p2. Since pi in Mi \L was arbitrary, M1 and M2 are together contained in a larger
singular subspace, contradicting their maximality. �

Claim 4.4.2. A maximal singular subspace M ∈ Σ and a symp ξ ∈ Ξ either intersect in a line, or are
disjoint.
Suppose M and ξ have a point p in common. First note that M∩ξ is a singular subspace of ξ , and recall
that dim(M)≥ 1; in particular, if M ⊆ ξ , the statement is trivial. So we may consider a point x ∈M \ξ .
Then by (H2), x is collinear to a line L of ξ . Now, any singular subspace containing x and L shares the
line xp with M, and so, by Claim 4.4.1, L is contained in M. �

Claim 4.4.3. For every M ∈ Σ and every point p ∈P \M, there exists a unique N ∈ Σ containing p and
intersecting M in a unique point.
By Claim 4.4.1, N is unique if it exists: if N′ ∈ Σ enjoys the same properties, then a singular subspace
containing p,M∩N and M∩N′ shares a line with, and hence equals, both N and N′. Hence it suffices to
show that p⊥∩M is non-empty. By connectivity we may assume that p = p0 ⊥ p1 ⊥ p2 ⊥ . . .⊥ p` ∈M
is a shortest path connecting p with M. Assume for a contradiction that `≥ 2. Then, by strongness and
minimality of the path, there exists a symp ξ containing p`−2, p`−1 and p`. By Claim 4.4.2, ξ and M
have a line m in common, and so p`−2 is collinear to some point of m⊆M, contradicting the minimality
of `. The claim is proved. �

Claim 4.4.4. Γ = (P,Σ) is a generalized quadrangle (with thick lines).
By Claim 4.4.1. two points are contained in at most one line. The main axiom was proven in Claim
4.4.3. The lines of Γ are thick as dim(M) ≥ 1 for all M ∈ Σ. Since each point of P is contained in a
member of Ξ, it belongs to at least two lines, each of which is contained in a different member of Σ.
Therefore, the claim is proved. �

Claim 4.4.5. Each member of Ξ is a proper ideal subquadrangle of Γ.
We already know that members of Ξ are (non-degenerate) polar spaces of rank 2 with thick lines, that is,
generalized quadrangles. The fact that every non-empty intersection of a member of Σ with a member
of Ξ is a line was proved in Claim 4.4.2. A member of Ξ must be proper because otherwise Ω would be
a generalized quadrangle, which contradicts the assumption that it is not a polar space. �

Claim 4.4.6. Each pair of non-collinear points of Γ is contained in a unique member of Ξ.
Since Ω is strong, this follows from the fact that Γ is a generalized quadrangle (and so has diameter 2)
and the fact that the relation on P of collinearity in Γ coincides with collinearity in Ω, so the diameter
of Ω is 2. �

Claim 4.4.7. Lines of different members of Ξ which intersect in at least two points, coincide.
This is immediate from the fact that, in a parapolar space, two points are contained in at most one line.

�

It remains to verify that the geometries in the conclusion satisfy the hypotheses. To this end we suppose
that Γ = (P,Σ) is a generalized quadrangle with the property that Ξ is a family of proper ideal sub-
quadrangles of Γ such that each pair of non-collinear points of Γ is contained in a unique member of Ξ

and lines of different members of Ξ which intersect in at least two points, coincide. We let L be the
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collection of lines of members of Ξ. We need to establish that Ω = (P,L ) is a strong parapolar space
with Ξ as set of symps (and hence of constant symplectic rank 2) satisfying (H2).

Since each line of Ω is contained in a member of Σ, collinearity in Ω implies collinearity in Γ. Con-
versely, if two points p, q are collinear in Γ, then by the properties of generalized quadrangles, there
is a third point r collinear with q but not with p, so there is a member ξ of Ξ containing p and r. The
line M ∈ Σ on p and q contains a unique point collinear with r; this point must be q. The intersection
m := M∩ξ contains p and so must be a line of ξ and hence a line of Ω. The line m of ξ contains a point
collinear (in ξ ) to r (and hence also collinear in Γ by the foregoing); this point must be q. We conclude
that collinearity relation on P in Γ coincides with collinearity in Ω. We write ⊥ for this collinearity.
Since Γ is connected of diameter 2, so is Ω.

Suppose p is a point and l is a line of Ω not containing p, but having two points, say a and b, collinear to
p. Then a and b are on a unique line M ∈ Σ and both a and b belong to p⊥∩M. Since Γ is a generalized
quadrangle, this forces p to be in M. In particular, p is collinear to all of l in Ω. This shows that Ω is a
gamma space.

We claim that the members of Ξ are geodesically closed subspaces of Ω. To see this, assume x,y are
non-collinear points of Ω belonging to a subquadrangle ξ in Ξ and z is a point collinear to both x and y.
Let M be the unique line of Γ on x and z. Then y does not belong to M (since y and x are not collinear in
Ω, they are not collinear in Γ). The intersection M∩ξ is a line of Ω contained in ξ , so there is a unique
point in y⊥∩M∩ξ . But z is the unique point of y⊥∩M, so z belongs to ξ . Since, by definition, ξ is a
subspace of Ω, we find that ξ is a geodesically closed subspace of Ω.

By assumption, members of Ξ are generalized quadrangles and, for every pair of non-collinear points,
there is a member of Ξ containing the pair. By definition, every line of Ω is contained in a member of
Ξ. We conclude that Ω is a strong parapolar space with Ξ as set of symps.

As for (H2), assume that ξ is a member of Ξ and p is a point of Ω such that p⊥∩ξ contains a point q.
The line M of Γ on p and q meets ξ in at least the point q, so, by properties of Ξ, the intersection M∩ξ

is a line of Ω. Since this line belongs to M, it also lies in p⊥∩ ξ , and we conclude that p⊥∩ ξ is not a
point, thereby establishing (H2).

Finally, since every polar space is the geodesic closure of any pair of non-collinear points contained in
it, it follows from the fact that any ξ ∈ Ξ is proper, that Ω is not a polar space.

We can now also finish the case k = 3 of Theorem 4.1.

Due to Lemma 4.3 we only need to show that Ω is strong. This is equivalent to showing that the
diameter of each point-residue equals 2. By Lemma 4.2, each such residual parapolar space is listed in
the conclusion of Case (0) of Theorem 4.1, and hence has diameter 2.

Remark 4.5. Shult did not have Case (0) at his disposal. However, he nevertheless used Lemma 4.3,
but proved directly that the point residues in Case (1) have diameter 2, see Lemma 2.5 of [9].

4.4 The case k = 4 of Theorem 4.1

So far, we have shown conclusions (0) and (1), that is, the cases k = 2,3 of Theorem 4.1.

4.4.1 Proof of first statement of conclusion (2) of Theorem 4.1

In this case each point residue Ωp is one of the parapolar spaces in conclusion (1) of Theorem 4.1, that
is, An,d(L), A2d−1,d(L) or A2d−1,d(L)/〈σp〉, where σp is a polarity of A2d−1(L) of Witt index at most
d− 5, (possibly) dependent on the point p; where n,d are integers with 2 ≤ d ≤ n+1

2 and L is a skew
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field. We claim that the integers n and d and the skew field L do not depend on the point p. Indeed,
from the nature of Ωp it follows that each singular plane through p is contained in exactly two maximal
singular subspaces, say of dimensions d1,d2, which are defined over L. If d1 < d2, then d1 = d + 1
and d2 = n− d + 2 (in which case Ωp = An,d(L)); if d1 = d2 then d1 = d2 = d + 1 (in which case
Ωp ∈ {A2d−1,d(L),A2d−1,d(L)/〈σp〉}). So for any point q collinear to p, the existence of a singular
plane on the line pq shows that the point residue Ωq comes with the same integers and skew field L. By
connectivity, the parameters coincide across Ω, showing the claim.

We conclude that either all point residues are isomorphic to An,d(L), for some integers n,d with 2≤ d <
n+1

2 and a skew field L, or each point residue Ωp is isomorphic to one of A2d−1,d(L), A2d−1,d(L)/〈σp〉,
where d ≥ 2 is an integer, L a skew field and σp is a polarity of A2d−1(L) of Witt index at most d−5,
possibly depending on the point p. In each of these cases, the symps are necessarily isomorphic to
D4,1(L), and so L is commutative. We put l = d− 1 and m = n− d and write K instead of L. Then
(n,d) = (m+ l+1, l+1), and the first statement of conclusion (2) of Theorem 4.1 has been established.

The above now implies that, if some point residue is isomorphic to Am+l+1,l+1(K) with l < m, then they
all are, and if some point residue is isomorphic to A5,3(K), then they all are. Hence, in order to show
the second statement of conclusion (2) of Theorem 4.1, we may already assume that all residues are
mutually isomorphic.

4.4.2 Proof of the second statement of conclusion (2) of Theorem 4.1

As for the second statement, we assume l < m (or, equivalently, 2d− 1 < n) and show that Ω is an
admissible homomorphic image of a Grassmannian of a building. The proof roughly follows the strategy
of the proof of Lemma 5.1 of [6]. It contains Lemma 5.2 of [6] (the proof of which was left to the reader)
as a special case.

For convenience of the reader, we reproduce the Coxeter diagram Y(1,l,m) of Figure 1 in Figure 3.

•2l+1 •2l−1 •5 •3 •2 •4 •6

•
1

•2m •2m+2

Figure 3: The Coxeter diagram of type Y(1,l,m), reproduced

Lemma 4.6. Let K be a division ring and suppose that Ω = (X ,L ) is a (locally connected) parapolar
space with the property that each point residue is isomorphic to Am+l+1,l+1(K), with l < m and l ≥ 1.
Then K is a field and Ω is an admissible homomorphic image of the 1-Grassmannian of a building of
type Y(1,l,m) (see Figure 3).

Proof. We note that K is commutative as we have deduced in Subsection 4.4.1 above.

We will use the notion of a chamber system (of type M). Since this is only needed in the current proof,
we refer the reader to [10] for all definitions and background. For convenience we recall that the J-
residue of a chamber c of a chamber system C over I, with J ⊆ I, is the connected component of c in
the graph with vertex set C and edges the pairs of distinct j-adjacent chambers, with j ∈ J. A rank k
residue is a J-residue with |J|= k. Each J-residue is a (connected) chamber system over the type set J,
in the obvious way.

Let p be a point of Ω. We will use the isomorphism of Ωp with Am+l+1,l+1(K) in order to build a
chamber system C of type Y(1,l,m). Set I = {1, . . . ,m+ l + 2}. The diagram Am+l+1 will be identified
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with the subdiagram of Y(1,l,m) on I \ {1}. To avoid confusion about the labeling, we will only refer
to the labeling of this diagram as given in Figure 3 (rather than the usual labeling of Am+l+1), except
in Claim 4.6.1 below. We will write Bp for the building of type I \ {1} associated with Ωp and Cp

for the corresponding chamber system. It is well known that this building and chamber system are two
representations of essentially the same object. More specifically, the chambers of Cp are viewed as
maximal flags of objects of Bp and, for each r ∈ I \ {1}, the (I \ {1,r})-residues of Cp are identified
with the objects of type r of Bp.

For r ∈ I \{1}, a subspace a of p⊥ containing p is called a local p-object of type r if ap, the point residue
of a at p, is the 2-shadow of an object of Bp of type r. If r = 2, this means that a is a line on p, if r = 3
then a is a maximal singular subspace of Ω having dimension m+ 2 and containing p, and if r = 4, it
is a maximal singular subspace having dimension l + 2 and containing p. Since the assignment of the
2-shadow to an object of Bp is a bijective map, there is a canonical bijective correspondence between
the local p-objects of type r and the (I \ {1,r})-residues of Cp according to which a local p-object a
of type r corresponds to the unique (I \ {1,r})-residue in Cp (this is an object of type r of Bp) whose
2-shadow is ap. If c is a chamber of Cp and r ∈ I \{1}, we will write cr for the local p-object of type r
corresponding to the (I \{1,r})-residue in Cp containing c (it corresponds to the object of type r in the
maximal flag in Bp associated with c).

We will use the following two facts regarding local p-objects a and b of type r.

Claim 4.6.1.

(a) If L is a line containing p and M is a subspace of L⊥ containing L and isomorphic to L⊥ ∩ a for
a local p-object a containing L, then there is a unique local p-object b containing L such that
M = L⊥∩b.

(b) If π is a singular plane containing p and N is a subspace of π⊥ containing π and isomorphic to
π⊥∩a for a local p-object a containing π , then there is a unique local p-object b containing π such
that N = π⊥∩b.

These are properties of the point residue Ωp. Setting k = l+1 and n = m+ l+1, we have Ωp ∼=An,k(K),
so we can interpret each object of the building An,k(K) via its k-shadow as a subspace of Ωp. In this
setting, we can rephrase the claim as follows.

(a′) If q is a point of An,k(K) and M is a subspace of q⊥ containing q and isomorphic to q⊥∩a for an
object a containing q, then there is a unique object b containing q such that M = q⊥∩b.

(b′) If π is a line of An,k(K) and N is a subspace of π⊥ containing π and isomorphic to π⊥∩ a for an
object a containing π , then there is a unique object b containing π such that N = π⊥∩b.

If q and M satisfy the hypotheses of (a′), the point residue of An,k(K) at q is the Cartesian product of
two projective spaces over K, one of dimension l and one of dimension m, and its subspace M/q is the
Cartesian product of two singular subspaces of respective dimensions i and j, say, such that either i < l
and j = m or i = l and j < m. Since each point L/q, where L is a line of M through q, lies in exactly two
maximal singular subspaces, one of dimension l and one of dimension m, the restriction l < m enables
us to determine which of the components of the Cartesian product decomposition of M/q belongs to
which of the two maximal singular subspaces on L. As a consequence, we find that, in the former case,
M is an object of type 1+ l− i and, in the latter case, an object of type 1+ l + j.

The proof of (b′) is very similar. As in the argument for (a′), the object b can still be recovered from the
union of two singular subspaces on the line π (the union coincides with N). �

The chambers of C will be pairs (p,d), where p∈P and d ∈Cp. The r-adjacencies for r ∈ I are defined
as follows, where (p,c), (q,d) ∈ C .

(i) If r > 1 then (p,c)∼r (q,d) if and only if p = q and c∼r d.
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(ii) if r = 1, then (p,c)∼r (q,d) if and only if, for each type s ∈ I \{1}, we have c⊥2 ∩ cs = d⊥2 ∩ds.

In (ii), the situation is that L = c2 = d2 is a line containing both p and q and the objects of type s ∈
I \ {1,2} corresponding to c in Bp and d in Bq coincide in the residue of L. It follows that each
I \{2}-residue is the chamber system of the direct product A1(K)×A`(K)×Am(K).

Since each r-adjacency is an equivalence relation, C is a chamber system over I. We now show that C
is a chamber system of type Y(1,l,m) (see [10]). According to Section 3.2 of [10] it suffices to show that,
for pair i, j ∈ I, each {i, j}-residue is the chamber system of a (proper) projective plane if i and j are
connected in Y(1,l,m) and a generalized digon otherwise, and that C is connected, that is, the graph with
vertex set C and adjacency relation the union over I of the i-adjacency relations, is connected.

Claim 4.6.2. Let i, j ∈ I, i 6= j. Each {i, j}-residue of C is the chamber system of a (proper) projective
plane, if i and j are connected by an edge in Figure 3, or a generalized digon otherwise.

Suppose first that 1 /∈ {i, j}. Clearly, every (I \{1})-residue of a chamber containing p ∈P as element
of type 1, is the chamber system Cp of type Am+l+1, so the claim follows.

Now suppose j = 1 and i 6= 2. Then two chambers (p,c), (q,d) in the same {1, i}-residue in C share the
same line L ∈L , so L⊥∩ cs = L⊥∩ ds for each s ∈ I \ {1, i}. Moreover, by Claim 4.6.1(a), applied to
L⊥∩di and to L⊥∩ci, shows that there is a unique chamber c′ in Cp containing L determined by c′s = cs

for all s ∈ I \ {1, i}, and L⊥ ∩ c′i = L⊥ ∩ di. Similarly, there is a unique chamber d′ in Cq containing L
determined by d′s = ds for all s ∈ I \{1, i}, and L⊥∩d′i = L⊥∩ ci. Now, (p,d′) and (q,c′) are chambers
of C with (p,c)∼i (p,c′)∼1 (q,d)∼i (q,d′)∼1 (p,c). This shows that the {1, i}-residue is the chamber
system of a generalized digon.

Finally suppose {i, j} = {1,2}. Consider the {1,2}-residue R of a chamber (p,c) of C . The local p-
objects of type 3 and 4 are maximal singular subspaces of Ω whose intersection is a singular plane π

of Ω containing p. Connectedness of R implies that each chamber (q,d) in R satisfies d3∩ d4 = π and
π⊥∩ds = π⊥∩ cs for each s> 3. By Claim 4.6.1(b), therefore, R consists of all chambers (q,d) where
q ∈ π and d is a chamber of Cq with q ∈ d2 ⊆ π such that ds is the unique local s-object containing π

determined by ds∩π⊥ = cs∩π⊥ for all i> 2. This means that R is the chamber system of the projective
plane π , and the claim is proved. �

Claim 4.6.3. The chamber system C is connected.

Indeed, let (p,c) and (q,d) be two chambers of C . We argue that these two chambers are connected by a
path in the adjacency graph. In view of connectivity of Ω, it suffices to show this if the points p and q are
collinear. By connectivity of Ωp we only need to find a path in case c2 = d2 is the same line L containing
both p and q. We may now assume p = q by replacing (q,d) by the 1-adjacent chamber (p,d′) where,
for each s ∈ I \ {1,2}, the object d′s of Bp is uniquely determined by L ⊆ d′s and L⊥ ∩ d′s = L⊥ ∩ ds.
Now the claim follows from the observation that the chamber system naturally induced on all chambers
containing p as type 1 element coincides with the (I \{1})-residue Cp. �

Next we want to show that C is a quotient of a building. According to Corollary 3 of [10], this amounts
to show that every rank 3 residue is the chamber system of the quotient of a rank 3 building. In our case,
the quotients of the rank 3 residues are trivial ones.

Claim 4.6.4. Each rank 3 residue of C is the chamber system of a spherical building whose type is
determined by the diagram Y(1,l,m).

As in the proof of Claim 4.6.1, this follows for {i, j,k}-residues if 1 /∈ {i, j,k} using the chamber system
Cp, which is a spherical building. Also, Claim 4.6.4 follows from Claim 4.6.2 and the fact that each
I \ {2}-residue is the chamber system of the direct product A1(K)×A`(K)×Am(K), if {i, j,k} is dis-
connected. Hence only the cases of residues of types {1,2,3} and {1,2,4} remain. These cases are of
course similar, and we only consider the case of a {1,2,3}-residue, say R.
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Let (p,c) be a chamber of C contained in R. The argument we give uses local p-objects of type 5.
If l = 1, there are no such objects, but the arguments will still be valid if we define c5 in this case as
p⊥. Then S = c4 ∩ c5 is a singular 3-space of R. To see this, consider a chamber (q,d) of C which is
i-adjacent to (p,c) for i ∈ {1,2,3}. If i = 2 or 3, then p = q and c4 = d4 and c5 = d5 (with d5 = q⊥ if
l = 1), so c4∩ c5 = d4∩ d5. If i = 1 and p 6= q, then L = c2 = d2 = pq is a unique line contained in c j

and d j satisfying L⊥∩ c j = L⊥∩d j for each j ∈ {4,5} and so L⊥∩S = L⊥∩d4∩d5. But S is a singular
subspace of p⊥ of dimension 3 (since its point residue at p is a plane by the building properties of Ωp)
and contains L, so S = d4∩d5. Thus, for each chamber (q,d) adjacent to (p,c), we have d4∩d5 = S. By
induction on the length of a path to (p,c) in R, we conclude that the intersection of the local q-objects
of types 4 and 5 coincides with S for each point of R. This implies that R is the chamber system of the
projective space S of dimension 3 (with types 1, 2, 3 for points, lines and planes). Hence the claim. �

As mentioned before, Corollary 3 of [10] implies that C is the quotient of the chamber system of a
building of type Y(1,l,m) by a group G. By construction, Ω = (P,L ) is the 1-Grassmannian of C and
hence an admissible homomorphic image of the Grassmannian of the building arising from the quotient
by G.

This proves the second statement of Case (2) of Theorem 4.1. If all point residues of Ω are isomorphic
to A5,3(K), then, by Lemma 5.8 of [6], Ω is isomorphic to E6,2(K). This settles the third statement.

Now, point residues of strong parapolar spaces have diameter 2, the Grassmannian An,d(K) has diameter
d, and A2d−1,d(K)/〈σ〉, which only exists for d ≥ 5, has diameter at least 5, see Section 6.9 of [4]. As a
consequence, the parapolar space Ω is strong if and only if l = 1, and it is extreme if and only if l > 2. If
l = 1, then the diagram Y(1,l,m) is equal to Dm+3 up to the labeling of the indices and Ω is an admissible
quotient of Dm+3,m+3(K). If, in addition, m ≤ 6, then the diameter of Ω is at most 4, and so G must be
trivial for the quotient to be admissible, so Ω ∼= Dm+3,m+3(K). This completes the proof of Case (2),
where k = 4.

Conversely, the point-residues of all parapolar spaces listed in the conclusion of Case (2) of Theorem 4.1
appear in the conclusion of Case (1) of the same theorem. Lemma 4.2 now implies that all parapolar
spaces listed in the conclusion of Case (2) of Theorem 4.1 satisfy the hypotheses of Theorem 4.1.

4.5 The cases k ≥ 5 of Theorem 4.1

Suppose k = 5. By Lemma 4.2 and Case (2), Ωp is isomorphic to Dn,n(K)h, for some field K. Lemma 5.1
of [6] implies that Ω is isomorphic to Em+4,1(∗)h, as stated in (3) of the revised Haircut Theorem.
The statements about the isomorphism type of Ω if m = 2,3,4, are immediate consequences of the
classification of the buildings of the given type and knowledge of 1-Grassmannians of these buildings.
Since the diameter of Dn,n(K)h is at least 3 for n≥ 6, the parapolar space Ω is strong only if it is E6,1(K)
for some field K. This establishes Case (3).

Suppose next that k = 6. By Lemma 4.2 and Case (3), Ωp is isomorphic to E6,1(K). It is easy to see that
K does not depend on p. Hence Lemma 5.5 of [6] yields (4). Similarly, this yields (5), that is the case
where k = 7, of the revised Haircut Theorem.

As in the last paragraph of the previous section, we use Lemma 4.2 to deduce that all listed geometries
in the conclusion of Cases (3), (4) and (5) satisfy the hypotheses of the theorem.

Since E8,8(K) is not strong, there are no locally connected parapolar spaces with constant symplectic
rank k ≥ 8 other than polar spaces admitting only finite-dimensional singular subspaces and satisfying
the Haircut Axiom. This ends the proof of Theorem 4.1.
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5 Locally disconnected case

In the case of constant symplectic rank at least 3, the local connectivity condition can be dispensed with
by use of a technique described by Shult in Chapter 13 of [8], which we reviewed, used, and rephrased
as unbuttoning in [6]. We recall the latter description.

Construction 5.1. Let I be a non-empty index set and let F = {Ωi = (Xi,Li) | i ∈ I} be a family
of disjoint locally connected parapolar spaces of symplectic rank at least 3. Let R be an equivalence
relation on the union X̃ =

⋃
i∈I Xi of the sets of points of all members of F , satisfying the following two

conditions (C1) and (C2), where δ is the distance function on the collinearity graph on X̃ assuming the
value ∞ at pairs from distinct point sets Xi.

(C1) Let p̃, q̃, r̃, s̃ be four equivalence classes with respect to R (not necessarily distinct, but) satisfying
p̃ /∈ {q̃, r̃, s̃}, and let p1, p2 ∈ p̃, with p1 6= p2. If q1,q2 ∈ q̃, r1,r2 ∈ r̃ and s1,s2 ∈ s̃, then

δ (p2,q1)+δ (q2,r1)+δ (r2,s1)+δ (s2, p1)≥ 5.

(C2) The graph with vertex set F , where two vertices Ωi and Ω j, i, j ∈ I, are adjacent if some point of
Ωi is contained in the same equivalence class as some point of Ω j, is connected.

Set X = X̃/R. For each line L contained in some member of F , we put L̃ = {p̃ | p ∈ L} and define
L as {L̃ | L ∈ Li for some i ∈ I}. Then we denote the geometry Ω = (X ,L ) by Ω(F ,R). If R is
non-trivial, then we call Ω a buttoned geometry. The members of the family F are called sheets. If C is
a class such that each parapolar space in F belongs to C , then we say that Ω is buttoned over C , and F
is called the sheet space of Ω (i.e., not all members of C occur in F and those that do occur are allowed
to occur multiple times). If the sheet space is a singleton, that is, |I|= 1, then we call Ω self-buttoned.

In the current terminology, the following theorem is a consequence of Corollary 13.5.3 of [8]; see also
Theorem A.8 of [6].

Theorem 5.2. Every parapolar space of symplectic rank at least 3 is either locally connected, or a
buttoned parapolar space over the family of all locally connected parapolar spaces of symplectic rank
at least 3. Also, the ranks of the symplecta of a buttoned parapolar space are precisely the ranks of
the symplecta of the members of its sheet space, and similarly for the dimensions of maximal singular
subspaces.

We then have the following generalization of the revised Haircut Theorem for symplectic rank at least 3.
For any integer k > 2, let Ck denote the family of all locally connected parapolar spaces of constant
symplectic rank k satisfying (H) and only admitting finite-dimensional singular subspaces.

The revised Haircut Theorem—General case. Suppose that Ω is a parapolar space of constant sym-
plectic rank k at least 3. Assume the following properties.

1. Each singular space possesses a finite projective dimension.
2. The “Haircut axiom”:

(H) If ξ is a symplecton and x is a point not in ξ , then x⊥∩ξ cannot be a hyperplane
of a maximal singular subspace of ξ .

If Ω is not locally connected, it is a buttoned parapolar space over Ck. Conversely, every such parapolar
space (which is not locally connected) satisfies the hypotheses.
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Proof. Suppose that Ω satisfies the hypotheses of the first statement, so it is not locally connected. By
Theorem 5.2, the space Ω is a buttoned parapolar space over the family of all locally connected parapolar
spaces of constant symplectic rank k admitting only finite-dimensional singular subspaces. So all we
need to show is that each sheet of Ω satisfies (H). Suppose, to the contrary, that Ω∗ is a sheet of Ω having
a point p∗ that is collinear to a hyperplane H∗ of a maximal singular subspace U∗ of a symp ξ∗ of Ω∗.
Write p̃ for the equivalence class of p∗ with respect to the equivalence relation R pertaining to Ω, and
write q̃ for the equivalence class of a point q∗ of U∗ \H∗. Then Condition (C1) implies that p̃ and q̃ are
not collinear. Also, R restricted to p⊥∗ ∪ξ∗ is trivial, and so the image in Ω of p⊥∗ ∪ξ∗ is an isomorphic
and isometric copy of it, violating Condition (H). Hence each sheet of Ω is a member of Ck.

Let Ω be a buttoned parapolar space with sheet space F where F is a subset of Ck. By Proposition A.9
of [6] it follows that all lines of an arbitrary symp ξ of Ω, and all lines of an arbitrary singular subspace U
intersecting ξ in a hyperplane of a maximal singular subspace, are the unique images of lines contained
in a common member of the sheet space. Hence it suffices to show that any self-buttoned parapolar
space with sheet space {Ω∗}, but not itself isomorphic to Ω∗ of course, satisfies (H). This is the same
reasoning as earlier in this proof used in the reverse direction.
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