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Abstract: 19 

Machine learning has proven effective for predicting properties of pure compounds from 20 

molecular structures, but properties of mixtures, in particular oil fractions, are rarely dealt with. 21 

At best, the bulk properties are estimated based on pure compound properties, linear mixing 22 

rules, and a reconstructed composition of the feedstock. As the detailed composition of such 23 

mixtures is rarely well determined and often approximated by lumps, the accuracy of the 24 

estimated bulk properties can be improved. In this work, we demonstrate for a naphtha case 25 

study our bulk property estimation  method. First a detailed PIONA composition is delumped 26 

into a molecule-level composition, a machine learning based approach is used to predict 27 

properties of those molecules, which are further combined in another deep neural network for 28 

the prediction of  bulk properties. The latter machine learning models are trained on mixture 29 

properties using vectors that represent the mixture. The first vector is a linear combination of 30 

the molecular representation vectors, and is the representation of the molecular geometries that 31 

make up the mixture. The second vector applies linear mixing rules on boiling temperatures, 32 

critical temperatures, liquid densities, and vapor pressures that are predicted with machine 33 

learning. The last vector consists of a learned distillation curve. We show that an integrated 34 

machine learning approach that starts from the molecular structures in the mixture offers 35 

significant improvements in predicting mixture properties over existing approaches applied in 36 

industry and academia.   37 
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1. Introduction 38 

It is essential to have a good knowledge about the properties of chemicals and their mixtures 39 

when designing new materials and processes [1]. Complex mixtures, such as crude and 40 

renewable oils, need to be reconstructed to a more detailed composition before their properties 41 

can be calculated. A whole spectrum of methods exists to reconstruct the composition of 42 

complex mixtures [2]. Yet, with all methods it remains difficult to accurately calculate the 43 

mixture properties, such as boiling points, density, and viscosity [3]. The inaccurate calculation 44 

of mixture properties affects the molecular reconstruction, which in its turn, limits the accuracy 45 

of detailed kinetic models. An accurate prediction of mixture density and viscosity is for 46 

example essential for kinetic models and reactor design [4]. These mixture properties are often 47 

also used in correlations to predict other properties or as quality parameters of hydrocarbon 48 

products, so that the prediction has a direct economic impact. 49 

Next to a representative reconstruction of the feedstock, it is equally important to have a rapid 50 

and accurate estimation of the individual property. Several methods exist to correlate a wide 51 

range of molecular properties solely using the molecular structure [5]. In the chemical industry, 52 

it is common practice to use group contribution methods [6-11]. In such a group contribution 53 

method, properties are calculated by adding contributions of functional groups. Despite being 54 

a fast approach, the accuracy is limited by the empirical, linear nature of the functional group 55 

contributions that only depends on the nearest neighbors. Over the last years, machine learning 56 

has emerged as an alternative tool for predicting molecular properties, because of its speed and 57 

application range [12]. First, it has especially been applied to predict molecular quantum 58 

chemical properties in theoretical chemistry studies [13-15]. In chemical engineering, mostly 59 

neural-network-based approaches have been developed for a wide range of properties, such as 60 
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but not limited to enthalpies of formation [16-18], solvation energies [19, 20], octane numbers 61 

[21, 22], boiling points [23-27], and vapor pressure [25, 26]. Alshehri et al. [28] published the 62 

most extensive study so far that applies both group contribution and machine learning methods 63 

to predict 25 pure compound properties. Their dataset contains around 25000 organic molecules 64 

up to 30 heavy atoms that can contain 9 heteroatoms. All models in their work are trained on at 65 

least 400 data points. In general, one can state that the predictive performance of data-driven 66 

models depends on the quality of the data, the amount of datapoints, and the diversity of the 67 

data. 68 

When it comes to estimating state properties of oil fractions, further assumptions are often 69 

made. One example is the prediction of the density or specific gravity where the most popular 70 

approach assumes that the mixture is an ideal liquid mixture, without excess molar volume. 71 

This assumption creates an initial error on the mixture predictions, as it does not hold in reality. 72 

In addition, the accuracy of the calculated pure compound properties also plays a role [3]. When 73 

there are no experimental density values available, densities of pure compounds can be 74 

calculated using an equation of state, group contribution methods, or via correlations [29]. 75 

These methods are again limited because either data of similar molecules or accurate 76 

(pseudo)critical properties are required. The same difficulties exist for other state properties of 77 

molecular mixtures, such as viscosity. For dynamic viscosities of liquid mixtures, the most 78 

applied equation is the Grunberg-Nissan equation [30], which links the mean viscosity to the 79 

viscosity of the pure components in the mixture. Reasonably accurate results within 10% error 80 

margin can be expected for binary mixtures [31]. When investigating oils, the mixtures contain 81 

more than two compounds and the properties of the individual compounds are typically 82 

unknown. An early attempt to predict the dynamic viscosity of mineral oils linked the property 83 

to the statistical distribution of carbon atoms in paraffinic chains, aromatic rings and naphthenic 84 
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rings [32]. Lohrenz et al. [33] determined the viscosity of reservoir fluids by first making a 85 

characterization of the involved compounds in the heavy hydrocarbon mixture. This 86 

characterization consists of pseudo-compounds for which then individual gas-phase properties 87 

are estimated. Using correlations and mixture rules that start from individual properties and the 88 

specific gravity of the mixture, the liquid mixture viscosity could then be calculated with a 89 

mean absolute error of 16%. Recent studies have applied modern computational tools such as 90 

neural networks for predicting mixture properties [34]. Albahri [35] predicted the specific 91 

gravity with two single-layer neural networks that used a range of nine boiling points from the 92 

ASTM D86 [36] as input values. Plehiers et al. [37] trained a model on naphtha samples using 93 

a lumped feedstock with 28 pseudo-components as input to predict points of the distillation 94 

curve and mixture properties. Although the aforementioned models are able to predict 95 

properties with high accuracy, they are limited in applicability range. With the current methods, 96 

new feedstocks have not been validated because they fall outside of the application range. Data-97 

driven models that link the prediction of pure component properties and mixture properties are, 98 

however, not yet available [38]. 99 

In industrial laboratories, experimental equipment is sometimes available but this is not always 100 

the case in academic research groups. However, gas chromatography is typically available. 101 

Furthermore, the experimental determination of physical properties for certain complex 102 

mixtures is nearly impossible due to the reactiveness of these mixtures. Plastic waste pyrolysis 103 

oils, which are increasingly investigated as promising intermediates for the chemical recycling 104 

of plastic waste, contain a large percentage of highly-reactive olefins [39]. During experimental 105 

analyses, these olefin-rich mixtures can suffer of thermal degradation and the composition 106 

change leads to unreliable measurements [40]. A solution is, thus, to create a computational 107 

approach that combines pure compound and mixture property predictions.  108 
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In this work, we show how physical properties of complex hydrocarbon mixtures are linked 109 

with molecular properties of individual compounds and with molecular structures. Many 110 

studies are dedicated to the relation between molecular properties and the molecular structure 111 

[41], as well as to predicting mixture properties from characterizing features of that mixture 112 

[37]. However, an integrated machine learning approach that links mixture properties with the 113 

molecular structure and their individual properties is still lacking. For a naphtha case study, we 114 

use a detailed paraffins, isoparaffins, olefins, naphthenes, aromatics (PIONA) composition 115 

matrix as input for the computational method. This matrix is converted into a molecule-based 116 

composition via a rule-based algorithm. We also demonstrate that the neural network-based 117 

property prediction tool GauL-HDAD [17], originally developed for thermochemical molecular 118 

properties, is able to predict normal boiling temperatures, critical temperatures, critical 119 

pressures, acentric factors, liquid densities, and vapor pressures of hydrocarbons with good 120 

accuracy. By combining the detailed molecule-based composition, the molecular 121 

representations and the molecular properties, molecular mixture representations are generated 122 

that serve as input for the deep neural networks. The mixture is represented by two vectors: a 123 

geometry-based mixture representation and a property-based mixture representation. The 124 

complete workflow of predicting individual and mixture properties is available as open-source 125 

software. We report the performance on different naphtha properties, namely boiling point 126 

curves, specific gravity, viscosity, and surface tension. 127 
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2. Methods 128 

2.1. Datasets 129 

 Naphtha Space 130 

All hydrocarbon molecules that are likely to be present in naphtha samples are stored in an 131 

unlabeled library. In this study, the naphtha space contains molecules with up to 12 carbon 132 

atoms and has been determined based on a huge dataset of fossil and plastic waste derived 133 

naphtha feedstock. Within this carbon number range, all n-paraffins, all isoparaffins, branched 134 

and linear olefins with up to two double bonds, monocyclic naphthenes, and monocyclic 135 

aromatics are selected as potential naphtha molecules. A constraint is added to the naphthenes 136 

so that their ring is either five-membered or six-membered [42]. All other ring sizes are not 137 

included. The isomers of all these molecules with up to 12 carbon atoms are generated with 138 

surge, an open-source chemical graph generator [43]. The generated SMILES identifiers of the 139 

molecules are canonicalized using RDKit [44] since surge does not take into account 140 

aromaticity. Molecules that are physically impossible, such as naphthenes with consecutive 141 

double bonds are not present, since surge only outputs chemically feasible compounds. The 142 

naphtha space counts about 26k molecules. 143 

 Molecular Properties 144 

The chemical property handbooks of Carl L. Yaws [45-47] are used to assign experimental 145 

molecular properties to the naphtha molecules. The boiling temperature, critical temperature, 146 

liquid density, vapor pressure, critical pressure, and acentric factor are included for a subset of 147 

the hydrocarbon library, since for most of the molecules in the naphtha space no experimental 148 
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datapoints are available. Table 1 gives an insight in the molecular properties that are used for 149 

training molecular property prediction models. Normal boiling points, liquid densities, and 150 

vapor pressures are only trained on experimental data. Since less than 100 experimental values 151 

are available for critical temperatures, critical pressures, and acentric factors, the training sets 152 

of these properties also include calculated datapoints. These values are calculated using the 153 

Joback group contribution method [6]. The number of experimental and calculated values used 154 

for training of each property is shown in Table 1.  155 

The liquid density 𝑑 is labeled as experimental, but calculated at 293.15 K (20 °C) using the 156 

Daubert-Danner correlation [48] (eq (1)), for which the experimentally verified coefficients A, 157 

B, C, and n are reported by Yaws [46].  158 

𝑑 = 𝐴 ⋅ 𝐵(1−
𝑇
𝐶

)
−𝑛

  (1) 

In a similar way, the vapor pressure 𝑃 at 100 °F (311 K or 37.8 °C) is calculated with the 159 

Antoine equation (eq (2)), using experimentally verified coefficients 𝐴, 𝐵, and 𝐶 from Yaws 160 

and Satyro [47]. 161 

log10 𝑃 = 𝐴 −
𝐵

𝐶 + 𝑇
  (2) 

Table 1: Overview of the training data for the individual compound properties 162 

Property Unit 
Experimental 

Data 

Calculated 

Data 

Minimal 

Value 

Maximal 

Value 

Normal boiling point K 1025 0 261.4 536.6 

Critical temperature K 93 985 407.8 723.6 

Liquid density kg m-3 
1117 0 558.2 921.2 

Vapor pressure log(kPa) 1025 0 -1.61 3.59 

Acentric factor - 89 1088 0.182 0.576 

Critical pressure bar 97 981 18.2 49.0 
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 Naphtha Samples 163 

The naphtha dataset used in this work consists of 382 curated experimental samples, collected 164 

from Pyl et al. [49] and Mei et al. [50]. All samples have a detailed PIONA composition that is 165 

compatible with the naphtha space mentioned above. The bulk properties of the included 166 

samples are different depending on the source. The 272 samples from Pyl et al. [49] contain the 167 

initial boiling point (IBP), 50%-boiling point (BP50), final boiling point (FBP), and the specific 168 

gravity at 60 °F (15.5 °C). The 50%-boiling point denotes the temperature at which 50 vol% of 169 

the mixture is evaporated [49]. The other 110 samples, from Mei et al. [50], do not include IBP 170 

and FBP, but the boiling points at 5%, 95%, and between 10% and 90% with a step of 10%. 171 

Next to boiling points, the liquid density at 20 °C (293.15 K), dynamic viscosity, and surface 172 

tension are given. The bulk properties (density, viscosity, surface tension) reported by Mei et 173 

al. [50] are not experimental, but calculated with Aspen HYSYS. The boiling points of all 382 174 

samples are determined via the ASTM D86 standard test method [36] and converted to true 175 

boiling points via the correlation of Riazi [51]. 176 

2.2. Delumping Strategy 177 

In order to accurately predict the properties of naphthas starting from the individual 178 

components, it is important to have a reasonable estimate of which molecules make up the 179 

naphtha. The input to this algorithm is a molecular-type homologous series (MTHS) matrix 180 

[52] and each value in this matrix consists of a lump of one or more molecules. Several 181 

approaches have been developed to delump the matrix into a molecule-level composition, in 182 

order to calculate mixture properties [53-57]. In this work, we adopt an semiempirical approach, 183 

similar to the one from Ranzi et al. [58], in which an internal distribution is created for each 184 

lump. 185 
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For light crude hydrocarbon mixtures, such as naphthas, regularities are found in the 186 

distribution of the isomers in the mixture [59, 60]. This means that the distribution of molecules 187 

within one lump is more or less equal for different mixtures. The absolute fraction of a molecule 188 

in naphtha can thus be calculated by multiplication of the absolute fraction of the lump and the 189 

internal fraction of the molecule in that lump. The values for isomers in the internal distribution 190 

are found by assuming probabilities that a carbon atom can be methylated or alkylated. 191 

Different rules are set up for isoparaffins, naphthenes, and aromatics, which can all be found in 192 

Supporting Information.  193 

A molecule gets its weight depending on the substructures that are present in the molecule. The 194 

molecule is read into RDKit [44] using its SMILES identifier [61, 62] and is then classified in 195 

its PIONA class. Based on its carbon number, the molecule is assigned to the corresponding 196 

lump. Substructure matching using SMARTS [63] is performed to assign a value to that 197 

molecule. The internal value for an isoparaffinic molecule is found via a single empirical 198 

formula, given by eq (3). 199 

𝑤 = 𝛽 ⋅ 𝛼𝑚𝑒𝑡ℎ𝑦𝑙

(𝑛𝑚𝑒𝑡ℎ𝑦𝑙−𝑛𝑞𝑢𝑎𝑡)
⋅ 𝛼𝑒𝑡ℎ𝑦𝑙

𝑛𝑒𝑡ℎ𝑦𝑙 ⋅ 𝛼𝑞𝑢𝑎𝑡

𝑛𝑞𝑢𝑎𝑡   (3) 

In eq (3) there are several empirical parameters: 𝛼𝑚𝑒𝑡ℎ𝑦𝑙 is the weight for a methylation, 𝛼𝑒𝑡ℎ𝑦𝑙 200 

is the weight for an ethylation, and 𝛼𝑞𝑢𝑎𝑡 is the weight for a quaternary carbon atom. Based on 201 

investigation of experimental samples [59, 60, 64-68], the values are set on 𝛼𝑚𝑒𝑡ℎ𝑦𝑙 = 0.3, 202 

𝛼𝑒𝑡ℎ𝑦𝑙 = 0.05 and 𝛼𝑞𝑢𝑎𝑡 = 0.05, which is similar to the values of Ranzi et al. [58] which are 203 

respectively 0.28, 0.045, and 0.056. The pre-factor 𝛽 is set at 0 when alkyl groups with more 204 

than 2 carbon atoms are present, at 1 for molecules that contain planes of symmetry (e.g. 3-205 

methylpentane), and at 2 for all other compounds. Correction factors are added for 3-206 

methylhexane and 2-methylheptane to agree with experimental observations [59, 60]. The 207 
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exponents 𝑛𝑚𝑒𝑡ℎ𝑦𝑙 , 𝑛𝑒𝑡ℎ𝑦𝑙 , and 𝑛𝑞𝑢𝑎𝑡  are respectively the number of methyl groups, ethyl 208 

groups, and quaternary atoms. The eventual internal fraction 𝑥 of a molecule in a lump is found 209 

by dividing the weight 𝑤 by the sum of the weights of all 𝐿 molecules in the lump, as shown in 210 

eq (4).  211 

𝑥 =  ∑ 𝑤𝑖

𝐿

𝑖

  (4) 

Figure 1 illustrates the underlying distribution of the C8 isoparaffins lump obtained with the 212 

fitted values from this work and compared to the distributions from Ranzi et al. [56] and Mei 213 

et al. [57]. For visualization reasons, the dimethylhexanes, ethylmethylpentanes, and 214 

trimethylpentanes are grouped. The detailed underlying distribution of this lump can be found 215 

in Supporting Information. The samples named Ponca, Occidental, and Texas are real crude oil 216 

samples with an experimentally determined composition [56], while the other distributions are 217 

generated with delumping rules. 218 

 
Figure 1: Distribution of branched C8H18 isomers compared to the distributions given 

by Ranzi et al. [56] and Mei et al. [57] 

Empirical equations, similar to eq (3) are constructed for cycloalkanes and aromatic 219 

compounds. All rules and factors are given in Supporting Information. The calculation of the 220 
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cycloalkane weights is analogous to the calculation for isoparaffins, whereas for aromatic 221 

compounds it is taken into account whether the alkyl group is in ortho, meta, or para position. 222 

Table 2 gives the molecule-level composition of the Ponca C4 to C9 light naphtha fraction 223 

experimentally determined [64] and reconstructed with the delumping strategy given above. 224 

There is a satisfactory agreement between experimental and predicted values despite the rough 225 

approximations of the empirical equations. It is important to notice that the weights and the 226 

rules should be revisited, based on experimental evidence when applying the model to 227 

renewable feedstocks, since their underlying distributions per lump can differ. Further 228 

investigations of heavy and renewable feedstocks with advancements in analytical tools can 229 

lead to a better understanding of complex mixtures.  230 
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Table 2: Molecule-level composition of the Ponca C4 to C9 light naphtha fraction, 231 

determined experimentally (Exp) [64] and predicted with delumping rules (Pred) 232 

IUPAC Name Exp Pred IUPAC Name Exp Pred 

butane 3.28 3.28 2,6-dimethylheptane 0.18 0.08 

pentane 5.83 5.83 2,3-dimethylheptane 0.18 0.16 

hexane 6.55 6.55 4-methyloctane 0.36 0.53 

heptane 8.37 8.37 2-methyloctane 1.46 0.53 

octane 6.92 6.92 3-methyloctane 0.36 0.53 

nonane 6.55 6.55 cyclopentane 0.18 0.18 

2-methylpropane 1.09 1.09 methylcyclopentane 3.17 3.14 

2,2-dimethylpropane 0.00 0.04 cyclohexane 2.58 2.61 

2-methylbutane 1.82 1.78 1,1-dimethylcyclopentane 0.58 0.59 

2,2-dimethylbutane 0.15 0.06 1,3-dimethylcyclopentane 3.93 3.75 

2,3-dimethylbutane 0.29 0.34 1,2-dimethylcyclopentane 1.75 1.88 

2-methylpentane 1.35 2.28 ethylcyclopentane 0.58 0.59 

3-methylpentane 1.27 0.38 methylcyclohexane 5.83 5.87 

2,2-dimethylpentane 0.07 0.05 1,1,3-trimethylcyclopentane 1.09 0.92 

2,4-dimethylpentane 0.29 0.31 1,2,4-trimethylcyclopentane 0.84 1.47 

2,2,3-trimethylpentane 0.00 0.01 1,2,3-trimethylcyclopentane 1.20 1.47 

3,3-dimethylpentane 0.00 0.05 1,1,2-trimethylcyclopentane 0.22 0.18 

2,3-dimethylpentane 0.55 0.62 1-methyl-3-ethylcyclopentane 0.44 0.37 

2-methylhexane 2.66 2.06 1-methyl-2-ethylcyclopentane 0.66 0.18 

3-methylhexane 1.86 2.37 1-methyl-1-ethylcyclopentane 0.11 0.06 

3-ethylpentane 0.22 0.17 isopropylcyclopentane 0.04 0.05 

2,2,4-trimethylpentane 0.00 0.01 propylcyclopentane 0.22 0.06 

2,2,3,3-tetramethylbutane 0.00 0.00 1,4-dimethylcyclohexane 1.24 1.53 

2,2-dimethylhexane 0.04 0.04 1,1-dimethylcyclohexane 0.22 0.06 

2,5-dimethylhexane 0.22 0.23 1,3-dimethylcyclohexane 2.55 3.06 

2,4-dimethylhexane 0.22 0.45 1,2-dimethylcyclohexane 1.35 1.53 

2,2,3-trimethylpentane 0.01 0.01 ethylcyclohexane 1.35 0.57 

3,3-dimethylhexane 0.11 0.08 benzene 0.55 0.55 

2,3,4-trimethylpentane 0.02 0.07 toluene 1.86 1.86 

2,3,3-trimethylpentane 0.02 0.01 ethylbenzene 0.69 0.78 

2,3-dimethylhexane 0.25 0.45 1,4-dimethylbenzene 0.36 0.58 

2-methyl-3-ethylpentane 0.22 0.04 1,3-dimethylbenzene 1.86 1.56 

2-methylheptane 3.28 2.95 1,2-dimethylbenzene 0.98 0.97 

4-methylheptane 0.73 0.76 isopropylbenzene 0.25 0.20 

3,4-dimethylhexane 0.47 0.23 propylbenzene 0.33 0.20 

3-methyl-3-ethylpentane 0.07 0.01 1-methyl-3-ethylbenzene 0.62 0.89 

3-ethylhexane 0.33 0.25 1-methyl-4-ethylbenzene 0.22 0.55 

3-methylheptane 1.09 1.51 1,3,5-trimethylbenzene 0.44 0.57 

2,2,4,4-tetramethylpentane 0.00 0.00 1-methyl-2-ethylbenzene 0.33 0.71 

2,2,5-trimethylhexane 0.01 0.00 1,2,4-trimethylbenzene 1.86 1.34 

2,2,4-trimethylhexane 0.00 0.00 1,2,3-trimethylbenzene 0.69 0.28 

2,3,5-trimethylhexane 0.11 0.02    
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2.3. Machine Learning Approach 233 

Our machine learning approach consists of four steps that can be summarized as follows. First 234 

the generation of the molecular representation is described that serves as input for a neural 235 

network. Essential is also the creation of numerical vectors that identify the naphtha mixture. 236 

Finally feedforward neural networks are trained to create a regression between input and output 237 

vector, and validated using nested cross-validation, a technique to evaluate and optimize the 238 

algorithm’s performance. 239 

 Molecular Vector 240 

Essential is to represent molecules mathematically, as molecules do not have a natural 241 

numerical vector representation that can be used as input for artificial neural networks. 242 

Therefore, a molecular vector is developed by the Gaussian Learned Histograms of Distances, 243 

Angles, and Dihedrals (GauL-HDAD) method [17] for every molecule that is considered in a 244 

hydrocarbon mixture. GauL-HDAD is a geometry-based tool, which means that 3D coordinates 245 

are needed to set up the molecular representation. In this work, 3D geometries are computed 246 

on-the-fly from canonical SMILES identifiers [61, 62] with the ETKDG algorithm in RDKit 247 

[44, 69]. The calculated conformer for each molecule is minimized using the Merck Molecular 248 

Force Field (MMFF94s) [70]. In the next step, interatomic distances, bond angles, and dihedral 249 

angles of all molecules in the dataset are calculated. Using all geometry features of all 250 

molecules, histograms are created per individual type of geometry feature, e.g. all carbon-251 

hydrogen interatomic distances are grouped in an CH histogram. Gaussian mixture models 252 

(GMM) of all these histograms are created using the unlabeled molecules in the naphtha space, 253 

as illustrated in Figure 2. The range of molecules included in the naphtha space determines the 254 

application range of the global mixture property prediction tool, in this case n-paraffins, iso-255 
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paraffins, olefins, naphthenes and aromatics with up to 12 carbon atoms. The representation of 256 

an individual molecule is calculated by first calculating for each geometry feature in a molecule 257 

the probability that it is found under any of the gaussians in the GMM. The vectors of all 258 

geometry features are then condensed (summed element by element) to a single molecular 259 

vector, with the same length as each of the geometry feature vectors, which is the eventual 260 

molecular representation. A detailed description of the GauL-HDAD property prediction tool 261 

is available in the original paper [17]. The use of the molecular vector representations in the 262 

neural network architecture is twofold: (1) for prediction of pure compound properties, and (2) 263 

for construction of a condensed mixture representation, which is in turn used to predict mixture 264 

properties.  265 
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Figure 2: Scheme showing the creation of the two types of mixture representations, 

starting from a lumped feedstock as identifier of the mixture, which is reconstructed 

to a molecular composition with delumping rules. Two routes can be distinguished: 

the blue route contains all (unlabeled) molecules in the naphtha space and is used to 

set up Gaussian mixture models (GMM). The red route contains the molecules with 

available property data and is used to train property prediction models. Geometry-

based mixture representations are made using the composition and the molecular 

representations, whereas the property-based mixture representations use the 

composition and the predicted/experimental molecular features of the individual 

compounds. 

 Mixture Representation 266 

Figure 2 illustrates the workflow to create mixture representations. Each sample is represented 267 

by two vectors: a geometry-based mixture representation and a property-based mixture 268 

representation. The geometry-based mixture representation is a vector that contains information 269 

about the constitution of the molecules in the mixture. The earlier introduced molecular 270 
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representations are multiplied by the mole fraction of the corresponding molecule in the naphtha 271 

sample, as it is obtained from the rule-based molecular reconstruction algorithm. All individual 272 

molecular representations are then summed to create one geometry-based mixture 273 

representation. The second mixture vector is representative for the properties of the molecules 274 

that make up the mixture. If there are no experimental molecular properties available, the 275 

properties are predicted using GauL-HDAD from a model trained on the experimental data. 276 

Similar to the molecular representations, using reconstructed mole fractions, the molecular 277 

features are converted to a single vector with the same length as the feature vector.  278 
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 Feedforward Neural Networks 279 

 
Figure 3: Neural network architecture of the two models. a) The architecture for 

prediction of boiling points. b) The architecture for mixture properties that depend on 

the boiling point curve 
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Figure 3 illustrates the architecture of the feedforward neural network models used in this work 280 

for the prediction of mixture properties. The model that predicts points of the distillation curve 281 

(Figure 3a, from here on named Boiling Point Model) comprises two input layers and one output 282 

layer. The two vectors that represent the mixture – as explained above – are used as the 283 

respective input layers. The geometry-based mixture representations and the condensed 284 

molecular features are sent through respectively three and two hidden layers, upon which the 285 

last hidden layers are concatenated. This concatenated vector is again sent through two hidden 286 

layers. The size of the output layer depends on the number of boiling points that are used for 287 

training, i.e. three for the data from Pyl et al. [49] and eleven for the data from Mei et al. [50]. 288 

All layers are connected using leaky ReLU activation functions.  289 

The second model (Figure 3b, from here on named Mixture Property Model) predicts properties 290 

that are also correlated to the boiling point, such as the density and viscosity. Therefore, this 291 

model has a third input layer that contains the predicted boiling points from the Boiling Point 292 

Model. The architecture of the mixture property model resembles the boiling point model, but 293 

with more complexity due to the additional input. In the mixture property model, hidden layers 294 

that are learned versions of the geometry-based mixture representation and of the condensed 295 

molecular features are concatenated, and sent through a hidden layer. Additionally, the hidden 296 

layer in the condensed molecular feature line goes through a further hidden layer. The third 297 

learning line consists of the predicted boiling points, which are sent through hidden layers 298 

themselves. Finally, three hidden vectors are concatenated and passed through a hidden layer, 299 

yielding as output the desired property. Again, the size of the output depends on the output 300 

values chosen for training. In this paper, the output layer size of the mixture property model is 301 

always equal to one. 302 
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Both models are implemented using Keras [71], integrated in TensorFlow 2 [72]. The neural 303 

network parameters are initialized randomly by a normal distribution as published by Glorot 304 

et al. [73]. The model was trained using the Adam optimization algorithm, with a fixed learning 305 

rate of 0.001 [74]. Training is stopped when 100 epochs are passed in which the validation loss 306 

did not decrease. The neural network architectures were selected after a grid search 307 

optimization. A complete overview of the architectures of the boiling point and mixture 308 

property models is found in Supporting Information and in the source code of the algorithm on 309 

GitHub (https://github.com/mrodobbe/naphtha-mixtures). 310 

 Nested Cross-Validation 311 

Evaluating all samples is possible using nested cross-validation, also known as double cross-312 

validation. Here, there is an inner and an outer loop. In the outer loop k test sets are selected 313 

without replacement. In the inner loop l validation sets are drawn without replacement for each 314 

of the k training sets. This means that in total k times l models are trained for every neural 315 

network in this work with k different test sets and k times l different training and validation sets. 316 

Each sample in a test set is passed through l inner models and the test prediction is the average 317 

of the l predictions and the uncertainty is the standard deviation of the l predictions. The model 318 

with the best individual test error in each inner loop is selected as model for the final ensemble 319 

of models. In this work, the reported results are for a nested cross-validation algorithm with 10 320 

outer folds and 9 inner folds, which corresponds to an 80/10/10 training/validation/test split. 321 

The input and output are shuffled using a seeded random number generator and split into 10 322 

outer folds using the KFold function in scikit-learn [75], so that each datapoint is in exactly 1 323 

outer test set and in 9 outer training sets. This practice is repeated for the inner folds. A datapoint 324 

that is in an outer loop training set, will be in 8 inner training sets and in 1 inner validation set. 325 

https://github.com/mrodobbe/naphtha-mixtures
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The implementation of the nested cross-validation algorithm is done using the python package 326 

scikit-learn [75]. 327 

3. Results and Discussion 328 

3.1. Molecular Property Predictions 329 

The performance of the GauL-HDAD algorithm is tested on six molecular properties, namely 330 

the boiling point, critical temperature, density at 293.15 K, vapor pressure at 100 °F (310.93 331 

K), acentric factor, and critical pressure. Parity plots for all properties are given in Figure 4 and 332 

an overview of the performance is listed in Table 3. Note that, since the construction of 333 

molecular vectors starts from the same Gaussian mixture model, the neural network for the 334 

prediction of each of the pure component properties has the same molecular input if the same 335 

molecule is considered.   336 
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Figure 4: Parity plots for the prediction of the a) molecular normal boiling 

temperature, b) critical temperature, c) liquid density, d) vapor pressure, e) acentric 

factor, and f) critical pressure on the test sets of all folds. The orange lines represent 

the 5% confidence interval. 
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Among the six pure compound properties, the boiling point data is the most reliable because 337 

only experimental datapoints are used for training the model. Densities and vapor pressures are 338 

calculated from correlations with experimentally verified parameters. The critical temperature, 339 

critical pressure and acentric factor datasets also include calculated values, because 340 

experimental values are too scarce (less than 100 datapoints) for these properties. The effect of 341 

calculated data is mainly visible in the parity plots of the critical temperature (Figure 4b) and 342 

the acentric factor (Figure 4e), by the vertical lines. These vertical lines are several isomers 343 

which have the same listed, calculated value but for which the machine learning algorithm 344 

predicts different values. This illustrates the difference between group contribution methods 345 

and machine learning methods. The group contribution method uses empirical values per 346 

functional group, but it fails at distinguishing structural isomers.  347 

Table 3: Performance of different pure compound prediction models 348 

The boiling point predictions (Figure 4a) have the highest R2 value of all properties and only 349 

four molecules have an error higher than 5%. These four molecules are all unsaturated 350 

molecules. Three of these molecules contain a cyclohexane ring with an unsaturated group and 351 

the other molecule is a cumulated diene. Unsaturated naphthenes and cumulated dienes are 352 

predicted with large uncertainties for all properties, which indicates data scarcity of these 353 

molecular classes in the dataset. However, the impact in the rest of the algorithm is limited since 354 

unsaturated naphthenes and cumulated dienes are excluded using the current molecular 355 

Property Unit MAE RMSE R2 

Normal boiling point K 2.5 3.9 0.992 

Critical temperature K 2.8 5.2 0.990 

Liquid density kg m-3 
5.9 10.2 0.965 

Vapor pressure log(kPa) 0.060 0.092 0.988 

Acentric factor - 0.0046 0.010 0.988 

Critical pressure bar 0.34 0.69 0.979 
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reconstruction scheme, because of their negligible occurrence in naphtha samples. It is clear 356 

that accurate data for these olefinic compounds would be extremely useful because for example 357 

in plastic waste derived naphthas the olefin content is substantially larger than for fossil 358 

naphthas. Given the fact that correlation between boiling points and critical temperatures have 359 

been proposed [1], it is not surprising that the performance on predicting critical temperatures 360 

is similar than for boiling points. This is also true for Pitzer’s acentric factor (Figure 4e), which 361 

uses by definition the critical temperature, critical pressure and vapor pressure [76]. The liquid 362 

density of pure compounds (Figure 4c) is predicted less accurate than the other properties. A 363 

comparison to experimental data learns that in particular predictions of cyclic molecules are 364 

poorer than for acyclic molecules. The reduced agreement with experimental data can be linked 365 

to the higher density values of these cyclic compounds compared to acyclic molecules. In 366 

Figure 4c, this is visible by the overpredicted values with an experimental value around 800 kg 367 

m-3 and the underpredicted values at the higher end of the range. 368 

Table 4 shows a comparison between molecular property predictions with the machine learning 369 

tool GauL-HDAD and the Joback-Reid group contribution method (GC) [6]. The GC values 370 

are calculated using the python package JRGui [77]. The machine learning predictions are test 371 

set values from the models reported above. A total of 86 samples is taken, for which 372 

experimental normal boiling points, critical temperatures, and critical pressures are available. 373 

The samples include 9 n-paraffins, 36 isoparaffins, 11 olefins, 14 naphthenes, and 16 aromatics. 374 

It is observed that the machine learning method outperforms the GC method for all three 375 

physical properties. Only for the normal boiling temperature the performance is similar to what 376 

is reported in Table 3. This behavior is due to the fact that the normal boiling point model is 377 

trained only on experimental data, while the critical temperature and pressure models are trained 378 
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also on GC data. Only experimental data is used in the comparison in Table 4. This explains 379 

why the performance of these models is closer to the GC performance. 380 

Table 4: Comparison of machine learning predictions with GauL-HDAD and Joback-381 

Reid group contribution (GC) calculations with experimental normal boiling points, 382 

critical temperatures, and critical pressures of 86 molecules. 383 

3.2. Mixture Property Prediction 384 

The property-based mixture representation consists of the normal boiling point, the critical 385 

temperature, the liquid density, and the vapor pressure. If experimental data is available for a 386 

molecule, then the experimental datapoints are used. For most of the compounds in a naphtha, 387 

experimental data is not available and is predicted using the above discussed machine learning 388 

tool. The property-based mixture representation is composed of a fifth value: the carbon-to-389 

hydrogen ratio, which is directly calculatable from the molecular structure. These property-390 

based mixture representations are made by multiplying the property vector per molecule with 391 

the absolute fraction of that molecule, followed by summing the vectors to a single vector. Two 392 

models are trained in sequence: the boiling point model links the geometry-based and property-393 

based mixture representations to a boiling point curve, and the mixture property model links 394 

the geometry-based and property-based mixture representations, and the boiling point curve to 395 

bulk properties. An overview of the performance of the two models is provided in Table 5. 396 

Property Model Unit MAE RMSE R2 

Normal boiling point GauL-HDAD K 2.7 4.3 0.993 

Normal boiling point GC K 9.5 11.8 0.952 

Critical temperature GauL-HDAD K 
7.9 10.5 0.976 

Critical temperature GC K 15.9 18.97 0.915 

Critical pressure GauL-HDAD bar 1.58 2.48 0.829 

Critical pressure GC bar 1.89 2.81 0.809 
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Table 5: Performance of the boiling point model (BPM) and the mixture property 397 

prediction model (MPM) 398 

 Boiling Point Curve Prediction 399 

The largest dataset of naphthas contains 272 samples with an initial boiling point (IBP), a 400 

boiling point at 50% (BP50), and a final boiling point (FBP) experimentally measured 401 

according to the ASTM D86 method [36] and converted to true boiling points using Riazi’s 402 

correlations [51]. Figure 5 shows the parity plot for the boiling point model on this dataset. 403 

Across all the boiling points, an MAE of 2.4 K and an RMSE of 3.8 K is achieved, which is 404 

about similar to the error on the pure compound boiling points. As can be seen in Figure 5, the 405 

errors should be evaluated individually. The performance is best for the BP50 prediction, with 406 

an MAE of 1.5 K and an RMSE of 2.15 K. Predictions of the IBP are in the same order with an 407 

MAE of 1.8 K and an RMSE of 2.6 K, but it should be remarked that the data range of the IBP 408 

is much smaller than that of the BP50. The FBP is predicted with the largest errors, namely an 409 

MAE of 3.9 K and an RMSE of 5.6 K. There are several considerations that should be made 410 

along with the IBP and FBP predictions. First of all, it is hard to experimentally measure the 411 

IBP and the FBP because the naphtha samples might contain very volatile compounds with a 412 

boiling point lower than ambient temperature (e.g. propane) or heavy products with low 413 

volatility that do not evaporate. In that sense, it is hard to select the initial and final boiling 414 

points. A common way to avoid the problem is by taking the boiling point at 2 or 5% and 95 or 415 

Property Ref. Data Unit Model MAE RMSE R2 

Boiling point curve [49] K BPM 2.4 3.8 0.996 

 [50] K BPM 2.9 4.0 0.991 

Specific gravity [49] - MPM 8.2×10-4 1.1×10-3 0.988 

Liquid density [50] kg m-3 MPM 2.3 2.6 0.958 

Dynamic viscosity [50] Pa.s MPM 7.2×10-3 8.2×10-3 0.975 

Surface tension [50] N m-1 MPM 1.2×10-4 1.5×10-4 0.963 



27 of 45 

98% as respective IBP and FBP [51]. A second noise on the predictions is the actual 416 

composition. Even though a complete reconstruction is made, the initial lumped composition 417 

contains experimental noise by itself. This is because lumps need to be estimated from GCxGC 418 

chromatograms with a mass balance that is usually not fully closed. The errors on all boiling 419 

points are lower than predicted by Plehiers et al. [37], who achieved RMSEs of 3.5, 2.7, and 420 

5.7 K on respectively the IBP, BP50, and FBP. However, the comparison is not on the same set 421 

since Plehiers et al. did not use cross-validation in their work. 422 

 423 

 
Figure 5: Performance of the boiling point model on IBP, BP50 and FBP predictions 

of 272 naphthas using nested cross-validation on the test sets of all folds. 

 

Similar performance is observed for the other, smaller dataset with 110 naphtha samples. The 424 

average performance is slightly worse with an MAE of 2.9 K and an RMSE of 4.0 K, and the 425 

parity plot is shown in Figure 6. In this dataset also  the boiling point at 10%, 20%, 30%, 40%, 426 
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50%, 60%, 70%, 80%, 90%, 95% have been measured. The errors are, in agreement with the 427 

previous results, larger for BP10 and BP95 with respectively MAEs of 3.5 K and 5.5 K, and 428 

RMSEs of 4.4 K and 7.6 K. The other boiling points have relatively similar errors to each other, 429 

and are all much lower than the 5% error range which corresponds to ±20 K at 400 K. The 430 

MAEs of the intermediary boiling points range from 2.0 to 3.1 K and the RMSEs from 2.4 to 431 

4.2 K.  432 

 
Figure 6: Parity plot with all test set boiling points in the Mei dataset, predicted with 

the boiling point model. The color of the point indicates to which part of the 

distillation curve the boiling point belongs.  

The errors can be divided into two classes: samples with high model uncertainty and high 433 

prediction errors, samples with low model uncertainty and high prediction errors. The model is 434 

quite uncertain (i.e. the individual ensemble models disagree resulting in a high variance on the 435 

predictions), when the input is quite distinctive from the rest of the training set. This indicates 436 

that the experimental value is likely correct, but that the model is used outside its application 437 
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range. In the second class of errors, the model has a rather low model uncertainty and the sample 438 

resembles the training samples. In this case, the model is used within its application range and 439 

we can assume that there is a significant experimental error on the sample. The three samples 440 

with the highest prediction variance for specific gravity predictions in the Pyl dataset, are 441 

analyzed by assessing the degree of similarity with the other naphthas. A principal component 442 

analysis is performed on the geometry-based mixture representations of 269 naphthas from the 443 

Pyl dataset [49]. The first three principal components, which explain more than 90% of the 444 

variance, are shown in Figure 7. The ellipsoid in Figure 7 corresponds to a Mahalanobis distance 445 

of about 2.5, which means that it encloses 90% of the data. The Mahalanobis distance has been 446 

used in previous work to show similarities between naphtha samples [37, 65]. It is seen from 447 

Figure 7 that the three samples with the highest variance (red spheres) have a Mahalanobis 448 

distance larger than the critical distance of 2.5. Nevertheless, these samples are not the only 449 

samples that are out of the application range, but the machine learning approach manages to 450 

achieve highly accurate predictions.  451 
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Figure 7: First three principal components (PC1, PC2, PC3) of the geometry-based 

mixture representation of the naphthas in the Pyl database. The red spheres are the 

three naphthas for which the variances is the largest on specific gravity predictions. 

 452 

 453 
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Figure 8: a) The boiling point curve of a representative naphtha sample predicted by 

the boiling point model, compared to the true curve. The shaded area indicates the 

uncertainty on the predictions of each point. b) Error distribution of the mixture 

boiling point predictions in the Mei dataset by the boiling point model as function of 

the evaporated volume with the median error and the interquartile range indicated. 

Figure 8a goes in more detail than Figure 6 by showing the individual boiling point curve of a 454 

naphtha sample. The naphtha sample (sample 67 from the Mei dataset) is chosen to be 455 

representative, with its MAE close to the median value of all MAEs. The trend is clearly 456 
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captured in the prediction of the boiling point curves and shows that a complete boiling point 457 

curve can be reconstructed with this approach. Figure 8b confirms the larger errors on the 10% 458 

and 95% boiling points, which were also noticed in Figure 6. Errors at the lower and higher end 459 

of the distillation curve can be related to the experimental difficulty to measure the boiling point 460 

at these fractions. The median error is in all cases very close to zero and the middle 50% of the 461 

errors is found within the range from -5 to 5 K.  462 

 Prediction of Specific Gravity, Liquid Density, Dynamic Viscosity, and Surface 463 

Tension  464 

The mixture property model predicts bulk properties from three input vectors and different 465 

versions are trained on specific gravities, liquid densities, dynamic viscosities, and surface 466 

tensions. The high R2 values listed in Table 5 show a very good agreement between the true 467 

and the predicted values.  468 
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Figure 9: Performance of the mixture property model on predicting a) the specific 

gravity in the Pyl database, b) the liquid density in the Mei database, c) dynamic 

viscosity in the Mei database, d) the surface tension in the Mei database on the test 

sets of all folds. The orange line indicates the 0.5% confidence interval. 

Figure 9a and Figure 9b show the parity plots for the mixture property model predictions of 469 

specific gravity and liquid density. For both datasets, the prediction is highly accurate with most 470 

data points found within 0.5% error. The values with larger errors are samples of which the 471 

boiling point predictions have larger errors too, which is likely an effect of an incorrect lumped 472 

composition. 473 

Figure 9c and Figure 9d show the parity plots for the prediction of the dynamic viscosity and 474 

the surface tension of the naphtha samples in the dataset of Mei et al. [50]. Both properties are 475 

estimated with an excellent accuracy. This result is remarkable because the property-based 476 

mixture representation does not contain any viscosity nor surface tension values of individual 477 

components. This means that it is possible learn and predict physicochemical properties of 478 
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molecular mixtures without the need for experimental values of that property for the individual 479 

pure components.  480 

 Comparison with Kay’s Mixing Rule 481 

The common approach in molecular reconstruction tools is using linear mixing rules, also 482 

known as Kay’s mixing rules, given by eq (5) [51]. 483 

𝜃𝑚 = ∑ 𝑥𝑖𝜃𝑖

𝑖

  
(5) 

These correlations are assumed to obtain high accuracy when the composition is known and 484 

when the individual properties are known. In the molecular reconstruction of naphthas, 485 

obtaining an accurate composition is not straightforward and neither is having accurate 486 

properties. Especially when considering alternative feedstocks, such as plastic waste pyrolysis 487 

oils, it is currently not possible to have a composition in high detail [40]. In addition, 488 

experimental property values of species involved in those feedstocks, such as branched olefins, 489 

are mostly not available. 490 

Figure 10 shows the parity plot when calculating the liquid density using Kay’s mixing rule. 491 

The fractions in eq (5) are the same as used in the boiling point model and the mixture property 492 

model, and the values are predicted using GauL-HDAD. It is clearly visible that the 493 

performance of the mixing rule is very much equal to the performance by the mixture property 494 

model, shown in Figure 9b. The RMSE of the linear model is 2.9 kg m
-3

 compared to 2.6 kg m
-3

 495 

of the mixture property model. The R2-value is 0.952, which is almost equal to the 0.956 of the 496 

mixture property model. Rather than one trend in Figure 9b, two parallel trends are noticed in 497 

Figure 10. The systematically overestimated naphtha samples are richer in aromatics and 498 

naphthenes, whereas the underestimated data are richer in (iso)paraffines. It is not surprising 499 

that Kay’s mixing rule for density is accurate. Experimental density values are present for the 500 
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large majority of the molecules in the naphtha samples and, as shown in Figure 4, the density 501 

predictions are reliable with training values available over the whole range of data points. 502 

Moreover, the performance of the linear mixing rule is a proof that the molecular reconstruction 503 

rules presented in this paper are reliable for naphthas.  504 

 
Figure 10: Parity plot of the liquid density in the Mei dataset using the linear mixing 

rules 

It is more interesting to consider a mixture property for which less data is available, such as the 505 

dynamic viscosity at 298.15 K. The dynamic viscosity is a transport property, but also a 506 

property that is a crucial quality parameter, such as for lubricants. Because it is so temperature-507 

dependent, it is very hard to quantify experimentally which makes accurate computational 508 

models of high importance. GauL-HDAD is trained on 389 experimental and calculated 509 

dynamic viscosity values at 298.15 K for pure components from Yaws’ Handbook of Transport 510 

Properties [78]. Similar to the pure compound properties above, the considered molecules are 511 

all from the naphtha space. The first consideration to be made is that the viscosity values are 512 



36 of 45 

not evenly distributed in the training set. Even though the number of isomers grows with the 513 

number of carbon atoms, the number of molecules with experimental viscosity values decreases 514 

above 10 carbon atoms. Only a handful of values are available for molecules with 12 carbons.  515 

The sparse distribution of data in the training set is reflected by the performance of GauL-516 

HDAD. A parity plot is shown in Figure 11a. The largest outliers are the C9 to C12 517 

monoalkylcyclohexanes, which are also outliers in the distribution (the largest value per carbon 518 

number). Since these monoalkylcyclohexanes are nearly the only naphthenics in the database 519 

with higher carbon numbers and because naphthenics are important in naphtha, this makes the 520 

predictions unreliable. Yet, GauL-HDAD performs very accurately disregarding these outlier 521 

values. 522 

 
Figure 11: a) Performance of pure compound dynamic viscosity values using GauL-

HDAD. b) Parity plot of the dynamic viscosity in the Mei dataset using linear mixing 

rules 

The effect of unreliable pure compound properties is clearly visible in Figure 11b. Using The 523 

mixture property model, the R2 value was 0.975, which dropped to 0.899 for Kay’s mixing 524 

rules. Although still acceptable, an underestimation of the higher viscosity values is witnessed. 525 

Because the density can be predicted properly with the same absolute fractions, the cause of the 526 

poorer predictions is the unreliable prediction of the individual viscosity values. Especially for 527 
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heavier mixtures, e.g. for lubricants, the viscosity is important. Knowing that viscosity increases 528 

with molecular weight, this shows the large benefit of the neural network-based model. 529 

The main advantage of the algorithm that integrates pure compound prediction, boiling point 530 

curve prediction, and bulk property prediction lies in the fact that bulk properties can be 531 

predicted without the need for experimental values of that property. In this way, there are 532 

similarities with equations of state that are used in process simulation software today. The new 533 

approach suits well in these process simulators because it can predict properties from the 534 

composition, whereas predictions are now made in the other way to yield a detailed 535 

composition. The software can also applied for feeds with higher carbon numbers, when data 536 

is available, since two-dimensional gas chromatography is a powerful tool for analyzing heavy 537 

feedstocks [39, 65, 79-81]. When considering heavier feedstocks, it is needed to represent 538 

lumps by model compounds since the number of isomers becomes astronomically large and 539 

because current analytical techniques cannot characterize heavy feeds to such a level of detail 540 

[82]. When data is provided of feeds with higher carbon numbers, such as diesel or vacuum 541 

gasoil, the neural networks can be retrained to extend the application range. The main limitation 542 

is the lack of large datasets in this field. Large amounts of data are available in academia and 543 

industry, which have not yet been made public. This data-driven tool can speed up the 544 

optimization of processes with new feedstocks when new datasets are made available. Apart 545 

from the energy industry, it is generally important to have accurate predictions of molecular 546 

mixtures. This work shows that it is possible to link an averaged molecular structure to a mixture 547 

property. Future work should evaluate property prediction of mixtures with known 548 

compositions as well as of renewable feedstocks. 549 
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4. Conclusions  550 

In this work, we develop a machine learning algorithm to predict boiling points and bulk 551 

properties of naphthas, starting from a lumped composition. It is found that a delumped 552 

molecular composition of the mixture components and general physical properties from pure 553 

components, such as the liquid density and the critical parameters, are sufficient to predict 554 

properties of complex hydrocarbon mixtures. Linear mixing rules, which are typically applied 555 

in industry, can only perform well when accurate property estimates of the pure compounds are 556 

available. Therefore the neural network-based property prediction tool GauL-HDAD was 557 

trained on normal boiling points, critical temperatures, critical pressures, liquid densities, 558 

acentric factors, vapor pressures, and viscosities of pure hydrocarbons. The predicted values of 559 

densities and viscosities for pure components are applied in linear mixing rules to predict 560 

mixture properties, and it is seen that only mixture densities are predicted accurately because 561 

only a very small amount of experimental viscosity values for pure components are available. 562 

We have developed a neural network-based approach that can successfully predict boiling point 563 

curves, densities, viscosities, and surface tensions of mixtures. The common factor in the 564 

property prediction of pure compound properties and bulk properties is a molecular 565 

representation vector that captures the inner structure of the molecule, so that the mixture can 566 

be regarded as a pseudo-molecule. The neural network-based approach has a second input 567 

vector that is made from pure component predictions. Scientific progress in characterization of 568 

renewable feedstocks and of heavier mixtures can provide a better understanding of the 569 

composition of these mixtures and more experimental data. With the availability of new data, 570 

the newly developed algorithms can become a reliable tool to predict mixture properties of 571 
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naphthas with slightly different compositions and, hence, speed up the design of new chemical 572 

processes. 573 

Supporting Information: 574 

S1: Code available as free software under the MIT license on 575 

https://github.com/mrodobbe/naphtha-mixtures. S2: Delumping rules per class. S3:  ANN 576 

architectures. S4: Pure compound properties. S5: Description of principal component analysis. 577 

This information is available free of charge via the Internet at https://pubs.acs.org/.  578 
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