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Background: Predicting the progression of cognitive decline in Alzheimer’s disease

(AD) is important for treatment selection and patient counseling. Structural MRI markers

such as hippocampus or basal forebrain volumes might represent useful instruments

for the prediction of cognitive decline. The primary objective was to determine the

predictive value of hippocampus and basal forebrain volumes for global and domain

specific cognitive decline in AD dementia during cholinergic treatment.

Methods: We used MRI and cognitive data from 124 patients with the clinical diagnosis

of AD dementia, derived from the ADNI-1 cohort, who were on standard of care

cholinesterase inhibitor treatment during a follow-up period between 0.4 and 3.1 years.

We used linear mixed effects models with cognitive function as outcome to assess

the main effects as well as two-way interactions between baseline volumes and time

controlling for age, sex, and total intracranial volume. This model accounts for individual

variation in follow-up times.

Results: Basal forebrain volume, but not hippocampus volume, was a significant

predictor of rates of global cognitive decline. Larger volumeswere associatedwith smaller

rates of cognitive decline. Left hippocampus volume had a modest association with rates

of episodic memory decline. Baseline performance in global cognition and memory was

significantly associated with hippocampus and basal forebrain volumes; in addition, basal

forebrain volume was associated with baseline performance in executive function.

Conclusions: Our findings indicate that in AD dementia patients, basal forebrain volume

may be a useful marker to predict subsequent cognitive decline during cholinergic

treatment.
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INTRODUCTION

A prediction of the individual course of cognitive change
in Alzheimer’s disease (AD) would help adequate resource
allocation, patient care, and counseling. Evidence suggests
that the hippocampus supports the consolidation of long-
term declarative memory (1, 2), showing neurodegeneration in
autopsy data and atrophy in in vivo MRI scans as early as in
predementia stages of AD (3, 4). Its measurement is standardized,
robust, accessible and feasible for in vivo studies using established
volumetric protocols, with the most recent advance being an
internationally harmonized protocol for a consistent delineation
of the hippocampus’ anatomical borders on MRI scans (5). The
cholinergic basal forebrain is the main source of neocortical
acetylcholine (6), and is involved in attentional processes, such
as immediate recall and executive function (7). Autopsy studies
found degeneration of cholinergic basal forebrain neurons in
early clinical stages of AD (8, 9), and the resulting reduction
of cholinergic cortical activity represents the rationale for the
use of cholinergic treatment in AD dementia. The hippocampus
represents a key input area of cholinergic projections from the
basal forebrain (10). In recent years, MRI based protocols for an
automated measurement of cholinergic basal forebrain volumes
have been established that make use of stereotactic information
derived from combined post mortem MRI and histology (11–
13). Based on these protocols, several MRI volumetric studies
have shown consistent pattern of hippocampus and cholinergic
basal forebrain atrophy in AD dementia (11, 14) and prodromal
at-risk stages of AD dementia, such as amnestic mild cognitive
impairment (MCI) (15, 16) or individuals with amyloid positive
MCI (17).

Based on these findings, hippocampus and cholinergic basal
forebrain volumes may help to predict cognitive change and
response to cholinergic treatment in patients with AD dementia
or prodromal AD. A previous study found that the thickness of
the substantia innominata, a potential proxy of cholinergic basal
forebrain integrity (18), was associated with rates of cognitive
change in 82 AD dementia patients during 9 months of treatment
with a cholinesterase inhibitor, with smaller rates of cognitive
decline in people with a lower thickness of the substantia
innominata (19). In people with MCI, hippocampus volume was
associated with rates of cognitive decline with a moderate effect
size (20–24). In 37 AD dementia cases, smaller hippocampus
volume was associated with faster global cognitive decline during
cholinergic treatment (25). In a recent randomized controlled
trial of donepezil, we found that hippocampus volume, but
not basal forebrain volume, was a predictor of subsequent
cognitive decline in 216 MCI cases (26); this effect, however,
was independent of treatment. In summary, in MCI cases
hippocampus volume, but not basal forebrain volume, was found
to be a significant predictor of cognitive decline, irrespective
of treatment. In studies on AD dementia cases, hippocampus
volume and a proxy for basal forebrain volume were found
significant predictors of cognitive decline during cholinergic
treatment.

Here, we used longitudinal cognitive data of 124 AD dementia
cases retrieved from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI-1) database, all receiving cholinergic treatment.
Based on the previous evidence on the potential predictive
value of these brain regions in AD, we determined the
association of hippocampus and basal forebrain volume with
rates of global and domain-specific cognitive decline during
cholinergic treatment. We expected that lower basal forebrain
(hippocampus) volume would predict a faster rate of global
and executive (global and episodic memory) function. Secondly,
we determined the predictive use of basal forebrain and
hippocampus volumes for the identification of cognitively stable
vs. cognitively declining patients, where we expected that
cognitively stable patients would have larger basal forebrain and
hippocampus volumes at baseline. These data help to assess
the potential usefulness of volumetric MRI to identify people
with a more rapid disease progression; such data would support
clinical decision making on allocation of treatment resources
and care.

METHODS

Study Population
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). A fuller description of ADNI
and up-to-date information is available at www.adni-info.org.
We retrieved data of participants of the ADNI-1 study who had
a clinical diagnosis of AD dementia at baseline, a baseline MRI
scan, neuropsychological testing at baseline and follow-up and
documented treatment with any cholinesterase inhibitor during
follow-up time.We retrieved 124 cases, 56 women, fulfilling these
conditions. We included only people with a clinical diagnosis of
AD dementia, because cholinesterase inhibitor treatment is only
approved for this diagnosis, but not for MCI or other diagnoses.

Neuropsychological Tests
We used ADAScog11 as measure of global cognitive decline
(27–29). ADAScog 11 has frequently been used in clinical
efficacy trials of cholinesterase inhibitors in AD as primary
endpoint (30, 31). In addition, we used composite measures for
memory and executive function, respectively, to account for the
different versions of the word lists of neuropsychological tests
employed in the ADNI psychometric assessment. The ADNI
composite scores have been previously defined and they appear
to: (i) have good validity, (ii) include additional information,
incorporating all of the domain-specific information available
from the neuropsychological battery administered in ADNI, and
(iii) be strongly associated with a priori specified neuroimaging
parameters selected on the basis of their known association with
the respective cognitive domain (32, 33).
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MRI Acquisition
ADNI MRI data were acquired on multiple 1.5 Tesla MRI
scanners using phantom-calibrated scanner-specific T1-
weighted sagittal 3D MPRAGE sequences. In order to increase
signal uniformity across the multicenter scanner platforms,
original MPRAGE acquisitions in ADNI undergo standardized
image pre-processing correction steps. Standardization of
MRI sequences across ADNI sites and centralized image pre-
processing steps have been described in detail previously (34)
and are documented on the ADNI website (http://adni.loni.usc.
edu/methods/).

MRI Data Processing
The processing of structural MRI scans was implemented
through statistical parametric mapping, SPM8 (Wellcome Dept.
of Imaging Neuroscience, London), and the VBM8-toolbox
(http://dbm.neuro.uni-jena.de/vbm/) implemented in MATLAB
7.1 (Mathworks, Natwick), and has been described in detail
previously (35, 36). Briefly, MRI scans were automatically
segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) partitions of 1.5mm isotropic voxel-
size, using the segmentation routine of the VBM8-toolbox. The
resulting GM andwhitematter partitions of each subject in native
space were then high-dimensionally registered to an aging/AD-
specific reference template based on a completely independent
cohort (37) using the Diffeomorphic Anatomic Registration
using Exponentiated Lie algebra (DARTEL) algorithm (38).
Individual flow-fields obtained from the DARTEL registration to
the reference template were used to warp the GM segments and
voxel-values were modulated for volumetric changes introduced
by the high-dimensional normalization, such that the total
amount of GM volume present before warping was preserved.
All preprocessed GM maps passed a visual inspection for overall
segmentation and registration accuracy.

The total intracranial volume (TIV) was calculated as the
sum of the total segmented GM, WM, and CSF volumes
(38). GM volumes of the hippocampus and basal forebrain
cholinergic nuclei were automatically extracted by summing up
the modulated GM voxel values within respective regions of
interest (ROI) in the reference space. The basal forebrain ROI
was based on a recently published cytoarchitectonic map of
basal forebrain cholinergic nuclei in MNI space, derived from
combined histology, and in cranio MRI of a post-mortem brain
(13). This cytoarchitectonic map matches standard MNI space
and was projected into the aging-AD specific template space
using non-linear warping parameters obtained from a DARTEL
registration. Although the cytoarchitectonic basal forebrain map
comprises detailed outlines of different cholinergic subdivisions
within the basal forebrain, including cell clusters corresponding
to the medial septum, diagonal band, nucleus subputaminalis,
and nucleus basalis Meynert, in the current study we only
considered the entire volume of themap, including all cholinergic
subdivisions, as a proxy for overall basal forebrain cholinergic
system integrity. The ROI mask for the hippocampus was
obtained by manual delineation of the hippocampus in the
reference template of aging-AD specific anatomy (37) using the
interactive software package Display (McConnell Brain Imaging

Centre at the Montreal Neurological Institute) and a previously
described protocol for segmentation of the medial temporal lobe
(39). An illustration of both ROIs in the gray matter fraction of
the reference space template employed in our current study can
be found in the previous publications (15, 40, 41).

Statistical Analysis
We conducted two types of analysis. The first analysis determined
associations of volumetric markers with rates of change in
cognitive scores as continuous outcomes. The second analysis
determined the accuracy of response prediction in cognitive
scores as binary outcome.

Association With Rates of Change
We determined the main effects and the two-way interactions
of baseline volumes by time on neuropsychological performance
as dependent variable using linear mixed effects models with
subject-related random effects for intercept and time, controlling
for age, sex, and TIV. Themodel fit was compared between nested
models (random intercept vs. uncorrelated random intercept and
slope vs. correlated random intercept and slope) using Akaike’s
information criterion (AIC) (42). Significance of parameters was
determined using t-statistics with degrees of freedom determined
according to the Satterthwaite approximation. Mixed effect
model analyses were calculated in R, including the libraries
“lme4” and “lmerTest,” available at http://cran.r-project.org/web/
packages.

Response Prediction
We originally had planned to determine response prediction.
Similarly to previous studies (43), we defined response as
more than 4 points improvement (i.e., at least 4 points
decline) in ADAScog11 over one year. This criterion, however,
yielded only three responders so that an analysis was not
feasible. Consequently, we relaxed the response criterion and
discriminated between non-decliners (zero change or better)
vs. decliners in the cognitive endpoints. Rates of change in
cognitive scores were derived from the coefficients of the subject-
related random effect for time on the cognitive scores, controlling
for age and sex. We determined logistic regression models
regressing the binary endpoint of decline vs. non-decline on those
volumetric markers that had shown a significant association with
the continuous rates of cognitive decline in the previous models.

We used block-wise cross validation with repeated random
sampling, based on Gaussian-distributed random numbers
generated in R. We repeatedly split the data set into 63.2% of
training data and 36.8% of test data. For each of the repeatedly
drawn training samples, the logistic regression parameters were
estimated and subsequently applied to the remaining test data
set. Bootstrapping aimed to assess levels of predictive accuracy
in the test data so to avoid overestimation of accuracy levels
that occurs when assessment is based on the training data. We
recorded areas under the receiver operating characteristic curves
(AUC) for each test data set; different to the rate of correctly
identified cases, the AUC is insensitive to an uneven distribution
of outcomes. The entire cross-validation process was iterated 100
times to determine the variability of the estimates of accuracy
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TABLE 1 | Baseline demographic characteristics.

N (women) 124 (56)

Age, mean (SD) in years 75.3 (7.4)

MMSE, mean (SD) 23.5 (1.9)

ADAScog11, mean (SD) 19.0 (6.4)

ADNI-MEM, mean (SD) −0.9 (0.5)

ADNI-EXE, mean (SD) −0.9 (0.8)

L. hippocampus volume (SD) in mm3 2,038 (337)

R. hippocampus volume (SD) in mm3 2,212 (374)

Basal forebrain volume (SD) in mm3 481 (85)

ADAScog11 - 11-items version of the Alzheimer’s Disease Assessment Scale–Cognitive

subscale, higher values indicate worse performance.

ADNI-MEM - ADNI memory score (32); this scale provides z-standardized performance

scores, lower values indicate worse performance.

ANDI-EXE - ADNI executive function score (33); this scale provides z-standardized

performance scores, lower values indicate worse performance.

across runs. We determined nonparametric bootstrap confidence
intervals with the 2.5 and 97.5 percentiles defining the lower and
upper limits of the confidence interval [(44), Chapter 13]. Logistic
regression analysis was calculated in R, using function glm with
the parameter family= binary.

All analyses were performed with RStudio, version 0.98.1102,
a user interface of R Project for Statistical Computing Analyses.

RESULTS

Sample
We retrieved 124 (56 women) cases with AD dementia fulfilling
the inclusion criteria. Follow-up times ranged between 0.4 and
3.1 years, number of follow-up time points ranged between 1 and
5. Baseline demographic characteristics and hippocampus and
basal forebrain volumes are given in Table 1.

Association With Global and
Domain-Specific Cognitive Rates of
Change
For ADAScog11, the best fit was achieved with a model allowing
for a correlated random intercept and slope. Detailed results are
shown in Table 2. ADAScog11 showed a significant worsening
over time with 4.3 points increase per year. Left and right
hippocampus and basal forebrain volumes were significantly
correlated with ADAScog11 baseline performance, with better
performance with higher volume. In addition, basal forebrain
volume was associated with less worsening in ADAScog11
performance over time (t = −2.9, 115 df, p < 0.005) with
the effect amounting to 1.6 points less increase in ADAScog11
per year when the volume of basal forebrain was one standard
deviation higher (Figure 1). The partial correlation coefficient
(controlling for TIV) between slopes of ADAScog11 change from
the mixed effects model and basal forebrain baseline volume was
r=−0.23, p< 0.01. Left and right hippocampus volumes had no
significant effects on the ADAScog11 rates of change over time
(p > 0.22 for all comparisons).

For ADNI memory score, the best fit was achieved with
a model allowing for an uncorrelated random intercept and

slope. Detailed results are shown in Table 2.On average, patients
lost 0.21 z-score points per year. Left and right hippocampus
and basal forebrain volumes were significantly associated
with baseline memory performance, with higher performance
associated with higher volume. In addition, left hippocampus
volume was associated with less worsening in the ADNI memory
score over time (t= −2.0, 109 df, p < 0.05) with the effect
amounting to 0.04 less z-score points lost per year when the
volume was one standard deviation higher (Figure 2). The partial
correlation coefficient (controlling for TIV) between slopes of
ADNI memory rates of change from the mixed effects model and
left hippocampus baseline volume was −0.15, p < 0.1. Right
hippocampus and basal forebrain volumes had no significant
effects on the ADNI memory rates of change over time (p > 0.16
for all comparisons).

For ADNI executive function score the best fit was achieved
with a model allowing for an uncorrelated random intercept
and slope. Detailed results are shown in Table 2. On average,
patients lost 0.29 z-score points per year (t = −10.1, 98
df, p < 0.001). Basal forebrain was significantly associated
with baseline executive function performance (t= 3.2, 123 df,
p < 0.002), with better performance associated with higher
volume; there was no effect for left or right hippocampus volume.
Neither bilateral hippocampus nor basal forebrain volumes had a
significant effect on the executive function rates of change over
time (p > 0.20 for all comparisons).

The covariates that were used in the model showed no effect
of age, sex or total intracranial volume on ADAScog; age had a
significant effect on ADNImemory and executive function scores
(p < 0.05), but sex and TIV had no significant effects on these
scores.

Response Prediction
Basal forebrain volume was significantly associated with the
outcome of non-decline in ADAScog11 with an odds ratio of 2.5
(p < 0.05), i.e., a one standard deviation higher basal forebrain
volume increased the odds of non-decline by a factor of 2.5.
The corresponding bootstrapped AUC in the test data was 0.78,
the 2.5/97.5 percentile confidence interval was 0.50 to 0.98. For
the ADNI memory score there were no non-decliners, rendering
further analysis infeasible.

DISCUSSION

We found significant decline of global cognitive function as well
as memory and executive function in AD dementia cases during
follow-up. Higher basal forebrain volume was associated with
slower global cognitive decline, and higher left hippocampus
volume was associated with slower memory decline. The
prognostic use of basal forebrain volume to discriminate between
cognitive decliners and cognitive stable persons based on the
global ADAScog11 score reached a cross-validated area under
the ROC curve of 0.78, indicating a fair accuracy, however with
a broad bootstrapped confidence interval including the random
guessing level of AUC= 0.5.

The clear decline of global cognitive function as assessed by
ADAScog11 is consistent with previous studies on the course of
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TABLE 2 | Summary of predictor effects.

Left Hp t(df); p Right Hp t(df); p BF t(df); p

ADAScog11 Volume −2.1(120); <0.04 −3.6 (120); <0.001 −3.0(119); <0.004

Time 8.0(109); 10−11 8.0(109); 10−11 8.0(109); 10−11

Time*Volume n.s. n.s. −2.9(115); <0.005

ADNI-MEM Volume 2.3(129); <0.03 3.3(128); <0.002 3.9(128); <0.001

Time −10.7(112); 10−14 −10.7(112); 10−14 −10.7(112); 10−14

Time*Volume −2.0(109); <0.05 n.s. n.s.

ADNI-EXE Volume n.s. n.s. 3.2(123); <0.002

Time −10.1(98); 10−14 −10.1(98); 10−14 −10.1(98); 10−14

Time*Volume n.s. n.s. n.s.

Reported are the main effect of time and volume and the interaction effects of volume by time. All models were controlled for age, sex, and total intracranial volume.

Data are given as: t-values (t); number of degrees of freedom (df); p-value (p).

Please note: the sign of the t-value gives the direction of the effect, i.e., a positive t-value indicates that test scores were higher with higher volume and vice versa.

Hp, hippocampus.

BF, basal forebrain.

ADAScog11, 11-items version of the Alzheimer’s Disease Assessment Scale–Cognitive subscale.

ADNI-MEM, ADNI memory score (32).

ANDI-EXE, ADNI executive function score (33).

FIGURE 1 | Basal forebrain volume and rates of change in ADAScog11. Plot of z-standardized basal forebrain volume on mixed effects linear model estimates of

rates of change in ADAScog score controlling for age and sex, with linear regression line.

cognitive decline in dementia stages of AD (45). A large cohort
study of 622 cases with cholinesterase inhibitor treatment and
paired assessments of MMSE at baseline and after 3 to 4 months
showed a response rate of 37%, when defining response by at
least 2 points MMSE increase (46). The findings in this large

cohort study agree with findings in randomized controlled trials
with cholinesterase inhibitors showing an increase of MMSE
or decrease in ADAScog scores in the first 3 to 6 months of
treatment with subsequent decline (47, 48). Here, we assessed
longer term follow-up, between 0.4 and 3.1 years, accounting for
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FIGURE 2 | Left hippocampus volume and rates of change in ADNI memory score. Plot of z-standardized left hippocampus volume on mixed effects linear model

estimates of rates of change in ADNI memory (ADNI-Mem) score controlling for age and sex, with linear regression line.

the low number of cases fulfilling response criteria (only 10 of 124
cases, even when defining response as non-decline).

In the cross-sectional analyses, baseline volumes of basal
forebrain, and left and right hippocampus were associated with
global cognitive function as well as memory performance, as
assessed by the ADNI memory composite score. These findings
agree with previous studies showing that hippocampus volume
was associated with episodic memory (49) and global cognitive
(50) performance in AD patients. Similarly, previous studies
have described associations of basal forebrain volume with global
cognitive and episodic memory performance in AD dementia
andMCI cases in cross-sectional analysis (15, 40, 41). In addition,
in the current study, basal forebrain volume was associated
with the executive function composite score. This agrees with
the observation that cholinergic activity subserves executive
function and attention that is supported by the adverse effects
of anticholinergic treatment on executive function and attention
(51–53), and by findings of similar associations in independent
cohorts (15, 40, 41).

Cholinergic basal forebrain volume was significantly
associated with subsequent global cognitive decline as assessed
by ADAScog11. AD dementia cases with a one standard
deviation higher basal forebrain volume had 1.6 points less
worsening in ADAScog11 per year, accounting for 37% of the
annual overall rate of ADAScog11 worsening. Basal forebrain
volume allowed correct discrimination between cognitive non-
decliners and cognitive decliners with an AUC of 0.78. We used
the AUC as measure of accuracy, because this measure is less
sensitive to the proportion of non-decliners; in contrast, the level
of correct case identification would have been uninformative,

because with only 10 non-decliners simply predicting non-
conversion in all cases would already yield correct classification
in 114 out of 124 cases. Our findings indicate that in the
presence of cholinergic treatment, a high cholinergic basal
forebrain volume is associated with more benign global cognitive
decline. Our findings agree with a previous exploratory study,
where response to cholinergic treatment over 9 months as
measured by the MMSE score was significantly associated with
gray matter volume in basal forebrain regions from a voxel
based regression analysis in 23 AD cases (54). Our findings
disagree with a study in 82 AD dementia patients using the
substantia innominata thickness as a proxy of cholinergic
basal forebrain integrity (18); here smaller rate of cognitive
decline was found associated with a smaller thickness of the
substantia innominata during 9 months cholinergic treatment
(19). The number of subjects was higher and the average
follow-up time was longer in our study compared to the previous
study. In addition, manual measurement of the thickness of
the substantia innominata is prone to intra- and inter-rater
variability, and assesses only a small subsection of the cholinergic
basal forebrain compared to the automated measurement of
basal forebrain volume based on a post mortem reference map
(11).

Hippocampus volume was not associated with the subsequent
rate of global cognitive decline. In a small sample of 37 AD
patients, a previous study found a higher hippocampus volume
associated with less worsening of ADAScog score over 0.5 to
2 years of follow-up (25). A part of these 37 individuals had
been classified as very mild AD, resembling rather the prodromal
MCI than the dementia stage of AD. This outcome therefore
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agrees with the results of our previous study on 216 MCI cases,
where we found that higher hippocampus volume, rather than
basal forebrain volume, was associated with more benign rates of
global cognitive and memory decline (26). Taken together these
findings suggest that hippocampus volume may be a proxy of
reserve capacity inMCI individuals, but nomore in AD dementia
patients. This interpretation would agree with the notion that
hippocampus atrophy begins to degenerate earlier than basal
forebrain and reaches a plateau in the dementia stage of AD so
that the functional relevance of hippocampus volume variation
would be limited in the dementia stage of the disease. In contrast,
changes in basal forebrain volume may still dynamically progress
during AD dementia and may thus serve as a better predictor of
disease progression in more advanced disease stages (37).

In contrast to global cognitive decline, left hippocampus
volume was significantly associated with the rate of episodic
memory score decline, consistent with previous evidence in
subjects with MCI (26, 55). Different to global cognitive decline
we could not determine the predictive accuracy of hippocampus
volume for non-decline, as non-decline did not occur in our
sample. The partial r of −0.15, however, points to a small
effect size for left hippocampus volume on subsequent rate of
memory decline, consistent with a limited role of hippocampus
volume for predicting subsequent cognitive decline in the AD
dementia stage, even when considering the hippocampus-specific
functional measure of episodic memory performance.

Beyond structural markers, such as hippocampus or basal
forebrain volumes, a previous study found cortical network
functional integrity in functional MRI as a significant predictor
of cholinergic treatment response, but the study included only 18
cases (56).

Several limitations have to be considered with our study.
First, similar to previous studies in AD dementia (19, 25)
we determined the predictive value of hippocampus and basal
forebrain volumes for cognitive decline in patients who all
received treatment. Therefore, we can only derive conclusions
on prediction of cognitive decline during treatment, but not
on prediction of treatment effects; in our view this distinction
is sometimes not made explicit enough in the literature (19,
25). We had decided to exclude AD dementia cases without
documentation of cholinergic treatment since the lack of
documentation of treatment may not be a reliable indicator
for the lack of treatment in the ADNI cohort. In addition,
the lack of treatment in a cohort like ADNI will likely be
related to selection bias; the ADNI cohort by design features
no random allocation to treatment. Furthermore, information
on the duration of treatment before inclusion in the ADNI
cohort was not available so that stratification according to
duration of treatment was not possible. Our findings encourage
the analysis of prospective controlled clinical trials in AD
dementia for a potential association of basal forebrain and
hippocampus volumes with rates of subsequent cognitive change
in dependency of treatment. Secondly, observation periods were
very heterogeneous in the ADNI cohort. We used a mixed
effects model to explicitly model variability in observation
periods. Indeed, the models including a random effects term
for time provided a better fit than models excluding such

term. Thirdly, it would have been interesting following previous
evidence on the corticotopic organization of the cholinergic basal
forebrain to analyze a differential involvement of antero-medial
vs. postero-lateral basal forebrain subregions. Anterior-medial
basal forebrain nuclei project mainly to the hippocampus and
ventromedial cortical regions, whereas posterior-lateral nuclei
project more densely to lateral neocortical areas (6, 57, 58), which
may also be related to different functional representation of these
subnuclei. However, the overall small size of the basal forebrain
volume restricts the accuracy of subregional assessments so
that we did not include such an analysis. Fourthly, we had
selected the ADNI memory and executive function composite
scores to reduce the dimensionality of our analyses. Previous
studies had shown that both composite measures exhibited
more consistent rates of change in MCI and AD dementia
individuals than the respective single tests (32, 33). Finally,
we aimed to determine odds ratios of volumes for predicting
clinically significant response to treatment. Such response has
previously been defined to equal at least 4 points decrease
in ADAScog11 (43). Since only 3 cases fulfilled this response
criterion, we could not conduct the intended analysis. When
we used a more liberal criterion of no cognitive decline,
i.e., ≤ 0 points change in ADAScog11, we found a significant
odds ratio of 2.5. This indicates that a person with a one
standard deviation higher basal forebrain volume has a 2.5
higher chance of no decline, all other variables kept constant.
However, this analysis detects a clinically potentially less relevant
endpoint than the originally planned analysis of 4 points
change.

In summary, we found significant decline of global cognitive
function as well as memory and executive function in AD
dementia patients treated with cholinesterase inhibitors. Basal
forebrain volume, but not hippocampus volume, was a predictor
of global cognitive decline with a cross-validated accuracy
of approximately 78% to discriminate between non-decliners
and decliners, albeit based on a small sample of non-
decliners. In contrast, left hippocampus volume showed only
a modest association with subsequent rates of memory decline
during cholinergic treatment. Our data suggest that with the
transition from prodromal MCI to AD dementia the brain areas
with biologically meaningful dynamic variation and ensuing
predictive value may shift from the hippocampus to the basal
forebrain region. The use of hippocampus and basal forebrain
volumes to predict response to cholinergic treatment in AD
dementia needs to be studied in cohorts with controlled
treatment.
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