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Abstract— The single frequency network (SFN) has been 

assumed worldwide by telecommunication operators to save 

radio frequency resources and homogenize the network. Its 

applications have transcended the digital terrestrial television 

and digital radio to become part of the key techniques of the 

broadband and broadcast convergence for LTE-A, 5G and 

beyond. However, the transition from a multi frequency 

network (MFN) to an SFN involves multiple measurement 

campaigns and tuning of the network to achieve the expected 

up-performance and quality of service. This paper aims to 

propose a machine learning model to predict the SFN 

performance from the legacy MFN parameters. The model is 

based on regression and classification machine learning 

algorithms concatenated in three consecutive stages to predict 

SFN electric-field strength, modulation error ratio and gain. 

The training and test processes are performed with a dataset 

of 389 samples from an SFN/MFN trial in Ghent, Belgium. The 

best performance is obtained with concatenating gradient 

boosting, random forest, and linear regression, which allows 

predicting the SFN electric-field strength with an R2 of 92%, 

the modulation error ratio with 95%, and SFN gain with 87% 

from only MFN and position data. Besides, the model allows 

classifying the data points according to positive or negative 

SFN gain with an accuracy of 93%. 

       Index Terms— SFN, MFN, machine learning, neural network. 

I. INTRODUCTION  

The last years have been marked by a great proliferation 

and variety of novel multimedia services, applications and 

smart mobile broadband devices [1]. This evolution comes 

together with an unstoppable growth in data traffic, 

especially multimedia. The most recent forecast from 

CISCO [2], shows that by 2022 the video traffic will be 79 

percent of the total cellular data traffic. 

In this context, the broadcast/multicast technologies such 

as single frequency network (SFN) [3] are a crucial element 

for the existing and emerging mobile broadband standards, 

such as Long Term Evolution (LTE), 5G New Radio (NR), 

and beyond.  

SFN has been assumed worldwide by telecommunication 

operators to save radio frequency resources and homogenize 

the network. However, the transition from a multi frequency 

network (MFN) to an SFN involves multiple measurement 

campaigns and tuning of the network to achieve the expected 

outperformance and quality of service (QoS). This is why, in 

the last years, several investigations such as [4-12] have been 

oriented to better exploit and quantify the capabilities of SFN.  

In [13], it analyses how the next-generation wireless 

networks are evolving into complex systems with multiple 

service requirements, heterogeneity in applications, novel 

devices, and networks, where the telecommunication operators 

have access to large amounts of data. This reality opens the 

door for data-driven next-generation wireless networks based 

on data mining (DM), machine learning (ML), and artificial 

intelligence (AI). 

Recently, ML has been widely applied for planning and 

optimizing telecommunication networks and services, such as 

[14-17]. These papers show how ML allows predicting 

multiple key performance indicators (KPI) of broadband and 

broadcast systems with high accuracy. These powerful tools 

learn the data patterns and the intrinsic relevant information in 

a previously or dynamically collected dataset, avoiding, for 

example, the constant necessity of field measurements.  

During the dimensioning and planning of an SFN, the 

capability to predict network performance in terms of 

coverage, modulation error ratio (MER), potential 

interference, and the resulting network gain over the legacy 

MFN is fundamental for an operator. It helps to provide the 

desired QoS to end-users and exploits the advantages 

associated with an SFN. 

     This paper aims to predict the SFN performance from the 

legacy MFN parameters. The main contribution of this research 

is the proposed concatenated ML model in three stages, 

allowing to predict SFN electric-field strength (E), MER and G 

from only MFN and position data. It presents a comparison of 

several ML approaches to real data.  Moreover, the proposed 

model could be used in current applications of SFN in new-

generation DTT standard and multicast/broadcast over 5G 

networks. 

The remainder of this paper is structured as follows: Section 

II presents the theoretical fundamentals. Section III describes 

the proposed model. Section IV presents the test scenario and 

discusses the results. Finally, in Section V the document is 

concluded. 



II. THEORETICAL FUNDAMENTALS 

A. MFN/SFN 

In [18], an MFN is defined as a network of transmitting 

stations using several RF channels, where each transmitter 

uses a different channel, acting independently and having 

its own coverage area. The orthogonal frequency planning 

avoids co-channel interference among the transmitters but 

at the expense of spectrum efficiency, which is a critical 

performance indicator these days due to the scarcity of 

available spectrum. 

The disadvantages of the MFN lead to the network 

configuration based on SFN. In [18], the SFN is defined as 

a network of synchronized transmitting stations radiating 

identical signals in the same RF channel. The multi-carrier 

orthogonal frequency division multiplexing (OFDM) 

modulation technique allows the reception and, under 

certain circumstances, the constructive summation of more 

than one useful RF signal, which is the key enabler of the 

SFN [18]. 

These characteristics of an SFN enable a potential 

network gain over the MFN, which was first defined by 

[19]  as 

𝐺𝑆𝐹𝑁 = 𝑀𝐸𝑅𝑆𝐹𝑁 − 𝑀𝐸𝑅𝑀𝐹𝑁   (1) 

where MERSFN and MERMFN are the MER at a specific 

location. 

B. ML Algorithms 

The ML is a compelling technique established as a 

solution to take advantage of large amounts of data, helping 

to make accurate predictions and suggestions based on the 

datasets [13]. 

From [20, 21], ML algorithms are mainly used to solve 

supervised or unsupervised problems. We will focus our 

attention on the former case, where the algorithms are 

trained with a dataset based on inputs (called features) and 

their corresponding output (called labels). The algorithms 

learn the data patterns and the intrinsic relevant information 

between the features and use this learned experience to 

predict new outputs from unseen samples of features. 

Supervised ML algorithms can be divided into 

classification or regression. In the former case, the labels 

are discrete, e.g., to predict if a point in an SFN coverage 

area will have a positive or negative GSFN. In the other case, 

the prediction is for continuous values, e.g., to predict the 

specific GSFN. 

In this research we focus our attention on the ML 

algorithms Linear Regression (LR) [22] , Support Vector 

Machine (SVM) [23], Random Forest (RF) [24], Gradient 

Boosting (GB) [25], and Artificial Neural Networks (ANN) 

[26]. 

From [21], ANNs are Machine Learning models inspired 

by the networks of biological neurons found in our brains.  

In this research, we implement a particular kind of ANN, a 

Multilayer Perceptron (MLP), which is composed of one 

(pass-through) input layer, one or more hidden layers, and 

one output layer [21].   

 

III. PROPOSED SYSTEM – CONCATENATED ML MODEL 

Fig. 1 shows the proposed concatenated ML model, 

described in the next subsections III-A, B, and C. 

A.  Phase 1: Data Collection 

The first phase is the data collection. We use the dataset 

resulting from a Ghent city's measurement campaign in a 

50 km route around three base stations (Tx1, Tx2, Tx3) 

[19]. The measurements were based on four network 

configurations alternating between MFN and SFN, 

registering a total of 389 samples with 27 registered 

variables related to position information, MFN, and SFN 

parameters. The details about this measurement campaign 

are described in [19]. 

Table I shows each location's variables, divided into 

three main categories: position, MFN, and SFN data. The 

position data give the specific measurement point 

coordinates and relative information with respect to the 

 
Fig. 1 The workflow of the concatenated ML model. 
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TABLE I 

VARIABLES REGISTERED AT EACH LOCATION 

Type of 

data 

Variable description Number of 

variables 

Position 

GPS coordinates  2 

Distance to each Tx 3 

Distance difference of the closest and 

furthest Tx 

1 

Distance difference to the two closest Tx 1 

MFN 

E from each Tx 3 

Highest E of the three Tx (EMFN) 1 

Standard deviation of EMFN values 

(EstdMFN) 

1 

MER from each Tx (dB) 3 

Standard deviation of MER from each Tx 3 

Highest MER of the three Tx (MERMFN) 1 

Standard deviation of MERMFN values 

(MERstdMFN) 

1 

E difference of the two strongest Tx 1 

Distance difference of the two strongest 

Tx 

1 

SFN 

E value of the SFN (ESFN) 1 

Standard deviation of E value of the SFN 

(EstdSFN) 

1 

MER value of the SFN (MERSFN) 1 

Standard deviation of MER value of the 

SFN (MERstdSFN) 

1 

SFN gain (GSFN) 1 

Total 27 

Distance (m); E (dBmV/m); MER (dB); GSFN (dB) 

 

 

 

 

 



transmitters' location. The MFN data are E, MER values 

recorded from each transmitter and their corresponding 

standard deviations. The data at each location are what we 

define as legacy MFN data. The SFN data are E, MER, gain 

and their corresponding standard deviation at each location, 

resulting from configuring the three transmitters in SFN 

mode. 

B. Phase 2: ML model training 

Fig. 2 shows the internal block diagram of this phase. 

The inputs were previously presented in Table I. The first 

step was studying the problem and defining the outputs of 

the ML model training process. Henceforth, we prepared 

the data, trained, and fine-tuned four supervised ML 

models: three of regression (ML-E, ML-MER, ML-G) and 

one of classification (ML-Gclass). 

In the case of the ML-Gclass, the label will be discretized 

values of GSFN, with '1' for gain values higher than zero and 

'0' for gain values less than and equal to zero. 

We trained and tested the ML algorithms considering in 

the data preparation the locations with GSFN value less than 

and equal to 15 dB, avoiding possible measurement errors. 

We applied two mechanisms to determine the feature 

importance: F-test statistics and mutual information 

regression (MIR). These mechanisms help to find the 

dataset features more correlated with ESFN, MERSFN, and 

GSFN. As a result, the ML models were proved for a 

different number of features, according to their importance 

ranking presented in Table II. In the case of ESFN and GSFN, 

the best results were obtained with F-test. Otherwise, for 

MERSFN, the best performance was achieved with MIR. 

The data normalization process was only necessary for 

the SVM algorithm, precisely the Min_Max scaling 

method. All features were transformed into the range 

between zero and one, avoiding the bad performance due to 

the scale differences. 

Then, the data were split into the train (80 %) and test    

(20 %) data. The training data were used to train and fine-

tune the model, applying methods like Grid-search and k-

fold cross-validation (k=10). In the case of MLP, we used 

one hidden layer with a fully connected structure. We use 

only one hidden layer because we did not find up-

performance with more in preliminary tests. The details 

about these tests are out of this paper's scope. 

The iterative performance evaluation process for the 

regression ML models was based on evaluating six 

different ML algorithms according to the metrics 

coefficient of determination (R2), mean absolute error 

(MAE), mean squared error (MSE), and root mean absolute 

error (RMSE). For the classification ML models, we 

evaluated three different ML algorithms according to the 

accuracy metric. The ML evaluation results are presented 

in subsection IV- A. 

The best resulting algorithms configuration were 

included in the iterative validation process of the third 

phase. 

C. Phase 3: Concatenated model 

This phase aims to use the previously trained models to 

conform a concatenated three stages structure to predict the 

SFN E (EpSFN), MER (MERpSFN), G (GpSFN), and the 

classification of the data points (GpclassSFN). In the case of 

the regression models, the "p" represents the predicted 

values of ESFN, MERSFN, and GSFN at each evaluated 

location. Whereas in the classification model, the "pclass" 

represents each location's prediction as positive or negative 

GSFN.  

Fig. 3 shows the implemented Three Stages 

Concatenated Model (3S-CModel). The first stage is the 

trained ML-E presented in the second phase that we used to 

predict ESFN. The resulting EpSFN, combined with the 

 
Fig. 2 Second phase ML model training. 
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TABLE II 

FEATURE RANKING OBTAINED BY MIR OR F-TEST  

R ESFN → F-test MERSFN → MIR GSFN → F-test 

1 EMFN ESFN MERMFN 

2 MERMFN Coordinate Y  MERSFN 

3 d to Tx 2 MFNE ESFN 

4 Coordinate Y d to Tx 2 E diff of the two 

strongest Tx 

5 d to Tx 3 d to Tx 3 EMFN 

6 MER from Tx 3 MERMFN d diff of the closest 

and furthest Tx 

7 E from Tx 3 d diff of the closest 

and furthest Tx 

d diff of the two 

strongest Tx 

8 E diff of the two 

strongest Tx 

Coordinate X MER from Tx 1 

9 EstdMFN d to Tx 1 E from Tx 1 

10 MER from Tx 2 E from Tx 2 MER from Tx 2 

11 E from Tx 2 E from Tx 3 MER from Tx 3 

12 d diff of the 

closest and 

furthest Tx 

MER from Tx 3 EstdMFN 

Ranking (R); distance (d); difference (diff) 

 

 

 

 

 

 

Fig. 3 Three Stages Concatenated Model (3S-CModel). 
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position and MFN data, are the inputs of the second stage, 

ML-MER, to estimate MERSFN. Note that we trained the 

ML-MER with the real ESFN collected values, whereas in 

the generalization process, we used as input the EpSFN.  

Finally, we used the previously predicted EpSFN and 

MERpSFN, combined with the position and MFN data as the 

third stage's inputs. We used the trained models ML-G and 

ML-Gclass to predict the GpSFN and GpclassSFN, 

respectively. 

IV. RESULTS AND ANALYSIS 

A. Validation of the ML model training (Phase 2) 

This subsection presents the iterative validation process 

of the ML model training (Phase 2) for the best five 

algorithms in each case. Fig. 4 to 11 show the results for 

ML-E, ML-MER, ML-G, and ML-Gclass. The order of 

evaluated features follows the ranking presented in Table 

II.  

Fig. 4 shows the results finding EpSFN during the ML 

model training, whereas Fig. 5 details the error metrics for 

each regression algorithm's best results. The best  R2 = 0.91 

was achieved using the SVR with F-test for the five most 

important features presented in Table II. We can see, in this 

case, that more features do not imply a better performance. 

As Table II shows, the two most important features to 

predict EpSFN are the highest E (EMFN) value, and MFN 

network's MER (MERMFN) at each location. Nevertheless, 

features 3, 4 and 5 from Table II allow the algorithm to 

achieve the pick value with significant up-performance 

respect when used to train the algorithm just EMFN and 

MERMFN. 

For MERpSFN (Fig. 6), RF with F-test and MIR, and GB 

with MIR achieved the same R2 = 0.98. Nevertheless, 

according to the other error metrics (Fig. 7), the best results 

were achieved by GB and MIR with the nine most 

important features, according to Table II. In this case, the 

 

Fig. 7 ML-MER model error metrics. 

 

 

 

Fig. 8 R2 vs. number of features (with MIR and F-test) for ML-GSFN 

 

 

Fig. 9 ML-G model error metrics. 

 
       Fig. 10 Test accuracy vs. number of features (with MIR and F-test) for ML-

GclassSFN 

 

 
   Fig. 6 R2 vs. number of features (with MIR and F-test) for ML-MER. 

 

 

 

 

 

    Fig. 5 ML-E  model error metrics. 

 

 

 

 

Fig. 4 R2 vs. number of features (with MIR and F-test) for ML-E. 

 

 



most important feature to predict the MERSFN is the ESFN. 

As we can see in Fig. 5, for GB, RF and SVR the 

contribution of the remainder features is significantly less 

critical. The R2 with these algorithms ranges from 0.96 to 

0.98 for the different set of features, meaning that ESFN has 

the most significant contribution. Fig. 7 summarizes the 

error metrics for the best results at each regression 

algorithm. 

Fig. 8 shows the results for GpSFN, whereas Fig. 9 details 

the error metrics for the best results at each regression 

algorithm. The LR and MLP algorithms achieved the best 

performance with R2 = 1 for MIR and F-test. It is necessary 

to highlight that this result belongs to the second phase, 

where the model ML-GSFN is trained and evaluated with the 

position, MFN, ESFN, and MERSFN collected data.  

LR achieved the most stable behavior, and it obtained the 

perfect prediction with just two features (Table II). The 

algorithm LR, because of its linear approach to modelling 

the relation between the label and the dependent variables, 

could find the linear relationship presented in (1).  

Fig. 10 shows the results for ML-Gclass, and Fig. 11 

details the accuracy for the best results at each classification 

algorithm. In this case, the SVC algorithm with F-test 

achieved an accuracy equal to 0.99 for the four most 

important features.  

It is worthy to highpoint that the MLP algorithm results 

were always close to the best result. However, it always 

was outperformed by at least one of the other ML 

algorithms. We think that the main reason of these results 

is the short dataset size to train the ANN. This situation 

limits the enormous potential of this powerful tool over the 

other simpler ML algorithms.  

B. Concatenated ML model (Phase 3) evaluation 

This subsection presents the results of the evaluation of 

the 3S-CModel proposed in phase 3. We evaluated the 

concatenated model for all the combinations of ML 

algorithms implemented during phase 2, resulting from the 

previous analysis in subsections III-B and IV-A. Besides, 

we evaluated the concatenated model for different shapes 

of GSFN label, avoiding extreme outliers associated with 

possible measurement errors. 

|𝐺𝑆𝐹𝑁 (𝑑𝐵)| ≤ {15, 14, 12, 10, 8 , 6 } (2) 

 

In Fig. 12, we show the resulting R2 values of GpSFN. It 

includes only six combinations, highlighting the error 

metrics for the best points. For a GSFN dataset shape less 

than and equal to 12 dB, we obtained the best R² = 0.87 

with the combination of GB, RF, and LR for EpSFN, 

MERpSFN, and GpSFN, respectively. The MLP combination 

was the worst, obtaining the best R² = 0.798 for a GSFN 

dataset shape less than and equal to 14 dB. 

In Fig. 13, we show the resulting accuracy finding 

GpclassSFN with the 3S-CModel. The best performance was 

obtained by the combinations GB, RF, and GBC; and RF, 

GB, GBC for locations with GSFN less than and equal to        

8 dB. The accuracy was equal to 0.93. 

It is worthy of highlighting how the performance of the 

concatenated model based on the MLP has a lower 

performance than the other evaluated combinations due to 

previous analysis about the dataset size.  

Table III summarizes the proposed concatenated model's 

performance predicting the SFN parameters in terms of R2, 

the standard deviation of the error (Std), and accuracy. We 

compared the results achieved with the results of predicting 

the SFN parameters directly from MFN and position data, 

without the concatenated structure. It shows the 3S-

CModel outperforms predicting the SFN gain directly from 

MFN and position data.  

 

Fig. 11 ML-GclassSFN model accuracy 

 

 

 

 

Fig. 12 GpSFN error metrics for the 3S-CModel.  

 

 

 

 

Fig. 13 GpclassSFN test accuracy for the 3S-CModel. 

 

 

 

TABLE III 

 R2
 AND ACCURACY OF THE SFN PARAMETERS PREDICTION BY THE               

3S-CMODEL AND THROUGH DIRECT PREDICTION 
Models Error metrics 3S-CModel DP 

EpSFN R2  0.92 0.92 

Std  

(dBµV/m) 

2.64 2.64 

MERpSFN R2  0.95 0.97 

Std (dB) 1.54 1.20 

GpSFN  R2  0.87 0.74 

Std (dB) 1.54 2.23 

Gp_classSFN Accuracy 0.93 0.83 

Standard deviation of the error (Std); Direct prediction (DP) 

 

 

 

 



As we can see from Table III, in EpSFN prediction, the 

results are the same (R2 = 0.92, Std = 2.64 dBµV/m), 

because the 3S-CModel also predicts directly from MFN 

and position data (Fig. 3). Then, in the second stage of 

prediction for MERpSFN, the 3S-CModel (R2 = 0.95, Std = 

1.54 dB) has lower performance than the direct prediction 

(R2 = 0.97, Std = 1.20 dB). This result is a consequence of 

the additional error associated to the previous prediction of 

EpSFN. Despite this result, the real advantage of the 

proposed concatenated model is associated with the SFN 

gain's prediction. 

In GpSFN, the proposed 3S-CModel model has an R2 = 

0.87 and Std = 1.54 dB, outperforming the direct prediction 

in 17% (Table III). Moreover, for GpclassSFN the proposed 

3S-CModel model has an accuracy of 0.93, outperforming 

the direct prediction by 10% (Table III).  

These results of the 3S-CModel are thanks to the 

previous prediction stages, which validates the proposed 

concatenated model to predict the SFN performance from 

the legacy MFN and position data.  

V. CONCLUSION 

In this research, we proposed a 3S-CModel based on 

regression and classification ML algorithms to predict the 

performance of a possible SFN implementation from the 

legacy MFN and position data. The 3S-CModel predicted 

the SFN parameters E with an R2 = 0.92 and Std = 2.64 

dBµV/m, and MER with an R2 = 0.95 and Std = 1.54 dB. 

In SFN gain prediction case, the proposal achieved an           

R2 = 87% and Std = 1.54 dB, outperforming the direct 

prediction of the gain in 17%. Moreover, for GpclassSFN the 

proposed 3S-CModel had an accuracy of 93%, 

outperforming the direct prediction in 10%. The 

concatenated structure enabled these good results 

predicting the SFN performance. The best combination of 

ML algorithms was concatenating GB, RF, LR, and GBC. 

This approach could reduce the performance uncertainty, 

long-term and expensive measurements associated with the 

transition from an MFN to an SFN. These concatenated 

structures based on ML algorithms could be an appealing 

tool for future applications of SFN in digital terrestrial 

television, a digital radio or future broadband networks.   
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