Article type: Critical Review

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review

Mai Dabas¹, Dafna Schwartz¹, Dimitri Beeckman², Amit Gefen^{1,*}

¹Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.

²Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health, Ghent University, Ghent, Belgium and Swedish Centre for Skin and Wound Research, School of Health Sciences, Örebro University, Sweden.

*Corresponding author:

Amit Gefen, Ph.D.

Professor of Biomedical Engineering

The Herbert J. Berman Chair in Vascular Bioengineering

Department of Biomedical Engineering

Faculty of Engineering

Tel Aviv University

Tel Aviv 69978, Israel

Tel: +972-3-6408093

Fax: +972-3-6405845

E-mail: gefen@tauex.tau.ac.il

Running title: Artificial intelligence for chronic wound care

Keywords:

- Bioengineering
- Machine learning
- Deep learning
- Convolutional neural networks
- Chronic wounds

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Word count: 8,384

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Abstract

Significance: As the number of hard-to-heal wound cases rises with the aging of the population and the spread of chronic diseases, healthcare professionals struggle to provide safe and effective care to all their patients simultaneously. This study aimed to provide an in-depth overview of the relevant methodologies of artificial intelligence (AI) and their potential implementation to support these growing needs of wound care and management.

Recent advances: MEDLINE, Compendex, Scopus, Web of Science and IEEE databases, were all searched for new AI methods or novel uses of existing AI methods for diagnosis or management of hard-to-heal wounds. We only included English peer-reviewed original articles, conference proceedings, published patent applications or granted patents (not older than 2010) where the performance of the utilized AI algorithms were reported. Based on these criteria, a total of 75 studies were eligible for inclusion. These varied by the type of the utilized AI methodology, the wound type, the medical record/database configuration and the research goal.

Critical issues: AI methodologies appear to have a strong positive impact and prospect in the wound care and management arena. Another important development which emerged from the findings is AI-based remote consultation systems utilizing smartphones and tablets for data collection and connectivity.

Future directions: The implementation of machine learning algorithms in the diagnosis and managements of hard-to-heal wounds is a promising approach for improving the wound care delivered to hospitalized patients, while allowing healthcare professionals to manage their working time more efficiently.

Table of Contents

1.0 Scope and Significance	3	
2.0 Translational Relevance	3	
3.0 Clinical Relevance	4	
4.0 Background	4	
4.1 Chronic wounds	4	
4.2 Implementation of AI methodologies in wound care and management		5
5.0 Discussion	6	
5.1 Research question and key concepts	6	
5.2Identifying relevant studies	7	
5.3Study selection	7	
5.4 Charting the data	8	
5.5 Collating, summarizing, and reporting the findings	9	
5.6 Literature review	9	
5.7 Clinical visual assessment of wounds supported by artificial intelligence		
12		
5.8 Predicting the formation and progress of wounds based on electronic heal	th recor	ds
18		
5.9 Predicting the formation and evolution of wounds based on a dynamic eva	luation	of
wound characteristics and relevant physiological measures		
	20	
5.10 Smartphone and tablet use in wound diagnosis and management		
22		
6.0 Summary	29	
7.0 Take-home messages	33	

4

Scope and Significance

Chronic wounds are costly and labor-consuming due to their non-healing nature; may lead to prolong hospitalization and additional treatments; often decrease health-related quality of life and are associated with a risk of fatal infections and high mortality ¹. An uprising and highly promising scientific approach for improving wound care and management for patients with chronic wounds is the development and clinical implementation of artificial intelligence (AI) technologies. AI-based methodologies and algorithms might provide clinical decision-support in wound diagnosis, prognosis and management, and even contribute to the prevention of chronic wounds.

1.0 Translational Relevance

Though there is a vast potential for AI to improve the safety, clinical effectiveness, coseffectiveness, accessibility and quality of wound care, the field is still in its early days². The current COVID circumstances, acting as a catalyst for computer-aided and tele-wound care, are expected to boost both technological development and implementation prospects³. Accordingly, guidance concerning the most effective and promising ML methods and approaches in wound care is needed in the field, to support this expected technological progress. For example, it is unclear which types of wounds are currently the best candidates for effective application of AI-powered wound care and among those, which specific ML algorithms would show the highest effectiveness. Likewise, mapping of ML algorithms to diagnosis, prognosis, treatment or prevention applications is needed defined per each such application.

2.0 Clinical Relevance

In this scoping review, we explored the relevant scientific and medical literature to-date, to answer the above fundamental questions and in particular, to investigate how ML is currently being used in academic wound care research as well as in clinical practice. In addition, we identified important knowledge gaps in the development and implementation of AI in wound care, which should be helpful in directing future research efforts and progressing the field further.

3.0 Background

3.1 Chronic wounds

Chronic wounds, such as pressure ulcers/injuries, venous leg ulcers and diabetic foot ulcers are defined as wounds that fail to progress through an orderly and timely reparation often due to a stall in the inflammatory phase of healing ⁴. Other wounds, which are traumatic in origin, such as burns and surgical wounds, may become infected and shift to chronicity. As all wound types have the potential to become hard-to-heal, and there is no clear consensus concerning the time duration of a wound that defines chronicity, chronic wounds are typically classified by combining their etiological cause, clinical diagnosis and treatment protocol ^{5–7}. As the number of patients with chronic wounds consistently increases with the global aging of populations and the spread of chronic diseases such as diabetes and obesity (and more recently, under the influence of the COVID pandemic), health care professionals face the growing challenge of providing safe and effective care to all their patients simultaneously ⁸.

3.2 Implementation of AI methodologies in wound care and management

An uprising and highly promising scientific approach for improving wound care and management for patients with chronic wounds is the development and clinical implementation of artificial intelligence (AI) technologies ⁹. The use of AI in healthcare involves machine learning (ML) algorithms and software that mimic human cognition and action in the analysis, presentation, comprehension and interpretation of complex medical and health care data.

Pressure ulcers/injuries, for example, appear to be very good candidates for effective application of AI-powered wound care, both in risk assessment and in early diagnosis aspects. With regards to risk assessment, Xu and colleagues (2022) recently (and post the April 2021 cutoff date of search for this scoping review) published a retrospective cohort study where they had developed a risk assessment tool that analyzed the electronic health records (EHRs) of 618 patients in an intensive care unit (ICU), through a machine learning (ML) algorithm comprising logistic regression and a random forest classifier with a cross-

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

Page 7 of 165

validation technique ¹⁰. They concluded that their ML algorithm can successfully substitute the traditional Braden risk assessment process in the ICU setting, by automatically monitoring and processing the EHRs. In the context of early detection, Lustig et al. (2022) reported (likewise, after April 2021) an ML algorithm that was trained using a database comprising six consecutive daily sub-epidermal moisture (SEM) measurements recorded from 173 patients in acute and post-acute care settings, which demonstrated strong predictive power in forecasting heel deep tissue injury events the next day, based on the weighed trend of the acquired day-to-day SEM data ¹¹. Indeed, Raju et al. (2015) suggested earlier that prediction of pressure ulcers can be performed more effectively by utilizing data science, and more specifically, data mining modeling, to support and augment the Braden risk assessments conducted by nurses, and it appears that this approach is successfully maturing now, as demonstrated in the aforementioned articles ¹².

Accordingly, AI-powered wound care is potentially able to reduce the workload on specialists, increase the accessibility to specific relevant medical expertise and expand the potential of remote (tele-) wound treatment or management. Specifically, using a variety of textual and image data, collected from either new or already-available medical records and imaging modalities (as relevant to the affected body area), AI-based methodologies and algorithms may be able to provide clinical decision-support in wound diagnosis, prognosis and management, and even contribute to the prevention of chronic wounds.

4.0 Discussion

To explore the breadth and depth of integration of AI methodologies and technologies in wounds diagnosis and management in the past decade and to identify gaps between AI technological capacities and clinical implementation, a scoping review was conducted, following the framework of Arksey and O'Mally ¹³. This framework describes five subsequent stages: (1) identifying the research question; (2) identifying the relevant studies; (3) study selection; (4) charting the data; and (5) collating, summarizing, and reporting the results.

4.1 Research question and key concepts

The research question that was determined to guide the present literature review process was: How does AI contribute to the diagnosis and management of chronic and acute wounds? Reported AI methodologies were defined as machine learning algorithms that aim to mimic or substitute human expertise in order to replace, assist or perform wound care tasks more efficiently. Such wound care tasks may include prevention and treatment interventions, identifying risk factors and mitigating them, patients risk assessments, wound detection and classification and monitoring of healing processes ¹⁴.

4.2 Identifying relevant studies

Five electronic databases were scanned to identify relevant studies: MEDLINE (using the PubMed interface), Compendex, Scopus, Web of Science and IEEE. The search strategy was designed to capture the intersection of the two extensive fields of AI and wound care (i.e. both diagnosis and management). For this purpose, we systematically searched the aforementioned databases for studies that included at least one of the following key terms: artificial intelligence (including the commonly used abbreviation AI), deep learning, machine learning, convolutional neural network (including the abbreviation CNN) and deep network; and at least one of the following key terms related to wounds: pressure ulcer*, pressure injury (or pressure injuries), chronic wound*, surgical wound*, burn wound*, diabetic foot ulcer*, acute wound* (asterisks indicate that plural forms were also considered).

4.3 Study selection

Eligibility criteria were established based on the research question and a pilot search through the preliminary search results. Studies describing a novel AI method or a novel use of an AI method for acute/chronic wound diagnosis or management, published in English, were considered for inclusion. Only articles that specifically reported an evaluation of the AI algorithm performances were considered for inclusion.

In order to focus on the more advanced and novel AI methods which are the most relevant to the contemporary computer hardware and software power, we established a new rate

Page 9 of 165

of appearance (ROA) criterion, which has been applied in our present search procedure. We specifically aimed to identify the year of publication in which the ROA of papers in the AI field has turned into exponential growth. The year of reaching this point of exponential growth in the number of published AI papers was defined as the year where the ROA (i.e., the derivative) of the number of publications with respect to time became proportional to the number of AI papers itself. To calculate the ROA in practice, we developed and used a Python (Python Software Foundation, Delaware, United States) computer code which performed curve fitting to the plot of the number of AI publications as function of time. We applied the algorithm to the datasets obtained from the AI key term search, for each of the five electronic databases and found that the year in which the ROA became exponential was 2010. Accordingly, we decided to include AI studies published on 2010 and onwards.

We considered peer-reviewed original research articles, conference proceedings, published patent applications and published (granted) patents. Identified items for which the full text was unavailable were excluded. In the first step, we screened the titles and abstracts of all the retrieved records for eligibility, using the online freeware software system Rayyan ¹⁵. We then performed an in-depth review of the full text of the remaining records to ensure compliance with the above-listed eligibility criteria.

4.4 Charting the data

A data charting form was designed to provide interpretation, comparisons and synthesis of the findings from the included studies. The final form included the following information: Reference of publication, country where the study was performed, aim of the study, the wound types that were considered in the study, setting of the study and the sample considered, the study design, the main AI methodologies considered in the study, the study process, the main and relevant study outcomes, and the limitations stated in the study.

4.5 Collating, summarizing, and reporting the findings

Due to the explorative nature of the present scoping review and the relatively high divergence of the findings, the results were presented in a narrative way, with no attempt to assess the quality of the studies or to determine the robustness and generalization of the findings ¹³.

4.6 Literature review

The literature search, performed in April 2021, yielded a total of 448 records. The full texts of 154 studies were retrieved to assess eligibility. This assessment resulted in the exclusion of 76 studies which did not describe any AI approach or a novel use of an AI approach for acute/chronic wound diagnosis or management, or that considered wound types that were out of scope for this study. Such wound types were intra-abdominal surgical wounds and colorectal surgical infections. In addition, we excluded reports describing algorithms developed for identification of skin cancers or were trained using skin cancer image databases. A chart table presenting an overview of the characteristics of the assessed studies and the main findings is available in the Appendix.

Most of the included studies (n = 59) were focused on development of AI algorithms and evaluation of their performances by means of simulations, using datasets that were collected by clinicians in hospital settings, or from online available databases ^{1,16,25–34,17,35– ^{44,18,45–54,19,55–64,20,65–74,21–24}. Of the remaining studies, four papers combined a retrospective cohort study for data acquisition, followed by algorithm development and simulations ^{75–} ⁷⁸. Two studies included a prospective cohort study that was used to first develop a predictive AI algorithm and then simulate and evaluate the performances of the developed algorithm ^{79,80}. Four studies were experimental studies where in-vivo and ex-vivo porcine models were used for wound evaluation and analysis ^{81–84}. Three studies aimed to examine an automated approach of in-bed lying posture recognition and prediction using sensor measurements fed into an ML model, as a way of preventing pressure ulcers/injuries ^{85,86,87}. In another study, an algorithm was developed based on an individual case report ⁸⁸. One record was a published patent application ⁸⁹, another article aimed to develop a novel ML algorithm to predict formation of heel deep tissue injury based on a dataset of change}

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Page 11 of 165

in the sub-epidermal moisture (SEM) measurements ⁹⁰, and the last study was exploratory work to predict the prevalence of pressure ulcers/injuries based on risk factors extracted from clinical records ⁹¹.

We note that no relevant publications specifically concerning venous leg ulcers (VLUs) addressed by means of ML, existed at the time of conclusion of our literature survey (April 2021). However, as the number of patients suffering from this problem is so considerable, we performed an additional search focusing on this particular topic later on, and on June 2021, the first and currently the only such article was published online, by Chan et al. (2022) who investigated intra- and inter-rater reliability of a commercial ML-based handheld 3-dimensional infrared wound imaging system (WoundAide [WA], manufactured by Konica Minolta Inc., Tokyo, Japan) with respect to VLU length, width and area measurements (in 52 patients) by trained nurses ⁹². Chan et al. (2022) reported high intrarater reliability of the WA imaging system for observations of the same wound and independence of the specific WA device that was used for the purpose (of 3 devices utilized in their study) ⁹². They further reported excellent agreement between measurements made manually by nurses and those made by the WA systems, which led them to recommend the WA imaging system as a useful clinical adjunct in the documentation of VLUs.⁹²

The distribution of the number of published studies per year (from 2010 onwards) is depicted in Figure 2. The data in this figure demonstrates an overall growing interest in implementation of AI in wound care over the last decade. This becomes more feasible with the technological progress (in computer hardware and software including cloud computing) and also, due to improvements in the AI field as a whole. Generally, the aim of the studies that were identified in the present literature search has been to help physicians in wound diagnoses and support clinical decision-making processes regarding treatments and preventative interventions, by means of efficient and systematic algorithms. In most of the included studies, supervised machine learning (ML) techniques were used for different tasks such as wound type classification, tissue type segmentation and classification, detection of infections, or classification of the wound severity. The data were labelled by physicians specialized in wound care and then considered as 'ground'

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Page 12 of 165

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

truth' for the training and evaluation of the learning algorithms. The metrics that were used to evaluate the algorithm performances varied across the reported studies and included primarily accuracy, sensitivity and specificity, F-score, receiver operating curve (ROC), area under the curve (AUC) and the dice similarity coefficient (DSC). Therefore, it is not feasible to directly compare the different records but it appears that from 2015 and going forward, the methodology that was found to provide superior performances over classical ML and computer vision techniques has been deep learning (DL), which is also commonly referred to as a deep neural network (DNN) ^{1,16,30,32–38,43,44,18,46–49,51,58,60,63,66,67,19,72,74,75,80,82,85,86,88,9,22,23,25–28}. The classic ML classifiers - support vector machine (SVM), logistic regression (LR) and random forest (RF) - have also been used widely ^{17,20,50,52–56,59,61,62,64,21,65,68–71,73,76–79,28,80–83,87,88,91,29,31,39,40,45,48} (All mentioned ML and technical terms and their definitions can be found in Table 1).

In 54 studies, the datasets consisted of images of wounds and healthy skin, collected using digital cameras, smartphone/tablet cameras and advanced imaging techniques such as Raman spectroscopy (RS), optical coherence tomography (OCT), ultrasound, infrared thermography, near-infrared thermography and spatial frequency domain imaging (SFDI). In other 20 studies, the datasets consisted of quantitative and categorical information collected from clinical notes and electronic health records (EHRs). The above data were acquired mostly in hospital conditions (by clinicians), and less frequently, under laboratory conditions. In three additional studies, the datasets were consisted of experimental measurements obtained from pressure, force or accelerometer sensors. The studied image dataset sizes ranged between 23 and 2400 images. The clinical records or EHR dataset sizes ranged between 149 and 765,564 patient records. The sensor measurement-based datasets consisted of data from 12 to 22 individuals. The main limitation of most of the relevant studies was the small or limited dataset sizes which affected the robustness, generalization, accuracy and likely the overall performances of the Al algorithms.

4.7 Clinical visual assessment of wounds supported by artificial intelligence

In order to examine a chronic wound (CW), the development of infection in an acute wound, or the progress or healing process of wounds in general, physicians and nurses

12

perform frequent clinical visual assessments (VAs). In this regard, 62 of the studies identified in this scoping review aimed to develop computer-aided tools that may assist clinicians in the VA process and to allow objective, rapid and systematic wound assessments. Two main tasks that ML algorithms appeared to perform efficiently were classification and segmentation. In classification tasks, the AI algorithms acquire a wound image as an input and distinguish between pre-defined sets of classes e.g., class I and class II. In segmentation tasks, AI algorithms also obtain an image as an input but classify each pixel therein to labels such as granulation versus necrotic tissues. It then becomes possible to present regions of the classified tissues per their specific labels or superimpose those with a picture of the entire wound. In the literature reviewed here, these abilities were

Specifically, 30 of the reviewed studies were aimed to assist in recognition of wound tissues and distinguish those from healthy skin by means of binary classifications, which determine whether an image (analyzed in a classification task) or a pixel of an image (in a segmentation task) represent healthy skin or wound tissues. Those studies are summarized in Table 2.

used together or separately to support VAs.

In each of these studies, dozens to hundreds of images were acquired using digital cameras or smartphones in healthcare facilities ^{8, 10–12, 14, 15, 20–22, 24, 25, 28–30, 34, 35, 38, 41, 48, 49, 64, ^{66, 70, 82} or through infra-red, RS and OCT techniques ^{1,69,82}, hyperspectral and multispectral imaging ^{83,88} or extracted from available online databases ^{32,44}. The images were first labelled by expert physicians, manually or using software to establish a ground truth and then preprocessed and fed into the developed algorithms for training and evaluation of the algorithm performances. In several studies, classic ML classifiers such as SVM ^{29,39,48,61,76,82,88}, logistic regression (LR) ^{76,82}, multilayer perceptron (MLP) ^{22,25}, radial basis function (RBF) kernel ²², random forest (RF) ^{69,82} and k-nearest neighbors (KNN) ⁸³ were employed to perform the classification of healthy versus wound tissues. For example, Song et al. (2012) used 92 diabetic foot ulcer (DFU) digital color images, labelled by experts to identify the wound region; these images were then split into a training set of 78 images and a test set of 14 images ²². Song and colleagues compared the performances of the MLP method and RBF method in the task of wound area segmentation and found that the RBF}

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

14

was more accurate for this task (85.7% accuracy by RBF versus 71.4% by MLP) and required a shorter training period (1.7 seconds by RBF versus 12.6 seconds by MLP).

Chen et al. (2018) studied a dataset of 131 surgical wound images acquired using different smartphones/tablets and labelled by clinical experts ⁴⁵. They developed an algorithm for wound detection and assessment based on classic ML techniques and found that the combined KNN and RF classifiers achieved the highest accuracy (90%). Other studies developed algorithms based on DNNs, after comparing the algorithm performances with the basic ML methods. It was shown that DNNs generally achieve better results than the basic ML methods ³⁹. For example, Sevik et al. (2019) developed an algorithm for distinguishing between skin and burn areas on burn images taken by technicians in emergency services ²³. They used 105 images acquired in hospital conditions and compared the segmentation and classification tasks performed using traditional computer vision and ML techniques, with those of a more advanced DL technique having a multiclass pixelwise segmentation architecture (commonly known as the 'SegNet') ⁹³. Sevik and colleagues found that the fully-automated DL system had a greater F-score relative to the classic techniques and was therefore superior to most of the existing methods in the area of tissue health (i.e., healthy skin versus burn) classification. Specifically, the F-score of the DL architecture was 0.85 whereas the F-score of the best classic architecture was 0.742.

Of note is that shallow models (where there are less layers in the neural network structure) typically exhibit poorer performances with respect to all the relevant metrics that are commonly used for assessment of the algorithm performances (i.e., sensitivity and specificity, AUC etc.) ⁹⁴. For example, as mentioned earlier in this Section, Song et al. (2012) compared two ANN methods, MLP and RBF (which contain only one hidden layer), for automatic segmentation and identification of wound regions based on colored images of diabetic foot ulcers ²². The MLP and RBF models, which are considered shallow, gained 71.5% and 85.7% accuracy scores for the segmentation task, respectively. The DFU_QUTNet, however, which was suggested later by Alzubaidi et al. (2019), for the same task of classifying diabetic foot ulcer images, and that consisted of 58 layers for this purpose obtained precision, recall and F-score of 94.2%, 92.6% and 93.4% respectively ³⁴, i.e., substantially better than the 'shallow' architecture. These results demonstrate the

Page 15 of 165

superior performance of deep models over shallow ones, where typically, more depth of the neural network structure augments its accuracy.

Fifteen of the studies aimed to provide efficient software tools to distinguish between the different types of tissues within a CW and to correctly classify them. Summary of those studies can be found in Table 3. These algorithms may enable to automatically identify necrotic tissues, granulation tissue, slough and healing tissues. For example, Garcia-Zapirain et al. (2018) have used a database of 193 images to develop a system for automatic segmentation and detection of tissues in a pressure ulcer/injury ³⁰. Their algorithm consisted of two main steps using a 3D convolutional neural network (CNN) model (a CNN model applied on a 3-dimentional dataset, such as a series of 2D images taken through time or space ⁹⁵). In the first step, the 3D CNN model was used to distinguish the external pressure ulcer/injury boundaries using the preprocessed images as an input. In the second step, a deeper 3D CNN model was designed to segment the internal boundaries of the necrotic, granulation and slough tissues from the background. They compared the performances of their algorithm to two traditional computer vision segmentation techniques, the Fuzzy C-Means (FCM) and the Linear Combination of Discrete Gaussians (LCDG) and found that their approach has reached the highest AUC for classification of all the three aforementioned tissue types. Specifically, the average AUC of their algorithm was 95% while the other two tested computer vision techniques reached substantially lower AUC values of 69% and 77%. Accordingly, their layered CNN approach contributed another tier (together with the other aforementioned studies) to the role of AI in VAs.

Veredas et al. (2010) designed a computational system by integrating neural networks and Bayesian classifiers for automatic tissue-type identification and classification in wound images ²⁵. The latter computational system consisted of wound region segmentation and categorical tissue classification, which performed successfully by designing specific heuristics based on the wound topology. Veredas and colleagues demonstrated high global classification accuracy rates of their system, with average sensitivity, specificity and accuracy scores of 78.7%, 94.7% and 91.5%, respectively.

Page 16 of 165

16

Another potential capability that AI methodologies may provide for supporting a VA process is in identifying the type of the wound that is under assessment, objectively and automatically. Kavitha et al. (2017) proposed a method to perform an automatic, binary classification between pressure ulcers/injuries and leg ulcers ²⁰. They suggested a pipeline process for the wound image analysis that included preprocessing of the digital wound images (e.g., color correction, noise removal and color homogenization), segmentation, feature extraction and finally, classification of the CW type. Using 59 wound images, they trained and evaluated their algorithm. They found that the accuracy of their classification process was 83.1% using the MLP classifier.

Similarly, Abubakar et al. (2020) suggested a tool for discriminating pressure ulcers/injuries from burn wounds ²⁸. They used a database of 29 pressure ulcer/injury images and 31 burn images and developed an algorithm that consisted of a 3D CNN for feature extraction, followed by application of an SVM classifier. They reported impressive accuracy of 99.9% in the task of classifying pressure ulcers/injuries versus burns.

Lustig et al. (2022) aimed to develop an AI-powered classification algorithm to diagnose and predict the formation of heel deep tissue injuries (DTIs), based on a daily-collected database of Sub-epidermal moisture (SEM) measurements ¹¹. SEM data, which is an established biophysical marker of pressure ulcer formation, was collected in this article using a commercial SEM scanner (Bruin Biometrics LLC, Los Angeles CA, USA). Classification algorithm was developed to identify patients who eventually developed heel DTI among patients who did not, using SEM measurements. Furthermore, prediction algorithm was designed to predict whether a heel DTI will occur. The classification algorithm gained 79% accuracy and 90% sensitivity, where the prediction algorithm gained an average accuracy of 77% and average sensitivity of 80%. These results point out the potential clinical utility of SEM measurements, integrated with AI methodologies, to early detect DTIs and PUs/PIs.

Assessment of the wound severity and depth and identifying the presence of infection and ischemia is also possible using AI methodologies, as reported in 22 of the presently identified studies. Those studies are summarized in Tables 2 and 4, where Table 2 includes studies aimed to obtain quantitative information and measurements concerning the

wound size, and Table 4 includes studies which their goal was to detect and assess wound infection and/or ischemia.

4.8 Predicting the formation and progress of wounds based on electronic health records

The practice of acquiring and regularly updating EHRs, clinical background notes, records of examination results, physician assessments, medical procedures and clinical notes in general, generates large (textual and numerical) databases of patient and population conditions. Traditionally, physicians and nurses have used manual scoring tools to identify patients at risk of developing wounds. The currently available AI methods can support this process and provide considerably more rapid and objective risk assessments, by computationally analyzing the large amounts of accumulated data in EHRs. Predictive models which are based on generalizable features (such as data from EHRs) can provide more in-depth information about the risk of patients to develop a new wound and/or the likelihood of an existing wound to deteriorate, which in turn, facilitates informed clinical decision-making concerning preventative or treatment interventions ⁷⁷. That being said, in practice, the nature of EHR data is highly diverse across different wound care settings due to differences in data input (i.e., institution-specific workflows and conventions), and the EHR software designs themselves. Accordingly, there are practical and implementation challenges in extracting pertinent features from EHRs in a generalizable way, since for different care settings and facilities, these features exist in different schemes and across structured and unstructured data, and variables are subject to missingness and inaccuracies in input or extraction data 96-98. For example, NLP systems optimized for notes from one system may not perform similarly for another system, and therefore, in such language-related aspects, non-textual, i.e., image data of wound photographs may perhaps be more generalizable as an input data source than EHRs, despite the images being taken by various devices and users.

Nine of the studies that were identified in this scoping review aimed to develop predictive models for wound formation and evolution based on categorical and quantitative information that has been collected from clinical notes and EHRs (Table 5). For example,

Page 18 of 165

18

Alderden et al. (2018) collected data from EHRs of 6376 patients hospitalized in a surgical ICU and selected a set of predictors as variable inputs to their prediction model ⁴⁰. The input variables included the body mass index (BMI), body core temperature, severity of the illness and more; these were fed into a RF model to predict the development of pressure ulcers/injuries. Their algorithm obtained an AUC of 0.79.

In another recent study published by Goodwin et al. (2020), the aim was to develop a generalizable model capable of leveraging clinical notes to predict healthcare-associated diseases 24 to 96 hours in advance and specifically, the onset of hospital-acquired pressure ulcers/injuries ⁷⁵. They developed a recurrent additive network for temporal risk prediction (CANTRIP), based on natural language processing (NLP) methodologies, using 35218 clinical reports of patient cases. This CANTRIP algorithm, operating on text alone, obtained AUC of 74%–87% and specificity of 77%–85% which is promising.

Chun et al. (2021) aimed to establish a model that predicts 7-day clinical outcomes in children with a pressure ulcer/injury ⁷⁸. They included 152 patients with a category-I pressure ulcer/injury or a suspected deep tissue injury and divided this cohort into two groups, namely, those who demonstrated healing versus children who presented delayed healing. The patients were followed for 7 days and their pressure ulcers/injuries were analyzed by their characteristics, demographics, treatment, clinical situation, vital signs and blood test results. Using the collected data, a prediction model was constructed by RF (including a so called 'eXtreme Gradient Boosting' ML approach). The best prediction model, trained and tested using RF with 10 variables, achieved an accuracy, sensitivity, specificity, and AUC of 0.82, 0.80, 0.84, and 0.89, respectively. The most influential variables, in order of importance, were the serum creatinine level, the red blood cell count and the hematocrit reading. This model, which is unique in being specific to the pediatric population, may allow to improve the quality of care and clinical outcomes in children with pressure ulcers/injuries.

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

4.9 Predicting the formation and evolution of wounds based on a dynamic evaluation of wound characteristics and relevant physiological measures

Chronic and acute wounds both change over time. Changes in peri-wound skin and the appearance of the wound bed, together with physiological measures such as the skin and wound tissue temperatures, the exudate production, its contents and biophysical and biochemical properties may indicate healthy healing or, alert that the wound is shifting into infection, chronicity or both. By using AI methodologies, it may be possible to predict the potential path of progression of a wound (towards either healthy healing or chronicity) in advance, using data of temporal and dynamic measures, and to clinically intervene accordingly. In fourteen of the studies included in this review (summarizes in Table 6), the authors have developed predictive models based on dynamic wound characteristics and physiological measurements.

Martínez-Jiménez et al. (2018), for example, aimed to determine if temperature differences between a burn region and a healthy skin of a patient, assessed by infrared thermography, could be used to predict the treatment modality of spontaneous healing by re-epithelization, or skin grafting, or amputations ⁷⁹. In the algorithm development step, they recorded the temperature differences between the burns and healthy skin tissues of patients during the first three days after injury and then, categorized the patients according to one of the three aforementioned treatment modalities. A prediction model, based on the above burn-skin temperature differences, was developed using a recursive partitioning RF ML algorithm. They found that their algorithm correctly predicted into which treatment category a certain patient would eventually fall, with 85.4% accuracy.

The use of AI algorithms such as the above may contribute to predicting the severity of the injury and the clinical outcome and will, therefore, guide clinical decision-making and optimize institutional healthcare resources. In particular, use of adequate AI algorithms as adjunct to clinical judgment has the potential to prevent or at least mitigate potentially devastating consequences of inadequate treatment procedures.

Kim et al. (2020) built a ML model to predict the healing of diabetic foot ulcers, using both EHRs and an image database ⁵⁴. In their research, both hand-crafted color texture features

20

and deep learning-based features were extracted from the wound images. For prediction, SVM and random forest models were trained, and the results showed that models built from hand-crafted imaging features alone outperformed models built with clinical or deep-learning features alone. These results suggested that the use of only hand-crafted image features and raw clinical attributes, which provide more intuitive insights to both clinicians and patients, can yield adequate wound healing predictions. Other articles described models developed based on dynamic image databases, to automatically predict the wound severity ⁹⁹, infection ^{76,80}, evolution ^{50,71,78} or care decisions ⁶⁵.

Another approach for preventing the formation and progression of pressure ulcers/injuries associated with prolonged bed stays is to detect the body position and evaluate whether a monitored patient has remained in a certain posture for a long period of time. As mentioned in three articles included in this scoping review, prolonged bed rests without repositioning may lead to pressure ulcers/injuries ^{85,86}, ⁸⁷; accordingly, developing a model that automatically detects movement in bed can be used for scheduling postural changes for patients, which contributes to effectively using nursing labor and time.

For example, Matar et al. (2020) suggested an autonomous method for classifying four inbed lying postures using data from textile-made pressure sensors embedded under the bed sheet ⁸⁶. Data collected from twelve adult subjects were implemented in a supervised artificial neural network model for the in-bed posture classification. The classification model reached high prediction scores, with accuracy of 0.97 and a Cohen's Kappa coefficient (a measure of inter-rater reliability) of 0.972. Apart from preventing pressure ulcers/injuries associated with prolonged stays in bed, an autonomous method of in-bed posture monitoring such as the above can also be used in several other medical fields where in-bed posture identification is much needed, such as in sleep studies and postsurgical (recovery from anesthesia) procedures.

4.10 Smartphone and tablet use in wound diagnosis and management

The outbreak of the coronavirus 2019 disease (COVID-19) has brought the topic of telemedicine into a sharp focus. In the context of pressure ulcers/injuries, the need for tele-healthcare is often associated with limited access to elderly care facilities, in view of

Page 21 of 165

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only Advances in Wound Care

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

the risk of COVID-19 infection to the facilities, and the increased susceptibility of elderly residents in long-term care settings to both pressure ulcers/injuries and COVID-19. Bioengineering contributions in this regard may focus on ML algorithms that provide AI consultation systems to expert healthcare professionals, through smartphone/tablet application software. This can lead to development of big databases of nursing home resident data that will reveal the extrinsic and intrinsic factors affecting the risk of pressure ulcers/injuries or the likelihood of their healing in these individuals for particular settings or institutes (including under the effects of COVID-19). The availability of such AI-based consultation tools may also have an overall positive effect on the standard of care that aged-care residents are receiving as a collective, as well as individually (e.g., if specific measures are taken to mitigate the injury risk).

The data collected by AI systems through smartphones/tablets may include EHRs, VAs, additional physiological measures that indicate susceptibility or early signs of a forming pressure ulcer/injury such as changes in subepidermal moisture, infrared thermography or ultrasound measurements and any relevant risk factors, including ones that can be mitigated by adequate interventions. Based on data mining and ML algorithms employing the collected big data, AI systems can then offer clinicians the specific measures that have been proven to be successful in other similar cases. Such AI systems may further incorporate all the published recommendations in the 2019 International Guideline for Pressure Ulcer/Injury Prevention and Treatment ¹⁰⁰. Hence, effectively, in the future, AI systems will facilitate machine-based, real-time consultation, as adjunct to the expert clinical judgment and experience, which will be the most advanced and up-to-date comprehensive synthesis of all the available and contemporary medical knowledge regarding pressure ulcer/injury prevention and treatment, including in individuals affected by COVID-19. All of that will be available at the click of a button, and will be delivered instantaneously to the cellular devices that healthcare professionals typically use in their daily work already.

In fact, from a hardware and software technology perspective, smartphones and tablets are already mature for implementation of AI systems. Their design features include powerful processors, multiple high-resolution cameras and communication capabilities,

22

particularly including wireless connection to cloud computing. Therefore, smartphones and tablets are very likely to play a major role in the growing impact of AI in wound diagnosis and management as they facilitate image and textual data collection, potential integration of physiological sensors, fast data analysis supported by cloud computing and friendly user interfaces. In particular, acquiring image data using smartphone cameras does not require special proficiencies and therefore, can be done by healthcare professionals during their routine care of patients (many clinicians regularly document the wound healing of their patients using smartphones already). Acquiring such visual data in real-life scenarios, under hospital conditions and by unprofessional photographers also provides realistic settings and data for the AI algorithms to cope with, which is a challenge. Eight of the presently identified studies reported that wound images were acquired using smartphone cameras, and summarizes in Table 7.

Shenoy et al. (2019) have implemented their wound image classification network called 'Deepwound' on a mobile application that can assist physicians and patients in postoperative wound surveillance ³³. They collected 1335 diverse smartphone wound images containing nine different wound types and conditions, ranged from open wounds with infections to closed wounds with sutures. They then generated a model called 'Deepwound', a combination of three separate models that are based on the VGG-16 CNN architecture after modifications. The mobile application presented in their article, called "Theia", is a suggested way to deliver the 'Deepwound' model to patients and care providers, by classifying every image that a user acquires into one of nine possible categories (wound types). The 'Deepwound' model performances were evaluated through parameters of accuracy, sensitivity, specificity and F-score. Wounds closed by tape strips obtained the best combined accuracy, sensitivity, AUC and F-score of 0.97, 0.82, 0.95 and 0.85 respectively, whereas the drainage classification achieved the best sensitivity score of 0.98. The Shenoy et al. (2019) approach further facilitates remote monitoring of patients, ease of communication with the medical team and early identification of wound infections. Their mobile application can also generate comprehensive medical reports that can be used for the purpose of billing insurers, thus saving the cost of a clinician time.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only Advances in Wound Care

Another interesting approach is described in Chen et al. (2018) study, which proposed a surgical wound assessment system for self-care, based on an image database acquired by smartphone cameras ⁴⁵. This system enabled patients to capture their surgical wound by using mobile devices and upload these images for further analysis of wound segmentation,

smartphone cameras ⁴⁵. This system enabled patients to capture their surgical wound by using mobile devices and upload these images for further analysis of wound segmentation, skin and wound area detection, and wound assessment (state and symptoms). The Chen and colleagues approach achieved an accuracy rate of 90% for wound state assessment and 91% for symptom assessment, using a KNN classifier. The case studies examined in this paper showed that the suggested system could detect and assess multiple symptoms of surgical wounds, and the results further demonstrated that this system may support healthcare professionals in obtaining robust surgical wound assessments, which in turn improves cost-effective usage of medical resources.

4.11 Feasible implementation of AI solutions for wound care delivery and management

Many studies included in this review show promising results regarding wound management and care and have the potential to improve wound care delivered to patients who suffer from chronic wounds by using AI methodologies. However, it appears that many of those studies mainly presented ML models which are still far from being available for implementation in real-life due to various reasons, such as ML models that did not consider the backend processes required for implementation, or in the absence of sufficient details concerning the software and/or hardware for the implementation (e.g., where it was unclear if a mobile phone or a tablet can run the algorithm and provide the desired outputs). Table 8 lists studies describing solutions that we view as feasibly possible for future implementation in clinical practice. Studies describing an achievable goal using approachable methods for data acquisition and easy-to-use systems that can potentially be practiced by healthcare providers and clinicians in healthcare facilities "as is", were considered as possible for actual implementation in medical settings, and thereby, included in the aforementioned Table 8. Most of the reviewed studies that met the abovementioned criteria suggested end-to-end automatic systems in which data acquisition, data processing and final results can all be obtained and can be integrated by software updates to existing electronics in the hardware systems or devices that are already in use

24

by healthcare professionals during their daily routine of clinical practice. For example, Lustig et al. (2022) recently demonstrated the feasibility of such potential integration by developing an ML algorithm for early detection of heel deep tissue injuries, based on data collected by the commercial SEM Scanner (Bruin Biometrics LLC, Los Angeles, CA, USA); the SEM Scanner is a medical device which is currently being used clinically, on a daily basis, by care providers in many healthcare facilities worldwide ¹¹.

Zahia and colleagues (2020), for example, described an end-to-end non-intrusive system which automatically retrieves quantitative information of a pressure injury, such as the depth, area, volume and major and minor axes of the wound under observation, using a 2D image and a 3D mesh of the wound ⁵⁸. The 2D wound image was obtained by means of a tablet camera, and the 3D wound mesh was acquired through an easy-to-use structure sensor mounted on the tablet. Convolutional neural network (CNN) algorithms were then used to automatically detect and segment the wound area from the 2D image, then the segmentation results were combined with the 3D wound mesh, and the quantitative information associated with the wound was automatically computed. During their research, Zahia et al. showed that caregivers could capture the 2D images and the 3D meshes efficiently, and the acquisition time ranged from 1 to 2 minutes in total, which is clinically feasible. This system appears to be approachable and easy-to-use by healthcare providers using a simple tablet and a mounted sensor, in addition to the short time it takes to collect the relevant data which enables the clinicians to manage their time with their patients more effectively.

Nonetheless, real-life implementation of AI technologies in health care is still subjected to many obstacles. One of the main barriers is the absence of regulations concerning the safety and efficacy of AI systems in the medical field. Related to that are growing concerns regarding data privacy and cyber-security. Furthermore, the medical environment is currently not compatible to automated data exchange and for continuous supply and update of the data for further development and improvement of AI systems ¹⁰¹. However, we believe that following the substantial growth in medical research regarding integration of AI methodologies in wound care and management, feasible implementation of AI technologies in the wound care field would become available in the near future.

4.12 Types of data modalities for diagnosis, detection and prediction of chronic wounds.

Many data types, i.e., clinical notes, image datasets, electronic health records (EHRs) and experimental measurements, were used for model construction in the studies included in this review. Those data types were used for different tasks, such as wound/tissue type classification, prediction and diagnosis.

Fourteen of the reviewed articles suggested a predictive model for wound prognosis or for providing automated advice concerning the required treatment, or for calculating the likelihood of healing. For these purposes, a variety of data types and modalities were used, including EHRs, image datasets, spatial/temporal dynamic data or a combination of several modalities, to build more reliable databases for the model construction. A notably good predictive model demonstrating promising results is the one recently presented by Song et al. (2021), who aimed to develop an ML model to predict pressure injury development, using phenotypes derived from nurse-entered direct patient assessment data ⁷³. For the construction of this model, more than 180,000 clinical records were collected from five different US hospitals, forming a relatively large input dataset. For the prediction purpose, several ML models were developed, where Random Forest (RF) performed the best of all models, achieving an AUC of 0.92-0.94.

Image datasets, EHRs and experimental results were the data modalities used in 34 reviewed studies aimed to obtain wound assessment and diagnosis. Image datasets were mostly used for this goal, and images were obtained by means of different hardware types, as mentioned above (e.g., digital cameras, mobile phones and infrared thermography). Liu et al. (2018), for example, developed a deep neural network called WoundSeg to locate and segment chronic wounds automatically in images ¹⁸. The WoundSeg algorithm included a computationally efficient wound segmentation based on a MobileNets model (a CNN containing depth-wise separable convolutions, to build a light-weight deep neural network ¹⁰²), as well as data augmentation and post-processing. The Liu et al. model showed promising results of 98.18% accuracy and 93.31% precision, which are considered

26

to position this model as an alternative approach for replacing the traditional empirical and manual wound area measurements.

As for the classification task, 28 reviewed articles aimed to classify wound etiologies, wound tissue types, healthy and infected skin and wound severity stages. Those articles mostly used image datasets collected by digital cameras, while few studies used experimental results or EHRs. Most classifiers obtained relatively good results (>90% accuracy scores), which emphasizes the promising contribution of using AI methodologies in the wound care and management arena.

5.0 Summary

This scoping review focused on the existing and potential contributions of AI-based methodologies and AI-powered technologies in wound care and management. We reviewed articles that reported AI methodologies aimed at supporting both the diagnosis and monitoring of the healing process. After a systematic scanning of electronic databases, a total of 75 studies that were published from January 2010 to April 2021 were included in this work. We documented and classified the findings according to the main study goal, the clinical setting and the patient population and sample that were considered, as well as the design, main AI methodology, primary outcomes and limitations. Taken together, the results are definite and reveal a strong positive impact and prospect of novel AI methodologies in the wound care arena. It was specifically shown that implementation of computerized machine learning algorithms in the diagnosis of acute and chronic wounds has the potential to improve the wound care delivered to hospitalized patients and aged-care residents, particularly by enabling clinicians, healthcare professionals and nurses to allocate their time more efficiently.

Machine learning models based on imaging data are considered to be relatively narrow in terms of the task type the ML algorithm is trained to perform. That said, focusing on implementation of ML in chronic wound care and management, the tasks are relatively coherent and invariable, and can be categorized as classification or prediction tasks. Classification of chronic wounds by means of ML typically requires an imaging model for detection of the wound and its etiology and/or segmentation of the wound and the tissues

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

within (as discussed in Section 5.7). As for prediction tasks, ML models can be taught to predict the potential path of progression of a wound (i.e., towards healing, or stagnation and chronicity, as described in Sections 5.8 and 5.9). Given the successful performance of ML in these aspects as presented in this scoping review, we expect that the above tasks can be supported by ML, first perhaps as adjunct to clinical judgement and then as a robo-advisor where wound care specialty is not immediately available or accessible.

Most of the studies reviewed here were focused on the development and evaluation of AI algorithms for classification and segmentation of the wound area, based on databases of wound images ^{1,16,27-36,18,37-39,42-48,19,51,55,57,60,61,63,65-67,69,20,74,76,79,81-84,88,89,21-24,26}. Machine learning classifiers that emerged as popular for wound classification were SVM ^{20,21,55,57,61,62,64,71,73,76,81,82,28,88,29,31,39,48,52–54}, logistic regression ^{17,56,87,59,64,68,70,73,76,77,82} and random forest ^{20,40,79,82,45,55,64,69,70,73,77,78}. The performances of each classifier were typically evaluated by statistical measures such as sensitivity, specificity, accuracy and the F-score. Several studies used AI methodologies for supporting visual skin or wound assessments 1,17,32–36,38,39,43–45,18,47,51–53,55,58,59,61,63,64,20,65,68,70,74,78,83,88,91,22,23,26,27,30,31 for discrimination between different wound types such as pressure ulcers/injuries versus leg ulcers or burns ^{16,19,21,25,28,37,48,57}, or for classification of the wound severity, depth and the presence and stage of infection ^{24,29,81,82,84,89,42,46,49,60,66,67,69,72}. Other studies used AI methodologies for risk assessments, i.e., to predict the probability of a certain patient to develop a chronic wound, based on their clinical records or images acquired at different time points ^{40,50,80,54,56,71,73,75–77,79}. Only two studies suggested NLP methodologies for wound identification based on electronic health records in combination with pathophysiological markers that are specific to the wound etiology, an approach that appears to be promising for prevention and early detection of wounds ^{64,75}.

Another innovative approach for AI-powered wound care is through telemedicine and telehealthcare, using smartphones/tablets for collecting skin or wound images and possibly other (patho-)physiological measures, which become the inputs for the AI-based system ^{16,29,33–35,45,54,58}. This appears to be a promising approach for AI-based remote consultation. In such remote consultation, the AI algorithm provides immediate automated advice to the local healthcare professional (as a 'robo-advisor'), but the medical information can also be

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Page 28 of 165

28

transferred via cloud computing to a remote human expert who can further guide the local clinician (with the AI system serving as an adjunct to the clinical judgements of both). The prospect of such AI systems relies on the fact that everyone is now experienced in using mobile apps and in acquiring image data by means of their personal smartphones, hence, no specific expertise or training are needed (in fact, numerous wound care clinicians use their cell phone cameras for documenting the healing of the wounds that they treat, as part of their daily routine). Integration of AI-powered wound care algorithms with cloud computing using smartphones as a platform hardware is therefore a practical and promising way forward.

We believe that telemedicine and tele-healthcare are an innovative approach which is likely to be wildly used and adopted in would care facilities in the near future. As mentioned above, many wound care clinicians already use their smartphones/tablets for wound documentation on a daily basis, hence, we expect that the use of smartphones/tablets for other purposes, such as remote consultation and image collection, would be naturally and easily implemented by practicing clinicians. As for the other novel approaches mentioned in this review, such as predicting the formation and progress of wounds or supporting the clinical visual assessment of wounds using AI technology, we believe that due to the advanced integration of AI methodologies in the wound care arena, they will soon become accessible among clinicians and healthcare professionals by computerized algorithms implemented in handheld diagnostic devices or bedside terminals.

One limitation of this scoping review that is noteworthy is that only peer-reviewed journal articles published in the English language were included, whereas conference abstracts or patents and patent applications were not considered eligible. While we might have missed some of the knowledge in the frontier areas of AI in wound care, we felt that the peer-review filter was necessary as a basic quality measure for filtering the reported work. Second, we did not consider issues of clinical implementation of AI methodologies in this review work but rather, have focused on the technology aspects and the pre-clinical evaluation of algorithms and software codes. The topic of implementation of AI in clinical practice is in its early days and would require a separate meta-analysis which we plan to

conduct in the near future. Another notable limitation is that out of the reports that used EHR dataset for the model construction, some EHRs included data collected methodologically during several years, whereas others captured clinical information sporadically, or without specifying the frequency or time period during which the clinical data were recorded, likely contributing to variability and compromising the power of the corresponding AI/ML algorithms, as good as they may be.

Our scoping review of studies about AI-based technologies for wound care and management showed predominantly studies that presented novel techniques and encouraging accuracy results for wound identification and prevention. We believe that the methodologic issues highlighted in our work (such as utilization of smartphones/tablets for remote consultation, and NLP methodologies for wound identification based on electronic health records) can potentially improve wound care delivery and might optimize clinicians and healthcare professionals working time.

6.0 Take-home messages

- There appears to be a strong positive impact of, and prospect for novel AI methodologies in the wound care arena
- The implementation of computerized machine learning algorithms in the diagnosis of acute and chronic wounds has the potential to improve the wound care delivered to hospitalized patients as well as to enable clinicians to allocate their time more efficiently
- Telemedicine and tele-healthcare are innovative and promising approaches for Albased remote consultation, to provide immediate and automated advice to local healthcare professionals
- Integration of AI-powered wound care algorithms with cloud computing, using smartphones or tablets as a platform hardware, is a practical and promising way forward.

Acknowledgements

This research received support from the Israeli Ministry of Science & Technology (Medical Devices Program Grant no. 3-17421, awarded to Professor Amit Gefen in 2020).

Author Disclosure and Ghostwriting Statement

No competing financial interests exist. The content of this article was expressly written by the listed authors.

About the Authors

Mai Dabas received the BSc in Biomedical Engineering from Tel Aviv University in Tel Aviv, Israel, in 2021. Since 2021, she has been a master student at the Department of Biomedical Engineering of the Faculty of Engineering at the Tel Aviv University. Her master work focuses on the contribution of image processing and machine learning tools to wounds treatment and prevention.

Dafna Schwartz, MSc, received the BSc in Mechanical Engineering and MSc in Biomedical Engineering from Tel Aviv University in Tel Aviv, Israel, in 2016 and 2019, respectively. Since 2019, she has been a doctoral student at the Department of Biomedical Engineering of the Faculty of Engineering at Tel Aviv University. Her doctoral work focuses on automated identification of pathologies and wearable sensors.

Amit Gefen, PhD, is currently a full and the Berman chair professor with the Department of Biomedical Engineering at the Faculty of Engineering of Tel Aviv University. His research interests are in studying normal and pathological effects of biomechanical factors on the structure and function of cells, tissues, and organs, with emphasis on applications in wound research. Dr. Gefen has published more than 300 articles in peer-reviewed international journals, many of which are on chronic wounds and their prevention, and he has edited several relevant books. Dr. Gefen is a previous president of the European Pressure Ulcer Advisory Panel (EPUAP, www.epuap.org), a member of the World Council of Biomechanics, a fellow of the International Academy of Medical and Biological Engineering and the European Alliance for Medical and Biological Engineering & Science and was

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

Page 31 of 165

Dimitri Beeckman, PhD, is a Professor of Skin Integrity and Clinical Nursing at Ghent University (Belgium). He holds visiting professorships at Örebro University (Sweden), University of Surrey (UK), Royal College of Surgeons in Ireland (Ireland), Monash University (Australia), and University of Southern Denmark (Denmark). He is an expert in skin integrity research, clinical trials and instrument development and validation. He authored over 120 scientific publications in international peer- reviewed journals. He is Consulting Editor of the Journal of Wound, Ostomy and Continence Nursing, the Journal of Tissue Viability, as well as Associate Editor of BMC Geriatrics. He is President of the European Pressure Ulcer Advisory Panel (EPUAP), President Elect of the International Skin Tear Advisory Panel (ISTAP) and Council member of the European Wound Management Association (EWMA). He holds Fellowships of Sigma Theta Tau International Honor Society of Nursing and the European Academy of Nursing Science.

List of abbreviations

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Area under the curve	AUC
Artificial intelligence	AI
Associative hierarchical random field	AHRF
Burn wound	BW
Chronic wounds	CW
Convolutional neural network	CNN
Decision tree	DT
Deep learning	DL
Deep neural network	DNN
Diabetic foot ulcer	DFU
Dice similarity coefficient	DSC
Electronic health record	EHR
Hospital acquired pressure injury	ΗΑΡΙ
K-nearest neighbors	KNN
Linear discriminant analysis	LDA
Machine learning	ML
Minimum distance	MD
Multi-layer perceptron	MLP
Naive Bayes	NB
Natural language processing	NLP
Neural network	NN

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Optical coherence tomography OCT Percentage area distance PAD ΡU Pressure ulcer RS Raman Spectroscopy Random forest RF Rate of appearance ROA Receiver operating curve ROC Red green blue RGB Region of interest ROI Sub-Epidermal Moisture SEM Spatial frequency domain imaging SFDI Spectral angle mapper SAM Spectral information divergence SID Support vector machine SVM Surgical site infection SSI

Bibliography

- Wang Y, Jiang X, Yu K, et al. Infrared Thermal Images Classification for Pressure Injury Prevention Incorporating the Convolutional Neural Networks. *IEEE Access*. 2021;9:15181-15190. doi:10.1109/ACCESS.2021.3051095
- David Naylor C. On the Prospects for a (Deep) Learning Health Care System. J Am Med Assoc. Published online 2018. doi:10.1001/jama.2018.11103
- Iyengar K, Upadhyaya GK, Vaishya R, Jain V. COVID-19 and applications of smartphone technology in the current pandemic. *Diabetes Metab Syndr Clin Res Rev.* 2020;14(5):733-737. doi:10.1016/J.DSX.2020.05.033
- 4. Izadi K, Ganchi P. Chronic Wounds. doi:10.1016/j.cps.2004.11.011
- Werdin F, Tenenhaus M, Rennekampff H-O. Chronic wound care. *Lancet*.
 2008;372(9653):1860-1862. doi:10.1016/S0140-6736(08)61793-6
- Leaper DJ, Durani P. Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products. *Int Wound J.* 2008;5(2):361-368. doi:10.1111/J.1742-481X.2007.00406.X
- Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. *Br J Dermatol*. 2015;173(2):370-378. doi:10.1111/BJD.13954
- Whitney J, Phillips L, Aslam R, et al. Guidelines for the treatment of pressure ulcers.
 Wound Repair Regen. 2006;14(6):663-679. doi:10.1111/J.1524-475X.2006.00175.X
- Anisuzzaman DM, Wang C, Rostami B, Gopalakrishnan S, Niezgoda J, Yu Z. Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review. *https://home.liebertpub.com/wound*. Published online December 20, 2021. doi:10.1089/WOUND.2021.0091
- Xu J, Chen D, Deng | Xiaofang, et al. Development and validation of a machine learning algorithm–based risk prediction model of pressure injury in the intensive care unit. *Int Wound J*. Published online January 25, 2022. doi:10.1111/IWJ.13764

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

- Lustig M, Schwartz D, Bryant R, Gefen A. A machine learning algorithm for early detection of heel deep tissue injuries based on a daily history of subepidermal moisture measurements. *Int Wound J*. Published online January 12, 2022. doi:10.1111/iwj.13728
- Raju D, Su X, Patrician PA, Loan LA, McCarthy MS. Exploring factors associated with pressure ulcers: A data mining approach. *Int J Nurs Stud*. 2015;52(1):102-111. doi:10.1016/J.IJNURSTU.2014.08.002
- Arksey H, O'Malley L. Scoping studies: towards a methodological framework. https://doi.org/101080/1364557032000119616. 2007;8(1):19-32. doi:10.1080/1364557032000119616
- 14. Clark M, Schols JM, Benati G, et al. Pressure ulcers and nutrition: a new European guideline. *J Wound Care*. 2013;13(7):267-272. doi:10.12968/jowc.2004.13.7.26634
- Rayyan Intelligent Systematic Review. Accessed July 15, 2021. https://www.rayyan.ai/
- Godeiro V, Neto JS, Carvalho B, Santana B, Ferraz J, Gama R. Chronic wound tissue classification using convolutional networks and color space reduction. In: N. P, Z.-H. T, Z. M, J. L, eds. 28th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018. Vol 2018-Septe. IEEE International Workshop on Machine Learning for Signal Processing, MLSP. IEEE Computer Society; 2018:IEEE Signal Processing Society. doi:10.1109/MLSP.2018.8517026
- Hu Z, Melton GB, Moeller ND, et al. Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications. AMIA . Annu Symp proceedings AMIA Symp. 2016;2016:1822-1831. https://pubmed.ncbi.nlm.nih.gov/28269941
- 18. Liu X, Wang C, Li F, Zhao X, Zhu E, Peng Y. A framework of wound segmentation based on deep convolutional networks. In: S. Q, H. L, L. S, L. W, Q. L, M. Z, eds. 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017. Vol 2018-Janua. Proceedings - 2017 10th International

Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017. Institute of Electrical and Electronics Engineers Inc.; 2017:1-7. doi:10.1109/CISP-BMEI.2017.8302184

- Elmogy M, Garcia-Zapirain B, Elmaghraby AS, El-Baz A. An Automated Classification Framework for Pressure Ulcer Tissues Based on 3D Convolutional Neural Network. In: 24th International Conference on Pattern Recognition, ICPR 2018. Vol 2018-Augus. Proceedings - International Conference on Pattern Recognition. Institute of Electrical and Electronics Engineers Inc.; 2018:2356-2361. doi:10.1109/ICPR.2018.8546081
- Kavitha I, Suganthi SS, Ramakrishnan S. Analysis of chronic wound images using factorization based segmentation and machine learning methods. In: 2017 International Conference on Computational Biology and Bioinformatics, ICCBB 2017. ACM International Conference Proceeding Series. Association for Computing Machinery; 2017:74-78. doi:10.1145/3155077.3155092
- 21. Mukherjee R, Manohar DD, Das DK, Achar A, Mitra A, Chakraborty C. Automated tissue classification framework for reproducible chronic wound assessment. *Biomed Res Int*. 2014;2014:851582. doi:10.1155/2014/851582
- Song B, Sacan A. Automated wound identification system based on image segmentation and Artificial Neural Networks. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2012:4 pp. doi:10.1109/BIBM.2012.6392633
- Şevik U, Karakullukçu E, Berber T, et al. Automatic classification of skin burn colour images using texture-based feature extraction. *IET Image Process*.
 2019;13(11):2018-2028. doi:10.1049/iet-ipr.2018.5899
- Gamage C, Wijesinghe I, Perera I. Automatic scoring of diabetic foot ulcers through Deep CNN based feature extraction with low rank matrix factorization. In: 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019.
 Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

36
Page 37 of 165

Bioengineering, BIBE 2019. Institute of Electrical and Electronics Engineers Inc.; 2019:352-356. doi:10.1109/BIBE.2019.00069

- Veredas F, Mesa H, Morente L. Binary tissue classification on wound images with neural networks and bayesian classifiers. *IEEE Trans Med Imaging*. 2010;29(2):410-427. doi:10.1109/TMI.2009.2033595
- 26. Wang L, Pedersen PC, Agu E, Strong D, Tulu B. Boundary determination of foot ulcer images by applying the associative hierarchical random field framework. *J Med Imaging*. 2019;6(2). doi:10.1117/1.JMI.6.2.024002
- Jiao C, Su K, Xie W, Ye Z. Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient. *Burn trauma*. 2019;7:6. doi:10.1186/s41038-018-0137-9
- Abubakar A, Ugail H, Bukar AM. Can machine learning be used to discriminate between burns and pressure ulcer? In: Y. B, R. B, S. K, eds. *Intelligent Systems Conference, IntelliSys 2019*. Vol 1038. Advances in Intelligent Systems and Computing. Springer Verlag; 2020:870-880. doi:10.1007/978-3-030-29513-4_64
- Hsu J-T, Chen Y-W, Ho T-W, et al. Chronic wound assessment and infection detection method. *BMC Med Inform Decis Mak*. 2019;19(1):99. doi:10.1186/s12911-019-0813-0
- Garcia-Zapirain B, Elmogy M, El-Baz A, et al. Classification of pressure ulcer tissues with 3D convolutional neural network. *Med Biol Eng Comput*. 2018;56(12):2245-2258. doi:10.1007/s11517-018-1835-y
- Wannous H, Lucas Y, Treuillet S. Combined machine learning with multi-view modeling for robust wound tissue assessment. In: *5th International Conference on Computer Vision Theory and Applications, VISAPP 2010*. Vol 1. ; 2010:98-104. Accessed July 17, 2021. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956324755&partnerID=40&md5=02df21a5484f9e38e4c40f0e4708a4f2

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

- Zhang J, Zhu E, Guo X, Chen H, Yin J. Chronic Wounds Image Generator Based on Deep Convolutional Generative Adversarial Networks. In: L. L, P. L, K. H, eds. 36th National Conference of Theoretical Computer Science, NCTCS 2018. Vol 882.
 Communications in Computer and Information Science. Springer Verlag; 2018:150-158. doi:10.1007/978-981-13-2712-4_11
- 33. Shenoy VN, Foster E, Aalami L, Majeed B, Aalami O. Deepwound: Automated Postoperative Wound Assessment and Surgical Site Surveillance through Convolutional Neural Networks. In: H. S, D. G, H. W, et al., eds. 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018. Institute of Electrical and Electronics Engineers Inc.; 2019:1017-1021. doi:10.1109/BIBM.2018.8621130
- Alzubaidi L, Fadhel MA, Oleiwi SR, Al-Shamma O, Zhang J. DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network. *Multimed Tools Appl 2019 7921*. 2019;79(21):15655-15677. doi:10.1007/s11042-019-07820-w
- Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH. DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification. *IEEE Trans Emerg Top Comput Intell*. 2018;4(5):728-739. doi:10.1109/TETCI.2018.2866254
- Cui C, Thurnhofer-Hemsi K, Soroushmehr R, et al. Diabetic Wound Segmentation using Convolutional Neural Networks. *Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS*. Published online July 1, 2019:1002-1005. doi:10.1109/EMBC.2019.8856665
- Nejati H, Ghazijahani HA, Abdollahzadeh M, et al. Fine-Grained Wound Tissue Analysis Using Deep Neural Network. *ICASSP, IEEE Int Conf Acoust Speech Signal Process - Proc.* 2018;2018-April:1010-1014. doi:10.1109/ICASSP.2018.8461927
- Goyal M, Reeves ND, Rajbhandari S, Spragg J, Yap MH. Fully convolutional networks for diabetic foot ulcer segmentation. 2017 IEEE Int Conf Syst Man, Cybern SMC 2017. 2017;2017-Janua:618-623. doi:10.1109/SMC.2017.8122675

- Kamath S, Sirazitdinova E, Deserno TM. Machine learning for mobile wound assessment. In: P.-H. C, J. Z, eds. *Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications*. Vol 10579. SPIE; 2018:1057917. doi:10.1117/12.2293704
- Alderden J, Pepper GA, Wilson A, et al. Predicting Pressure Injury in Critical Care Patients: A Machine-Learning Model. *Am J Crit Care*. 2018;27(6):461-468. doi:10.4037/ajcc2018525
- Veredas FJ, Mesa H, Morilla JC, Morente L. Predicting the evolution of pressure ulcers BT - 3rd International Conference on Health Informatics, HEALTHINF 2010, January 20, 2010 - January 23, 2010. In: HEALTHINF 2010 - 3rd International Conference on Health Informatics, Proceedings. Inst. for Syst. and Technol. of Inf. Control and Commun.; 2010:5-12.
- Goyal M, Reeves ND, Rajbhandari S, Ahmad N, Wang C, Yap MH. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques. *Comput Biol Med.* 2020;117:103616. doi:10.1016/j.compbiomed.2020.103616
- Goyal M, Reeves ND, Rajbhandari S, Yap MH. Robust Methods for Real-Time
 Diabetic Foot Ulcer Detection and Localization on Mobile Devices. *IEEE J Biomed Heal Informatics*. 2019;23(4):1730-1741. doi:10.1109/JBHI.2018.2868656
- 44. Pholberdee N, Pathompatai C, Taeprasartsit P. Study of Chronic Wound Image Segmentation: Impact of Tissue Type and Color Data Augmentation. In: W. S, J. M, eds. 15th International Joint Conference on Computer Science and Software Engineering, JCSSE 2018. Proceeding of 2018 15th International Joint Conference on Computer Science and Software Engineering, JCSSE 2018. Institute of Electrical and Electronics Engineers Inc.; 2018. doi:10.1109/JCSSE.2018.8457392
- Chen Y-WW, Hsu J-TT, Hung C-CC, Wu J-MM, Lai F, Kuo S-YY. Surgical Wounds Assessment System for Self-Care. *IEEE Trans Syst Man, Cybern Syst*. 2018;50(12):5076-5091. doi:10.1109/TSMC.2018.2856405

- Cirillo MD, Mirdell R, Sjöberg F, Pham TD. Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks. *J Burn Care Res*. 2019;40(6):857-863. doi:10.1093/jbcr/irz103
- Zahia S, Sierra-Sosa D, Garcia-Zapirain B, Elmaghraby A. Tissue classification and segmentation of pressure injuries using convolutional neural networks. *Comput Methods Programs Biomed*. 2018;159:51-58. doi:10.1016/j.cmpb.2018.02.018
- Veredas FJ, Luque-Baena RM, Martín-Santos FJ, Morilla-Herrera JC, Morente L.
 Wound image evaluation with machine learning. *Neurocomputing*. 2015;164:112-122. doi:10.1016/j.neucom.2014.12.091
- Haque F, Reaz MBI, Chowdhury MEH, Hashim FH, Arsad N, Ali SHM. Diabetic Sensorimotor Polyneuropathy Severity Classification Using Adaptive Neuro Fuzzy Inference System. *IEEE Access*. 2021;9:7618-7631. doi:10.1109/ACCESS.2020.3048742
- CAI J-Y, ZHA M-L, SONG Y-P, CHEN H-L. Predicting the Development of Surgery-Related Pressure Injury Using a Machine Learning Algorithm Model. J Nurs Res. 2021;29(1):e135. doi:10.1097/JNR.00000000000411
- 51. Wang C, Anisuzzaman DM, Williamson V, et al. Fully automatic wound segmentation with deep convolutional neural networks. *Sci Reports 2020 101*. 2020;10(1):1-9. doi:10.1038/s41598-020-78799-w
- Carlos Padierna L, Fabián Amador-Medina L, Olivia Murillo-Ortiz B, Villaseñor-Mora C. Classification method of peripheral arterial disease in patients with type 2 diabetes mellitus by infrared thermography and machine learning. *Infrared Phys Technol.* 2020;111:103531. doi:10.1016/J.INFRARED.2020.103531
- Caggiari S, Worsley PR, Payan Y, Bucki M, Bader DL. Biomechanical monitoring and machine learning for the detection of lying postures. *Clin Biomech*. 2020;80:105181. doi:10.1016/J.CLINBIOMECH.2020.105181

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only

- 54. Kim RB, Gryak J, Mishra A, et al. Utilization of smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers. *Comput Biol Med*. 2020;126:104042. doi:10.1016/J.COMPBIOMED.2020.104042
- Nguyen H, Agu E, Tulu B, et al. Machine learning models for synthesizing actionable care decisions on lower extremity wounds. *Smart Heal*. 2020;18:100139. doi:10.1016/J.SMHL.2020.100139
- Choi BK, Kim MS, Kim SH. Risk prediction models for the development of oralmucosal pressure injuries in intubated patients in intensive care units: A prospective observational study. *J Tissue Viability*. 2020;29(4):252-257. doi:10.1016/J.JTV.2020.06.002
- 57. Abubakar A, Ajuji M, Yahya IU. Comparison of Deep Transfer Learning Techniques in Human Skin Burns Discrimination. *Appl Syst Innov 2020, Vol 3, Page 20*.
 2020;3(2):20. doi:10.3390/ASI3020020
- Zahia S, Garcia-Zapirain B, Elmaghraby A. Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning. Sensors 2020, Vol 20, Page 2933. 2020;20(10):2933. doi:10.3390/S20102933
- 59. Miller MW, Emeny RT, Snide JA, Freed GL. Patient-specific factors associated with pressure injuries revealed by electronic health record analyses. *Health Informatics J*. 2019;26(1):1460458219832053-1460458219832053. doi:10.1177/1460458219832053
- Amin J, Sharif M, Anjum MA, Khan HU, Malik MSA, Kadry S. An Integrated Design for Classification and Localization of Diabetic Foot Ulcer based on CNN and YOLOv2-DFU Models. *IEEE Access*. Published online 2020. doi:10.1109/ACCESS.2020.3045732
- Silva RHL e., Machado AMC. Automatic measurement of pressure ulcers using Support Vector Machines and GrabCut. *Comput Methods Programs Biomed*. 2021;200:105867. doi:10.1016/J.CMPB.2020.105867

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

- 62. Mansilla HR, Solano GA, Lapitan MCM. DeSSIde: A Clinical Decision-Support Tool for Surgical Site Infection Prediction. 2020 Int Conf Artif Intell Inf Commun ICAIIC 2020. Published online February 1, 2020:367-372. doi:10.1109/ICAIIC48513.2020.9064981
- 63. Bouallal D, Bougrine A, Douzi H, et al. Segmentation of plantar foot thermal images: Application to diabetic foot diagnosis. Int Conf Syst Signals, Image Process. 2020;2020-July:116-121. doi:10.1109/IWSSIP48289.2020.9145167
- 64. Shi J, Liu S, Pruitt LCC, et al. Using Natural Language Processing to improve EHR Structured Data-based Surgical Site Infection Surveillance. AMIA Annu Symp Proc. 2019;2019:794. Accessed July 17, 2021. /pmc/articles/PMC7153106/
- 65. Mombini H, Tulu B, Strong D, et al. Design of a Machine Learning System for Prediction of Chronic Wound Management Decisions. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2020;12388 LNCS:15-27. doi:10.1007/978-3-030-64823-7_2
- Chauhan J, Goyal P. Deep Learning based fully automatic efficient Burn Severity 66. Estimators for better Burn Diagnosis. Proc Int Jt Conf Neural Networks. Published online July 1, 2020. doi:10.1109/IJCNN48605.2020.9206646
- 67. Khan FA, Butt AUR, Asif M, et al. Computer-aided diagnosis for burnt skin images using deep convolutional neural network. Multimed Tools Appl 2020 7945. 2020;79(45):34545-34568. doi:10.1007/S11042-020-08768-Y
- Ladios-Martin M, Fernández-de-Maya J, Ballesta-López F-J, Belso-Garzas A, Mas-68. Asencio M, Cabañero-Martínez MJ. Predictive Modeling of Pressure Injury Risk in Patients Admitted to an Intensive Care Unit. Am J Crit Care. 2020;29(4):e70-e80. doi:10.4037/AJCC2020237
- 69. Wu XX, Huang W, Wu XX, Wu S, Huang J. Classification of thermal image of clinical burn based on incremental reinforcement learning. Neural Comput Appl 2021. Published online March 18, 2021:1-14. doi:10.1007/S00521-021-05772-7

- Schäfer Z, Mathisen A, Svendsen K, Engberg S, Rolighed Thomsen T, Kirketerp-Møller K. Toward Machine-Learning-Based Decision Support in Diabetes Care: A Risk Stratification Study on Diabetic Foot Ulcer and Amputation. *Front Med*. 2021;7(February):1-13. doi:10.3389/fmed.2020.601602
- Veredas FJ, Mesa H, Morilla JC, Morente L, Veredas FJFJ, Mesa HH, Morilla JCJC ML.
 Predicting the evolution of pressure ulcers. In: *3rd International Conference on Health Informatics, HEALTHINF 2010, January 20, 2010 - January 23, 2010*.
 HEALTHINF 2010 - 3rd International Conference on Health Informatics, Proceedings.
 Inst. for Syst. and Technol. of Inf. Control and Commun.; 2010:5-12.
- Wu J-M, Tsai C-J, Ho T-W, Lai F, Tai H-C, Lin M-T. A Unified Framework for Automatic Detection of Wound Infection with Artificial Intelligence. *Appl Sci 2020, Vol 10, Page* 5353. 2020;10(15):5353. doi:10.3390/APP10155353
- Song W, Kang M-J, Zhang L, et al. Predicting pressure injury using nursing assessment phenotypes and machine learning methods. J Am Med Informatics Assoc. 2021;28(4):759-765. doi:10.1093/jamia/ocaa336
- 74. Badea M-SM-SM-SS, Vertan C, Florea C, Florea L, Badoiu S. Automatic burn area identification in color images. In: 11th IEEE International Conference on Communications, COMM 2016. Vol 2016-Augus. IEEE International Conference on Communications. Institute of Electrical and Electronics Engineers Inc.; 2016:65-68. doi:10.1109/ICComm.2016.7528325
- Goodwin TR, Demner-Fushman D. A customizable deep learning model for nosocomial risk prediction from critical care notes with indirect supervision. J Am Med Inform Assoc. Published online February 17, 2020:ocaa004. doi:10.1093/jamia/ocaa004
- Fletcher RR, Olubeko O, Sonthalia H, et al. Application of Machine Learning to Prediction of Surgical Site Infection. *Conf Proc*. *Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf*. 2019;2019:2234-2237. doi:10.1109/EMBC.2019.8857942

- 77. Jung K, Covington S, Sen CK, et al. Rapid identification of slow healing wounds. *Wound Repair Regen*. 2016;24(1):181-188. doi:10.1111/wrr.12384
- 78. Chun X, Pan L, Lin Y, et al. A model for predicting 7-day pressure injury outcomes in paediatric patients: A machine learning approach. J Adv Nurs. 2021;77(3):1304-1314. doi:10.1111/JAN.14680
- 79. Martínez-Jiménez MA, Ramirez-GarciaLuna JL, Kolosovas-Machuca ES, Drager J, González FJ. Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: Prospective cohort study. *PLoS One*. 2018;13(11):e0206477-e0206477. doi:10.1371/journal.pone.0206477
- 80. Ke C, Jin Y, Evans H, et al. Prognostics of surgical site infections using dynamic health data. *J Biomed Inform*. 2017;65:22-33. doi:10.1016/j.jbi.2016.10.021
- Rowland R, Ponticorvo A, Baldado M, et al. Burn wound classification model using spatial frequency-domain imaging and machine learning. *J Biomed Opt.* 2019;24(5). doi:10.1117/1.JBO.24.5.056007
- Rangaraju LP, Kunapuli G, Every D, Ayala OD, Ganapathy P, Mahadevan-Jansen A. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin. *Burns*. 2019;45(3):659-670. doi:10.1016/j.burns.2018.10.007
- Squiers JJ, Li W, King DR, et al. Multispectral imaging burn wound tissue classification system: A comparison of test accuracies between several common machine learning algorithms. In: G.D. T, S.G. A, eds. *Medical Imaging 2016: Computer-Aided Diagnosis*. Vol 9785. Progress in Biomedical Optics and Imaging Proceedings of SPIE. SPIE; 2016:Bruker; imXPAD; Modus Medical Devices Inc.; Poco G. doi:10.1117/12.2214754
- Wang P, Li P, Yin M, Li Y, Wu J. Burn wound assessment system using near-infrared hyperspectral imaging and deep transfer features. *Infrared Phys Technol*. 2020;111:103558. doi:10.1016/J.INFRARED.2020.103558

44

- Alinia P, Samadani A, Milosevic M, Ghasemzadeh H, Parvaneh S. Pervasive Lying
 Posture Tracking. *Sensors 2020, Vol 20, Page 5953*. 2020;20(20):5953.
 doi:10.3390/S20205953
- Matar G, Lina JMJ-M, Kaddoum G. Artificial neural network for in-bed posture classification using bed-sheet pressure sensors. *IEEE J Biomed Heal Informatics*. 2020;24(1):101-110. doi:10.1109/JBHI.2019.2899070
- Wong G, Gabison S, Dolatabadi E, et al. Toward mitigating pressure injuries: Detecting patient orientation from vertical bed reaction forces: *https://doi.org/101177/2055668320912168*. 2020;7:205566832091216. doi:10.1177/2055668320912168
- Calin MA, Parasca S V., Manea D, Savastru R. Hyperspectral Imaging Combined with Machine Learning Classifiers for Diabetic Leg Ulcer Assessment – A Case Study. In: Y. Z, B.M. W, K. C, eds. 23rd Conference on Medical Image Understanding and Analysis, MIUA 2019. Vol 1065 CCIS. Communications in Computer and Information Science. Springer; 2020:74-85. doi:10.1007/978-3-030-39343-4_7
- ROSS GJUS, ROMANO N, RICHARDSON E, ROSS GJUS, ROMANO N, RICHARDSON E.
 METHOD AND SYSTEM FOR ASSESSING BURN WOUND DEPTH. MED-COMPLIANCE IQ INC, ed. 2019;16058304(20190050991).
- 90. Lustig M, Gefen A. A machine learning algorithm for early detection of heel deep tissue injuries based on a daily history of subepidermal moisture measurements. Int Wound J 2021. Published online 2021. doi:10.1111/iwj.13728
- 91. Moon M, Lee S-K. Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities. *Healthc Inform Res.* 2017;23(1):43-52. doi:10.4258/hir.2017.23.1.43
- 92. Chan KS, Liang S, Cho YT, et al. Clinical validation of a machine-learning-based handheld 3-dimensional infrared wound imaging device in venous leg ulcers. *Int Wound J.* 2022;19(2):436-446. doi:10.1111/IWJ.13644

- Badrinarayanan V, Handa A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling. Published online May 27, 2015. Accessed July 20, 2021. https://arxiv.org/abs/1505.07293v1
- 94. Liang Z, Zhang G, Huang JX, Hu QV. Deep learning for healthcare decision making with EMRs. *Proc - 2014 IEEE Int Conf Bioinforma Biomed IEEE BIBM 2014*. Published online December 29, 2014:556-559. doi:10.1109/BIBM.2014.6999219
- Yang Z, Yabansu YC, Al-Bahrani R, et al. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. *Comput Mater Sci.* 2018;151:278-287. doi:10.1016/J.COMMATSCI.2018.05.014
- 96. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Summits Transl Sci Proc. 2020;2020:191. Accessed March 6, 2022. /pmc/articles/PMC7233077/
- Lin WC, Chen JS, Chiang MF, Hribar MR. Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology. *Transl Vis Sci Technol*. 2020;9(2):13-13. doi:10.1167/TVST.9.2.13
- 98. Kim E, Rubinstein SM, Nead KT, Wojcieszynski AP, Gabriel PE, Warner JL. The Evolving Use of Electronic Health Records (EHR) for Research. *Semin Radiat Oncol*. 2019;29(4):354-361. doi:10.1016/J.SEMRADONC.2019.05.010
- 99. Rowland R, Ponticorvo A, Baldado M, et al. A simple burn wound severity assessment classifier based on spatial frequency domain imaging (SFDI) and machine learning BT Photonics in Dermatology and Plastic Surgery 2019, February 2, 2019 February 3, 2019. In: Vol 10851. Progress in Biomedical Optics and Imaging Proceedings of SPIE. SPIE; 2019:The Society of Photo-Optical Instrumentation Engin. doi:10.1117/12.2510670
- 100. Padula W V, Pronovost PJ, Makic MBF, et al. Value of hospital resources for effective pressure injury prevention: a cost-effectiveness analysis. *BMJ Qual Saf*.
 2019;28(2):132-141. doi:10.1136/bmjqs-2017-007505

Page 47 of 165

- F J, Y J, H Z, et al. Artificial intelligence in healthcare: past, present and future. *Stroke Vasc Neurol*. 2017;2(4):230-243. doi:10.1136/SVN-2017-000101
- 102. Howard AG, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

48

Table 1: Glossary of key technical terms in the field of artificial intelligence (AI) andmachine learning (ML), and related image processing techniques relevant to wound careresearch and technology development.

Term	Definition
Area under the curve (AUC)	The area under the receiver operating curve ⁸⁸
Cohen's Kappa coefficient	An expression of the amount of agreement in excess of that which would be expected by random chance ⁹⁸
Convolutional neural network (CNN)	A neural network in which the same operation is performed on different parts of the image. This forces the extracted features in different parts of the image to be computed by the same functions ⁹⁶
Deep learning (DL)	A way of extracting higher-level features from the input values by representations that are expressed in terms of other, simpler representations. This method enables the computer to build complex concepts out of simpler concepts ⁹⁰
Deep neural network (DNN)	A neural network with more than two layers, using complex mathematical modeling to process data ⁹¹
Dice similarity coefficient (DSC)	Also referred as the "association index", a statistic that indicates the level of association between two given groups compared to the extent of the association between them that is expected merely by chance ⁸⁹

Page 49 of 165

Term	49 Definition
F1-score	A statistic which relies on the associated precision and recall of the prediction model ⁹⁹
K-nearest neighbor: (KNN)	An on-parametric algorithm used for segmentation and classification. In this method, a new point is classified by its k closest points in the training sample ⁹⁶
Logistic regression (An ML model for binary classification. Logit transformation is used to obtain a probability of 0 or 1 (such as true/false, or positive/negative). A sigmoid function is most commonly used for the logit transformation ⁹³
Multi-layered perceptron (MLP)	A mathematical function mapping a set of input values to output values ⁹⁰
Natural language processing (NLP)	A subfield of linguistics and computer science that utilizes artificial intelligence to process, organize, and extract embedded information from texts ⁹⁷
Optical coherence tomography (OCT)	Noninvasive cross-sectional imaging in biological systems, using low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures ⁹⁵

Term	50 Definition
Raman spectroscopy (RS)	A spectroscopy technique that measures vibrations and rotational energies to analyze intermolecular functional groups and corresponding molecular structures. This method can provide the rapid molecular characterization of tissues <i>in vivo</i> or <i>in vitro</i> ⁹⁴
Random forest (RF)	A combination of tree predictors such that each tree depends on a set of randomly sampled vectors ⁸⁹
Receiver operating curve (ROC)	A plot that depicts the trade-off between the sensitivity and specificity across a series of cut-offs points when the diagnostic test is continuous or on an ordinal scale ⁸⁷
Spatial frequency domain imaging (SFDI)	A non-contact imaging method for measuring the absorption and reduced scattering coefficients of biological tissues on a pixel-by-pixel basis ⁹⁵
Support vector machine (SVM)	A supervised ML algorithm that sorts data into two categories, by segregating the two classes in the best possible way (by a hyperplane or a line) ⁹²
VGG	A deep convolutional neural network of 16-19 convolutional and fully-connected layers, with small convolution filters (3×3) and large depth. This architecture is most commonly used for

				51
	Term		Definition	
Advances in Wound Care Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.	Term	computer vision ¹⁰⁰	Definition	51

Table 2: Overview of the characteristics of studies that aimed to develop a clinical visual assessment of wounds using AI methodologies for wound segmentation and/or identification or for obtaining quantitative information about the wound

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	Limitations
Liu et al., 2018 ₃₄	To develop a DNN that locate and segment wound areas automatic ally	950 images	Data augmentati on and CNN	Wound assessment	 WoundS eg reached 98.18 % accuracy , highest from all other evaluate d approac hes (from both classical image analysis and DL fields) WoundS eg can be consider ed a 	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

52

						53
Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	Limitations
					promisin g approac h to replace empirical and imprecis e manual measure ment for wound areas which can benefit both patients and clinicians	
Kavith a et al., 2017 6	To develop an efficient approach for CW	59 wound images from Medetec database	MLP, SVM, RF and NB	Wound assessment	Binary classificati on results showed highest accuracy	 Small sample size More advanced ML classifiers

						54
Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	Limitations
	assessmen t using wound photograp hs To propose a				for MLP (83.0508 %)	should be considered
Song et al.,201 2 ⁶⁸	method for image segmentat ion and identificati on of DFU wound images using ML approach	92 wound digital color images	MLP and the Radial Basis Function (RBF)	Wound assessment	MLP is less accurate and takes more time to train relative to the RBF.	Small sample size
Badea et al., 2016 66	To develop a discrimina tion tool between healthy and burn wounds using CNN	611 images in hospital conditions	Binary classificatio n task (skin/burn) using CNN	Wound assessment	The proposed approach achieves an overall performan ce comparabl e to the	 Very coarse marking of burn area by specialist The classifier is not

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

54

Page 55 of 165

						55
Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	that will support burn				literature- reported average	optimized and no special
	surgeons in their clinical decision making				performan ce of a specialist surgeon	calibration was applied to image data; they report overfitting of the model
Sevik et al., 2019	To create a system that can distinguis h skin and burn areas on burn images taken by technician s in emergenc y services	105 images in hospital conditions	Semantic segmentatio n using SegNet architecture (DL)	Wound assessment	 SegNet architect ure trained with the 64 × 64 pixel- sized blocks sampled from the training datasets manage 	

d to

		Setting	AI			56
Refere nce	Aim	and sample		Model type	Outcome	Limitations
Gama ge et al., 2019	To propose CNN architectu re for classificati on of	2400 images collected in diabetic clinic	1) Fine 1) Fine tuning of pre-trained CNN models 2) Feature extraction based on CNN models	Classificatio	obtain an F- score of 0.805 • SegNet architect ure is superior to most of the existing methods in healthy versus burned skin classifica tion • Fine- tuning approac h gave low accuracy and	Small sample size with low quality

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	57 Limitations
	stage of DFU				more computa tional time Pre- trained CNN models for feature extractio n that fed into classifier s gave higher accuracy	
Vered as et al., 2010 ₆₃	To design a computati onal approach for tissue recognitio n in pressure ulcer/injur	113 color photograp hs of took by clinicians	Hybrid approach based on four-stage- cascade binary classificatio n system consisting of Bayesian	Wound assessment	Their binary cascade approach gives high global performan ce rates (average sensitivity	Manual segmentation n and classification of pressure ulcer/injury tissues is an inaccurate procedure, which yields

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	58 Limitations
	y images		committee machines composed of MLP		 =78.7%, specificity = 94.7%, and accuracy = 91.5%) and shows the highest average sensitivity score (=86.3%) when detecting necrotic tissue in the wound 	high inter- and intra- observer variability
Wang et al., 2019 4	To propose a wound detection system to determine the boundarie	Images of moulage wounds placed on an artificial foot and	Associative hierarchical random field (AHRF) framework to wound area determinati	Wound assessment	Compared to other conditiona I random field based ML strategies, their new	 Small sample size of real wounds Computati onally expensive DL is likely

		Setting	AI			59
Refere nce	Aim	and sample		Model type	Outcome	Limitations
liao et al., 2019	s of foot ulcers To propose a novel method employing a state-of- the-art DL technique to segment BW in	images of real DFTs in hospital conditions 1150 burn images collected in hospital conditions	on task Object detection and segmentatio n using a Mask R-CNN	Wound assessment	method provides a determina determina ion accuracy with the best global performan ce rates (specificity ispecificity : >95% and sensitivity: >95% and sensitivity: backbon e hloufFA 87 backbon e hackbon e highest accuracy 84.51% in 150 pictures	to outperfor m AHRF when many wound images is available

		Setting	AI			6
Refere nce	Aim	and		Model type	Outcome	Limitations
	images				• The	
	inidges				R101FA	
					backbon	
					e	
					network	
					gains the	
					best	
					segment	
					ation	
					effect in	
					superfici	
					al,	
					superfici	
					al	
					thicknes	
					s, and	
					deep	
					partial	
					thicknes	
					S	
					• The	
					R101A	
					backbon	
					е	
					network	
					gains the	
					best	

						6
Refere	A :	Setting	Al		Outcome	Limitations
nce	Aim	and		Model type	Outcome	Limitations
		sample	У			
					segment	
					ation	
					effect in	
					full-	
					thicknes	
					s burn	
					 Contribu 	
					tes to	
					the	
					calculati	
					on of	
					total	
					body	
					surface	
					area	
					burned	
					compare	
					d to	
					tradition	
					al	
					methods	
Abuba	То	•29	Pre-trained			
kar et	investigat	pressur	CNN for		Accuracy	
al.,	e if the	е	features	Wound	of up to	
2020	use of an	ulcer/inj	extraction	assessment	99.9%	
16	ML	ury	followed by		obtained	
	approach	images	a SVM			

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	62 Limitations
Zhang et al., 2018 20	that can aid in accurately discrimina ting between burns and pressure ulcers/inju ries To ropose CW image generator for more accurate wound segmentat ion and recognitio n	obtaine d via search on the internet • 31 burn images acquire d in hospital conditio ns 450 images from the dataset built in article [Liu et al., 2018 ³⁴].	classificatio n algorithm lmage generator based on DCGANs ⁸⁸	Wound assessment	Addition of newly generated CW images to the training set lead to higher segmentat ion accuracy	Basic discriminato r network

62

Refere		Setting	AI			63
nce	Aim	and sample	methodolog Y	Model type	Outcome	Limitations
Ranga raju et al., 2019 78	 To assess the combine d power of Raman spectros copy (RS) and optical coheren ce tomogra phy (OCT) modaliti es to classify burn wounds To impleme nt a ML algorith m to classify 	RS and OCT images of burns	Supervised ML with logistic regression, SVM and RF classifiers	Wound assessment	The results obtained using ML- based classifiers show value in combining RS-OCT (average AUC- ROC=0.94) , although RS (average AUC- ROC=0.94) by itself provides by itself provides highly accurate classificati on results compared to OCT alone	 Ex-vivo study Weak nature of inelastic Raman scattering makes it a point-and- shoot method

		Cotting	A 1			64
Refere	Aim	Setting and	AI methodolog	Model type	Outcomo	Limitations
nce		sample	y	would type	outcome	Linitations
		sample	3			
	BW				(average	
	degree/t				AUC-	
	уре				ROC=0.83)	
	dependi					
	ng on					
	collectiv					
	е					
	features					
	acquired					
	and or					
	derived					
	from RS					
	and OCT					
	data					
	То	• 36 RGB			• The	
	develop	colored			classifica	• Small
	an	images	3D CNN for		tion	sample size
Garcia	automatic	capture	ROI		accuracy	• 2D wound
	segmentat	d by	extraction		and	assessmen
Zapirai	ion	digital	followed by	Wound	robustne	t; the
n et	system to	camera	another 3D	assessment	ss were	depth of
əl.,	detect and	in	CNN for		evaluate	the
2018	segment	hospital	tissue		d using	pressure
18	pressure	and	segmentatio		DSC,	ulcer/injur
	ulcer/injur	nursing	n		PAD,	y is not
	y RGB-	homes			ROC	considered
	colored	conditio			curve	

		Catting	A 1			65
Refere	Aim	Setting and	Al	Model type	Outcomo	Limitations
nce	AIII	sample	y	would type	Outcome	Linitations
	images	ns • 157 images from Medete c databas			and AUC • The obtained prelimin ary DSC of 92%, PAD of	
	То	e			13%, and AUC of 95% are promisin g	
Sheno y et al., 2019	I O develop a new ML based approach using CNNs to analyze an image of a wound and document its wellness	1,335 smartpho ne wound images acquired in hospital conditions	CNN - adjusted VGG-16, pre-trained using ImageNet	Wound assessment	Model achieves ROC, AUC scores, sensitivity, specificity, and F1 scores superior to prior work in this area	Dataset size is small and imbalanced

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

		Setting	AI			6
Refere nce	Aim	and sample	methodolog Y	Model type	Outcome	Limitations
Alzuba idi et al., 2019 22	To propose a novel CNN model for automate d classificati on of DFU	754 images acquired in hospital conditions using smartpho nes	CNN	Classificatio n	The proposed DFU_QUT Net network outperfor med the state-of- the-art CNN networks by achieving the F1- score of 94.5%.	
Goyal et al., 2018 ²⁴	To propose a novel CNN model for automate d classificati on of DFU	 292 image of patients DFU and 105 images of healthy skin acquire 	CNN	Classificatio n	Using 10- fold cross validation, DFUNet achieved an AUC score of 0.961	

						67
Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
nee		sample	У			
		d in				
		hospital				
		conditio				
		ns using				
		digital				
		camera				
		 Another 				
		test				
		case				
		capture				
		d by a				
		smartph				
		one				
		camera				
		included				
		20				
		abnorm				
		al skin				
		patches				
		and 32				
		normal				
		skin				
		patches				
Cui et	То		Wound		U-Net	
al.,	propose a	445	segmentatio	Wound	architectu	Small
2019	DL based	images	n using CNN	assessment	re is more	sample size
25	method		č		computati	

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type		Limitations
	for accurate segmentat ion of wound regions				onally efficient and accurate for segmentat ion than patch- based	
Goyal et al., 2017 27	To develop DL approache s to train various fully convolutio nal networks (FCNs) that can automatic ally detect and segment the DFU	600 images of DFU and 105 healthy foot images acquired using a digital camera in hospital conditions	FCN trained by transfer learning to automaticall y segment the ulcer and surrounding skin	Wound assessment	CNN The proposed two-tier transfer learning FCN models achieve a DSC of 0.794 (±0.104) for ulcer region, 0.851 (±0.148) for surroundi	Small sample size

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

68

Page 69 of 165

Refere		Setting	AI			
nce	Aim	and sample	methodolog y	Model type	Outcome	Limitations
	and surroundi ng skin area with a high degree of accuracy To identify	• Hypersp	Four		ng skin region, and 0.899 (±0.072) for the combinati on of both regions • SVM	
Calin et al., 2020 ⁸⁴	a suitable classificati on method that could differentia te as accurately as possible between normal and pathologic al biological tissues in a	ectral images acquire d from patient with DFU • Training set of 9904 pixels for each classifie r. Rest of the pixels were used for	supervised ML classifiers were compared: minimum distance technique (MD), spectral angle mapper (SAM), spectral information divergence (SID) and	Wound assessment	approac h has outperfo rmed the MD, SAM, and SID approac hes • The overall accuracy and Kappa coefficie nt for SVM were	Only one case examined and low number of training pixels (mainly in the area strictly related to the ulcer)

Refere		Setting	AI			70
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	hyperspec	testing	SVM		95.54%	
	tral image				and	
	with				0.9404,	
	applicatio				whereas	
	ns to the				for the	
	diabetic				other	
	foot				three	
					approac	
					hes (MD,	
					SAM,	
					and SID)	
					these	
					statistica	
					I	
					paramet	
					ers were	
					69.43%/	
					0.6031,	
					79.77%/	
					0.7349	
					and	
					72.41%/	
					0.6464,	
					respectiv	
					ely	

Refere	Aim	Setting and	AI methodolog	Model type	Outcome	Limitations
nce		sample	У			
Refere nce Kamat h et al., 2018 28	To develop a system for mobile wound capture using mobile devices such as smartpho	and	methodolog	Model type	 RF classifier was found to produce superior results Necrotic, sloughy, and granular tissues are classified with 89%, 39%, and 44% 	Limitations
	smartpho nes				44% similarity (ratio of correctly classified	
					pixels to the total number of masked	

Refere		Setting	AI			72
nce	Aim	and sample	methodolog Y	Model type	Outcome	Limitations
					pixels in	
					the	
					ground	
					truth	
					image),	
					respectiv	
					ely,	
					using RF	
					classifier	
					• The	
					trained	
					classifier	
					performs	
					fast	
					enough	
					to be	
					impleme	
					nted on	
					the	
					mobile	
					device	
Squier s et	То	Multispec	8 different		LDA had	
	compare	tral	ML		the	
l.,	different	imaging	algorithms	Wound	highest	
2016	common	data of	including: K-	assessment	test	
79	ML	BW	nearest		accuracy	
	algorithms	acquired	neighbors		(70.5%)	
						73
-----------	-------------	-------------	----------------------	------------	------------	-------------
Refere		Setting	AI		_	
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	and	from	(KNN), DT,			
	determine	animal	linear			
	which is	model	discriminant			
	capable of		analysis			
	classifying		(LDA) and			
	burn-		variations of			
	injured		these			
	tissue					
	with the					
	highest					
	accuracy					
	• To				The model	
	design				achieved a	
	DL				mean	
	methods	1775			average	
	for real-	images			precision	
	time	with			of 91.8%,	
Goyal	DFU	acquired	R-CNN using		the speed	
et al.,	localizati	in hospital	two-tier	Wound	of 48 ms	
2019 2	on	conditions	transfer learning	assessment	for	
	• To	using	learning		inferencin	
	evaluate	digital			g a single	
	the	camera			image and	
	perform				with a	
	ance of				model size	
	the				of 57.2	
	models					

Refere nce	Aim	and sample	methodolog Y	Model type	Outcome	Limitations
Chen et al., 2018 35	on edge device hardwar e e To propose a surgical wound assessmen t system for self-	131 wound images acquired using different smartpho	KNN and RF	Wound assessment	MB More than 90% state assessmen t results are correct and more than 91% symptom assessmen	 Some symptoms are identified incorrectly due to similarity Training
Elmog	care To develop	nes			t results consistent with the actual diagnosis The system	data is not generalize d enough
y et al. <i>,</i> 2018 45	an automatic segmentat ion system to detect and	193 wound RGB images	CNN	Wound assessment	achieved an average AUC equal to 95%, DSC	Small sample size

		Setting	AI			75
Refere	Aim	and	methodolog	Model type	Outcome	Limitations
nce		sample	y			
	segment				equals to	
	pressure				92%, and	
	ulcer/injur				PAD	
	y RGB-				equals to	
	colored				10%	
	images					
	• To				The	
	present	Train			system	
	CNN	dataset -			achieved	
	which	82 PI			competitiv	
	employs	infrared			е	
	in the PI	thermal			capability	
	thermal	images			in the	
	image	and 82			train and	
	classifica	normal		Wound	test	
Wang	tion at	infrared		assessment	datasets,	small sample
et al.,	first time	thermal	CNN	and	and	size
2021 ¹	• To attain	images,		classificatio	comparing	
	an	Test		n	with the	
	element	dataset -			SVM and	
	ary and	82			RF, the	
	reliable	infrared			CNN	
	CNN	thermal			model	
	model	images of			performs	
	with a	1 day			better	
	small PI	before PI			showing	
	image				higher	

Refere nce	Aim	Setting and sample	Al methodolog Y	Model type	Outcome	Limitations
Haque et al., 2021 39	 dataset dataset an intellige nt DSPN severity classifier using Adaptive Neuro Fuzzy Inferenc e System (ANFIS) 	MNSI dataset of 1,375 patients from 29 different medical centers (total of 10180 samples after removing blank	y Adaptive Neuro Fuzzy Inference System (ANFIS)	Wound assessment	AUC, sensitivity, specificity and accuracy scores • The ANFIS model better perform ance in compari son to differen t ML models • Extracte d EMG features	
	entr using and both Secc MNSI Wariables data and	entries) and a second MNSI dataset			were used in the propose	
		including			d DSPN classifie	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

	Calling	A1			77
Refere Aim Ince	Setting and		Model type	Outcome	Limitations
Aim	and sample 132 cases 132 cases 132 cases 1,109 foot ulcer images taken from 889 patients during patients during multiple clinical visits. The raw		Model type	Outcomer, and itexhibitspromisingperformance inDSPNseveritystratificationThismethodhasdemonstrated itseffectiveness andmobilityin thefield ofimagesegmentationdue to	Limitations

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Refere		Setting	AI			78
ice	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	from	camera			architect	
	natural	and iPad			ure	
	images	Pro under			consistin	
		uncontroll			g of	
		ed			depth-	
		illuminati			wise	
		on			separabl	
		conditions			е	
		, with			convoluti	
		various			onal	
		backgroun			layers	
		ds			• This	
					method	
					is	
					efficient	
					and	
					lightweig	
					ht and	
					could be	
					applied	
					to	
					mobile	
					devices	
					with less	
					memory	
					and	
					limited	

		Catting	A 1			79
Refere	Aim	Setting and	AI methodolog	Model type	Outcome	Limitations
nce	A	sample	y	would type	outcome	Linnations
Padier na et al., 2020 42	To present a non- invasive methodol ogy of PAD characteri zation	Infrared Thermogr aphy (IRT) from two groups of Mexican participan ts, one includes twenty- three diabetic patients, and the control group has twenty non- diabetic	SVM	Wound assessment	computa tional power The average performan ce of the classificati on model reached 92.64% of accuracy, 91.80% of sensitivity, and specificity of 93.59%	Foot positions that make the measureme nts by the infrared camera difficult
Nguye n et al., 2020	To explore machine learning classifiers	205 wound images	Decision Tree, SVM, Multi-layer Perceptron,	Classificatio n	SVM classifier achieved F-score of	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

						80
Refere	Aim	Setting	Al		0	Limitations
nce	AIM	and sample	y	Model type	Outcome	Limitations
16	generate actionable wound care decisions about four chronic wound types		Forest, XGBoost		only visual features, XGBoost achieved 81% accuracy using visual and textual features	
Abuba kar et al., 2020 48	To classify skin burn images and other skin injuries using transfer learning concept	300 burn images and 250 bruised and pressure ulcer wound images, which then pre- processed creating	Deep neural networks for feature extraction followed by a SVM classificatio n algorithm	Classificatio n	Accuracy of approxima tely 99.9%	
Bouall al et al.,	To suggest a user- friendly	394 thermal images	U-Net	Wound assessment	 The multim odal 	

		Setting	AI			٤
Refere	Aim	and		Model type	Outcome	Limitations
nce		sample	y S			
2020	and	and their			approa	
54	mobile	correspon			ch	
	protocol	ding RGB			perfor	
	(acquisitio	images of			ms	
	n, transfer	122 type II			better	
	and	diabetic			than	
	processing	patients,			the	
) for	the			metho	
	thermal	images			d based	
	images of	have a			only on	
	the	resolution			the	
	plantar	of			therma	
	foot	160×120			l image	
		pixels and			• The	
		the			averag	
		spectral			е	
		range of			temper	
		the			ature	
		thermal			of the	
		sensors is			plantar	
		8–14µm			surface	
					of the	
					foot is	
					higher	
					in the	
					mediu	

m-risk

						82
Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
					group	
					than in	
					the	
					low-	
					risk	
					group	
	Aims to					
	investigat					
	e the					
	effectiven					
	ess of					
	integratin	Clinical	Logistic		RF model	The current
	g natural	records of	regression,		reached	NLP system
	language	5,795	support		0.58	does not
Shi et	processing	patients,	vector		sensitivity,	discriminate
al.,	(NLP)	among	machines	Wound	0.97	the infection
2020	outputs	which 291	(SVM), and	assessment	specificity,	status at the
5	with	patients	random		0.54 PPV,	time of
	structured	were	forest (RF)		0.98 NPV,	surgery or
	EHR data	labeled as	integrated		and 0.52	later in the
	to build	SSI	with NLP		F-0.5	postoperativ
	machine	positive			score	e course
	learning					
	models					
	for SSI					
	identificati					
	on using					

Page 83 of 165

	Setting	AI			
Refere Aim	and	methodolog	Model type	Outcome	Limitations
nce	sample	y y			
real-world clinical data data To develop a new labeled dataset of burn images dataset of burn images al. propose a and to propose a al. propose a al. based and to propose a and to based and to propose a and to propose a and to propose a and to propose a and to propose a and to propose a	sample Burn- images (BI) dataset of 432 images was prepared by using semi- automate d scripts on the Google search engine, with the average	y Convolution al Neural Network (CNN)	Wound assessment	ResNet50 pipeline achieved accuracy of 91.53%, precision of 0.881, recall of 0.866 and F1-score of 0.873	Limited image dataset

		Catting	AI			84
Refere	A :	Setting			Outrouve	1
ice	Aim	and	-	Model type	Outcome	Limitations
		sample	У			
		Poor				
		quality				
		and				
		duplicate				
		images				
		were				
		excluded.				
		Additional				
		63 burn				
		images,				
		average				
		resolution				
		of				
		1254×836				
		pixels,				
		were				
		procured				
		form				
		iStock for				
		model				
		evaluation				
	То	450	Deep	Wound	The	The
(han	segment	images of	Convolution	assessment	proposed	proposed
t al.,	burn	all the	al Neural	and	method	technique
020	wounds	three	Network	classificatio	provided	does not
)	and	levels of	(DCNN)	n	the best	deal with
	classificati	burn			results of	poor quality

						85
Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	on of burn	depths			the	images of
	depths				classificati	burnt skin
	into 1st,				on of	and it
	2nd and				burnt skin	supports
	3rd				that is	only JPEG
	degrees				recorded	and PNG
	respective				79.4%	image
	ly, using					formats
	Deep					
	Convoluti					
	onal					
	Neural					
	Network					
	(DCNN)					
	To build a	6694			The model	• Some
	model to	adult			had	reported
	detect	patients			sensitivity	risk
dios	pressure	who			of 0.90,	factors
	injury risk	admitted			specificity	could not
lartin	in	to the ICU	Logistic	Wound	of 0.74,	be
t al.,	intensive	during	regression	assessment	and area	included
020	care unit	their	(LR)		under the	in the
1	patients	hospital			curve of	model
	and to put	stay from			0.89	because
	the model	January 1,			during the	of
	into	2016,			initial test.	excessive
	productio	through			The model	missing

		Cotting	AI			86
Refere	Aim	Setting and	methodolog	Model type	Outcome	Limitations
ice		sample	У			
	n in a real	Septembe			performed	values or
	environm	r 30,			well 1	inability to
	ent	2018.			year later	extract
					in a real	the data
					environm	from the
					ent	EMR
						• It is not
						possible
						to ensure
						that all PIs
						that
						developed
						during the
						period of
						the study
						were
						accounted
						for
						• It is not
						possible
						to clearly
						see how
						each
						variable
						affects the
						risk of PI
						developm

Refere Aim nce

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Advances in Wound Care

_	Se	tting /	AI			88
Refere nce	Aim an		methodolog	Model typ	oe Outcome	Limitations
	To design a computat ional approach for tissue recogniti	id r mple y 3 color iotograph of took by nicians	Hybrid approac h based on four- stage- cascade binary classifica tion system	Wound assessme nt	DutcomeTheir binarycascadeapproach giveshigh globalperformancerates (averagesensitivity=78.7 %,specificity =94.7%, andaccuracy =91.5%) andshows thehighestaveragesensitivityscore (=86.3%)whendetectingnecrotic tissue	Limitations Manual segmentatio n and classification of pressure ulcer/injury tissues is an inaccurate procedure, which yields high inter- and intra- observer variability

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Refere		Setting	AI			89
nce	Aim	and	methodolog	g Model typ	e Outcome	Limitations
		sample	У			
	То				• The model	
	examine				based on	
	the				images	
	ability of	• The data	SVM		obtained at	
	a cubic	from			all	
	SVM	imaging			wavelengths	
	classificat	studies			and spatial	
	ion	carried			frequencies	
	model to	out in a			predicted	
	predict	porcine			burn severity	
	burn	model			at 24 h with	
owla	wound	• 160			92.5%	
d et	severity	regions		Wound	accuracy	
•,	using	(40 from	classifier	assessme	• The model	
)19	calibrate	each		nt	composed of	
,	d	class)			all values	
	reflectan	from one			relative to	
	ce data	pig used			unburned	
	from	as training			skin was	
	multiple	set and			94.4%	
	waveleng	from the			accurate	
	ths and	second			• The model	
	spatial	pig for			that	
	frequenci	testing set			employed	
	es				only planar	
	obtained				illumination	
	via				was 88.8%	

		Setting	AI			90
Refere	Aim	and	methodolog	Model type	e Outcome	Limitations
nce		sample	y			
	spatial				accurate	
	frequenc				The addition	
	y domain				of calibrated	
	imaging				reflectance	
	(SFDI)				data	
	(51 D1)				collected	
					with spatial	
					modulation	
					adds	
					predictive	
					power to a	
					classification	
					model for	
					burns	
	То	Several				
	develop	hundreds				
	an	of color			Real tissue	
	innovative	images			areas can be	
Wann	tool for	have been			computed by	
ous et	assessing	taken by	SVM	Wound	retro-	
al.,	CWs that	different	classifier	assessm	projection of	
2010 ¹⁹	combines	digital		ent	identified	
19	color	cameras			regions on the	!
	analysis	under			3D model	
	and	uncontroll				
	dimension	ed				
	al	illuminati				

90

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
		sample	У			
	measurem	on				
	ent of	hospital				
	injured	conditions				
	tissues in					
	a user-					
	friendly					
	system					
		• A				
		databas				
		е			 Accurate 	
		comprisi			burn depth	
		ng data			measuremen	I
	To provide	of			t	
	improved	nodes			 Distinguishin 	
ROSS	methods	and			g between	
et al.,	and	edges of		Wound	second- and	
2019	systems	historica	CNN	assessm	third-degree	
35	for	l burn wound		ent	burns, and	
	accurately	of			thereby	
	assessing	known			allowing	
	BW depth.	depth			improved	
		• Nodes			treatment	
		and			decisions to	
		edges of			be made	
		the				
		examine				
		charmic				

Refere	Aim	Setting and	AI methodolog	Model type	Outcome	Limitations
nce			-	inouci type	outcome	Linitations
Cirillo et al., 2019 ₃₆	To develop cost effective, faster, and objective methods for assessing burn depth so that the utilization of these methods is not limited to specialize d burn	sample d burn wound from ultrasou nd imaging video 23 burn images taken using tissue viability imaging digital camera	y Deep CNN with ResNet- 101 architectu re	Wound assessm ent	The ResNet- 101 CNN was able to classify four types of burn depth in few seconds with an average accuracy of 91% and specificity of 94%	

	Setting	AI			93
Refere Aim	and	methodolog	Model type	e Outcome	Limitations
ice	sample	у			
To propose a BdasNet model which combines near- infrared hyperspec tral Wang imaging et al., (NIHSI) 2020 technolog by and the CNN- transfer method to accurately assess the cross- domain full-field burn depth	burn wounds, by one Bama Miniature Pig which was used througho ut the study. The burn wounds were placed on both sides of the	BdasNet model which combines NIHSI technolog y and the CNN- transfer method	Wound assessm ent	The BdasNet model realized an excellent classification accuracy. The experiments demonstrated that the full- field burn classification system has the potential to be applied for burn diagnosis	

Refere		Setting	AI			94
nce	Aim	and	methodolog	Model type	Outcome	Limitations
nee		sample	У			
		thickness				
		burns to				
		full				
		thickness				
		burns.				
		The				
		images				
		were				
		taken by				
		an NIHSI				
		system				
		which				
		combines				
		projection				
		s of				
		broad-				
		band near				
		infrared				
		light with				
		multispect				
		ral				
		imaging				

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Page 95 of 165

Deferre		Setting	AI			95
efere ce	Aim	and	methodolog	Model type	e Outcome	Limitations
LE		sample	У			
2ahia et al., 2020 9	To propose an end-to- end system which automatic ally retrieves quantitati ve informatio n of the pressure injury using solely a 2D image and a 3D mesh of the wound	210 photograp hs of pressure injuries acquired using a cell-phone camera	CNNs for automati cally detect and segment the wound, Mask- RCNN for segmenta tion of the pressure injury	Wound assessm ent	Mean sensitivity score of 0.85 and mean precision score of 0.87	
5ilva et al., 2020	To propose a model for automatic	105 pressure ulcer images	SVM classifier for superpixe	Wound assessm ent	Average accuracy of 96%, sensitivity of 94%,	Variety in shape and color observed
	measurem	from a	I		specificity of	in the

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

Refere nce	Aim	Setting and sample	Al me y	ethodolog	Model type	e Outcome	Limitations
Wu et al., 2021 61	ent of the area affected by pressure digital digital images to propose an adaptive an adaptive da inetwork algorithm vith reduced ingorithm computati donal computati donal complexit complexit dinical burn thermal images and to	public data set data set 10 types of near- infrared spectrum signals with burn time of 5 s, 0 s, 20 s, 10 s, 20 s, 10 s, 20 s, 30 s, 40 s, 10 s, 20 s, 30 s, 40 s, 10 s, 20 s, 30 s, 40 s, 10 s, 20 s, 20 s, 10 s, 20 s, 20 s		classificat ion, GrabCut for segmenta tion tion cAGA- SVR, Random Forest	Wound assessm ent	97% and precision of 94% the accuracy of the model constructed in this paper is above 80% in the classification of clinical burn images	

						97
Refere		Setting	AI			
nce	Aim	and	methodolog	Model type	Outcome	Limitations
nee		sample	У			
	burn					
	depth					
	ucptil					

Advances in Wound Care

Table 3: Overview of the characteristics of studies that aimed to develop a clinical visual

 assessment of wounds using AI methodologies with emphasis on tissue type classification

Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	Limitations
Elmogy et al., 2018 ⁴⁵	To develop an automatic classificati on framework to detect and segment various tissues from pressure ulcer/injur y RGB images	100 images taken by digital camera in hospital and nursing home conditions) , and Medetec wound database	CNN	Classificati on	The obtained preliminary results have AUC of 96%, PAD of 10%, and DSC of 93%. These experiment al results are promising and can lead to an lead to an accurate assessment of the pressure ulcer/injury	Small sample size

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

		Sotting	AI			99
Referenc e	Aim	Setting and sample	Ai methodol ogy	Model type	Outcome	Limitations
Godeiro	∙То	30 images	CNN		• The	
et	develop a	acquired			methodol	
al.,2018	non-	in hospital			ogy can	
12	invasive	conditions			be	
	methodol	using			applied in	
	ogy for	smartpho			a typical	
	the	nes			work	
	segment				environm	
	ation and				ent of the	
	analysis				health	
	of CW				care	
	images.			Wound	specialist	
	∙То			assessmen	s.	
	investigat			t and	• The tissue	
	е			classificati	classificat	
	algorithm			on	ion task	
	s for				obtained	
	classifyin				values of	
	g tissue				0.9610 ±	
	as				0.0408 of	
	necrotic,				accuracy,	
	granulati				0.9876 ±	
	on or				0.0230 of	
	slough				specificity	
					, 0.9128 ±	
					0.0740 of	
					sensitivity	

Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	100 Limitations
Mukherj ee et al.,2014 67	To develop a computer assisted tissue classificati on (granulatio n, necrotic, and slough)	74 images from Medetec database	Bayesian classificati on and SVM	Classificati on	and Dice coefficien t equivalen t to 0.9425 ± 0.0598 for the chosen methodol ogy, the U-Net using reduced color spaces. SVM with 3rd order spaces. SVM with 3rd order polynomial kernel polynomial kernel polynomial kernel polynomial kernel	Small sample size

Page 101 of 165

		Cotting	A 1			101
Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	Limitations
	scheme for CW evaluation using medical image processing and statistical ML techniques				75.53%, for classifying granulation , slough, and necrotic tissues, respectivel y	
Nejati et al., 2018 26	To classify all 7 different wound tissue types, based on using a pre- trained DNN as a feature extractor for wound tissue classificati	350 images of CWs, captured in different conditions (illuminati on, pose, etc.), with different camera devices, with different resolutions	DNN	Classificati on	 Mean accuracy obtained from classificat ion of 7 wound using AlexNet as pre- trained network is 86.4% Robust in discrimin ation of 	

		0				102
Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	Limitations
	on				similarly looking tissue types and also, where illuminati on condition changes occur • The	
Pholberd ee et al., 2018 ³³	To improve wounds segmentati on accuracy, and study the impact of wound tissue types and color on accuracy	Images from Medetec database	CNN	Wound assessmen t	accuracy of the proposed method was 72%, 40%, and 53% in terms of intersecti on over union for granulati on, necrosis, and	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

e	Aim	and sample	methodol ogy	type	Outcome	Limitations
					slough	
					wound	
					tissue	
					types,	
					respectiv	
					ely	
					● The	
					proposed	
					method	
					outperfor	
					med a	
					prior end-	
					to-end	
					approach,	
					even	
					though it	
					is simpler	
					and use	
					less	
					training	
					data	
-	To present				• Overall	Dark
Zahia et	a new				average	regions in
	approach	23 wound	CNN	Classificati	classificat	the depth o
	for	images		on	ion	the wound
;	automatic				accuracy	are
ł	tissue				of	misclassifie

Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	104 Limitations
	classificati on in pressure injuries				92.01%, • Average total weighted DSC of 91.38%, • Average precision per class of 97.31% for granulati on tissue, 96.59% for necrotic tissue, and 77.90% for slough tissue	d as necrotic tissue, which is generally very dark in color
eredas al., 015 ³⁸	To present a computer- vision approach based on	113 images of sacrum and hip Pus acquired from	Classificati on of tissue type by SVM, RF, and NN	Wound assessme nt	RF and SVM gave significantl y higher accuracies than the	High variability in the results, which rejects any prepondera

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

Page 105 of 165

						105
Referenc e	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	Limitations
	image	patients			NN in both	nce of a
	processing	with			recognition	particular
	algorithms	homecare			tasks	ML
	and	assistance				technique
	supervised	using				over the
	learning	digital				rest of the
	techniques	camera				models
	to help					
	detect and					
	classify					
	wound					
	tissue					
	types that					
	play an					
	important					
	role in					
	wound					
	diagnosis					

Table 4: Overview of the characteristics of studies that aimed to develop a clinical visual assessment of wounds using AI methodologies with emphasis on infection detection

Refere nce	Aim	Setting and sample	AI methodol ogy	Model type	Outcome	Limitation s
Fletche r et al., 2019 ⁷²	 To predict infection in Cesarean section wounds To develop a ML algorithm that can automatical ly detect infection in a surgical wound, using an image of the wound captured from a mobile device. 	 572 women who underwen t Cesarean section births in a hospital, 61 infected wounds Question naire responses , one image of the wound, and the clinical SSI diagnosis provided by a trained 	Logistic regression models with L1 and L2 regularizat ion and SVM	Wound assessme nt and predictio n	 Develope d algorith ms that can predict the presence of an infection infection isection vound using question naire data and image data, respectiv ely, as evaluate d10-days following 	 The two models are independ ent, the combinat ion of the two should be consider ed More advanced ML methods should be consider ed for both models

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

		doctor of each patient			surgery The predictio n using image data alone has particula rly good performa nce and was able to match the performa nce of a trained
Hsu et al., 2019 ¹⁷	To propose an automated way to perform wound segmentation and wound infection assessment after surgical operation	293 wound images collected using smartphone s in hospital conditions	SVM- based wound infection interpretat ion method using segmentat ion results from previous	Wound assessme nt	doctor • 87.31% accuracy for anomaly detection • 83.58% accuracy for symptom assessme nt

0

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Goyal et al., 2020 ³¹

the presence of infection and ischemia in DFU using computer vision techniques

To identify

1459 images of DFU acquired in

hospital

conditions using digital cameras

CNN

• Their method

performe

d better

in the

classificat

ion of

ischemia

than

Wound

nt

assessme

infection

• The proposed Ensembl

Small size and

imbalance

d dataset

algorith

e CNN DL

ms

performe

d better

for both

classificat ion tasks

as

compare

d to

handcraf
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

					significantl	perform
					y higher	ed on
	To design an	480 wound			AUC score	Asian
	integrated	photograph	deep		(83.3%)	subjects
Wu et	framework to	s were	convolutio	Wound	than other	• Diverse
al.,	support the	taken from	nal neural	assessme	three	quality
2020 ⁶⁴	diagnosis of	100	networks	nt	methods	of
	wound	patients			(kernel	wound
	infection	patiento			support	photogr
					vector	aphs,

109

ted ML

algorith

ms, with

accuracy

ischemia

classificat

ion and

73% in

infection

classificat

• The

study

was

which

may

cause a

potenti

ion

Their

model

achieved a

machines,

forest,grad

random

ient

90%

in

						boosting	110 al
						classifier)	concern
						,	interferi
-							ng with
							our
-							algorith
							m
							• A "test"
_							set in
							conjunc
							tion
							with a
							validati
D							on
-							dataset
5							should
							be
-							conside
							red
		To propose a	1459 images	Faster-		Ensemble	• This
_		new dataset	of patient's	RCNN for		CNN	experim
		and	foot with	data-		method	ent
		computer	DFU over	augmentat		achieved	include
	Goyal	vision	the previous	ion,	Wound	the	d an
	et al.,	techniques to	five years at	Superpixel	assessme	highest	imbalan
	2020 ²⁴	identify the	the	Colour	nt	score in all	ced DFU
_		presence of	Lancashire	Descriptor		performan	dataset
_		infection and	Teaching	as feature		се	for both
		ischaemia in	Hospitals	descriptor		measures	ischaem
		DFU	which were	and		in both	ia and

Advances in Wound Care

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

			111
captured	Ensemble	ischaemia	infectio
with	Convolutio	and	n
different	nal Neural	infection	conditio
cameras	Network	classificati	ns
	for	on, gaining •	The
	ischemia	0.903	dataset
	and	accuracy,	was
	infection	0.886	collecte
	recognitio	sensitivity,	d with
	n	0.902 F-	differen
		score for	t
		infection	cameras
		classificati	, which
		on and	leads to
		0.272	more
		accuracy,	variabili
		0.709	ty of
		sensitivity,	image
		0.722 F-	charact
		score	eristics
		•	The
			debride
			ment of
			DFU
			remove
			s
			importa
			nt visual
			indicato
			rs of

112 infectio n such as coloure d exudate • Nonstandar dized images

Infection and ischemia foot images, including 4935 To propose a augmented CNN for negative and classification 4935 Amin and YOLOv2positive DFU for et al., patches for 2020 51 localization ischemia of data and infection/isch 2946 normal emia and 2946 abnormal skin patches for bacterial infection

data

ia hages, ng nted re and classificati on, YOLOv2offu ia bd ormal 46 hal tches terial

The proposed research methodolo gy has shown much Wound improved assessme results nt and compared classifica to the tion existing methods in terms of classificati on and localizatio n

Downloaded by Gent University from www.liebertpub.com at 0.4/21/22. For personal use only. Advances in Wound Care This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Table 5: Overview of the characteristics of studies that aimed to predict wounds onset and evolution based on EHRs or image dataset

Refer Aim ence	Setting and sample	AI method ology	Model type	Outcome	Limitation s
To develo generaliz model ca Sood of levera win clinical ne et predict al.,20 healthca 20 ⁷¹ associate diseases hours in advance	able pable ging otes to e- d d bespital	NLP using reCurre nt Additiv e Networ k for Tempor al Risk Predicti on (CANTR IP)	Predict ion	 CANTRIP, operating on text alone, obtains 74%–87% AUC and 77%–85% specificity Baseline shallow models showed lower performanc e on all metrics, while bidirectiona I long short- term memory obtained 	 System relied only on features extracted from clinical notes only indicated the presence or absence of observati ons, signs, intervent ions, etc, meaning that

the highest

values

113

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
Hu et al., 2016 23	To accelerate the process of extracting postoperative outcomes from medical charts	EHR of surgical patients with 493 SSI	6 models that are based on Lasso- penaliz ed logistic regressi on	Woun d assess ment	sensitivity at the cost of significantly lower specificity and precision Multi-task learning, specifically, the propensity weighted observations method, statistically significantly outperforme d the single- task learning approach	reported in the text are not available to the model • Small sample size, heteroge neity of the outcome s and skewed class distributi on • More advanced NLP methods for text analysis exist

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
Rowla nd et al., 2019 77	To examine the ability of a cubic SVM classification model to predict burn wound severity using calibrated reflectance data from multiple wavelengths and spatial frequencies obtained via spatial frequency domain imaging (SFDI)	 The data from imaging studies carried out in a porcine model 160 regions (40) from each class) from one pig used as training set and from the second pig for testing set 	SVM classifie r	Predict ion	 The model based on images obtained at all wavelength s and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy The model composed of all values relative to unburned skin was 94.4% accurate The model that employed only planar 	

116

illumination was 88.8% accurate The addition of calibrated reflectance data collected with spatial	Refer A ence	Nim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
Modulation adds predictive power to a classification model for burns To explore the factors associated with factors factors anong elderly fotients Clinical records data of pressure dicers/injuries data of pressure factors factors among elderly fotients	fa Moon pr et al., ul 2017 ar ⁸⁶ pa ad	actors associated with pressure alcers/injuries among elderly patients admitted to Korean long-	data of 765,564	DT	assess	was 88.8% accurate accurate accurate calibrated reflectance data collected with spatial modulation adds predictive power to a classification model for burns • The DT displayed 15 subgroups with 8 variables showing 0.804 accuracy,	

Page 117 of 165

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	117 Limitation s
	facilities				sensitivity,	
	according to				and 0.787	
	the 2014				specificity	
	Health				• The most	
	Insurance				significant	
	Review and				primary	
	Assessment				predictor of	
	Service				pressure	
	National				ulcers/injuri	
	Inpatient				es was	
	Sample (HIRA				length of	
	NIS) using DT				stay - more	
	analysis				than 0.5	
					day	
					• Data mining	
					methods,	
					such as DT	
					analysis,	
					could	
					identify	
					outcome	
					variables in	
					a big data	
					set with	
					many	
					variables	

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	118 Limitation s
Alder den et al., 2018 29	To develop a model for predicting development of pressure injuries among surgical critical care patients	Data from EHRs of 6376 patients	RF	Predic tion	The ROC for both models was 0.79	Important variables in the EHRs could not be accessed
Ke et al., 2017 ⁷⁶	To predict the time to SSI onset using spatial- temporal matrix data	Dynamic wound data collected daily from 860 patients in hospital conditions	Bilinear formula tion predicti ng model	Predic tion	The suggested model has lowest mean absolute prediction error relative to other models tested	 It might be possible that different kinds of SSI have different risk factors Variables that have been found predictiv e of SSI risk in the

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	119 Limitation s
Vered as et al., 2010 63	To design different ML approaches to predict the evolution of pressure ulcers/injuries in time	 69 sacrum and hip pressure ulcers/injuri es (category 3 and 4) from patients with homecare assistance, weakly photograph ed for maximum of 16 weeks using digital camera A total of 743 	Predicti on of change of wound- bed perimet er using differen t ML classifie rs includin g: SVM, MLP and DT	Predict ion	 NNs and DTs gave the best performanc e results C4.5 algorithm achieved the highest accuracy rate (~ 81%) in the prediction of the granulation/d evitalized ratio from a small number of input 	literature were not included in the database

were obtained

features

119

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
Jung et al., 2016 ⁷³	To develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers	Basic demographic information on 53,354 patients, as well as both quantitative and categorical information on 150,277 wounds recorded weekly in EHR	L1 regulari zed logistic regressi on, RF, and gradien t booste d tree	Predic tion	The model achieved an AUC of 0.842 for the delayed healing outcome and a Brier reliability score of 0.00018	The dataset may not be generalize d enough in the aspect of the type of care settings included in the research. Prospectiv e validation of the suggested model is required for

institutions

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	121 Limitation s
CAI et al., 2021 40	To develop an ML-based predictive model for SRPI in patients undergoing car diovascular surgery	149 patients who underwent car diovascular surgery	XGBoos t	Predic tion	ML model has more accurate discriminatio n power than the nomogram score, which developed previously	 The data were from a single healthcar e institution within a confined geographi c region, thus the generaliza bility of the findings may be limited The data was not collected prospecti vely, which may affect the performa

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Advances in Wound Care

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	122 Limitation s
						nce of the ML prediction model The severity of all SRPI all SRPI instances in this study were Stage 1
Kim et al. <i>,</i> 2020 44	To build a ML model that can predict healing of diabetes- related foot ulcers, using both clinical both clinical attributes extracted from leectronic health records (EHR) and image features extracted from photographs	Electronic health records (EHR) of 2291 visits for 381 ulcers from 155 patients, including smartphone or tablet photographs of the ulcers taken by the medical staff during each visit	SVM and random forest	Predic tion	demonstrate d an AUC of 0.734 when using all	 Small patient populatio n and dataset Some of the clinical paramete rs had to be imputed There may be slight

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	123 Limitation S
Choi et al., 2020 47	To identify risk factors and construct a risk prediction model for oral- mucosal Pl development in intubated patients in the intensive care unit	Medical record of 194 patient- days	Backwa rds stepwis e multipl e logistic regressi on, Gaussia n Naïve Bayes	Prediction	The upper oral-mucosal PI development model had an accuracy of 79%, F1 score of 88%, precision of	inconsiste ncies in clinical attributes that are manually charted •Small sample size •cross- validation of the risk prediction model with external samples was not performed • Several risk factors

were

in this

study

excluded

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
Good win et al., 2020 71	To develop a generalizable model capable of leveraging clinical notes to predict healthcare- associated diseases 24-96 hours in advance	35,218 patients for hospital acquired pressure injury	ReCurre nt Additiv e Networ k for Tempor al Risk Predicti on (CANTR IP)	Predic tion	CANTRIP obtained AUC of 87%, precision of 42% and F1 score of 53%, significantly higher results compared to manual and rule-based prediction systems	 The system relied only on features extracted from clinical notes Fea tures only indicated the presence or absence of observatio ns, signs, interventio ns, etc. Hypothetic al and negated mentions of observatio

Refer ence	Aim	Setting and sample	Al method ology	Model type	Outcome	125 Limitation s
Song et al., 2021 65	To develop machine learning-based predictive models, using phenotypes derived from nurse-entered direct patient assessment data	188,512 inpatient clinical records of patients affiliated with 5 hospitals. Patients that were hospitalized 24 hours or longer on a nonspecialty acute and/or intensive care unit were excluded	Logistic regressi on (LR), support vector machin es (SVM), random forest (RF), and neural networ k (NN)	Predic tion	RF model reached AUC = 0.92 for nonhospital acquired pressure injury group and AUC = 0.94 for hospital acquired pressure injury group	excluded Patient comorbidit y, acuity, and pressure injury stage were not considered only structured data were used for the study
Mom bini et al., 2020	To design a ML system that can accurately predict wound care decisions based on	2056 unlabeled wound images, including 1695 images from a local wound clinic, 249 from	XGBoos t	Predic tion	XGBoost algorithm achieved on average an overall performance	•Limited image dataset

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	126 Limitation s
Chun et al., 2021 74	labeled wound image data To identify predictors associated with PI progression and establish a model for predicting 7- day outcomes in children with PI	publicly available web sources and 114 from previous study previous study Patient information of 152 patients, comprising 130 and 33 with stage I PI and sDTI, respectively	Rando m Forest	Prediction	of F-1 = .782 using labels given by an expert and a novice decision decision maker Accuracy, sensitivity, specificity, and area under the curve of 0.82, and 0.89, contributing variables, in order of importance, included serum creatinine,	 Difficulty to obtain a detailed description of skin status assessmen t and other indicators Small sample of patients with PI A possibility that there was

red blood

cell, and

variability

in

			AI			127 Limitation
Refer Ai ence	im	Setting and sample	method ology	Model type	Outcome	S
Mansi lla et al., 2020 53	o create a ecision- upport tool hat will show he risk of SSI n a patient	2251 health records of patients	SVM, decisio n tree	Predic tion	haematocrit haematocrit The best model is the decision tree model with all variables included with an accuracy of 93%,	assessing patients •Since it is a single- centre study, the PI healing outcomes may be correlated with the medical setting, quality of treatment, and nursing care

arwhich

are among

Refer Aim ence	Setting and sample	AI method ology	Model type	Outcome	128 Limitation s
to understand the risk facto of developing diabetic foot ulcers or amputation 1, 021 2 approaches and sporadic health-care data sources	s data of 246,705 patients with diabetes from	logistic regressi on (LR) Rando m Forest	Woun d assess ment	accuracy of 77.8%, precision of 89.5%, recall of 56.7%, F1 score of 69%, ROC AUC of 77.8%, and MCC of 68% MCC of 68% there is a higher hazard for patients income bousehold income income outh a lower household income income cardiovascula r diabetes patients with cardiovascula r disorders, peripheral artery, neuropathy, and chronic renal complication	 the data was collected from various national registers, thus the coding may differ across databases in several cases, complicati ons

m this proof.	Refer ence	Aim
Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.		

						129
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitation s
					populations	were
					with a high	diagnosed
					risk of	at the
					developing	same time
					DFU and	as DFU
					amputation	were
					Although the	omitted in
					features that	the
					have been	analysis
					used in the	•this study
					study can be	focuses on
					used for	DFU
					prediction	occurrence
					models	in general,
					(based on the	with no
					classifier	considerati
					results), they	on of
					are not	factors
					sufficient	that are
					enough for	specific to
					accurate	first time
					prediction of	or
					DFU/amputat	recurrent
					ion	incidents

Table 6: Overview of the characteristics of studies that aimed to develop predictingmodels based on temporal and dynamic wound characteristics and physiological

measurements

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
Good win et al.,20 20 ⁷¹	to develop a generalizable model capable of leveraging clinical notes to predict healthcare- associated diseases 24–96 hours in advance.	 MIMIC-III critical care database clinical notes from 35218 hospital admissions for hospitalized acquired pressure injury 	Natural Languag e Processi ng (NLP) using Recurre nt Additive Networ k for tempor al Risk Predicti on (CANTRI P)	Predict ion	 CANTRIP, operating on text alone, obtains 74%-87% area under the curve and 77%- 85% specificity Baseline shallow models showed lower performanc e on all metrics, while bidi- reactional long short- term 	 systems relied only on feature s extract ed from clinical notes feature s only indicate d the presenc d the presenc e or absenc e of observa tions, signs, interve ntions, etc.,

memory

meanin

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

						131
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
					obtained the highest sensitivity at the cost of significantly lower Specificity and Precision	g that values reporte d in the text, such as "HgB: 7.5," are not availabl e to the model
Fletch er et al., 2019 72	 to predict infection in Cesarean section wounds to develop a machine learning algorithm that can automatically detect infection in a surgical 	572 women who underwent Cesarean section births in a hospital. 61 infected wounds. The entire data set for each patient consisted of questionnaire responses, one	 text- based predicti on: logistic regress ion models with L1 and L2 regulari zation and Suppor 	Predict ion and wound assess ment	 developed algorithms that can predict the presence of an infection in a Cesarean- section wound using questionnair e data and image data, 	 the two models are indepe ndent. The combin ation of the two should be conside red more

						132
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
	an image of the	wound, and the	Vector		as evaluated	ed ML
	wound	clinical SSI	Machin		10-days	method
	captured from	diagnosis	е		following	S
	a mobile	provided by a	(SVM)		surgery	should
	device.	trained doctor	• image-		• The	be
			based		prediction	conside
			predicti		using image	red for
			on:		data alone	both
			100		has	models
			rando		particularly	
			mly		good	
			genera		performanc	
			ted		e and was	
			splits		able to	
			of the		match the	
			dataset		performanc	
			, using		e of a	
			the		trained	
			same		doctor.	
			proced			
			ure as			
			in the			
			questio			
			nnaire-			
			based			
			models			

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
Rowla nd et al., 2019 77	to examine the ability of a cubic SVM classification model to predict burn wound severity using calibrated reflectance data from multiple wavelengths and spatial frequencies obtained via spatial frequency domain imaging (SFDI)	 The data from imaging studies carried out in a porcine model 160 regions (40 from each class) from one pig used as training set and from the second pig for testing set 	support vector machin e (SVM) classifie r	Predict ion	 The model based on images obtained at all wavelengths and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy The model of all values of all values relative to unburned skin was 94.4% accurate The model skin was 	

133

employed

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	134 Limitatio ns
					 was 88.8% accurate The addition of calibrated reflectance data collected with spatial modulation adds predictive power to a classificatio n model for 	
					burns	

						135
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
	to determine if temperature	The study conducted in a			 Significant differences were found in the ΔT 	 only include d patient
Nactí	differences in burns assessed by infrared thermography could be used predict the	hospital. Infrared thermographic images of burns were acquired using digital	Random Forest predicto r using temper		between treatment modality groups • The developed	s with burns in extremi ties, cannot
Martí nez- Jimén ez et al., 2018 75	treatment modality of either healing by re- epithelization, requiring skin grafts, or requiring amputations, and to validate the clinical predication algorithm in an	camera. Two independent prospective cohorts were used for this study: a cohort used to develop the prediction algorithm (n=34) and a cohort used to test its	ature differen ce measur ed betwee n healthy and injured tissue.	Predict	algorithm correctly predicts into which treatment category the patient will fall with 85.35% accuracy Agreement between predicted	be extrapo lated to other areas in the body further studies in differen t populat
	independent cohort	performance (n=22).			and actual treatment	ions and

may be

opulat ns treatment and for both settings

cohorts was

135

his proof.	Refer ence	Aim	Settir samp
Advances in Wound Care Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.	Alder den et al., 2018 29	To develop a model for predicting development of pressure injuries among surgical critical care patients	Data electr healtl of 63 patier

Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
				weighted kappa 90%.	require d
To develop a model for predicting development of pressure injuries among surgical critical care patients	Data from electronic health records of 6376 patients	Random forest	Predict	• the ROC for both models was 0.79	 import ant variabl es in the EHRs couldn' t be accesse d

AI

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

			this proof.	ence
Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.	Advances in Wound Care	Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)	This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.	Vered as et al., 2010 63

 Neural Neural networks and decision predicti trees gave trees gave thip Pus (stage 3 change performanc and 4) from of e results change performanc e results change e results change performanc algorithm acheved adad) from potention persults photographed presure ulcers presure ulcers pintime aling digital presure ulcers in time Altotal of 743 g:SVM, granulation/ pintographs MLP, pintographs <l< th=""><th>Refer ence</th><th>Aim</th><th>Setting and sample</th><th>AI method ology</th><th>Model type</th><th>Outcome</th><th>Limitatio ns</th></l<>	Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
number of input features	as et al., 2010	different machine learning approaches to predict the evolution of pressure ulcers	hip Pus (stage 3 and 4) from patients with homecare assistance, weakly photographed for maximum of 16 weeks using digital camera. A total of 743 photographs	on of change of wound- bed perimet er using differen t ML classifie rs includin g: SVM, MLP, decision		networks and decision trees gave the best performanc e results C4.5 algorithm achieved the highest accuracy rate (~ 81%) in the prediction of the granulation/ devitalized ratio from a small number of input	

Refer		Setting and	AI	Model		138 Limitatio
ence	Aim	sample	method ology	type	Outcome	ns
Ke et al., 2017	to predict the time to SSI onset using spatial- temporal matrix data	dynamic wound data collected daily from 860 patients in hospital conditions	Bilinear formula tion predicti ng model	Predict ion	 suggested model have lowest mean absolute prediction error rlative to other models tested 	 it might be possibl e thar differen t kinds of SSI have differen t risk factors variabl es that have been found predicti ve of SSI risk in the literatu re were not include d in the databas e

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	139 Limitatio ns
Jung et al., 2016 73	to develop a predictive model for delayed wound healing that uses information collected during routine care in outpatient wound care centers.	basic demographic information on 53,354 patients, as well as both quantitative and categorical information on 150,277 wounds recorded in EHR weekly	L1 regulari zed logistic regressi on, random forest and gradient boosted tree	Predict ion	The model achieved an AOC of 0.842 for the delayed healing outcome and a Brier reliability score of 0.00018	The dataset may not be generaliz ed enough in the aspect of the type of care settings included in the research. Prospecti ve validatio n of the suggeste d model is

required

applicati

on in

other

for

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Advances in Wound Care

						140
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
					ML model	institutio ns The data
CAI et al., 2021 40	to develop an ML-based predictive model for SRPI in patients undergoing car diovascular surgery.	149 patients who underwent card iovascular surgery.	XGBoos t	Predict ion	presented in this paper has more accurate discriminatio n power than the nomogram score, which developed previously. therefore, ML may also be used as a technique along with data mining to improve assessment of risk of the	<pre>were from a from a ingle healthca re institutio n within a confined geograp hic region. Thus, the generaliz ability of our findings may be limited.</pre>

development r, not

						141
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
					of SRPI, in	collectin
					addition to	g data
					logistic	prospect
					regression.	ively
						may
						affect
						the
						perform
						ance of
						the ML
						predictio
						n model
						develope
						d in this
						study.
						The
						severity
						of all
						SRPI
						instance
						s in this
						study
						were
						Stage 1.

charted.

Reference Aim Setting and sample Model method ology Model type Outcome protection Limitatio ns Note to build a ML Sample Model to build a ML Small patient model that can electronic health records The predictor dataset, some of of diabetes- visits for 381 ulcers from 155 patients, 0.760-0.794 paramet et al., tatributes smartphone or random forest 0.760-0.794 imputed et al., tatributes smartphone or random forest 0.670 for onty may be features photographs of the ulcers taken o.670 for onty may be features staff during each visit. staff during inconsit inconsit photographs. staff during staff during staft introl introl introl				A 1		142
A Debuild a ML Debuild a		Aim	-		 Outcome	
	et al., 2020	model that can predict healing of diabetes- related foot ulcers, using both clinical attributes extracted from electronic health records (EHR) and image features extracted from	health records (EHR) of 2291 visits for 381 ulcers from 155 patients, including smartphone or tablet photographs of the ulcers taken by the medical staff during	and random	demonstrate d an AUC of 0.734 when using all features, 0.760–0.794 for hand- crafted imaging features alone and 0.670 for only deep learning	patient populati on and dataset, some of the clinical paramet ers had to be imputed and there may be slight inconsist encies in clinical attribute s that

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Advances in Wound Care

Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	143 Limitatio ns
Choi et al., 2020 47	to identify risk factors and construct a risk prediction model for oral- mucosal PI development in intubated patients in the intensive care unit.	medical record of 194 patient- days	backwar ds stepwis e multiple logistic regressi on, Gaussia n Naïve Bayes	Predict ion	the upper oral-mucosal PI development model had an accuracy of 79%, F1 score of 88%, precision of 86%, and recall of 91%.	Small sample size, cross- validatio n of the risk predictio n model with external samples was not perform ed and several risk factors were excluded in this study.
Song et al., 2021	to develop machine learning-based predictive models, using	188,512 inpatient clinical records of patients affiliated with 5	logistic regressi on (LR), support vector	Predict ion	RF model reached AUC = 0.92 for nonhospital	patient comorbi dity, acuity, and

						144
efer nce	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
	phenotypes derived from nurse-entered direct patient assessment data.	hospitals. Patients that were hospitalized 24 hours or longer on a nonspecialty acute and/or intensive care unit were excluded.	machin es (SVM), random forest (RF), and neural network (NN).		acquired pressure injury group and AUC = 0.94 for hospital acquired pressure injury group	pressure injury stage were not consider ed, moreove r only structure d data were used for the study
om ni et .,)20	to design a ML system that can accurately predict wound care decisions based on labeled wound image data	2056 unlabeled wound images, including 1695 images from a local wound clinic, 249 from publicly available web sources and 114 from previous study.	XGBoos t	Predict ion	XGBoost algorithm achieved on average an overall performance of F-1 = .782 using labels given by an expert and a novice decision	, limited image dataset
his proof.	Refer ence	Aim				
--	---	--				
Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.	Chun et al., 2021 ⁷ 4	to ider predict associa PI prog and est model predict outcon childre				

						145
Refer ence	Aim	Setting and sample	AI method ology	Model type	Outcome	Limitatio ns
Chun et al., 2021 ⁷ 4	to identify predictors associated with PI progression and establish a model for predicting 7-day outcomes in children with PI	patient information of 152 patients, comprising 130 and 33 with stage I PI and sDTI, respectively.	Random Forest	Predict ion and wound assess ment	maker. accuracy, sensitivity, specificity, and area under the curve of 0.82, 0.80, 0.84, and 0.89, respectively. The most contributing variables, in order of importance, included serum creatinine, red blood cell, and	 it was difficult to obtain a detaile d descrip tion of skin status assess ment and other indicat ors small sample of patient s with
						PI

145

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only. Advances in Wound Care

Refer	Aim	Setting and	AI method	Model	Outcome	Limitatio
ence		sample	ology	type		ns
						• it is
						possibl
						e that
						there
						was
						variabili
						ty in
						assessi
						ng
						patient
						• since it
						is a
						single-
						center
						study,
						it is
						possibl
						e that
						the PI
						healing
						outcom
						es may
						be
						correlat
						ed with
						the
						medical

Advances in Wound Care

Re	fer	Aim	Setting and	AI	Model	Outcome
Abolication of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.			Setting and sample	method ology	Model type	Outcome

147

Limitatio

setting,

quality

treatm

ent,

and

nursing

care.

of

ns

148

Table 7: Overview of the characteristics of studies in which wound images were acquiredusing smartphone cameras

Referen ce	Aim	Setting and sample	Al methodolo gy	Model type	Outcome	Limitations
Godeiro et al.,2018	to develop a noninvasi ve methodol ogy for the segmenta tion and analysis of chronic wounds images to investigat do investigat e algorithm s for classifying tissue as Necrotic, Granulati on or	30 images obtained from diabetic patients from different regions of the body, predomina ntly feet. Acquired in Hospital hosipatl conditions using smartphon es.	convolutio nal neural network (CNN) for classificatio n of wound tissues.	Wound assessme nt and classificati on	 The methodol ogy can be applied in a typical work environm ent of the health care specialists The tissue classificati on task obtained values of 0.9610 ± 0.0408 of accuracy, 0.9876 ± 0.0230 of specificity, 0.9128 ± 0.0740 of sensitivity 	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

						149
Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
					and Dice	
					coefficient	
					equivalent	
					to 0.9425	
					± 0.0598	
					for the	
					chosen	
					methodol	
					ogy, the	
					U-Net	
					using	
					reduced	
					color	
					spaces.	
	to propose	293 wound	SVM-based			
	an	images	wound		• 87.31%	
	automated	collected	infection		accuracy	
	way to	using	interpretat		for	
	perform	smartphon	ion		anomaly	
lsu et	wound	es in	method	Wound	detection	
ıl., 	segmentati	hospital	using	assessme	• 83.58%	
019 17	on and	conditions.	segmentati	nt	accuracy	
	wound	159 images	on results		for	
	infection	in the	from		symptom	
	assessmen	training set	previous		assessmen	
	t after	and 134	part of the		t	
	surgical	images in	study			

			AI			150
Referen ce	Aim	Setting and sample	methodolo gy	Model type	Outcome	Limitations
	operation	the testing set.				
					model achieves	
	to develop				receiver	
	a new				operating	
	machine		CNN -		curve	
	learning	a dataset of	adjusted		(ROC), area	
	based	1,335	VGG-16,		under	
'h o o o i	approach	smartphon	pre-trained	Wound	curve	dataset size
Shenoy et al.,	using	e wound	using		(AUC)	is small and
019 ²¹	CNNs to	images in	ImageNet	assessme nt	scores,	has
019	analyze an	acquired	to classify	III	sensitivity,	imbalance
	image of a	hospital	9 classes of		specificity,	
	wound and	conditions	wound		and F1	
	document		features		scores	
	its				superior to	
	wellness				prior work	
					in this	
					area.	

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

						15
Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
Alzubai di et al., 2019 ²²	to propose a novel CNN model for automated classificati on of DFU	754 images acquired in hospital conditions using smartphon es which then processed to 542 healthy skin patches and 1067 DFU	deep CNN architectur e for classificatio n of DFU	Classificati on	The proposed DFU_QUTN et network outperfor med the state-of- the-art CNN networks by achieving the F1- score of 94.5%.	
Goyal et al., 2018 ²⁴	to propose a novel CNN model for automated classificati on of DFU	292 image of patients DFU and 105 images of healthy skin acquired in hospital conditions using digital camera. Another	deep CNN architectur e for classificatio n of DFU	Classificati on	Using 10- fold cross validation, DFUNet achieved an AUC score of 0.961.	

Referen ce	Aim	Setting and sample	Al methodolo gy	Model type	Outcome	152 Limitations
Chen et al., 2018 ³⁵	to propose a surgical wound assessmen t system for self-	test case captured by a smartphon e camera included 200 abnormal skin patches and 32 normal skin patches. 131 wound patches. 131 wound images acquired using different smartphon es. Images were labeled by	algorithm consists of several classificatio n tasks using KNN and	Wound assessme nt	 more than 90% state assessmen t results are correct and more than 91% symptom 	symptoms are identified incorrectly due to similarity
	care	state and symptoms of the wound by medical professiona	and Random Forest		assessmen t results consistent with the actual diagnosis.	 training data is not generalize d enough

						153
Referen ce	Aim	Setting and sample	Al methodolo gy	Model type	Outcome	Limitations
Kim et al., 2020 ⁴⁴	to build a ML model that can predict healing of diabetes- related foot ulcers, using both clinical attributes extracted from electronic health records (EHR) and image features extracted	Is. electronic health records (EHR) of 2291 visits for 381 ulcers from 155 patients, including smartphon e or tablet photograph s of the ulcers taken by the medical staff during each visit.	SVM and random forest	Wound assessme nt	The predictor demonstra ted an AUC of 0.734 when using all features, 0.760– 0.794 for hand- crafted imaging features alone and 0.670 for only deep learning features	small patient population and dataset, some of the clinical parameters had to be imputed and there may be slight inconsisten cies in clinical attributes that are manually charted.

Referen ce	Aim	Setting and sample	Al methodolo gy	Model type	Outcome	154 Limitations
	photograp hs.					
ahia et ., 020 ⁴⁹	to propose an end-to- end system which automatic ally retrieves quantitativ e informatio n of the pressure injury using solely a 2D image and a 3D mesh of the	210 photograph s of pressure injuries acquired using a cell- phone camera	CNNs for automatica Ily detect and segment the wound, Mask- RCNN for segmentati on of the pressure injury	Wound assessme nt	mean sensitivity score of 0.85 and mean precision score of 0.87.	

						155
Referen ce	Aim	Setting and sample	Al methodolo gy	Model type	Outcome	Limitations
	wound,					

Table 8: Overview of the characteristics of studies aimed to suggest a feasible route for implementation of artificial intelligence (AI)-powered, or machine learning (ML) technologies in wound care and management in clinical practice.

Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
Fletche r et al., 2019 ⁷²	 to predict infection in Cesarean section wounds to develop a machine learning algorithm that can automatic ally detect infection in a surgical wound, using an image of the wound captured from a mobile device. 	572 women who underwent Cesarean section births in a hospital. 61 infected wounds. The entire data set for each patient consisted of questionnai re responses, one image of the wound, and the clinical	text-based prediction: logistic regression models with L1 and L2 regularizati on and support vector machine (SVM). Image- based prediction: 100 randomly- generated splits of the dataset, using the	Prediction	 develope d algorithm s that can predict the presence of an infection in a Cesarean- section wound using question naire data and image data, respectiv ely, as evaluated 10-days following 	 the two models are independ ent. The combinati on of the two should be considere d more advanced ML methods should be considere d for both models.

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

156

						157
Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
		infection (SSI) diagnosis provided by a trained physician.	procedure as in the questionnai re-based models.		 surgery. The predictio n using image data alone has particular ly good performa nce and was able to match the performa nce of a trained physician. 	
Shenoy et al., 2019 ²¹	to develop a new machine learning based approach using CNNs to analyze an image of	a dataset of 1,335 smartphone wound images in acquired hospital conditions	CNN - adjusted VGG-16, pre-trained using ImageNet to classify 9 classes of wound	Wound assessmen t	model achieves receiver operating curve (ROC), area under curve (AUC) scores,	dataset size is small and potentially imbalanced

		AI			
Outcome	Model type	methodolo gy	Setting and sample	Aim	eferen e
sensitivity, specificity, and F1 scores superior to prior work in this area. The accuracy in predicting from new from new test data from new test data in ged between s2%–100% fo and 69%– and 69%– in so so so so so so so so so so so so so	Wound assessmen t	features Naïve- Bayes, k- Nearest Neighbors and SVM classifiers	training group of 9 healthy participants , test group of 10 healthy participants , where interface pressure measureme nts were nts were ints were interface pressure measureme	a wound and document its wellness. to examine the potential of an automated an automated an automated detection of for the detection of a range of a range of a range of static lying postures and correspondi postures	aggiari t al., 020 ⁴³

Downloaded by Gent University from www.liebertpub.com at 04/21/22. For personal use only.

						159
Referen :e	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
					Machine classifiers, respectivel y.	settings where the recommend ed frequency and magnitude of
	to propose a comprehens ive					movements are not strictly followed.
Alinia et al. <i>,</i> 2020 ⁸¹	approach for designing a sensor system that uses a single acceleromet er along with ML algorithms for in-bed lying	Class-Act dataset from 22 subjects.	Adaptive LSTM network	Wound assessmen t	The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8%	lack of sufficient data.

Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	160 Limitations
Zahia et al., 2020 ⁴⁹	posture classificatio n. to propose an end-to- end system which automaticall y retrieves quantitative information of the pressure injury using solely a 2D image and a 3D mesh of the wound.	210 photograph s of pressure injuries acquired using a cell- phone camera	CNNs for automatical ly detect and segment the wound, Mask-RCNN for segmentati on of the pressure injury	Wound assessmen t	mean sensitivity score of 0.85 and mean precision score of 0.87.	No important limitations noted.
latar : al., 020 ⁸²	to propose an autonomous method for classifying different	data from 12 healthy adults collected from textile pressure	Feed- Forward Artificial Neural Network (FFANN)	Classificati on	The model obtained accuracy of 97.9% and Cohen's Kappa	 relatively limited number of subjects (12)

						161
leferen e	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
	HBLP with	sensors			coefficient	•the
	no sensors				of 97.2%.	system
	or cables				Prone and	has not
	attached to				supine	been
	the body.				postures	tested
					were	under
					successfully	special
					separated	condition
					in the	S.
					classificatio	
					n, in	
					contrast to	
					the	
					majority of	
					previous	
					similar	
					works.	
	to suggest a	394 thermal			• the	
	user-friendly	images and			multimod	
oualla	and mobile	their		Wound	al	No
et al.,	protocol	correspondi	U-Net	assessmen	approach	important
2020 ⁵⁴	(acquisition,	ng RGB		t	performs	limitations
	<u> </u>					noted

Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144) Advances in Wound Care

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

noted.

than the

method

(acquisition, 2020 54 transfer and processing)

ng RGB images of 122 type II for thermal diabetic

better

Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	162 Limitations
	images of the plantar foot to propose a method to	patients, the images have a resolution of 160×120 pixels and the spectral range of the thermal sensors is 8–14µm.	Logistic		based only on the thermal image • the average temperat ure of the plantar surface of the foot is higher is higher is higher is k group than in the low- risk group than in the low-	• the system
ng I. <i>,</i> O ⁸³	detect a person's orientation in bed using data from	single axis load cell of 20 able- bodied individuals.	Regression and Feed Forward Neural Network	Wound assessmen t	Neural Network yielded prediction accuracy of	used in this research assumes the

Page 163 of 165

						163
Referen ce	Aim	Setting and sample	AI methodolo gy	Model type	Outcome	Limitations
	load cells				94.2%.	patient is
	placed					lying
	under the					parallel to
	legs of a					the long
	hospital					axis of the
	grade bed.					bed.
						• the
						dataset is
						relatively
						small

164

Figure 1

Figure 1: PRISMA flow diagram describing the review decision process, indicating the primary results from the search, removal of duplicate citations, study selection and eligibility check.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Application of artificial intelligence methodologies to chronic wound care and management: A scoping review (DOI: 10.1089/wound.2021.0144)

Figure 2

Figure 2: The number of published studies per year from 2010 onwards, out of the included articles.