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Abstract: 19	

Cognitive control allows to flexibly guide behaviour in a complex and ever-changing environment. It is 20	

supported by theta band (4-7Hz) neural oscillations that coordinate distant neural populations. However, 21	

little is known about the precise neural mechanisms permitting such flexible control. Most research has 22	

focused on theta amplitude, showing that it increases when control is needed, but a second essential 23	

aspect of theta oscillations, their peak frequency, has mostly been overlooked. Here, using computational 24	

modelling, behavioural and electrophysiological recordings, in three independent datasets, we show that 25	

theta oscillations adaptively shift towards optimal frequency depending on task demands. We provide 26	

evidence that theta frequency balances reliable set up of task representation and gating of task-relevant 27	

sensory and motor information and that this frequency shift predicts behavioural performance. Our study 28	

presents a mechanism supporting flexible control and calls for a re-evaluation of the mechanistic role of 29	

theta oscillations in adaptive behaviour.  30	
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Introduction 31	

Cognitive control permits adapting behaviour to task demands, crucial in an ever-changing 32	

environment. The flexibility of such a fundamental cognitive ability is at the core of intelligent behaviour. 33	

Cognitive control is supported by neural oscillations in the theta band (4-7Hz)1,2 (also called frontal midline 34	

theta) that coordinate distant neural populations to create task-relevant functional networks through 35	

synchronization3–7. Medial frontal cortex (MFC) generates theta oscillations when cognitive control is 36	

needed, i.e. during conflict or in preparation of a difficult task1. Task rules and goals dictating behaviour are 37	

instead encoded in lateral frontal cortex (LFC)8–10. The coordination of these two areas through theta-38	

rhythmic processes, has been shown to support successful task performance11. It has been proposed that 39	

task-relevant functional networks are established through top-down gating from these frontal areas, by 40	

synchronizing distant neural populations allowing efficient communication, i.e. communication-through-41	

coherence3,12. 42	

Theta oscillations thus play a critical role in the implementation of cognitive control, but to be 43	

adaptive, theta oscillation characteristics must change with task demands. However, the exact neural 44	

mechanisms that support flexible control remain largely unknown. Most research has focused on theta 45	

amplitude, showing that it increases after conflicts and errors, causing subsequent neural adaptation 46	

leading to better task performance1.  47	

Critically, a second essential aspect of theta oscillations, their peak frequency within the 4-7Hz 48	

range, has occasionally been reported to vary across tasks and participants13–15. However, most studies 49	

report band-average theta power per condition which precludes observing changes in peak theta frequency 50	

across conditions. Moreover, estimating shifts in peak frequency from conventional representation of 51	

spectral data (e.g. power spectra or time-frequency maps) is non-trivial and must avoid confounding factors 52	

such as changes in the aperiodic component of the power spectra16. It therefore remains unclear whether 53	

reliable theta peak differences exist. Finally, this variability and its mechanistic consequences are 54	

commonly ignored and no theoretical account has considered its role in cognitive control. To address this 55	

gap, we draw from two prominent frameworks: biased competition (BC)17 and communication-through-56	

coherence (CTC)12. We built a computational model where theta oscillations orchestrate competition 57	
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between task representations, which in turn guides CTC to set up task-relevant functional networks. Model 58	

simulations show that, depending on task demands, different theta frequencies are optimal for task 59	

performance. We tested model predictions on behavioural and electrophysiological data and confirmed 60	

that the frequency of theta oscillations adaptively shifts towards optimal frequency depending on task 61	

demands. 62	

 63	

Results 64	

Theta frequency controls reliable task implementation. 65	

We designed a stimulus-action mapping task (Figure 1a) wherein on each trial, a different mapping 66	

(i.e. a rule, with variable difficulty) needs to be established. The task consists of reporting the tilt of one of 67	

two gratings, clock-wise (CW) or counter-CW from the vertical axis, using the index or middle finger of one 68	

of both hands. On each trial a two-letter cue instructed the rule: which was the target grating (Left (L) or 69	

Right (R), top-letter) and which hand to use (L or R, bottom-letter). We thus manipulated task difficulty: 70	

same-side cues (i.e.  (top-letter – bottom-letter) RR and LL) were easier than different-side cues (LR and RL). 71	

Our model consists of five units (Figure 1b): two control units (Lateral and Medial Frontal Cortex, 72	

respectively LFC and MFC), two processing units (Sensory and Action), and an Integrator unit. In LFC, cues 73	

activate instruction nodes, which themselves activate rule nodes. Rule nodes form a competitive 74	

accumulator network18 that implements BC: In a Stroop-like manner, the connectivity between instruction 75	

nodes induces stronger competition between rule nodes for different-side than same-side rules. 76	

Importantly, rule node competition is orchestrated by theta oscillations generated by the MFC unit: 77	

competition is (re-)initiated when MFC theta exceeds a processing threshold (Figure 2a, b). Each rule node 78	

points to rule-relevant processing modules. Processing nodes oscillate at gamma frequency. Rule nodes 79	

gate communication between Sensory and Action units through CTC12,19, thereby implementing the 80	

instructed mapping, by means of phase-resetting bursts emitted by MFC at theta oscillation peaks3,19 81	

(Figure 2b-d). The Integrator unit constitutes a competitive accumulator network18 that accumulates 82	

information received from Action nodes, and triggers a response once one of the Integrator nodes reaches 83	

a threshold (Figure 2e). 84	
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- - - - Figure 1 - - - - 85	

Crucially, with a fast theta frequency, e.g. 7Hz, rule nodes gate processing modules frequently, 86	

shortening “off”-periods in which rule-relevant processing nodes de-synchronize, at the cost of shorter 87	

competition windows. With a slow theta frequency, e.g. 4Hz, gating is imposed less frequently, but 88	

competition windows are longer. Due to BC, one rule will win the competition; but for difficult rules, 89	

resolving the competition will take more time, i.e. require longer competition windows. In our task 90	

different-side rules are more difficult, so the model achieves better performance at slower theta 91	

frequencies where competition is long enough for the correct rule node to win (Extended Data Figure 1a-b). 92	

In contrast, for easy rules, competition is won quickly, thus higher theta frequencies yield better 93	

performance as rule-relevant nodes are frequently gated, reducing “off”-periods. Hence, an optimal agent 94	

would shift theta frequency depending on task demands. 95	

- - - - Figure 2 - - - - 96	

Model simulations (Figure 3a) confirmed that for difficult rules the model achieves optimal 97	

accuracy at a slow theta frequency, whereas for easy rules, a fast theta is optimal (W = 105.5, p < 0.001, r = 98	

0.64, 95% CI: (1.00, 2.00); Figure 3b). Fits from the drift diffusion model on model data (see Methods) 99	

showed that only drift rate exhibited this theta-frequency – rule-difficulty interaction (Extended Data 100	

Figure 2a), refuting a speed-accuracy trade-off (SATO) explanation. Theta amplitude alone could not explain 101	

this result as theta amplitude only negligibly affected competition window length relative to frequency 102	

(Extended Data Figure 1c-d). 103	

Furthermore, theta-rhythmic gating of processing nodes should yield better model performance 104	

shortly after a burst, i.e. at theta oscillation peaks (Figure 3c). By varying the instruction-stimulus delay 105	

(ISD), to sample model performance at different phases of the theta-rhythmic process20,21, we showed that 106	

model accuracy oscillates at a frequency closely matching MFC theta frequency (Figure 3d, Supplementary 107	

Figure 1). 108	

- - - - Figure 3 - - -  109	
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These simulations lead to two key behavioural and neural predictions. First, oscillations of accuracy-110	

by-ISD should shift towards optimal theta frequency depending on task demands. Second, frontal theta 111	

oscillations should also exhibit this effect, and the degree to which theta frequency shifts according to task 112	

demands should be predictive of subsequent task performance. 113	

 114	

Frequency shift in behavioural performance oscillations. 115	

In an experiment on human participants (Dataset 1), we first confirmed that rules varied in 116	

difficulty (Figure 4a). There was a significant target-location – hand interaction in accuracy (RR and LL easier 117	

than LR and RL; F(1, 33) = 27.82, p < 0.001, η2 = 0.236), and a main effect of hand (F(1, 33) = 4.33, p = 0.045, 118	

η2 = 0.012). Consistent with model simulations, only drift rate exhibited this interaction (Extended Data 119	

Figure 2b); we therefore used accuracy as our dependent variable. To test model predictions on 120	

behavioural oscillations, we computed peak theta frequency of accuracy-by-ISD (see Methods, 121	

Supplementary Figure 2a). As predicted, we found a significant target-location – hand interaction (F(1, 33) = 122	

6.51, p = 0.015, η2 = 0.047), showing that accuracy oscillated at a slower theta frequency for difficult rules 123	

(LR, RL; Figure 4b), and no main effect. 124	

 125	

Frequency shift in frontal theta predicts task performance. 126	

Next, we investigated whether neural theta exhibited this frequency shift due to task demands. We 127	

extracted EEG theta peak frequency in a 1s pre-stimulus window from an electrode cluster exhibiting 128	

significantly higher theta power in correct than incorrect trials (p < 0.001; Figure 4c; see Methods). As 129	

predicted, peak theta frequency in correct trials significantly decreased from same-side to different-side 130	

rules (F(1, 33) = 18.96,  p < 0.001, η2 = 0.107; Figure 4d; see also individual participant spectra in Extended 131	

Data Figure 3). Although peak theta frequency differed numerically between different-side rules (i.e. LR and 132	

RL), this difference was not statistically significant (W=211, p = 0.139, r = -0.29, 95% CI: (-0.72, -0.14)). 133	

Furthermore, contrasting correct and incorrect trials revealed that higher theta frequency improved 134	

performance in same-side rules, whereas a lower theta frequency improved performances in different-side 135	

rules (F(1, 33) = 4.62, p = 0.039, η2 = 0.036; Figure 4d). Finally, across participants, the degree to which 136	

theta frequency shifted from difficult to easy rules positively correlated with overall accuracy (r(32) = 0.49, 137	
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p = 0.004, 95% CI: (0.17, 0.71); Figure 4e), indicating that a higher sensitivity of theta frequency to rule 138	

difficulty improved task performance. These analyses were carried out using the FOOOF toolbox16 to 139	

estimate peak and power of theta oscillations. Additional control analyses revealed that our results were 140	

robust and observable without using this toolbox (i.e. by estimating theta peak frequency on raw spectra, 141	

see Methods and Supplementary Figure 7). These results cannot be explained by changes in theta power 142	

alone as both peak and power were estimated independently over the 1/f spectrum (Supplementary Figure 143	

2b, see also the Control analyses section below). 144	

- - - - Figure 4 - - - - 145	

 146	

Theta frequency shift generalizes to other tasks. 147	

Having established a robust effect of task demands on theta frequency in our stimulus-action 148	

mapping task, we tested the generality of this mechanism, namely a decrease of theta frequency for 149	

difficult tasks, to other cognitive control tasks. First, we reanalysed previously published data22 from an 150	

experiment in which seventeen participants performed an arithmetic task, preceded by a cue indicating 151	

whether the arithmetic operation was going to be easy or difficult (Dataset 2; Figure 5a). Different from our 152	

original experiment (i.e., Dataset 1), in Dataset 2, only two levels of difficulty were used, thus allowing us to 153	

test whether theta frequency is lower following a difficult compared to an easy cue. There was a significant 154	

effect of difficulty on error rates and on reaction times (see original article for details22). In order to use a 155	

comparable time window for the analysis of the EEG data (relative to Dataset 1), we selected a 1 second 156	

segment of EEG data in the post-cue interval. This segment was centered around the time point in which 157	

the difference in theta power between difficult and easy conditions was the highest (2,000ms post-cue 158	

onset, see Figure 4a in 22). Thus, we considered EEG data in the 1,500 to 2,500ms segment post-cue onset. 159	

Furthermore, because of the low number of incorrect responses (error rates of 1% and 6% for the easy and 160	

difficult conditions respectively) we decided not to use the correct-incorrect contrast as in Dataset 1 (Figure 161	

4c) and chose an a-priori electrode, FCz, based on prior findings in theta oscillations in cognitive control1,23–162	

25. Due to the absence of identified theta oscillations using the FOOOF toolbox in the easy condition of 163	

three participants, we analysed 14 participants in total in Dataset 2. Confirming the model predictions and 164	
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the observation from Dataset 1, we found a lower peak theta frequency in correct trials in the difficult 165	

compared to easy condition (W = 86, p = 0.017, r = 0.64, 95% CI: (0.01, 0.14); Figure 5b). 166	

Second, we reanalysed another published dataset26 from an experiment in which thirty-three 167	

participants performed an Go – No-Go task, where each trial was preceded by a cue indicating whether the 168	

upcoming stimulus was a certain-go (i.e. a Go stimulus with 100% certainty) or a maybe-go (i.e. a No-Go 169	

stimulus with 25% certainty; Dataset 3; Figure 5c). There was a significant effect of cue type on error rates 170	

(see original article for details26). We tested whether theta frequency is lower following a maybe-go cue 171	

compared to a certain-go cue (followed by a No-Go stimulus). As for Datasets 1 and 2, we estimated peak 172	

theta frequency in a 1s segment preceding stimulus onset. Similar to Dataset 2, the number of incorrect 173	

responses was low (1.7% error rates in the certain-go condition), we thus used electrode FCz. Again, 174	

confirming our findings from model and Datasets 1 and 2, we found a higher peak theta frequency 175	

following certain-go cues compared to maybe-go cues (W = 358, p = 0.039, r = 0.36, 95% CI: (-0.01, 0.08); 176	

Figure 5d)). 177	

- - - - Figure 5 - - - - 178	

Control analyses. 179	

We showed that peak theta frequency decreases with task difficulty. A recent study has 180	

demonstrated that, in the case of posterior alpha oscillations, amplitude and frequency are intrinsically 181	

related27 due to the thalamo-cortical circuits thought to generate alpha oscillations28. One concern could be 182	

that such a relationship also exists in the case of midfrontal theta oscillations, thereby confounding 183	

frequency and power. We thus verified whether peak theta amplitude exhibited the same pattern of 184	

decrease with task difficulty. We carried out the same analysis procedure that was used for peak theta 185	

frequency on peak theta amplitude (Figure 6) and showed that there was no statistically significant 186	

difference in peak theta amplitude between easy and difficult conditions in any of the three Datasets (all ps 187	

> 0.078, uncorrected for multiple comparisons). This result shows that peak theta amplitude could not 188	

account for the decrease in peak theta frequency across conditions. 189	

Additionally, we tested whether the shift in peak theta frequency could be confounded by 190	

amplitude or frequency of nearby frequency bands. For both the delta and alpha frequency bands, we 191	
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followed the same procedure as for the main results on the theta band but instead we analyzed peaks in 192	

the 1-3Hz range (delta) or 8-12Hz range (alpha band). No statistically significant decrease with task 193	

difficulty was found for the delta or alpha band, neither in peak frequency (all ps > 0.091, uncorrected for 194	

multiple comparisons, Extended Data Figure 3a, c, e, g, i, k) nor in peak amplitude (all ps > 0.200, 195	

uncorrected for multiple comparisons, Extended Data Figure 3b, d, f, h, j, l).  196	

These control analyses therefore suggest that the shift of peak theta frequency with task difficulty 197	

happens independently of changes in theta amplitude or changes in nearby frequency bands. 198	

- - - - Figure 6 - - - - 199	

 200	

Discussion 201	

In this study, we have identified an adaptive mechanism allowing flexible cognitive control. We 202	

propose a computational model, test its predictions in behavioural and electrophysiological data, and show 203	

that theta oscillations lawfully adapt to task demands by shifting towards optimal frequency for task 204	

performance. Moreover, we replicate this finding in two independent datasets implementing entirely 205	

different tasks (arithmetic operations and response inhibition) and show that the shift of theta frequency 206	

according to task demands is a general mechanism involved in a wide range of cognitive processes. Finally, 207	

we controlled for possible confounding factors such as amplitude modulations and changes in nearby 208	

frequency bands and showed that the shift in theta peak frequency took place independently from other 209	

changes in oscillatory activity. 210	

 211	

These findings are in line with evidence that frequency of neural oscillations adapts to external 212	

demands, e.g. perceptual demands in alpha band29,30, and is related to short-term memory capacity in theta 213	

band31. Our study complements and extends our understanding of how neural oscillations support 214	

cognitive processes by providing a mechanistic account allowing to simulate and test further hypotheses. 215	

An exciting avenue for future research lies in characterizing how adaptive shifts in theta frequency relate to 216	

cross-frequency coupling dynamics32, e.g. between theta and gamma oscillations.  217	
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A related body of work has investigated the role of theta peak frequency in working memory 218	

processes. Indeed, theta oscillations originating from medial temporal lobe and basal forebrain structures 219	

(e.g. hippocampus, septum) have been hypothesized to support the maintenance of ordinal information in 220	

an item sequence in working memory31. According to this theory, the phase of theta oscillations structures 221	

the (re-)activation of distinct neural populations oscillating at gamma frequency, each representing an item 222	

of the maintained sequence. This theory thus predicts that a slower theta frequency, leading to longer 223	

periods in which items could be nested, would increase working memory capacity (see also 33 for a 224	

discussion of oscillatory frequency and cognitive resources). Some studies have confirmed this prediction 225	

empirically by showing that higher working memory loads led to a reduction of theta frequency34,35. 226	

Moreover, a recent study causally tested this prediction using tACS36 and showed that stimulating a fronto-227	

parietal network at a slow (i.e. 4 Hz) versus fast (i.e. 7 Hz) theta frequency led to increase in working 228	

memory capacity. Although theta oscillations that support working memory and cognitive control serve 229	

different purported roles (i.e. structuring maintained information in working memory versus synchronizing 230	

for communication in cognitive control), and have distinct neural origins (hippocampus/septum in working 231	

memory versus medial frontal cortex in cognitive control), both views on theta oscillations highlight the 232	

importance of peak oscillatory frequency. One exciting avenue of research concerns the interplay between 233	

theta oscillations supporting cognitive control and supporting working memory. Indeed, the control over 234	

memorized items in a working memory task, for instance after retro-cuing a subset of maintained items or 235	

during manipulation of a memorized sequence of items, has been shown to depend on midfrontal theta 236	

oscillations37,38, which are plausibly homologous to the ones observed in the current experiment and in 237	

cognitive control more generally1,39. Finally, some studies have demonstrated that midfrontal and 238	

hippocampal theta oscillations can phase-lock or exhibit coherence to each other in certain contexts39,40, 239	

suggesting that the two theta-generating systems can interact. For now, more studies are needed, for 240	

instance using intracranial recordings in humans, to better understand the relationship between midfrontal 241	

and hippocampal theta oscillations. 242	

 243	

In our model, the MFC unit generates theta oscillations when a rule is instructed. These oscillations 244	

orchestrate rule node competition and generate bursts synchronizing rule-relevant sensory and action 245	
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nodes. This mechanism based on theta oscillations is coherent with an energizing, or more generally 246	

modulatory, role of the dorsal Anterior Cingulate Cortex (dACC), in line with the Expected Value of Control 247	

(EVC) theory41,42. According to the EVC theory, the dACC specifies the intensity of the control signal. This 248	

has also been described as a motivational function of the dACC, in line with the observation that lesion of 249	

dACC can lead to deficits in motivated behaviour43. However, these accounts do not discuss the specific role 250	

or importance of theta oscillations. Another line of work demonstrated that the exertion of cognitive 251	

control critically relies on theta oscillations1,2 to create task-relevant functional networks3,4. Most of these 252	

studies showed that the amplitude of theta oscillations generated in the dACC, increases after conflicts and 253	

errors, and that it predicts improvement in task performance1. Our study thus extends our knowledge on 254	

the energizing role of dACC by showing that, in addition to theta amplitude, another dimension of theta 255	

oscillations is crucial for optimal control of task representations: theta frequency. This generalization of the 256	

energizing role to a modulatory one, allows for an extra degree of freedom in control. Specifically, it posits 257	

that two separate aspects of this control signal can be independently manipulated (by the dACC): the 258	

intensity of the control signal through theta amplitude, and the time window of the control signal’s effect 259	

on the task representations through theta frequency. Previous studies have shown that adaptive changes in 260	

theta amplitude (i.e. the intensity of the control signal) are critical for cognitive control, e.g. in conflict 261	

adaptation44,45. On the other hand, adaptively changing the processing time window through theta 262	

frequency allows to adjust a trade-off in the orchestration of task representations by theta oscillations. In 263	

easy task rules, a faster theta frequency is optimal as these representations are set up quickly and reliably, 264	

whereas a slower theta frequency is necessary for difficult rules. This observation opens new avenues for 265	

research to understand the functional role of both theta amplitude and frequency in dACC. 266	

Prior models have ascribed some aspects of rule or action representations to the dACC (e.g. 46,47), 267	

and it has been shown empirically that dACC represents certain aspects of task sets41,48–51. It could thus be 268	

argued that our MFC unit should represent some aspects of actions or task sets. Here, we would like to 269	

underline that our anatomical labelling (e.g. LFC, MFC) was rather broad, in part because the functional 270	

architecture is not fully known, especially with respect to the division of labour between lateral and medial 271	

prefrontal cortices. Thus, the two theories are not necessarily in contradiction, and may simply highlight 272	

different functional roles of lateral and medial frontal cortex. We believe that it will be critically important 273	
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for future modelling studies to investigate how the modulation of task representations can be implemented 274	

through targeted theta oscillations, and that future experimental work should aim at disentangling how 275	

dACC and LFC modulate and represent and task information. 276	

 277	

Theta oscillations have also been shown to support attention in a several previous studies (e.g. 20,52–278	

56). Many studies showed that the amplitude of theta oscillations increases when attention is endogenously 279	

oriented (sometimes referred to as sustained attention52,55), or when it needs to be re-oriented20,53. These 280	

studies report changes of amplitude in neural oscillations in the theta frequency band or theta band 281	

fluctuations in behavioural performance55–58 (see also 21 for a review). It has been proposed that theta 282	

oscillations supporting attentional processes reflect rhythmic sampling of visual information at the 283	

attended location and across the visual field. These theta oscillations are thought to be supported by a 284	

network comprising the lateral intraparietal cortex, the pulvinar nucleus of the thalamus and the frontal 285	

eye fields59,60 (but see also evidence that interaction between local receptive fields in V4 can induce theta 286	

oscillations61). But to date, none of these studies reported a shift in theta frequency across conditions. One 287	

possibility is that such shifts have been overlooked due to averaging of spectral amplitude across 288	

frequencies in the theta frequency band that is commonly performed to test for difference in amplitude of 289	

theta band oscillations, or contamination of peak frequency by other factors (e.g. the aperiodic component 290	

of the spectrum). 291	

However, it seems unlikely that differences in attentional demands underlie our findings. In Dataset 292	

1, the difficulty between same-side and different-side instructions (which induced the theta frequency 293	

shift) was situated at the stimulus-action mapping level, in contrast with attentional demand manipulations 294	

of stimulus discriminability or identity (e.g. simple feature versus feature conjunction searches in 57, or the 295	

number of stimuli to track in 58). Indeed, the tilt of grating stimuli in Dataset 1 was determined in a separate 296	

block before the main experiment and kept constant throughout the main experiment blocks. Furthermore, 297	

there was no difference in the validity of rule instructions relative to target location (i.e., all instructions 298	

were 100% valid) and thus, no uncertainty in stimuli location that would differentially affect sampling of 299	

visual information by attentional processes. Similarly, no differences specific to attentional orientation or 300	

attentional sampling demands distinguished the conditions in Datasets 2 and 3. Thus, differences in 301	
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attentional demands alone cannot explain the shift in theta frequency we observed here. Nevertheless, it is 302	

possible that different theta oscillation-generating systems co-exist and interact to support attention and 303	

cognitive control. In fact, in our model, the activity of rule-relevant Sensory nodes oscillates at theta 304	

frequency due to the bursts sent from the MFC unit. It would therefore be interesting in future studies to 305	

investigate how midfrontal theta oscillations supporting cognitive control interact with other generators of 306	

theta oscillations shown to support attentional processes62. 307	

 308	

Our study also provides a potential explanation for the discrepancy in reported oscillatory 309	

frequencies contributing to top-down cognitive processes63. Indeed, several studies have reported the 310	

involvement of different low-frequency bands14,64–67 during top-down control processes (e.g. decision 311	

making, working memory, hierarchical task implementation). The intrinsic frequency range of theta 312	

oscillations poses limits on the processes that they can orchestrate. Therefore, based on the overwhelming 313	

evidence that theta oscillations support task rule implementation and action monitoring1,68,69, it would 314	

seem that such processes must take place within a theta cycle. In our model, we chose to use the canonical 315	

4-7 Hz limits of theta oscillations, thus a task rule that would require a longer build-up time than the 316	

slowest theta frequency (4Hz, period of 250ms) could not be reliably instantiated. However, several recent 317	

studies have shown that the implementation of complex task rules (e.g. multiple simultaneous novel rules, 318	

nested task rules) elicit frontal midline slow oscillations in the delta range (1-3Hz; e.g. 65,66). Although we 319	

have not found such a spread into lower or higher frequency bands in our own Datasets (see Extended Data 320	

Figure 3), these results potentially question the conventional frequency limits of oscillations supporting 321	

cognitive control (usually attributed to the theta band). More abstract task rules (e.g. 65,70) recruit a larger 322	

extent of frontal areas71  and more rostral frontal areas, in line with accounts of a hierarchical organization 323	

of the frontal cortex 70,72. This larger network of areas might thus require longer periods to build up stable 324	

task representations and necessitate slower oscillations (in the low theta or delta bands) to efficiently and 325	

reliably implement such abstract task rules. 326	

It would therefore be of interest to further test whether a gradual increase in task complexity or 327	

abstractness could elicit a slowing of neural oscillations generated by the medial frontal cortex towards the 328	

delta range. For instance, based on the stimulus-action mapping task we developed for our model and 329	
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Dataset 1, it would be interesting for future research to see whether we observe further slowing of 330	

midfrontal theta oscillations (i.e. into the delta frequency band) if we increase the number of response 331	

options from two (i.e. clockwise, counter-clockwise) to three or four (i.e. different angles of grating rotation 332	

relative to the vertical). Another possibility to study the effect of gradual increase in task complexity would 333	

be to use multi-step tasks, such as hierarchical and/or temporally-extended tasks73,74. Such studies would 334	

inform our understanding of the interaction between task complexity and the flexibility of the temporal 335	

scale of neural operations. 336	

Our model predicts that a decrease in MFC theta frequency from easy to difficult tasks is beneficial 337	

for behavioural performance. Several studies have tested the causal role of theta oscillations in cognitive 338	

control using transcranial alternating current stimulation (tACS) in the theta frequency band75–77. In these 339	

studies, a fixed theta frequency (e.g. 6 Hz) is used across participants and conditions. It would therefore be 340	

interesting to test this prediction from our model by varying tACS frequency across the theta frequency 341	

range. 342	

 343	

The Integrator unit in our model aggregates inputs from the Action unit, which is itself activated by 344	

the Sensory unit; the Integrator unit commits to a response when the activity of any node in this unit 345	

reaches a (collapsing) threshold (see Methods). The slope of the information accumulation of the correct 346	

node (for a particular trial) thus reflects the strength of the sensory signal or the difficulty of the instructed 347	

rule; or, more generally, the task difficulty. This relationship with task difficulty is consistent with the 348	

relationship observed empirically between the P3b ERP component (also referred to as Centro-Parietal 349	

Positivity, CPP) and the difficulty of perceptual decisions78. Indeed, the Integrator unit of our model 350	

constitutes a leaky competing accumulator network18, which is thought to capture essential dynamics of 351	

perceptual decision making as studied in78. One interesting avenue for future research is the observation 352	

that our model accumulation in the Integrator node associated with the correct response, is locked to 353	

gamma oscillations that modulated the activity of rate code neurons in each neural triplet. It has been 354	

previously shown that evidence accumulation is subject to slow-rhythmic fluctuations in the delta 355	

frequency band79. It would therefore be interesting to test whether additional fast-rhythmic dynamics exist 356	

in the upslope of the P3b component, which could have been hidden in previous studies. Indeed, if these 357	
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gamma oscillations were not phase-locked across trials, the ERP averaging procedure would average out 358	

such fluctuations. 359	

 360	

We observed a large interindividual variability in peak theta frequency across conditions (see 361	

individual spectra in Supplementary Figures 3-6). Although interindividual variability of the absolute theta 362	

peak (in Hertz) can be partly attributed to non-functional sources of variance such as skull conductivity and 363	

thickness80,81, variations in individual peak frequency correlate with cognitive performance in the alpha 364	

band82–84 and this variability is related to properties of cortico-thalamic white matter projections85. This 365	

suggests that individual peak frequencies, in different frequency bands can be a stable neurophysiological 366	

trait86 and that this variability of peak theta frequency, in itself, would be an interesting topic of 367	

investigation for future studies. For instance, investigating the causes and consequences of individual peak 368	

theta frequency could have an important impact on the development of personalized neurostimulation 369	

interventions using TMS or tACS77. Indeed, targeting peak theta frequency could allow to optimally 370	

modulate functional connectivity which has been shown to be dysregulated in Alzheimer’s disease87–89. 371	

Moreover, significant response variability exists in repetitive TMS treatment using intermittent Theta Burst 372	

Stimulation (iTBS) for treatment of major depressive disorder90. It would thus be interesting to test whether 373	

individualized iTBS frequency, estimated in a separate experimental procedure (e.g. 91), could, at least 374	

partly, reduce this response variability. 375	

 376	

Despite the robust and replicable association of theta oscillations and cognitive control, the 377	

neurobiological underpinnings of theta generation and modulation remain unclear. Microcircuit models of 378	

theta generation in anterior cingulate cortex (ACC) have been proposed92, and although the relevance of 379	

peak frequency fluctuations has been mentioned, no clear mechanism driving such fluctuations was 380	

proposed yet. One candidate mechanism could be a reinforcement-learning system based on ACC-381	

brainstem structures involving the locus coeruleus (LC) and noradrenergic neuromodulation of ACC 382	

circuits93. Indeed, the LC heavily innervates medial frontal cortex, has been shown to modulate cortical 383	

oscillations, and its activity increases with task demands94. It would thus be interesting to test whether 384	

noradrenergic pathways modulate the frequency of ACC-generated theta oscillations in response to task 385	
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demands. Future studies investigating these candidate neurobiological mechanisms allowing adaptive 386	

cognitive control will be crucial to better understand pathogenesis of several psychiatric disorders, e.g. 387	

attention-deficit/hyperactivity disorder93,95. 388	

 389	

Neural oscillations may address the fundamental binding problem in cognition by gating 390	

information flow in the brain to support cognitive flexibility 33,96. Our results provide critical insights into the 391	

adaptive nature of theta oscillations supporting cognitive control, and call for a more systematic evaluation 392	

of theta characteristics, at computational, behavioural, and neurophysiological levels.  393	
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Methods 394	

Model 395	

Overview 396	

The model implements biased competition (BC) and communication-through-coherence (CTC) and consists 397	

of five units: two control units (lateral and medial frontal cortex, LFC and MFC respectively), two processing 398	

units (Sensory and Action units), and an Integrator unit accumulating evidence from the Action unit, and 399	

producing a response. We will first briefly describe how BC and CTC are implemented in the model, and then 400	

proceed to a detailed description of each unit, and the nodes composing them. 401	

 BC proposes that task representations compete, biased by top-down input. We implemented BC in 402	

the LFC unit, which was composed of rule nodes that pointed to specific processing nodes. Each rule node 403	

pointed to processing modules composing the rule. This allows a rule node to gate task representations 404	

(encoded via an input-output matrix), relevant for that particular rule. For instance, a rule node could 405	

implement the rule “report sensory feature 1 using action set 2” (see this example in Figure 1b). We used 406	

location (Left (L) or Right (R)) as a sensory feature. We used two action sets, namely Left (L) and Right (R) 407	

hand (see Action unit in Figure 1b). Rule nodes were interconnected to create a competitive accumulator 408	

network. Each rule node also received a biasing input throughout a trial from instructions in the form of two 409	

letters presented simultaneously and modelled as a top letter instructing which stimulus feature was the 410	

target (L or R) and bottom letter instructing which action set to use (L or R). We refer to these instructions, 411	

or rules, in this manner: RL for “Right-Left”, in which the first letter refers to the top instruction letter, 412	

instructing the target stimulus feature (Right grating), and the second letter refer to the bottom instruction 413	

letter, instructing the action set to use (Left hand). Each rule in the task (i.e. RR, LL, LR, RL) activated a unique 414	

set of instruction nodes (see in Figure 1b, LFC unit). Two nodes represented the top letter of an instruction, 415	

and two others the bottom letter. This network of instruction nodes created a congruency effect between 416	

instruction letters: top and bottom “Left” nodes were connected, thereby activating each other, and similarly 417	

for “Right” nodes. In a Stroop-like manner, the connectivity in instruction nodes induced a stronger input to 418	

rule nodes for same-side (LL, RR) than for different-side (LR, RL) rules. Furthermore, different-side rules also 419	
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activated non-instructed instruction nodes more than same-side rules due to the lateral excitation in 420	

instruction nodes, thereby making the BC between rule nodes more difficult for different-side rules to win.  421	

The top-down bias signal from control units was implemented through CTC. The MFC unit generated 422	

theta oscillations. During a temporal window whose size depended on the specific theta frequency (i.e. the 423	

slower theta, the longer the temporal window), a competition was initiated between rule nodes. During this 424	

competition window, MFC unit sent bursts of activity11,19,97. The most active rule node (i.e. the one “winning” 425	

the competition) amplified the burst and sent it to Sensory and Action nodes it points to. All Sensory and 426	

Action nodes oscillated at gamma frequency. These bursts reset the phase of Sensory and Action nodes 427	

selected by the LFC unit, and increased synchrony between them, allowing for efficient communication, i.e. 428	

gating. Through this selective routing of bursts to Sensory and Action nodes, the model implements CTC by 429	

creating functional networks to implement a rule. 430	

As a result of the BC, one rule (typically, the correct one) will win the competition; but in cases in 431	

which the competition is stronger, it will require a longer competition window for the correct rule to win the 432	

competition. The latter are difficult rules. In the model, rule difficulty was implemented through conflicting 433	

instructions that activated more rule nodes than easy instructions, making the competition more balanced 434	

between the instructed and the other rule nodes. The consequence is that for difficult rules, the model will 435	

achieve better performance at a slower theta oscillation frequency because longer competition will permit 436	

rule nodes to win the competition and thus gate the rule-relevant processing nodes. In contrast, for easy 437	

rules, performance increases with a higher theta frequency because rule nodes quickly win the competition 438	

and the faster theta frequency allows to more frequently gate rule-relevant processing nodes. Hence, an 439	

adaptive agent would shift theta frequency depending on task demands. 440	

 441	

Oscillatory nodes: a neuronal triplet 442	

In the MFC unit and processing units, each node 𝑖 implements a cortical column simplified as a triplet of 443	

neurons, as used in previous models19,45,97: a rate code neuron (𝑥#) and two phase neurons (one excitatory 444	

(𝐸#) and one inhibitory (𝐼# ) neuron), see Figure 1b-c and Figure 2b, c-d. Phase neurons, i.e. the E-I pair, 445	

generate oscillations with a frequency defined by the E-I pair’s coupling parameter (𝐶). This E-I architecture 446	

uses the same basic principles as the pyramidal-interneuron network gamma (PING) model, which is 447	
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commonly used to model gamma frequency generation98–100 but has also been used to simulate neural 448	

oscillations in other frequency bands (e.g. 101,102).	The activity of each phase neuron is defined by a system of 449	

stochastic difference equations, following previous work19,97, for E neurons: 450	

 𝐸#(𝑡 + ∆𝑡) = 𝐸# + ∆𝑡(−𝐶𝐼#(𝑡) − 𝐷𝑎𝑚𝑝J(𝑟 > 𝑟567)𝐸#(𝑡) +	𝐵#(𝑡)) 1	

and for I neurons: 451	

 𝐼#(𝑡 + ∆𝑡) = 𝐼# +	∆𝑡(𝐶𝐸#(𝑡) − 𝐷𝑎𝑚𝑝J(𝑟 > 𝑟567)𝐼#(𝑡)) 2	

In which 𝐸#(𝑡) and 𝐼#(𝑡) denote the activity of the excitatory and inhibitory neurons of node 𝑖 at time 𝑡 and 452	

model data were simulated at 500Hz, so ∆𝑡=0.005s. The radius 𝑟 of oscillation (𝑟 = 𝐸: + 𝐼:) of an E-I pair, 453	

which corresponds to its oscillatory amplitude, is constrained to a radius 𝑟567 = 1 (except for simulations in 454	

which we varied MFC theta amplitude, see Extended Data Figure 1c-d). To implement this constraint, we use 455	

an indicator function J(. ), which returns 1 when its argument is true (i.e., when 𝑟 > 𝑟567), and 0 otherwise. 456	

The parameter Damp represents the strength of the attraction towards rmin and prevents the activity of the 457	

E-I pair from growing too large (i.e., it dampens activity of the E and I neurons). In more neurophysiologically 458	

realistic models (e.g. 103), such dampening of the E-I pair oscillatory amplitude would be implemented via a 459	

projection between the E-I pair and a pool of inhibitory neurons that in turn can inhibit the E and I neurons. 460	

For convenience, we here implemented the simpler, approximate implementation via the indicator function 461	

J and the Damp parameter, in line with previous models19,45,97. The parameter 𝐷𝑎𝑚𝑝 was set to 0.3 for 462	

processing nodes. For the MFC node, 𝐷𝑎𝑚𝑝 was set to 0.005*theta_frequency to scale with the speed of the 463	

E-I pair theta oscillations and maintain an equal amplitude across time for all theta frequencies. The term 𝐵#  464	

denotes the burst that processing nodes could receive depending on the trial instructions (see Medial Frontal 465	

Cortex unit and Lateral Frontal Cortex unit for details). The MFC node did not receive bursts, thus 𝐵<=>  was 466	

set to 0. 467	

The frequency of oscillations generated by the E-I pair was defined by the coupling parameter 𝐶, and 468	

its relation to frequency in Hertz is given by the following equation: 469	

 𝐶 = 𝑓2𝜋 3	

In which f denotes the frequency in Hertz and 𝐶 the coupling parameter in the E-I pair. 470	
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Rate neurons receive, process, and transmit information to other nodes. Their activity (xi) is 471	

determined by the input to the node (𝑖𝑛#). For instance, in a Sensory node, the input 𝑖𝑛#  to a rate neuron is 472	

either zero (if its preferred stimulus feature is not presented) or 0.02 (if its preferred stimulus is presented; 473	

see Processing units for more details). This input is then modulated by its excitatory phase neuron (𝐸#). Thus, 474	

rate neuron activity is updated by: 475	

 𝑥#(𝑡 + 	∆𝑡) = 𝑥#(𝑡) + 	∆𝑡(−𝑥#(𝑡) + 𝑖𝑛#𝐹D𝐸#(𝑡)E) 4	

with F(.) being a logistic function of 𝐸#: 476	

 𝐹(𝐸#) = 	
1

1 + 𝑒HI(JK(L)HMN)
 

5	

 477	

Processing units 478	

The processing units are a Sensory unit and an Action unit. Each unit is composed of nodes 479	

representing cortical columns (see Oscillatory nodes: a neuronal triplet section). 480	

In all nodes of Sensory and Action units, the coupling parameter 𝐶  was set to generate gamma 481	

oscillations. The gamma oscillations were set to 30 Hz by using a coupling parameter of C = 188.5, which, in 482	

the computational implementation of the model, was set to 0.377 to account for the sampling rate at 500Hz 483	

(C/500 = 0.377). We used low gamma-band oscillations around 30 Hz as this sub-band of gamma has been 484	

shown to be critically important for visual processes104,105 and to be modulated by theta-band oscillations 485	

following task cues11. To test model stability, we also ran simulations using a higher gamma frequency of 50 486	

Hz and found similar results. 487	

To further show model stability and induce noise in processing nodes’ oscillatory phase, we modified 488	

the neural triplet dynamics used in prior implementations19 in which noise was introduced by independently 489	

varying the oscillatory frequency of each neural triplet across trials, while fixing it across time for each single 490	

trial. For that purpose, we added random slow fluctuations in the coupling parameter of nodes oscillating at 491	

gamma frequency, thereby mimicking noise in ongoing gamma oscillations as observed in empirical 492	

studies106. We generated random numbers from a normal distribution with parameters 𝜇	= 1, 𝜎 = 1, for each 493	

trial and each processing unit (i.e. Sensory and Action). A low-pass filter was then applied to these coupling 494	

fluctuations time courses, i.e. Gaussian convolution with 𝜎 = 1 (in seconds). Finally, the coupling parameter 495	
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(i.e. C = 0.377, for 30Hz oscillations) was multiplied by the value of these low-frequency coupling fluctuations. 496	

The result of this manipulation was slow random fluctuations of gamma frequencies in phase neurons of 497	

processing units. For example, for one trial, Sensory nodes were oscillating at 32Hz at a certain time t, then 498	

gradually shifting to 27Hz, then to 35Hz, etc. This slow fluctuation was generated independently for Sensory 499	

and Action units. 500	

Rate neurons of the Action unit receive input from rate neurons of Sensory nodes in order to 501	

implement the two-alternative orientation discrimination task on gratings. The main task was to report 502	

whether the target grating was tilted clock-wise (CW) or counter-CW (CCW) from the vertical axis. To report 503	

the tilt the rule was to use the index and middle fingers of either the left or right hand, indicated by the 504	

instructions. The left middle finger and right index finger should be used to report a grating tilted CW, and 505	

the left index finger and the right middle finger should be used to report a grating tilted CCW. Therefore, the 506	

connectivity between Sensory and Action nodes’ rate neurons implemented this rule. 507	

 508	

Integrator unit 509	

The Integrator unit accumulates information for each response, and triggers the model response once one 510	

of the Integrator nodes reaches a threshold. There is thus one Integrator node for each Action node. The 511	

Integrator nodes constitute a competitive accumulator network (as implemented in prior work, e.g. 18)	and 512	

followed the following update: 513	

 𝒚UVLWX(𝑡	 +	∆𝑡) = 	𝒚UVLWX(𝑡) 	+ 	∆𝑡(𝑾UVLWX𝒙[ +𝑾\]L,UVLWX𝒚UVLWX(𝑡)) + 	𝜎UVLWX𝑵(𝑡) 6	

In which 𝒚UVLWX(𝑡) is a vector collecting the activity of all Integrator nodes at time t, 𝑾UVLWX  denotes the 514	

weight matrix between Action nodes and Integrator nodes, 𝒙[ denotes input from Action nodes to Integrator 515	

nodes. 𝑾\]L,UVLWX  denotes the update matrix of Integrator nodes in which off diagonal cells are set to -0.10 516	

to implement lateral inhibition, and diagonal cells, representing the update rate of the competitive 517	

accumulator network, are set to 1. Finally, noise was added for each of the four variable Integrator nodes 518	

with 𝜎UVLWX = 0.05 multiplying a vector 𝑵(𝑡) of four random values drawn from a standard-normal Gaussian 519	

distribution. 520	
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As stated before, the Integrator unit produces a response when a threshold is reached by one of the 521	

Integrator nodes. To model a speeded task constraint, we modified the classic competitive accumulator 522	

network18 to implement a collapsing threshold, equivalent to a collapsing bound in the drift diffusion model, 523	

which has been shown to adequately model the dynamics of response threshold in speeded tasks107. The 524	

threshold 𝜃y therefore decreased exponentially from stimulus presentation to response deadline following 525	

this equation: 526	

 
𝜃c(𝑡) = 4 − e1 − 𝑒fH

L
g.hIi

j

k
𝑎
2

 
7	

In which 𝜃y(t) denotes the threshold of the Integrator unit at time t, and 𝑎 denotes the initial starting point 527	

of 𝜃y. In all simulations 𝑎 was set to 4. Once one of the four Integrator nodes reached the threshold, we 528	

recorded the accuracy, depending on instruction, stimuli and the Integrator node which reach the threshold, 529	

and the time elapsed from stimuli onset, which provided reaction time for this response (see Figure 2e). 530	

 531	

Medial Frontal Cortex unit 532	

The MFC unit generates theta oscillations that 1) generate bursts that phase-reset the processing units, as in 533	

prior work19,45,97, and 2) that additionally initiate a competition window in LFC nodes (see Figure 2a-b). 534	

The MFC unit is composed of one single node in which the E-I pair generates theta oscillations, whose 535	

frequency depends on the coupling parameter between the E-I pair. The rate neuron of the MFC node follows 536	

a Bernoulli process (Be) with a probability defined by the activity of the node’s E neuron: 537	

 𝑀𝐹𝐶m(𝑡) = 𝐵𝑒 n
1

1 + eHI(Jpqr	(s)H	Mtuvwx)
y 

8	

In which Be denotes the Bernoulli process, EMFC denotes the activity of the MFC E neuron, and 𝜃burst (set to -538	

1) denotes the offset of the relation between EMFC and p (probability to trigger a burst). Be(p) is 1 with 539	

probability p, it will thus typically be 1 when EMFC(t) oscillation is near its peak. When MFCx = 1, a fixed 540	

amplitude burst = 0.5 is emitted to the LFC unit. The purpose of this burst is to synchronize processing nodes 541	

selected by the LFC, by phase reset of their E neuron (see Processing units for the burst’s effect, and Lateral 542	

Frontal Cortex unit for the selection of the processing nodes receiving the burst). 543	

In addition to the burst-emitting function of the MFC proposed in earlier work3,19, the MFC in the 544	

present model opens a competition window between rule nodes in the LFC at each cycle of its theta 545	
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oscillations. At each cycle of theta oscillations in EMFC activity, a competition window is opened in which LFC 546	

rules compete; this competition starts when EMFC >	𝜃comp, with 𝜃comp = 0.1. The competition window lasts a 547	

fixed temporal interval across cycles defined by (as just defined) 𝜃comp and the crucial CMFC parameter, which 548	

determines the theta frequency. To simulate different theta frequencies in the MFC, we varied the MFC 549	

coupling parameter (CMFC) from 0.050 (for 4Hz theta), to 0.087 (for 7Hz theta), see equation (3) in the section 550	

Oscillatory nodes: a neuronal triplet. 551	

 552	

Lateral Frontal Cortex unit 553	

In order to implement biased competition in rule implementation, we extended previous models 554	

simulating task rules. We considered rule nodes as pointers to processing nodes constituting components of 555	

the rule (e.g. 41,108). Such pointers permit to bias processing units according to task rules and to create 556	

bindings between task-relevant components (e.g. 109). In recent computational accounts incorporating 557	

oscillations and synchrony, the Lateral Frontal Cortex (LFC) has been hypothesized to contain such pointers 558	

which route MFC bursts to processing nodes3,19,45,97. However, in these latter models no competition occurs 559	

between rule nodes. In the current model, LFC is composed of rule nodes, where each such node consisted 560	

of one rate code neuron only. Together, they form a competitive accumulator network18, thereby 561	

implementing competition between rules. Each rule node receives a constant input throughout a trial from 562	

instruction nodes, which themselves are activated by the two instruction letters. Two instruction nodes 563	

represent the top letter of an instruction, and two other instruction nodes the bottom letter. This network 564	

of instruction nodes implements a congruency effect between instruction letters: top and bottom “Left” 565	

nodes were connected with a positive weight, thereby activating each other, and similarly for “Right” nodes 566	

(see instruction nodes in Figure 1b). Instructions are represented as a vector of binary values (zeros and ones) 567	

in which the first two indices represented a top L and R, respectively, and the two last indices represented 568	

the presence of a bottom L and R, respectively. For instance, the rule RL was represented as 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 =569	

[0, 1, 1, 0]. This was the input to the instruction nodes, which then projected to rule nodes through the 570	

following equation: 571	

 𝒊𝒏��\W = 𝑾#V�L���L#�V	𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 9	
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In which 𝑖𝑛��\W  denotes the input to rule nodes (i.e. from instruction nodes). Matrix Winstruction represents the 572	

connectivity between instruction nodes implementing the lateral excitation, i.e. instruction letter congruency 573	

effect. The diagonal of Winstruction was set to 1, and the cells representing the positive weight implementing 574	

the lateral excitation were set to 0.5. 575	

The activity of rule nodes is updated through the following equation: 576	

 𝒚��\W(𝑡 + ∆𝑡) = 	𝒚��\W(𝑡) + ∆𝑡(𝑾#V𝒊𝒏��\W +𝑾\]L,��\W𝒚��\W(𝑡)) + 	𝜎��\W𝑵(𝑡) 10	

In which 𝒚��\W(𝑡) denotes the activity of all rule nodes at time t, 𝒊𝒏��\W  denotes the input to rule nodes (i.e., 577	

instructions) and 𝑾#V denotes the weight matrix between instruction nodes and rule nodes in which weights 578	

between an instruction node of a particular letter and rules containing this letter was set at 0.5. For example, 579	

instruction nodes “top R” and “bottom L” projected to the rule node “RL” with weight 0.5 (see connectivity 580	

between instruction and rule nodes in Figure 1b). 𝑾\]L,��\W  denotes the update matrix of rule nodes in which 581	

off-diagonal cells are set to -0.1 to implement lateral inhibition; the diagonal cells, representing the update 582	

rate of the competitive accumulator network, are set at 0.13. Finally, noise was added for each of the four 583	

rule nodes with 𝜎��\W = 0.075, multiplying a vector 𝑵(𝑡) of four random values drawn from a standard-584	

normal Gaussian distribution. 585	

 This architecture from instruction nodes to rule nodes allowed to manipulate task difficulty. For 586	

instance, the same-side rule LL, modelled as 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 = [1, 0, 1, 0], provided strong input to the LL 587	

rule node, and a small input to the LR and RL rule nodes as they each share the bottom and top letter, 588	

respectively, with the instruction LL. Thus, for 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 = [1, 0, 1, 0] , 𝒊𝒏��\W = [0, 1.4, 0.7, 0.7] , in 589	

which the 𝒊𝒏��\W  indices represent, in this order, RR, LL, LR and RL. On the other hand, a different-side rule 590	

like RL, modeled as 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 = [0, 1, 1, 0], provided a relatively strong input to the RL rule node, and 591	

a small input to LL, RR and LR nodes. Thus, for 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 = [0, 1, 1, 0] , 𝒊𝒏��\W = [0.7, 0.7, 0.4, 1] , 592	

creating a stronger competition between the instructed rule (RL) and the other rules (RR, LL and LR), see 593	

Figure 2a. 594	

Finally, the most activated rule node at each time t, amplified and routed the burst emitted at time 595	

𝑡 by the MFC (𝑀𝐹𝐶m(𝑡)) to the processing nodes it points to: 596	

 𝑩(𝑡) = 	𝑳𝑭𝑪��#VLW��	�𝒚��\W(𝑡) ∘ 	JD𝒚��\W(𝑡) = maxD𝒚��\W(𝑡)E	E�	𝑀𝐹𝐶m(𝑡) 11	
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In which 𝑩(𝑡) is a vector of burst values arriving at each processing node’s E neuron (to reset its phase). 597	

𝒚��\W(𝑡)  is the activity of rule nodes at time t and ∘ represents point-wise product. J(. )	is an indicator 598	

function that returns an array of 0 and 1, with 1 only for the most activated rule node at time t. 𝑳𝑭𝑪��#VLW��  599	

is a matrix containing the processing nodes each rule node is pointing to. 𝑀𝐹𝐶m(𝑡) is the activity of the MFC 600	

rate neuron at time t. This could be 0 or 0.5 (activity values were fixed), depending on whether the MFC is 601	

emitting a burst or not at that particular time point. Critically, equation (11) shows that only processing nodes 602	

corresponding to the most activated rule node received the burst, while all other processing nodes did not. 603	

For instance, if the instructed rule is RR and the most activated rule node at time t is RR, the Sensory module 604	

“Right grating” and the Action module “Right hand” received the burst, thereby synchronizing their gamma 605	

oscillations. 606	

As a result of the congruency in instruction letters and BC between rule nodes, the instructed rule 607	

will win the competition more quickly for same-letter rules, i.e. easy rules, than for different-letter rules, i.e. 608	

difficult rules (Extended Data Figure 1a-b). Therefore, same-side rules will succeed to synchronize rule-609	

relevant processing nodes more quickly. One consequence is that, for difficult rules, the model will achieve 610	

better performance at a slower theta oscillation frequency when competition lasts longer. In contrast, for 611	

easy rules, model performance increases with a slightly higher theta frequency. Hence, an optimal agent 612	

would shift theta frequency depending on task demands.  613	

 614	

 Simulations 615	

We ran simulations of the model on the task depicted in Figure 1a. Instructions are shown for 200ms (two 616	

letters), then a variable ISD between 1,700 to 2,200ms, in 11 steps of 50ms, allows to prepare the instructed 617	

mapping, and subsequently two gratings are shown for 50ms. There were four possible instructions: RR, LL, 618	

LR and RL. 619	

The presentation of each possible stimulus was modelled as constant input set to a value of 0.02 to 620	

the corresponding Sensory node. There were four possible stimulus configurations because each of the two 621	

gratings could be tilted either CW or CCW. For each combination of task parameters, we ran 100 repetitions, 622	

which amounts to: (11 ISD + 4 instructions + 4 stimuli configurations) * 100 = 17600 trials. We then grouped 623	

repetitions into 34 groups of ~500 trials each, each representing one participant. 624	
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  625	

Effect of amplitude on competition window 626	

To verify that high and low theta frequencies are optimal for easy and difficult tasks, respectively, we 627	

independently varied MFC theta amplitude and frequency, and computed the competition window lengths 628	

for each combination (Extended Data Figure 1c). Higher theta amplitudes increased the competition window 629	

length but quickly reached a ceiling (around an amplitude of 3). Theta frequency on the other hand produced 630	

larger increases in competition window, indicating that effects of theta frequency on model performance 631	

cannot be explained by theta amplitude alone. Furthermore, we replicated our main simulation at different 632	

MFC theta amplitudes and obtained similar results (i.e. the difference in optimal frequency for easy and 633	

difficult rules, see Extended Data Figure 1d). 634	

 635	

Stimulus-action mapping experiment (Dataset 1) 636	

Participants 637	

Thirty-nine human participants were recruited for this experiment (M ± STD = 23.7 ± 4.5 years old, range: 18-638	

41 years old; 27 females). All participants had normal or corrected-to-normal vision and no history of 639	

neurological problems. All participants provided written informed consent and received monetary 640	

compensation for their participation. Five participants were excluded from the analysis: two completed less 641	

than 5 blocks, one had less than 200 trials after trial rejection based on eye-tracking data, one had poor 642	

overall behavioural performances (i.e. less than 50% overall accuracy), and one participant was left handed. 643	

The experiment was approved by the local ethics committee (Faculty of Psychology and Educational Sciences, 644	

Ghent University). Sample size was not computed a priori: we aimed for more than 30 participants. First, we 645	

recruited 35 participants to reach a total number of more than 30 participants after drop-out, considering a 646	

~10% drop-out rate due to noise-corrupted data or other issues related to participants’ task performance. 647	

The sample size after exclusions dropped at 30 participants, we thus tested 4 more participants, which were 648	

all included, bringing the sample size to 34 participants. Assuming a medium effect size and aiming for a 649	

power of 0.8 in a within-subject repeated measures ANOVA analysis, the study would require a sample of 32 650	

participants. Data collection and analysis were not performed blind to the conditions of the experiments. 651	
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 652	

Apparatus and stimuli 653	

Participants sat in a dimly lit room, 60 cm from a 24in LCD monitor (refresh rate: 60 Hz; resolution: 1280 × 654	

1080 pixels). A chinrest was used to stabilize head position and distance from the screen. The experiment 655	

was implemented using Python 2.7 and the PsychoPy toolbox110.  656	

 657	

Experimental design 658	

Participants were instructed to perform a 2-alternative forced choice (2-AFC) orientation discrimination task 659	

on two sinusoidal gratings presented simultaneously on each side of a central fixation cross, as depicted in 660	

Figure 1a. Each grating was randomly tilted either CW or CCW relative to the vertical axis. The stimuli were 661	

sinusoidal gratings windowed by a raised cosine (size: 5° of visual angle, 10% contrast, 3 cycles per degree, 662	

at 5° eccentricity, on a gray background). The tilt angle was calculated for each participant using a staircase 663	

procedure (see below) to avoid ceiling accuracy. Participants were instructed at the beginning of every trial 664	

to perform the 2-AFC task on the right or left grating, and respond using their right or left hand (index and 665	

middle finger respectively for CW and CCW tilt). 666	

Instructions letters were presented for 200ms with a size of 0.75° of visual angle, and positioned 667	

above and below the central fixation cross (vertical eccentricity: 1° of visual angle). The letter above the 668	

fixation cross instructed which grating was the target, i.e. on which grating the discrimination should be 669	

performed, and the letter below the fixation cross instructed which hand to use to respond. After instructions 670	

a preparation interval followed to allow participants to process instructions and prepare the stimulus-action 671	

mapping to perform the task. We used a dense behavioural sampling paradigm with multiple, densely 672	

distributed, instruction-stimulus delays (ISD)20: the duration of the ISD, between instructions and stimuli, was 673	

randomly chosen on each trial from 11 possible durations going from 1,700 to 2,200ms in 11 steps of 50ms. 674	

The variation in ISD was introduced to measure oscillations in behavioural performance and test predictions 675	

of the model (see Figure 3c). 676	

A trial time course consisted of a 1000ms baseline period, followed by instruction presentation for 677	

200ms, then the ISD, and finally the stimuli presentation for 50ms. After stimuli onset, the fixation cross 678	

turned blue, indicating the beginning of the 700ms response window. If a correct response was given, the 679	
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fixation cross turned green; if an incorrect response was given, the fixation cross turned red. If no response 680	

was given during the response window, a message indicated that the participant was too slow and the 681	

experiment was paused, prompting the participant to take a break if needed, and press “Space” to resume 682	

the experiment. Every trial that was missed, i.e. not responded to, was added to the trial queue, and 683	

presented again at the end of the block. Participants performed one training block to familiarize them with 684	

the experimental design, one staircase block to compute the participant’s grating tilt angle, and between 5 685	

and 8 blocks of the task depending on the number of missed trials (i.e. participants who missed more 686	

response deadlines had longer blocks because trials were queued at the end of the block). The practice block 687	

consisted of 80 trials, the stimulus was shown for 100ms and the response window lasted 1000ms to make 688	

the practice task easier. 689	

Following the practice block, participants completed a block implementing a staircase procedure on 690	

the tilts of the gratings. The staircase was done across all instructions and all ISDs to find a tilt level that would 691	

avoid ceiling performance and thus allow for variability across ISDs. We used a one-up two-down staircase 692	

procedure consisting of 80 trials. The event timings and stimulus properties were the same as in the main 693	

task. Only the tilt of the gratings varied throughout the trials. Initially, a wide tilt (7°) was set. The procedure 694	

started with a step size of 3°, which was divided by 2 every other reversal starting at the second reversal. The 695	

reversal corresponded to switches in participants’ response accuracy, i.e. from a sequence of correct 696	

responses to an incorrect response or the other way around. When a participant switched from a correct 697	

response to an incorrect response, the difficulty of the task decreased by increasing the tilt of the gratings. 698	

Conversely, when a participant responded correctly after a sequence of errors, the difficulty of the task 699	

increased, i.e. the tilt of the gratings decreased. The minimum tilt step size was set at 0.1°, the maximum 700	

final tilt of the gratings was 30° and the minimum was 0.5°. The final tilt was the average of the last 10 tilts. 701	

After the staircase block, participants completed between 5 and 8 blocks of the main task depending 702	

on the number of trials missed, i.e. participants who missed the response deadline more often, had longer 703	

blocks (because of queued trials), and therefore completed less blocks. In total the experiment lasted ~3 704	

hours from explanation of the task to removing the EEG cap. 705	

 706	

Eye-tracking acquisition and processing 707	
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We recorded eye movements using a SMI eye-tracker with a sampling rate of 250Hz (RED250 mobile system; 708	

SensoMotoric Instruments, Teltow, Germany). The eye-tracker camera using infrared optics was attached to 709	

the bottom of the computer screen. We used the PyGaze Python toolbox111 to control the eye-tracker 710	

through the experiment’s script. Each block of the experiment started with a calibration procedure in which 711	

participants had to follow a moving red dot with their eyes to nine locations on a grey background, the 712	

success of which was validated before continuing. Gaze position was epoched from instructions onset to 713	

stimulus presentation. To epoch gaze position data and align them with EEG data, we aligned the trial onset 714	

(instructions presentation) using the trial onset trigger in eye-tracking data and the trial onset trigger in EEG 715	

data. We then calculated the distance from the fixation cross in degrees of visual angle at each time point in 716	

the epoch. Any trial in which the gaze was outside a 1.5° radius centered on the fixation cross at any moment 717	

in the ISD, was rejected in the behavioural and EEG data.   718	

 719	

Behavioural data analysis 720	

As described above, trials in which gaze position distance from the fixation cross exceeded 1.5° of visual angle 721	

were discarded. Trials were grouped by instruction and by ISD. Model simulations showed a theta-frequency 722	

– rule-difficulty interaction in accuracy but not in reaction times (Figure 3a and Extended Data Figure 2a). We 723	

therefore used accuracy as our dependent variable. 724	

To compute spectra of behavioural accuracy oscillations across ISDs we first average-padded 725	

accuracy values (Supplementary Figure 2a). Average-padding was performed for each participant and for 726	

each instruction independently to increase frequency resolution to 1Hz20. To pad the data, values 727	

corresponding to average accuracy across ISDs (by instructions) were added on either side of the empirical 728	

data points. Specifically, the 11 time points, spanning 500ms, were padded to get a 1,000ms segment, thus 729	

adding 5 data points before the first data point and 5 after the last one.  730	

Then we computed a fast Fourier transform (FFT) to obtain frequency spectra of each accuracy-by-731	

ISD time course for each participant and each instruction. FFT allows to decompose the behavioural data 732	

from the time domain into frequency components to estimate an amplitude spectrum, i.e., the amplitude of 733	

oscillations at each frequency present in the original data. We then extracted peak theta frequency by 734	

selecting the frequency with the largest amplitude. Finally, we z-scored the peak frequency value across 735	
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rules, separately for each participant, to discard any difference in offset or range of theta peak frequencies 736	

across participants. This procedure was carried out to specifically test the model prediction that theta peak 737	

frequency decreases with task difficulty, thus inter-individual differences in theta peak frequency for each 738	

instruction were not of interest in this specific analysis. The raw peak frequencies for behavioural oscillations 739	

are also available in Supplementary Figure 7a (left panel). 740	

 741	

EEG acquisition and preprocessing 742	

EEG was recorded using a Brain Products actiChamp system with 64 active scalp electrodes positioned 743	

according to the standard international 10–20 system at a sampling rate of 512 Hz. Four electrooculographic 744	

(EOG) channels were used to record eye-movements and blinks: two were placed on the outer canthi of the 745	

eyes, and two were placed above and below the right eye. All preprocessing steps were carried out with the 746	

Python MNE toolbox v.0.21112. Raw EEG data were downsampled offline to 200Hz, re-referenced to the 747	

average reference and low-pass filtered at 48Hz using a FIR filter with a Hamming window. The analysis of 748	

the pre-stimulus interval was performed on epochs from -1000ms to 0ms relative to stimulus onset, yielding 749	

epochs of 1000ms. A linear detrend was performed on each epoch individually. After trial rejection based on 750	

eye-tracking data (see Eye-tracking acquisition and processing) raw EEG and EOG time courses were visually 751	

inspected on a trial-by-trial basis to reject visible artifacts, eye movements or blinks. The average percentage 752	

of rejected trials across participants was 26% ± 14 (mean ± standard deviation). 753	

 754	

EEG spectral analysis 755	

To estimate peak frequency of theta oscillations we first computed power spectral density over the 1000ms 756	

window using Welch’s method provided in the Scipy toolbox v.1.3.1113. The Welch power density estimation 757	

was performed using a Hann window and zero-padding to obtain 400 time points of data in order to 758	

smoothen the spectra to improve estimation of peak frequency in the following analysis step. We then used 759	

a recent method that allows to parametrize neural spectra by fitting the 1/f pattern in electrophysiological 760	

recordings spectra (also called the aperiodic component), and subsequently identifies spectral peaks by 761	

fitting Gaussians on the flattened spectrum (i.e. after removing the aperiodic component). This method 762	
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thereby provides a sensitive identification and estimation of oscillatory processes in neural activity (FOOOF 763	

toolbox, version 1.0.016). 764	

Indeed, this method permits to de-confound several factors that can mask shifts in peak theta 765	

frequency in grand average spectra (Supplementary Figure 3a). First and foremost, interindividual differences 766	

in the 1/f structure (also called aperiodic component) of the spectrum can mask shifts of peak theta 767	

frequency across conditions. More specifically, the offset and slope (also called exponent) of the aperiodic 768	

component have been shown to vary across participants16,114–116, see Supplementary Figure 3b. This 769	

variability can therefore affect the apparent peak frequency in the grand average spectrum. Second, 770	

interindividual variability in the height of theta band peaks makes it more difficult to compare the grand 771	

average (as can be seen in the grand average spectra in Supplementary Figure 3a). And third, relatively large 772	

peaks in the alpha band (which can be as much as 6 times larger in power than the theta frequency peaks in 773	

some participants) vary in peak frequency and width across participants (see Supplementary Figure 3b 774	

(middle panel), individual participants’ spectra in Extended Data Figure 3 and Supplementary Figure 5-6). 775	

These large peaks in the alpha band can alter the shape of the grand average spectra and mask changes in 776	

peak theta frequency. Together these confounding factors require the estimation of the aperiodic 777	

component of the spectrum and the independent estimation of oscillatory peaks over the aperiodic 778	

component, as is performed in the FOOOF toolbox16 (but see below for control analyses in which we show 779	

that our main results are visible in raw power spectra, and robust and statistically significant when estimating 780	

theta peak frequency based on the raw power spectra, i.e. without the FOOOF toolbox).  781	

This algorithm yields several measures, including the peak frequency and amplitude of oscillations 782	

detected over the 1/f pattern in the spectra (i.e. by reporting the mean and height of the Gaussian fitted to 783	

each identified spectral peak in the flattened spectrum, see Supplementary Figure 2b). Using this algorithm, 784	

we computed separately for every participant, trial and electrode, whether a peak was detected in the theta 785	

frequency range (i.e. higher than 3Hz, and lower than 8Hz) and we saved the estimated peak (in Hertz) and 786	

the amplitude of the peak (in µV2/Hz). Settings for the FOOOF algorithm were set as follows. To obtain peak 787	

frequency and amplitude in the theta frequency range, the power spectra were parameterized across the 788	

frequency range 2 to 20Hz. The peak width limits were set between 0.5 and 2, to find peaks that were 789	

frequency-specific. The maximum number of peaks was set at 4, under the assumption that in the 2-20Hz 790	
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frequency range there could be four meaningful peaks, i.e. one in each band (delta, theta, alpha and beta). 791	

No minimum peak height was set, peak threshold was set at 2 (default), and aperiodic mode was fixed 792	

(default). 793	

To test model predictions in theta peak frequency we separated trials according to the instruction 794	

and accuracy for each participant and each electrode. As a sanity check, replication of previous findings on 795	

theta amplitude, and as an independent electrode selection procedure, we investigated the scalp distribution 796	

of theta oscillation power for correct versus incorrect trials for Dataset 1 (FCz was selected based on previous 797	

findings1 for Datasets 2 and 3 since there were not enough incorrect trials, see Results). In order to perform 798	

this analysis, we extracted the power of peaks found in the theta band using the FOOOF toolbox, for each 799	

participant, for each electrode, for each instruction, and for each trial separately. We then z-scored these 800	

values across electrodes. This allowed to highlight the specific theta power topography elicited by proactive 801	

cognitive control, i.e. preparing to implement an instructed stimulus-action mapping. We performed a 802	

cluster-based permutation test117 with 10,000 permutations on scalp topographies to test whether a cluster 803	

of electrodes showed relatively higher theta power in correct versus incorrect trials (across all instructions). 804	

This analysis revealed a significant cluster of electrodes in fronto-central sites (permutation cluster test: p < 805	

0.001, Figure 4c). We then computed the average peak theta frequency (in Hertz), extracted using the FOOOF 806	

toolbox, in the selected cluster of electrodes (Figure 4c). In Dataset 1, we z-scored the peak frequency value 807	

across rules, separately for each participant, to discard any difference in offset or range of the EEG theta peak 808	

frequencies across participants. In Dataset 2 and 3, we centered the peak frequency value across conditions, 809	

separately for each participant, for the same reasons and because there were only two conditions. This 810	

procedure was carried out to specifically test the model prediction that theta peak frequency decreases with 811	

task difficulty, thus inter-individual differences in theta peak frequency for each instruction were not of 812	

interest in this specific analysis. The raw peak frequencies for EEG oscillations in all three Datasets are also 813	

available in Supplementary Figure 7a-c. 814	

Because of the challenging nature of characterizing power spectra (see for instance 118), we also 815	

carried out additional control analyses directly on the raw power spectra to test whether our main result was 816	

observable without using the FOOOF toolbox (i.e. no aperiodic component estimation nor Gaussian fitting). 817	

First, we sought to better illustrate the shift in theta peak frequency that can be confounded by inter-818	
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individual differences and other factors (see Supplementary Figure 3a). To do so, we re-plotted the grand 819	

average spectra (from Supplementary Figure 3a) after aligning each participant spectra to its own peak in the 820	

most difficult rule (i.e. RL) and scaling each grand average spectrum between 0 and 1. This analysis, anchored 821	

in the raw spectra (without using the FOOOF toolbox) showed that a clear shift towards higher frequencies 822	

was visible for easier rules, confirming that our results are robust and observable at the group level. 823	

Second, we showed that our main finding that frontal peak theta frequency decreases with rule 824	

difficulty is also present (both substantially and statistically) when estimating theta peak frequency directly 825	

in the raw amplitude spectra as the theta-band frequency exhibiting the highest power (in µV2/Hz, see 826	

Supplementary Figure 8). More specifically, for each participant, condition and electrode in the identified 827	

fronto-central cluster, we extracted the theta-band frequency with the highest power, then averaged these 828	

peak frequencies across electrodes, resulting in a theta peak frequency per participant per condition. 829	

Moreover, to evaluate the presence of our predicted effect, i.e. a decrease in peak theta frequency from 830	

same-side to different-side rules, we computed the proportion of participants exhibiting a positive difference 831	

in peak theta frequency between same-side and different-side rules. We carried out this analysis in both peak 832	

frequencies obtained using the FOOOF toolbox, and peak frequencies obtained directly from the raw spectra. 833	

This analysis revealed that a majority of participants exhibited the predicted effect (see Supplementary Figure 834	

8 and discussion thereof), showing once again that our results are replicated without the FOOOF toolbox, 835	

thereby alleviating any concern about the challenges in the estimation of the aperiodic component 836	

performed by the FOOOF toolbox (see 118). However, we still believe that condition- and participant-wise 837	

estimation of the aperiodic component of the spectra, and frequency and power of peaks (as performed by 838	

the FOOOF toolbox) is necessary to avoid confounding factors that could mask the effect or result in spurious 839	

differences in peak frequency or power. 840	

Finally, for the control analyses on theta amplitude (Figure 6) and nearby frequency bands (Extended 841	

Data Figure 4), we followed the same procedure as for the main analyses on theta frequency band (i.e. using 842	

the FOOOF toolbox). For the alpha frequency band, we followed the same procedure as for the main results 843	

on the theta band but instead we considered peaks in the 8-12Hz range. For the delta frequency band, we 844	

used frequency limit parameters equal to [0, 20] Hz in the parametrization of the power spectra, and 845	
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considered peaks in the 1-3Hz range. For both delta and alpha frequency bands, we then followed the same 846	

procedure as for the main results on the theta frequency band. 847	

 848	

Statistical analyses 849	

To compute the optimal theta frequency per rule difficulty (same-side (RR, LL) versus different-side 850	

(LR, RL) rules) in the model we calculated the MFC theta frequency yielding the highest accuracy for each 851	

group of simulations (see Simulations). We then compared the two samples of optimal theta frequencies per 852	

rule difficulty using a two-sided Wilcoxon signed-rank test (Figure 3b). For this, and all other Wilcoxon signed-853	

rank tests, we computed non-parametric confidence intervals using bootstrapping of the difference in 854	

medians between conditions. The reported effect size for Wilcoxon signed-rank tests is the matched pairs 855	

rank-biserial correlation (r)119. 856	

Reaction times and DDM parameters estimated on model data (Extended Data Figure 2a) were 857	

analyzed using a 2-by-7 repeated measure ANOVA with factors rule difficulty (two levels: same-side and 858	

different-side) and theta frequency (seven levels: from 4 to 7Hz in steps of 0.5Hz), using the StatsModels 859	

v0.10.1 (https://www.statsmodels.org/v0.10.1/) and the Pingouin v0.5.0120 (https://pingouin-stats.org/) 860	

Python packages. Data distribution was assumed to be normal but this was not formally tested. 861	

Participants’ behavioural and EEG data from the stimulus-action mapping experiment (Dataset 1) 862	

were entered into two-way repeated measure ANOVAs with factors target-location (two levels: Left, Right) 863	

and hand (two levels: Left, Right) using the StatsModels and Pingouin Python packages. For behavioural data 864	

it consisted of accuracies, reaction times, and DDM parameters per rule (Figure 4a; Extended Data Figure 2a), 865	

and peak theta frequency (i.e. of accuracy-by-ISD) per rule (Figure 4b). For EEG data it consisted of the 866	

average peak theta frequency from the selected electrode cluster (see Methods) of correct trials per rule 867	

(Figure 4d; circles); and the difference between average peak theta frequency of correct and incorrect trials. 868	

For Datasets 2 and 3 we reported the statistical results from their behavioural data analyses. For the 869	

analysis of their EEG data we followed the same procedure as for Dataset 1 and, because only two difficulty 870	

levels were available in these Datasets, we performed a one-sided Wilcoxon signed-rank test to test the 871	

hypothesis that theta frequency decreased from an easy to a difficult condition. For all control analyses, i.e. 872	
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effect of task difficulty on peak theta amplitude (Figure 6), and on peak frequency and amplitude in the delta 873	

and alpha frequency bands (Extended Data Figure 4), we performed two-sided Wilcoxon signed-rank tests. 874	

To investigate inter-individual differences in the sensitivity of EEG peak theta frequency to rule 875	

difficulty in Dataset 1, we performed a linear regression of each participant’s raw EEG peak frequency (in 876	

Hertz) in correct trials ordered by each rule’s overall accuracy across participants (i.e. rule was treated as a 877	

linear predictor: RR = 79.16%, LL = 76.70%, LR = 71.87%, RL = 71.44%). In a second step, individual-participant 878	

slopes were correlated with overall accuracy, collapsed across rules (Figure 4e). We used a robust Spearman 879	

correlation (i.e. skipped correlation121) implemented in the Pingouin Python package, which identifies 880	

outliers based on the minimum covariance determinant. The effect was also significant using a simple 881	

Spearman correlation. For illustration purposes we computed a linear regression, excluding the identified 882	

outlier, to plot it as a regression line in Figure 4e. 883	

 884	

Data availability: 885	

Raw behavioural, eye-tracking and EEG data can be found at this Open Science Framework repository: 886	

https://osf.io/nwh87/?view_only=b11ee1f860804da582c816fe8acdecad 887	

 888	

Code availability: 889	

Code of the model, the behavioural experiment and analysis scripts to reproduce all results and figures 890	

from the study can be found on this Github repository: 891	

https://github.com/mehdisenoussi/theta_shift_cog_control 892	
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Figure legends 910	

 911	

Figure 1. Task and model structure. a Stimulus-action mapping task. Each trial starts with a cue instructing 912	

the mapping to use. In this example the rule is “LR” instructing to report the left grating’s tilt with the right 913	

hand. b Model architecture. c Each node of MFC and processing (Sensory and Action) units is a neural 914	

triplet composed of one excitatory (E), one inhibitory (I), and one rate neuron (x). The E-I pair generates 915	

oscillations (whose frequency depends on their coupling parameter). MFC Bursts are sent to E neurons. 916	

Rate neurons receive input from, and send output to, other nodes’ rate neurons. The activity (output) of a 917	

rate neuron is modulated by its E neuron. 918	

 919	

Figure 2. Model dynamics. a The top two panels represent rhythmic BC in rule nodes at instructions onset 920	

(from two different trials): 3 cycles at a fast MFC theta frequency (7Hz) to illustrate difference in dynamics 921	

between easy and difficult rules. Top left panel (Easy rule): the rule node corresponding to the instructed 922	

rule in this trial (green curve) rapidly wins the competition over other rule nodes (grey curves). Top right 923	

panel (Difficult rule): the rule node corresponding to the instructed rule in this trial (orange curve) struggles 924	

to win the competition and often loses to other rule nodes (grey curves). Yellow areas represent 925	

competition window opened by MFC theta oscillations. Dashed yellow line represent MFC E neuron activity 926	

(see panel b). Each dot above curves represent a time point at which the instructed rule’s node was 927	

winning the competition. The bottom panel represents the biasing signal sent to the processing nodes. This 928	

corresponds to the burst sent by MFC (bottom plot in panel b) multiplied by the most activated rule node’s 929	

activity (note that the MFC theta frequency was set at 5Hz for this panel). b Activity of the MFC neural 930	

triplet at a theta frequency of 5Hz. Top panel represents activity of the E-I pair. The phase of both neurons 931	

is reset at instructions onset. c-d Time course of neural triplet activity of the rule-relevant Sensory (c) and 932	

Action (d) nodes around stimuli presentation with a MFC theta frequency of 5Hz. The yellow curve 933	

representing MFC theta oscillations is for illustration only, its activity is scaled to fit within these plots. e 934	

Time course of the four integrator nodes, representing each of the four possible responses to the task, 935	

around stimuli presentation. The green line represents the correct response in the simulated trial. 936	
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 937	

Figure 3. Model simulations. a Model accuracy by rule difficulty across theta frequencies. Data are 938	

presented as mean values, error bars represent standard deviation computed over n = 34 simulations per 939	

frequency. Green curve represent easy (same-side) rules, orange curve represent difficult (different-side) 940	

rules. b Violin plots representing optimal theta frequency, i.e. yielding highest model accuracy, per rule 941	

difficulty. For difficult rules the model achieves optimal accuracy at a slow theta frequency, whereas for 942	

easy rules, a fast theta is optimal (n = 34 simulations per theta frequency, two-sided Wilcoxon signed-rank 943	

test: W = 105.5, p < 0.001, r = 0.64,  95% CI = (1.00, 2.00)). Data are presented as violin plots, left- and right-944	

most bars represent extrema, middle bar represent the median. Distribution density is represented by 945	

violin plot width. c Measuring theta oscillations in behaviour through densely-distributed Instruction-946	

Stimuli Delays (ISD). d Accuracy-by-ISD by rule difficulty (left), and estimated peak frequency (right). Data 947	

are presented as mean values, error bars represent standard deviation computed over n = 34 simulations. 948	

 949	

Figure 4. Testing model predictions in behaviour and EEG. a Overall accuracy: There was a significant target-950	

location – hand interaction in accuracy (RR and LL easier than LR and RL; two-way repeated measure 951	

ANOVA: F(1, 33) = 27.82, p < 0.001, η2 = 0.236), and a main effect of hand (F(1, 33) = 4.33, p = 0.045, η2 = 952	

0.012). b Peak frequency of oscillations in accuracy-by-ISD: there was a significant target-location – hand 953	

interaction (two-way repeated measure ANOVA: F(1, 33) = 6.51, p = 0.015, η2 = 0.047). c Frontal cluster of 954	

electrodes with increased theta amplitude: significantly higher theta amplitude in correct than incorrect 955	

trials (cluster test, p < 0.001). d Theta peak frequency by rule in frontal electrodes cluster. Peak theta 956	

frequency in correct trials significantly decreased from same-side to different-side rules (two-way repeated 957	

measure ANOVA: F(1, 33) = 18.96,  p < 0.001, η2 = 0.107). Comparing correct and incorrect trials, we found 958	

that higher theta frequency improved performance in same-side rules, whereas a lower theta frequency 959	

improved performances in different-side rules (two-way repeated measure ANOVA: F(1, 33) = 4.62, p = 960	

0.039, η2 = 0.036). e Correlation between theta peak slope across rule difficulty and overall accuracy: the 961	

degree to which theta frequency shifted from difficult to easy rules positively correlated with overall 962	

accuracy (robust Spearman correlation: r(32) = 0.49, p = 0.004, 95% CI: (0.17 0.71)). Data are presented as 963	



	 	

	 39	

mean values, error bars represent s.e.m. computed over n = 34 participants. Smaller gray dots (and small 964	

colored dots in panel d) represent individual participants’ data. 965	

 966	

Figure 5. Testing model predictions in other datasets. a Experimental protocol in Dataset 2. In this study 967	

participants performed a cued serial mental calculation task in which a cue indicated whether the following 968	

calculations will be easy, i.e. only +1 additions were used, or difficult, i.e. addition or subtraction of 969	

different numbers. b Theta peak frequency at FCz for easy and difficult cues. Circles represent correct trials, 970	

triangles represent incorrect trials. Peak theta frequency was lower in correct trials in the easy compared to 971	

difficult condition (one-sided Wilcoxon sign-rank test: W = 86, p = 0.018, r = 0.63, 95% CI = (0.01, 0.14)). c 972	

Experimental protocol in Dataset 3. In this study participants reacted to an action signal (Stimulus; white 973	

square, circle or triangle). Each shape was randomly assigned towards one action (Go, No-Go, Switch-Go); 974	

only the Go and No-Go actions were analysed because Switch-go data were unavailable. On half of the 975	

trials, a certain-go cue (e.g. brown cross) indicated that the Stimulus was going to be a Go shape with 100% 976	

certainty. On 50% of the trials a maybe-go cue (e.g. blue cross) indicated that the Stimulus had a 25% 977	

chance of being a No-Go shape. d Theta peak frequency at FCz for certain-go and maybe-go cues. Circles 978	

represent correct trials, triangles represent incorrect trials. Peak theta frequency was lower in correct trials 979	

following certain-go cues compared to maybe-go cues (one-sided Wilcoxon sign-rank test: W = 358, p = 980	

0.039, r = 0.35, 95% CI = (-0.01, 0.08)). The yellow framing around the Cue and Instruction stages in a and c 981	

represent the time window from which we extracted peak theta frequency. Data are presented as mean 982	

values, error bars represent s.e.m. computed over n = 14 participants in Dataset 2, and n = 33 participants 983	

in Dataset 3. Smaller gray dots represent individual participants’ data. 984	

 985	

Figure 6. Peak theta amplitude per condition in each Dataset. a Peak theta amplitude by condition for 986	

correct trials in Dataset 1. There was no significant main effect or interaction (n = 34 participants, two-way 987	

repeated measure ANOVA: all Fs(1, 33) < 2.21, all ps > 0.146). b Peak theta amplitude by condition for 988	

correct trials in Dataset 2. There was no statistically significant difference between conditions (n = 14 989	

participants, two-sided Wilcoxon sign-rank test: W = 24, p = 0.079, r =  0.54, 95% CI =	(-0.01, 0.03)). c Peak 990	

theta amplitude by condition for correct trials in Dataset 3. There was no significant difference between 991	
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conditions (n = 33 participants, two-sided Wilcoxon sign-rank test: W = 257, p = 0.896, r = -0.02, 95% CI = (-992	

0.02, 0.02)). Data are presented as mean values, error bars represent s.e.m. Smaller gray dots represent 993	

individual participants’ data. 994	

  995	
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