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Preface

Preface

Dear participants of the SBSC 2022,

Akey task for us and future generations will be to use finite resources more mindfully
and sustainably. Both in mining and recycling, it is equally important that the
efficiencies of processing procedures and chains are improved regarding recovery,
yield, and product quality. In the last four decades, sensor technology has provided
important development impulses for this in the aforementioned industries as well
as in other industries such as the agricultural and food industries and is being used
in more and more industrial applications. These developments were presented at
the previous SBSC events and intensively discussed among the expert audience.

Developments in processing increasingly complex and larger amounts of data
suggest that the current sorting function of sensors in plants can be combined with
digital material flow characterization, and sorting performance can be improved
in the future. These advancements can be enabled by the interplay of different
sensors, the use of digital markers, and the enhanced description options through,
for example, machine and deep learning.

A digital description of material flows could make personnel- and cost-intensive
physical sampling largely superfluous in the future. Data information can also make
processes scalable and thus allow an evidence-based evaluation of processes,
which in many cases is not yet possible or only possible at great expense. If
relevant input and output variables are measurable in real time, processes could be
controlled according to these characteristics, and up- and downstream processes
could be evaluated. In this way, considerable optimization potentials can be
expected in terms of technical, economic, and ecological aspects.

To better utilize the potentials of sensor technology in the future, more attention must
also be paid to the aspect of material flow management. In particular, the difficult
handling of non-bulk materials requires technical innovations to achieve improved
sorting results. However, once the challenges of material flow management and
sensor-based material flow characterization have been solved, the already great
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importance of sensor technology in the process plants of a then more sustainable

industry will continue to increase, that seems certain.

These and other topics will await us at SBSC 2022. We look forward to exchanging
ideas with you again after a break of four years!

Hermann Wotruba, Kathrin Greiff, Alexander Feil, Nils Kroell,
Xiaozheng Chen, Devrim Gursel, and Vincent Merz
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Abstract

With the demand for more sustainability in the mining and in the waste and metal
recycling industry, process operators are searching for possibilities to improve
efficiencies and sorting purity. Sensor-based sorters have been playing a key role
in the automation of those industries for the last 20 years. However, in terms of
connectivity and digitalization it is still in its early phase. By embracing technology
and digitalizing processes, the recycling and mining industry can improve its
effectiveness by monitoring input, removing unwanted material, and improving
sorting output.

Already today these sensor-based sorters generate a vast amount of data about
the scanned material that is not yet used to its full potential, thus, connectivity and
digitalization are identified as key part of the solution. Additionally, new sensors and
technologies such as camera-based deep learning provide solutions for unsolved
sorting problems, as well as data sources with new levels of details. The available
data will have a positive impact on the performance of individual machines, overall
processes, and the whole value chain. Improved data transparency will be key to
establish a functioning market for recyclates and plastic waste feedstock. It will
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also help operators of mines to improve their sustainability by transparently and
continuously monitoring the quality of the retrieved material and thereby optimize
the mining operation further.

In the future, large groups of digitally connected machines will communicate and
report production data across the value-chain and the globe. Leveraging collected
data and advanced analytics, new sorting technologies and processes will be
developed to improve sorting efficiency and boost final material recovery and purity
positively impacting the sustainability of the mining and recycling industry.

1 Introduction

Today’s recycling and mining industries consist of complex processes where the
optimal operation relies heavily on experience. While the feedstock coming form the
mine is more consistent in particle size and material composition, the feedstock into
a typical waste sorting plant varies strongly and in a stochastic manner. Optimizing
such complex processes requires typically a three-step approach.

First, one needs to visualize the current operation. While in classical process
automation scheme, this means certain process quantities, like pressures,
temperatures, or motor speeds, in a recycling application the added complexity
of the material composition needs to be considered. For mining applications, the
grade or particle size distribution of the material might be of interest. In this step,
the data collection already needs to start, as it builds the fundament for the final
step.

Second, once the process is visualized and monitored, one can start to stabilize
the process. In this step, the basic understanding of different relations between
various quantities will become evident. Process anomalies can be detected and
will be handled.

Only when the process runs stable, the third and final step can be addressed. In
this step, the process will be optimized based on the previously collected process
information and machine data. System control Algorithms will be able to close
feedback loops and optimize the overall operation of the process. With this final
step, the experience of the operators is not replaced, but enriched by data driven
approaches.

12
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The above-described steps are required, regardless, if the optimization of an
individual machine, a whole process, or even the full value chain is considered.
Obviously, the complexity increases as the number of elements or parties involved
increases, but without transparency one will not arrive at a stable operation and
without a stable operation, the optimization of the whole will be out of reach.
Digitalization is the key enabler of such optimizations, and the sensor-based sorter
is the major source of data providing detailed information on the material being
processed, in the mining and recycling industry.

2 Optimize Sorter Performance

As one of the main value drivers in the sorting process, the optimal performance
of each individual sorter is essential. Considering the sorter itself, topics like a
reduction of downtime by predicting maintenance needs will optimize the sorters
availability (TOMRA, 2020). Improving the sorting performance itself, by utilizing
the data obtained from a second sorter that runs in a sequence, or by additional
sensor technology, e.g., cameras combined with image recognition based on deep
learning methods as feedback mechanism, provides already a big potential due to
the variability of the input material (Streifinger et al., 2022).

Already today, the existing sorters in the process can serve as data sources. While
they were originally not design to act as such, it is only little effort, to extend their
capabilities and make the data available. A digital twin of the sorter can already
enable the prediction of anomalies and thereby add further value beyond the
sorting itself.

3 Optimize Process Performance

Considering now, that data from multiple sorters within the process is available, one
can start to combine this information and optimize the performance of the whole
process, across the different sorters. This requires communication to be established
between the different elements in the process, first and foremost the sorters. They
act as both, active element, separating the material, and as a sensor providing
information on the material going through the process. Whatever the target function
might be, a certain purity of the sorted product, or a desired throughput through
the process, one can now start to have self-optimizing and adaptive processes.

13
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The output becomes stable and predictable in quantity and quality, despite the
fact, that the input material is fluctuating in its composition. It is an extension of the
optimization of the individual sorter described before, as now in the combination of
multiple sorters, the complexity but also the flexibility increases.

4 Optimization of the Value Chain

Focusing on the recycling of plastic, there is only about 2% of material in a closed
loop today (Ellen MacArthur Foundation, 2017). Most of the virgin plastic produced
and used every year ends up either in the environment, in landfills, or in incineration.
Yet, the consumers increase their pressure onto the big consumer brands, as the
public awareness rises, combined with legislation, which enforces higher recycling
rates(ReSociety,2021) (EU Directive, 2018). The challenge we observe today, is
a lack of transparency. It is unclear how much material of what quality is available
where. It goes back again to the first step described earlier — Visualize. Today, there
is only very limited information available, which for sure is not sufficient to close the
loop for more material (ReSociety, 2021).

Data will help in this picture. Not from just one sensor-based sorter, but from all
sensor-based sorters. Imagining all this information on material quantities, but
also reliable qualities would be available, one could establish a stable supply
and demand relationship, connecting the recycling industry with the virgin plastic
producers to use more recyclates instead of virgin material. This data on product
quantity and quality is generated continuously in a fully automated process, without
the need for manual samples being considered representative for the full batch. It
will generate trust and is the basis for a stable production.

Once such transparency on data is available, a stable market for recyclates can be
established and the value chain will start to optimize itself. The recycling process
can be optimized based on short term market needs and provide the right quality
at the right time for the following process steps like compounding. Waste collection
could be optimized in such a way to provide the right infeed material at the right
time. Communities get quantifiable feedback on how to improve the sorting at the
source. Alternatively, one could also imagine that the recycling process adopts itself
much faster to the incoming material composition.

14
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5 Conclusion

Considering sensor-based sorters not only as sorting devices in the mining or
recycling process, but as valuable data sources, there are plenty of opportunities
to optimize the sorter itself, the process around it, but also the full value chain. In
this sense, data transparency becomes a fundamental requirement to change our
linear economy to a circular economy. Digitalization is the technology to make data
available, which in turn empowers the circular economy.
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Abstract

To increase recycling rates many technological improvements can be made
within sorting (processing and sorting on article basis) and recycling (processing
and sorting on particle basis) of waste. This paper discusses such technological
improvements, focussing on the potential of pre-processing (pre-shredding,
screening, air and ballistic separation) in sorting plants. For this purpose, the
general structure of state-of-the-art sorting plants is briefly introduced.

Material flow characteristics such as input material composition or volume flow,
have high impact on the performance of such sorting plants and are discussed
accordingly. By adjusting parameters such as shredder speeds or screen cuts,
these characteristics can be set to adjust the plant in accordance with variations
in the input material. Such adaptions can only be made if the material flow data is
reliable and available in nearly real-time (e.g., through built-in sensors). The related
challenges in data acquisition, data analysis, and plant control are discussed.

Finally, a case study is presented to demonstrate the potential of adaptive plant
control: Through data derived from near-infrared sensors the load of two processing
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lines could be adjusted, resulting in significantly increased plant performance:
Yield of product fractions from 3D-/heavy processing lines could be increased by
3-15 wt%.

1 Introduction

Member states of the European Union have implemented different collection and
recycling systems for various types of packaging wastes to achieve environmental
benefits through (a) minimizing/avoiding littering and landfilling of packaging
wastes and (b) substituting primary raw materials with the obtained recyclates from
recycling. Compared to other end-of-life options such as incineration, mechanical
recycling of packaging waste is advantageous because of the achieved energy
savings and reduced greenhouse gas emissions. (European Union, 2018; Ragaert
et al., 2017; Perugini et al., 2005; Astrup et al., 2009)

Since (mechanical) recycling of packaging wastes is environmentally advantageous,
a higher material recirculation is encouraged on a political level (Circular Economy
Action Plan; Packaging and Packaging Waste Directive). For example, the new EU
Packaging Directive is being discussed, which is demanded to include requirements
for minimum recycling contents of 30 wt% for plastic packaging by Plastics Europe.
(Grliner Punkt; 2021)

State-of-the-art material recirculation of packaging materials is achieved in
three steps: (i) collection of packaging wastes, (ii) pre-sorting (production of
preconcentrates on an article basis), and (iii) recycling (washing, sorting, and
processing into a product — mostly on particle/flake basis), see Fig. 1. Type,
extend and performance of each step, from waste collection over pre-sorting up to
recycling, is highly relevant for maximising the recycling of valuable materials, i.e.,
keeping more packaging in closed material cycles.

ﬁ Collection ﬁ ﬁ Pre-Sorting Recycling
100% 80% 80% 80% 64% 80% 51%
End-of-life Collected
packaging material packaging waste Pre-concentrates Recyclates

Fig. 1: Relevance of collection-, pre-sorting and recycling-performance (80%
exemplary performance) for the overall achieved recycling performance

18
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As can be seen in Fig. 1, each step, from collection to recycling, contributes to the
overall recycling quota, resulting in approximately 50% recycling rate for any article,
if the performance of each step is 80%. According to the Pareto principle, each of
the three steps should be improved equally, to achieve maximum improvement
of overall recycling rate. Such overall improvements in the value chain inhibit the
increased losses in certain steps, that cannot be regained through improvements in
downstream steps (e.g., in the recycling process).

In case of the collection of waste this can be particularly achieved by political/
organisational measures, e.g., by introducing a deposit system for a certain
packaging, through the provision of dustbins in public places to prevent littering or
encouraging optimized waste separation through public campaigns.

Pre-sorting and recycling performance are mostly driven by technological
improvements. However, certain aspects such as quality control of product fractions
are to this day often handled manually. (Kranert et al., 2017)

In the past, most technological advances in pre-sorting have been made through
improvements and expansions in sensor-based sorting (SBS) cascades, as
increased processing power of computers allowed for more sophisticated sorting
algorithms, resulting in improved performances of optical sorting machinery—
primarily near-infrared (NIR)-based sorters for the sorting of (plastic) packaging
wastes.

However, all sorting machinery, in particular optical sorters, require an even material
feed, ideally with a limited particle size ratio (ratio of maximum to minimum particle
size). Therefore, comprehensive pre-processing of collected waste is of utmost
importance to achieve high pre-sorting performance in waste sorting plants. (Feil et
al., 2018; Feil et al., 2019 Feil et al., 2021)

In the present paper, the overall design of such a sorting plant is explained to discuss
various parameters that can be adjusted in pre-processing, allowing for increased
sorting performance of downstream processing lines that are mostly comprised of
(optical) sorting machinery. Subsequently, the potential and challenges of using
sensors for adjustments in the pre-processing of waste is discussed, ending with
an example of sensor-based adaptive plant control in pre-processing, resulting in
improved sorting performance of downstream sorting technology.

19
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2 Structure of sorting plants

In most sorting plants, the input waste is delivered to an input storage. This can

comprise of, e.g., simple boxes made of concrete blocks or underground bunkers.

From here the input material is fed to the sorting plant by means of wheel loaders,

cranes, or with similar machinery. The sorting system itself can be divided in two

sections: (i) pre-processing stage and (ii) sorting stage (Feil et al., 2021).

In pre-processing, the waste stream is treated to allow for optimal sorting of

valuables, residues, and impurities in downstream sorting lines. For this purpose,

mostly pre-shredders (this also includes bag/bale openers), sieves, air classifiers,

and ballistic separators are utilised.

20

e Pre-shredding allows for opening of bales, breaking up agglomerates

and clamped materials, limitation of maximum particle size, and selective
shredding for material enrichment in different particle size fractions.
Additionally, pre-shredders dose the material to the sorting plant, creating
a material stream, potentially displaying fluctuations. In sorting plants of
lightweight packaging wastes (LWP), most often bag openers are installed.

Most often the pre-shredder is followed by one or multiple sieving stages.
In LWP sorting plants, most often drum screens are utilised for screen cuts
of approx. =40 mm. Depending on the size of such plants, about four screen
cuts must be implemented through drum screens in the screening stage.
Finer screen cuts (about 20 mm) are usually implemented as vibratory
sieves. Despite the separation of oversize and fine impurities the screen
cuts are chosen to enrich certain materials in specific particle size ranges
(to capitalise on the selective shredding, up-stream) and to create material
flows with sizes that fit to the processing lines that follow the screening
stage. Additionally, the performance of down-stream machinery is optimal
when limited particle size ratios (1:3 to 1:4) are present in all processing
lines (Feil et al., 2021).

Often air classifiers are positioned as the first processing units in the
processing lines after the screening stage, while ballistic separators are
implemented afterwards (Kleinhans et al., 2020). In such cases, the air
classifiers are used to produce relatively clean film/2D/light fractions, while
the ballistic separators must ensure high purities in the 3D/heavy fractions,
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potentially also serving as an additional screening stage, depending on
the chosen paddle mesh. Nonetheless, both machine types can also be
used separately from each other, always with the goal of separating 2D/
light and 3D/heavy fractions (MolInitz et al., 2020). This enriches valuable
materials in both fractions and reduces the volume of 3D material flows
additionally, allowing for increased throughput rate and performance in the
3D processing lines as the 2D material is reduced. Valuable fractions in
the 3D lines are ferrous and non-ferrous metals as well as various plastic
fractions and beverage carton.

In each processing line of the sorting stage, several sorting machines are
implemented, usually after air classification. Those units are characterised by
the fact that they separate specific material types, in contrast to pre-processing
units mentioned above, which prepare (at most enrich) certain material. Sorting
machines and their primary products are:

e Magnets — Production of ferrous product;
e Eddy current separators — Production of non-ferrous metal product;

o Optical sorters (predominantly NIR- but also induction- and colour- based
sensors) — Production of pre-products such as PP, PE, PET, PS, beverage
carton, Paper, RDF. (Kleinhans et al., 2020)

Such sorting machines (mostly optical sorters) can also be used as cleaners, further
enriching the respective product fractions created beforehand to reach increased
product qualities. Other optical sorters are used as scavengers, obtaining valuables
from residue streams that were lost by upstream sorting units. Sorting machinery,
that is used to create a product fraction out of a mixed material stream are defined
as roughers. (Feil et al., 2021)

Many product streams undergo manual quality control during which valuable
materials are recirculated to the process, while residues can be specifically passed
to the residues fraction.

21
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2.1 Relevance of material flow characteristics for plant performance
To adjust a sorting plant a multitude of parameters can be set, depending on

the combination/design of processing stages/machinery used within a process.

The available parameters can be set to affect the following main material flow

characteristics:

22

o The material composition highly affects the performance of any processing

unit, as the behaviour of any particle type differentiates in any pre-processing
unit. For example, films are much more prone to remaining at its particle size
during pre-shredding and tends more to be pulled through a screen mesh.
Additionally, the likelihood to be entrained into any product of a sorting
machine is substantially higher than for heavy three-dimensional particles.
Accordingly, the adjustment of any material composition bears high potential
for alterations in machine performance. (Kippers, Schldgl, et al., 2020;
Kippers, Seidler, et al., 2020)

The particle size range affects the performance of any processing and
sorting machine. While, e.g., high amounts of very fine material in an
otherwise rather coarse material stream, compared to the screen cut,
improve the performance of screens (such particles are much more prone to
pass the mesh immediately), especially for sensor-based sorting these fines
often result in reduced yield and/or purity, thus reduced sorting performance.
If such fines are magnetic, these particles can hardly be removed by an over
belt magnet, while they tend to remain in an eddy current field, where they
cannot only hinder the discharge of non-ferrous metals but also constitute a
risk to the durability of this machine type.

The volume flow constitutes one of the most important factors for the
dimensioning of shredders, sieves, air classifiers, magnet separators, and
eddy current separators. Accordingly, the adjustment of this characteristic in
any plant and processing line allows for manipulation of machine and plant
specific performance adaption (Curtis et al., 2020). The volume flow can be
tied to other characteristics, as the input composition: If, e.g., the bulk density
of the input is reduced, due to a change in material composition (e.g., higher
share of film), this causes an increased input volume flow, which in turn
reduces, the performance of built-in sieves, as those machines are designed
for specific volume flows. Such a sieving performance reduction can result
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in shifts of the volume flow in all downstream processing lines, evoking the
performance of all processing machines to change.

e The area flow is defined as the flow of projected object area as seen by a
sensor, mounted over a conveyor belt. This characteristic is mostly important
for optical sorters as classification and thus separation performance is highly
dependent of the size of the specific area flow (Curtis et al., 2020). Ideally,
the occupation density (area on a belt that is occupied by material) does not
exceed 30 area-%. The higher the occupation density (and the closely linked
area flow), the lower the performance (yield and product purity) of any optical
sorter in most cases (Kuppers, Schlogl, et al., 2020; Kippers, Seidler, et al.,
2020; Kroell et al., 2022). This is due to the increased probability of false
classification of objects and the resulting reduced sorting performance that
persists at increased occupation densities.

2.2 High-impact parameters in sorting plants

In sorting plants, several parameters can be adjusted to improve the performance
of such a plant. In general, the significance of these parameters is linked to the
point in the processing line, where they can be set. The earlier this can happen,
the higher the impact on the whole processing line is as all downstream machinery
is affected by such parameters. Additionally, changes (positive or negative) in
such parameters multiply with each machine, since the reduced or increased
performance of each unit negatively or positively affects the performance of the
following one. Hereafter, several of potential high-impact parameters are described.

e Composition of input material. As single plants are often fed with materials
from several collection systems, the input composition can vary strongly,
e.g., from day to day or from shift to shift. Each processing plant is designed
for a specific input composition. Limited fluctuations can occur while the full
functionality of the plant is still ensured. However, extreme fluctuations in the
input composition can affect the performance of single machines, processing
lines or of the whole plant. Accordingly, mixing two input materials of different
compositions can allow for improved plant performance, while processing of
such input materials separately might inhibit reaching a plants full potential.
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e Rotational speed in pre-shredders. Pre-shredders have several parameters

like size of the discharge grate, speed of crushing tools or interval size
for changes in direction of crushing tools. If the crushing tools are located
on several shafts the speed and interval changes might be controlled
independently from each other to allow not only for the right amount of particle
reduction but also generating reduced volume flow fluctuations (Feil et al.,
2019).

Screen cuts. In sieves, the selected screen cut is the most obvious parameter
for plant control. Despite its obvious purposes (creating material streams with
specified particle size ranges, and enrichment of certain material fractions)
the most important function of a screen is the split of the in going volume
flow into output streams that have the right size for downstream processing
lines and built-in sorting machinery. By using a progressive mesh size and
splitting the resulting sieve underflow in accordance with the dimensions of
downstream processing lines a suitable volume flow split can be achieved. In
a multitude of LWP sorting plants movable, bi-directional belts are positioned
under drum screens, allowing for this adjustment of the screen cut.

Air flow in air classifiers. The selected air flow significantly affects the selectivity
of air classifiers. Depending on the air flow the material composition and the
correlating bulk density in light and heavy fraction are manipulated significantly
(Pretz et al., 2020). This way the load on processing lines for light and heavy
material is adjusted, as both, volume and area flow, are affected likewise.
Regarding the material composition in light and heavy processing lines, this
results in changes regarding the share of film and 3D plastics in each line.
Borderline objects, like food trays that are characterised by properties which
can be associated with light and heavy fraction objects (e.g., trays for cheese
packaging that contain a film-like lid). Those are shifted from one output
fraction to another, when resetting the parameter “air flow” in an air classifier.

Paddle angle in ballistic separators. The parameter “paddle angle” affects
the selectivity of ballistic separators similarly to the air flow in air classifiers.
However, the underlying mechanisms of a ballistic separator are different to
those of an air classifier. Contrary to popular belief, ballistic separators not
only split two-dimensional from three-dimensional objects. Additionally, to the
shape of an object the ductility, flexibility, elasticity, and weight of an object
affects the separation into the 2D or 3D fraction. On ballistic separators,
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typical borderline objects are foams (from mattresses), beverage cartons, and
cardboard boxes. The steeper the paddle angle, the more of the incoming
material flow is yielded into the 3D fraction and vice versa.

The potential of the afore mentioned parameters is often not capitalised on by
many plant operators. This is due to the high complexity modern sorting plants
exhibit. Accordingly, most plants constitute a black box and only a limited number of
parameters is controlled manually (e.g., rotational speed of the shredder for throughput
adjustment). Automated plant adaptions could exploit such unused potentials if their
control could be monitored in near-real time and assessed adequately.

3 Challenges in plant control

As described above, the adjustment of parameters bears high potential for
continuous plant optimisation. However, several challenges must be overcome to
enable an automated plant control. These challenges are related to

o the sensors used to obtain material flow and machinery data,

o the process control algorithm that is used to transform the data into an
automated response (parameter adaptation), and

o the actuators, directly affecting the operating principle of a pre-processing or
sorting machine. (Khodier et al., 2019)

The reliability of data derived from a sensor is dependent on (i) the type of measurand
(e.g., volume, area, material composition), (ii) the machine that is controlled, (ii)
the desired effect that is to be attained, and (iv) its overall validity. The type of
measurand derived from a sensor (e.g., volume flow) is relevant as it may be used to
adjust the respective volume flow dependent parameter (e.g., screen cut). However,
this parameter might be set with the aim to change a different target value (e.g.,
area flow) that is more relevant for the performance of downstream optical sorters.
Accordingly, the basic information that can be derived from sensor data must at
least correlate with the target value (in this case the area flow). An example for such
a correlation is given in Fig. 2., displaying volume and occupation density (or area
flow) at the same position in a process line for light weight packaging sorting.
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Fig. 2: Comparison between occupation density (strongly correlated
with area flow) and volume flow on a belt conveyor

As depicted in Fig. 2., a high correlation between occupation density and volume flow
can be observed. However, the extent of changes in one measurand is not directly
transferable to the other one. For this case, one can expect that the correlation
between both measurands is sufficient as long as the occupation density is low
enough to keep object overlay to a minimum when comparing data before 21:30
with data after this point in time. Additionally, changes in the input composition might
lead to a change in the proportion of occupation density to volume flow. How strong
and how stable the correlation between measurand and target value must be, must
be decided on a case-by-case basis. Ideally, the measurand type directly complies
with the target value and correlation is strong. The overall validity of a measurand
is dependent on the suitability for the application (a certain NIR-sensor may be
ideally suited for assessing the share of paper in a material stream but not for
differentiation of plastic types), on the quality/versatility of the sensor itself but also
on the environmental conditions. For example, in a dusty environment a volume
flow sensor that is less precise but generates more stable data is better suited
for volume flow monitoring than a very precise sensor that is strongly affected by
a dusty environment. Especially in the waste/recycling sector this can entail case
specific selection of different sensors for similar or even identical tasks.
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The algorithms used for process control include the raw data pre-processing
(deriving usable data from detected signals — for NIR-sensors this might result in
normalization, smoothing and deriving the raw data). The resulting compressed
data, in form of, e.g., false colour pixels, volumetric information, can then be further
processed, to compensate for systematic misidentifications, handling error values, or
weighting the data stream (e.g., transforming a pixel-related sensor measurements
into mass-based material flow characteristics [Kroell et al., 2021] or emphasizing
certain material classes). Additionally, volumetric and areal information can be used
to allow for object recognition which can strongly impair or improve the validity of
data, depending on the circumstances (material presentation to the sensor, material
characteristics, etc.) and algorithm. Obviously, the utilisation of sensor data from
built-in optical sorters represents an attractive opportunity to capitalise on data that
is otherwise used for sorting purposes only. Here the problem is, that the main focus
of the algorithms in such sorting machines is correct classification and separation of
eject and reject material. This does not mean, that the data generated throughout
this process is reliable for the monitoring and assessment of a material stream.

With this pre-processed data the actual control algorithm can be realized, e.g.,
based on threshold transgression, steady adjustment of the measurand allowing
for maximal approximation to a target value, or alike. The timeframe in which such
adaptations must be induced by the algorithm must be tailored to the application at
hand. For example, screen cut changes in an upstream sieve every second based
on strongly fluctuating data that is received by the sensor 30 seconds afterwards,
cannot be used effectively. Accordingly, moving averages could be applied to
smoothen the highly fluctuating volume data and adequate control cycle times
would allow for sensible screen cut adaptions.

Despite the aforementioned three main challenges, a comprehensive understanding
regarding interdependencies of parameters, target values, and machine
requirements for optimal performance are imperative to implement any form of
adaptive plant control. Additionally, the costs of any adaptive plant control and its
impact/potential must be appropriately interrelated.
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4 Case study on adaptive screen cut control

In the following, we present preliminary results from a case study on adaptive screen
cut control in a LWP sorting plant. Sensor-based area flow control was implemented
in the mid-coarse and mid-fine processing lines during regular operation time.
Access to the sorting plant for these trials was provided by the company PreZero.

For data acquisition, two hyperspectral-imaging NIR-sensors (Helios EQ32 [EVK
Kerschhaggl GmbH; Raaba, Austria]) operating in the wavelength range of about
1050 nm to 1.700 nm were utilized. Each NIR-sensors measures one acceleration
of a sensor-based unit for sorting out beverage cartons in the (i) mid-coarse and
(i) mid-fine processing line, respectively, i.e., the pre-conditioned material flows
after air classification and ferrous separation. Based on the classified NIR-data
(false-colors) the occupation density, i.e., the area share of the acceleration belt
that is occupied with material is calculated, which is directly linked to the area flow
(occupied area per time unit).

The movable belt under the drum screen (Fig. 3) was adjusted to various positions to
assess the effect of this parameter with regard to the split of the area flow optimally
between the mid-coarse and mid-fine processing line. The area flow was chosen
as the evaluation criterion, as both processing lines were mostly equipped with
optical sorters which in turn classify the material stream based on areal information.
Accordingly, the parameter to be adjusted is the screen cut, while the correlating
target values are the occupation densities (or area flows) in the downstream
processing lines. The chosen belt positions for screen cut adjustments are shown
in Fig. 3.
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Fig. 3: Positions of moveable conveyor under drum screen for screen
cut adaptation between mid-coarse and mid-fines

The occupation density, as monitored by the NIR-sensors, at each position is
displayed in Fig. 4. The boxplots (divided in quartiles) illustrate the occupation
density fluctuations in each line.
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Fig. 4: Occupation density in mid-fine (MF) and mid-coarse (MC) lines in dependence
of conveyor belt position (positions in Fig. 3 are colour coded accordingly)
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One can see that the occupation densities on both lines differ strongly (on average
by 31% - MC: 50% and MF: 19%) difference at conveyor belt position 100%,
while the equilibrium (at about 29%) is reached at movable conveyor position
30%. Between positions 100% and 70% no significant change with regard to the
occupation densities can be recorded. From positions 70% to 40%, however,
noticeable convergence of the occupation densities in both lines (40%—>35% in
mid-coarse and 21%->27%) can be observed. A steady but slow convergence
to equilibrium can be noted between 50% and 20-30% position. Below 20% the
occupation densities diverge noticeably.

To assess the impact of this parameter (screen cut) the yield of several product
fractions in the heavy line of the plant was measured at position 100% for one
month and compared to the yield of those product fractions, when operating at 20%
position for one month. Results show significantly improved yield (3 wt% to 15 wt%)
for the product fractions generated from the heavy/3D material flows, produced at
the 20% position compared to the yield at the 100% position.

Both test phases were conducted in summer, to reduce the effect of changing
humidity during these months. However, since the depicted trials were conducted
during normal operation of the plant certain external effects (changes in input
composition, holiday season, etc.) cannot be fully excluded. During these test
months changes were made in the 2D/light processing lines, which is, why neither
improvements nor a decline in those processing lines can be traced back to these
changes. Nonetheless, it is reasonable to hypothesise that similar effects can be
expected in the 2D/light processing lines if the material distribution of these material
streams changed equivalently.

It may be assumed that a near real-time adaptive screen cut control would allow
even higher improvements in plant performance, as temporal fluctuations could
be potentially compensated. Nonetheless, such a control circuit poses a complex
challenge in which not only two processing lines of a sorting plant must be observed
but rather the effect on all output fractions (yield and purity) should be part of such a
function. This is because the focus (purity vs. yield) regarding the sorting algorithms
in all optical sorters highly affects what is affected by an adapted screen cut. A fixed
prediction regarding the benefit for a process flow can barely be made in advance.
Especially as the preceding operation of any plant leaves only a certain potential
for improvement.
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5 Conclusion

In this paper, the potential and challenges in adaptive plant control for waste sorting
plants was discussed. While a multitude of parameters in several pre-processing
and sorting machines can be adapted, overlooked high-impact parameters seem to
be located in the pre-processing stage of a sorting plant. The accurate adaptation
of a sorting plant based on sensor data is subject to the stability and accuracy of
sensors and process control algorithm. Prerequisite to all efforts regarding adaptive
plant control is comprehensive knowledge regarding the quantitative influence such
parameters have for all process lines in a processing plant.

The potential of one high-impact parameter was shown by a case study on adaptive
screen cut control. Two NIR-sensors were applied to assess the area flows in two
parallel processing lines by means of the detected occupation densities on speed
belts. Results show significant improvements of the plant performance in the
heavy/3D processing lines: By optimising the screen cut based on the acquired
sensor data to achieve even occupation densities in both processing lines, the yield
of all 3D product fractions could be increased by 3 wt% to 15 wt%.

References

Astrup, T., Fruergaard, T., Christensen, T.H., 2009. Recycling of plastic: accounting
of greenhouse gases and global warming contributions. Waste management &
research 27, 763—772. https://doi.org/10.1177/0734242X09345868

Circular Economy Action Plan. https://ec.europa.eu/environment/strategy/circular-
economy-action-plan_de

Curtis, A., Kuppers, B., Mdllnitz, S., Khodier, K., Sarc, R., (2020). Real time
material flow monitoring in mechanical waste processing and the relevance of
fluctuations. https://doi.org/10.1016/j.wasman.2020.10.037

European Union, 2018. European Parliament and Council Directive 94/62/EC of 20
December 1994 on packaging and packaging waste.

31



Sensor-Based Sorting & Control 2022

Feil, A., Coskun, E., Bosling, M., Kaufeld, S., & Pretz, T. (2019). Improvement
of the recycling of plastics in lightweight packaging treatment plants by a
process control concept. Waste Management & Research: The Journal of the
International Solid Wastes and Public Cleansing Association, ISWA, 37(2),
120-126. https://doi.org/10.1177/0734242X19826372

Feil, A., Pretz, T. (2018). Ungenutzte Potenziale in der Abfallaufbereitung. In: Recy
& DepoTech Conference 2018. Leoben (Austria).

Feil, A., Kroell, N., Pretz, T., & Greiff, K. (2021). Anforderungen an eine effiziente
technologische Behandlung von Post-Consumer Verpackungsmaterialien
in Sortieranlagen. Mull Und Abfall, 21(7), 362-370. https://doi.org/10.37307
/.1863-9763.2021.07.04

Griiner Punkt, 2021: New EU packaging directive on its way. https://www.gruener-
punkt.de/en/company/news/details/new-eu-packaging-directive-on-its-way

Khodier, K., Curtis, A., Sarc, R., Lehner, M., O’Leary, P., Pomberger, R. (2019).
Smart solid waste rocessing plant: vision and pathway. ISWA world congress
2019

Kleinhans, K., Hallermans, M., Huysveld, S., Thomassen, G., Ragaert, K,
Can Geem, K.M., Roosen, M., Mys, N., Dewulf, J., De Meester, S. (2020).
Development and application of a predictive modelling approach for household
packaging waste flows in sorting facilities. Waste Management 120 (2021) 290—
302. https://doi.org/10.1016/j.wasman.2020.11.056

Kranert, M. (2017). Einfihrung in die Kreislaufwirtschaft. https://doi.org/10.1007/978-
3-8348-2257-4

Kroell, N., Dietl, T., Maghmoumi, A., Chen, X., Kiippers, B., Feil, A., Greiff, K. (2022)
Assessment of sensor-based sorting performance for lightweight packaging
waste through sensor-based material flow monitoring: Concept and preliminary
results. Sensor-based Sorting and Control 2022.

Kroell, N., Chen, X., Maghmoumi, A., Koenig, M., Feil, A., Greiff, K. (2021). Sensor-
based particle mass prediction of lightweight packaging waste using machine
learning algorithms Waste Management 136 (2021) 253-265. https://doi.
org/10.1016/j.wasman.2021.10.017

32



Relevance and challenges of plant control in the pre-processing stage for enhanced sorting performance

Kuppers, B., Seidler, I., Koinig, G. R., Pomberger, R., & Vollprecht, D. (2020).
Influence of troughput rate and input composition on sensor-based sorting
efficiency. Detritus(9), 59-67. https://doi.org/10.31025/2611-4135/2020.13906

Klppers, B., Schlogl, S., Friedrich, K., Lederle, L., Pichler, C., Freil, J., Pomberger,
R., & Vollprecht, D. (2020). Influence of material alterations and machine
impairment on throughput related sensor-based sorting performance. Waste
Management & Research. https://doi.org/10.1177/0734242X20936745

Méllnitz, S., Kippers, B., Curtis, A., Khodier, K., Sarc, R., (2020). Influence of pre-
screening on down-stream processing for the production of plastic enriched
fractions for recycling from mixed commercial and municipal waste. Waste
Management, https://doi.org/10.1016/j.wasman.2020.10.007

Packaging and Packaging Waste Directive: https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:01994L0062-20150526

Perugini, F., Mastellone, M.L., Arena, U., 2005. Alife cycle assessment of mechanical
and feedstock recycling options for management of plastic packaging wastes.
Environmental Progress 24, 137-154. https://doi.org/10.1002/ep.10078.

Pretz, T., Raulf, K. and Quicker, P. (2020). Waste, 4. Recycling. Ullmann’s
Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.028_
005.pub2

Ragaert, K., Delva, L., van Geem, K., 2017. Mechanical and chemical recycling of
solid plastic waste. Waste Management (New York, N.Y.) 69, 24-58. https://doi.
org/10.1016/j.wasman.2017.07.044

33



Sensor-Based Sorting & Control 2022

34



Assessment of sensor-based sorting performance for lightweight packaging waste through sensor-based material

Assessment of sensor-based sorting
performance for lightweight packaging
waste through sensor-based material
flow monitoring: Concept and preliminary
results

Nils Kroell™, Tobias Dietl'?, Abtin Maghmoumi', Xiaozheng Chen’,
Bastian Kiippers?, Alexander Feil', Kathrin Greiff"

'Department of Anthropogenic Material Cycles, RWTH Aachen University, Aachen, Germany
2STADLER Anlagenbau GmbH, Altshausen, Germany
* Corresponding Author: Willnerstr. 2, D-52062 Aachen, Germany,

nils.kroell@ants.rwth-aachen.de

Keywords: sensor-based material flow monitoring, sensor-based sorting, sorting performance, post-
consumer lightweight packaging waste, plastic recycling

Abstract

Background: Sensor-based sorting (SBS) units are a crucial part of lightweight
packaging (LWP) waste sorting plants. Compared to sorting trials under technical
lab conditions, significantly lower sorting performances are observed in many LWP
sorting plants. One reason for this discrepancy is assumed to be the insufficient
material flow representation under real sorting conditions. Aim: This paper aims to
quantitatively determine how material flow presentation influences the performance
of SBS units on the example of LWP waste. Method: In a case study, near-infrared
(NIR) sensors were used to monitor the input, eject and drop fraction of an industrial-
scale, NIR-based SBS unit at different troughputs. Result: Preliminary results show
that higher occupation densities and insufficient material singling lead to significantly
a lower sorting performance both in terms of purity of the eject fractions and yield
of eject materials. Conclusion: The findings suggest that much of the discrepancy
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between theoretically possible and practically achieved LWP sorting performance
can be explained by suboptimal material flow presentation. Optimized material flow
presentation thus might offer considerable, but so far largely untapped, optimization
potentials in LWP sorting.

1 Introduction

Global plastic production has grown from 2 Mt to 380 Mt between 1950 and
2015 (Geyer et al., 2017) and is expected to double again over the next 20 years
(European Commission, 2018). The current production, usage, and end-of-life
disposal of plastics cause severe environmental damages, e.g., greenhouse
gas (GHG) emissions (Zheng & Suh, 2019) and pollution of global ecosystems
(Jambeck et al., 2015). Plastic recycling and the substitution of primary by recycled
plastics can significantly lower the environmental impacts of plastics (Astrup et al.,
2009; Perugini et al., 2005). For example, substituting 1 Mg of primary plastic with
recycled plastic achieves GHG savings between 0.9 Mg and 2.2 Mg CO,e (Turner
et al., 2015).

Germany is the largest producer of post-consumer plastic waste in Europe and
generated about 5.35 Mt/a post-consumer plastic wastes in 2019; the majority (59
wt%) of which is collected as post-consumer lightweight packaging (LWP) waste
with an amount of 3.16 Mt/a (Conversio Market & Strategy GmbH, 2020). After
collection, LWP waste is firstly sorted by LWP sorting plants into preconcentrates
and a remaining sorting residue. Preconcentrates are further refined into secondary
raw materials by specialized recycling plants and then re-enter the anthropogenic
material cycle (Feil & Pretz, 2020). Although several improvements were introduced
to LWP sorting (Feil et al., 2021), the overall performance of LWP sorting in Germany
remains unsatisfactory: In 2019, only about 19 wt% of post-consumer plastic waste
could be converted into recyclates, and only 8 wt% were used to substitute virgin
material (Conversio Market & Strategy GmbH, 2020).

Considerable material losses towards energy recovery occur both during the
collection with about 30 wt% as well as in sorting and recycling plants with about
35 - 40 wt% each of the respective inputs (Kuchta, 2020). As high material losses in
recycling plants are partly caused by insufficient purity of preconcentrates (Dehoust
& Christiani, 2012), technical optimization of LWP sorting plants plays a key role in
improving the performance of post-consumer plastic recycling.
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1.1 State of the art and challenges in LWP sorting

In LWP sorting plants, the input material flow is firstly preconditioned (liberation,
sieving, wind-shifting, ballistic separation) before ferrous and non-ferrous metals
as well as beverage cartons are sorted out. The preconditioned material flow then
enters the heart of any modern LWP sorting plant: A sensor-based sorting (SBS)
cascade typically containing more than 20 SBS units to sort the material flow into
the desired preconcentrates. (Feil et al., 2021)

SBS units in LWP sorting are almost exclusively belt sorters, i.e., the material
flow is presented on acceleration belts (v = 3 m/s) to the sensor. Compressed air
nozzle bars are then used to sort the material flow in a drop and eject fraction,
depending on the chosen sorting recipe. Common target fractions in SBS for LWP
are polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET),
polystyrene (PS), beverage cartons (BC), and paper & cardboard (PPC). As all
target fractions of SBS in LWP have distinct near-infrared (NIR) spectra, NIR-based
sorters are primarily used in LWP-sorting. (Feil et al., 2021; Feil & Pretz, 2020)

Modern SBS equipment can, according to manufacturers, achieve technical
efficiencies of 2 95 wt% under laboratory and pilot plant conditions (4R Sustainability,
2011). However, the actual achieved product purities and observed material losses
fall far short of these expectations (see above).

One main reason for the poor sorting results in industrial-scale LWP sorting is
assumed to be the inadequate material flow presentation to the SBS unit (Feil et al.,
2019): For optimal sorting results, material flows have to be presented as a singled
monolayer to the SBS units. If particles overlap or touch each other, false-negative
(material supposed to end in the eject fraction ends in the drop fraction) or false-
positive (vice versa) sorting results occur, which lead to lower yield and purities,
respectively. Two physically plausible mechanisms for false sorting results are:

(M1) False sorting decisions due to overlapping: All sensors currently
applied in LWP sorting are surface measurement technologies. Thus,
in the case of overlapping, only the material on top is considered in
the sorting decision, leading to false-negative or false-positive sorting
decisions, depending on the material on top. Additionally, mixed spectra
(NIR) or colors (VIS) can lead to false sorting decisions in case the
material on top is (semi-)transparent.
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(M2) Entrainment of drop particles: In the case of overlapping or touching
particles, turbulence of air valves can lead to false-positive material
ejects (especially for light material fractions such as films).

1.2 Addressed research gap

This study aims to quantitatively determine how the material flow presentation
influences the sorting results and how much of the discrepancy between theoretically
possible and real-world observed sorting results can be explained by insufficient
material flow presentation to SBS units in LWP sorting plants.

Recent studies have shown that the material throughput strongly influences the
SBS performance of chute sorters in lab-scale (Kuppers, Schldgl, et al., 2020;
Kippers, Seidler, et al., 2020). However, the results are only partly transferable to
industrial-scale SBS units since (i) LWP sorting is almost exclusively performed on
belt sorters with significantly different feeding characteristics, (ii) the investigated
working width (500 mm) is significantly lower compared to industrial applications
(influence of boundary areas), and (iii) the characteristics of the investigated test
material (idealized plastic chips) are not comparable with real-world post-consumer
wastes. Additionally, investigations with industrial SBS equipment (Curtis et al.,
2021) show that the throughput fluctuations hamper SBS performance but are
limited to comparing two scenarios (fluctuating and non-fluctuating throughput).

One limitation of current SBS research is that existing performance assessment
methods are based on manually determining the composition and quantity of eject
and drop fractions (i.e., manual sorting), which is time- and cost-intensive. Therefore,
only a small number of data points can be determined, limiting the statistical
confidence of obtained results. Furthermore, sorting results are only available once
the sorting trial is finished and therefore cannot be measured time-resolved and
are limited to batch-wise trials. To overcome these limitations, we propose a new
assessment method based on sensor-based material flow monitoring (SBMM), in
which additional sensors are used to determine the composition and quantity of the
eject and drop fractions.
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2 SBS performance assessment based on SBMM

In the proposed assessment methodology, additional sensors are used to monitor
(i) the material flow presentation on the acceleration belt and (ii) the sorting result,
i.e., quantity and composition of the eject and drop fraction (Figure 1).

N

Assessment of

material flow
presentation SBMM

sensor (sensor-based)

.................... g sorting process

Input —

Drop

Figure 1: Concept for SBS performance assessment through SBMM.

2.1 Assessment of material flow presentation
To describe the material flow presentation on the acceleration belt quantitatively,
this section define different material flow presentation indicators.

Occupation density (OD). Traditional assessment of material flow presentation
of acceleration belts is based on the occupation density (OD), which describes the
share of the acceleration belt area that is covered by material (Kippers, Schlégl,
et al., 2020):

_ Acovered
0D = —— (1)

Abelt

Where 4, , is the area flow (projected area per time unit as presented to the sensor)
L) @nd belt width (b
is the area flow of belt area that is covered by material.

of the acceleration belt, which is a function of belt speed (v
(Eq. (2)), and 4

bcll)

covered
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Abelt = Vpelt * Dpett (2)

The OD can be calculated deterministically without prior knowledge about the
material flow. However, as shown exemplarily in Figure 2, the OD neglects the
material distribution on the conveyor surface (e.g., overlapping), which may
influence the sorting result (see Mechanism M1, Section 1.1).

(a) (b) (c)

O Particle Singled region Centroid distance
+ Centroid Clustered region

Figure 2: Exemplary material distributions with similar ODs, but
(a) high, (b) medium, and (c) low patrticle singling.

Singling ratio (SR). To overcome the limitations of the occupancy density indicator,
we propose a new indicator, the singling ratio (SR). To determine the SR, we
classify all associated, covered areas (regions) into (i) singled regions (regions
that contain only one particle) and (ii) clustered regions (regions that contain two

or more touching or overlapping particles), cf. Figure 2. The SR then describes the
percentage of covered area that is singled:

Asin led Asin led
SR = - £ = 08

Asingled + Aclustered Acovered

)

A SR of 1 indicates perfect singling, while a SR of 0 means that all particles touch
or overlap with at least one other particle.
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Particle distances. While the SR describes the singulation of the material flow, it
ignores the proximity to nearby regions, which may influence the sorting result (see
Mechanism M2, Section 1.1). Different metrics can describe the distance between
regions on a conveyor surface. Here, we use the Euclidian centroid-to-centroid
distance between a given region i and its neighbor region j, where x and y are the
coordinates of the respective centroid and region j is the k-th nearest neighbor of
region i:

CD (i) = J(xi — %) + (v — ))? )

On a material flow level, the distances of all » regions in a given evaluation area
result in a distribution of individual centroids distances, which can be summarized
through statistical indicators such as the arithmetic mean:

n

1

CD, = EZ CDy; (5)
i=1

2.2 Assessment of sorting performance

In any SBS task, particles can be divided into target (index T) and non-target
particles (index nT). Optimal sorting is defined by maximizing target and minimizing
non-target particles in the eject fraction.

Four different sorting results can occur: (i) target material ends in the eject fraction

(m true positive [TP]), (ii) target material ends in the drop fraction (mmmp; false-

; true negative

T.cjccl;
negative [FN]), (iii) non-target material ends in the drop fraction (i
[TN]), and (iv) non-target material in the eject fraction (m

nT,drop

false-positive [FP]).

nT.eject’

Thus, the sorting result can be interpreted as a 2 x 2 confusion matrix:

mT,eject (TP) mnT,eject (FP)

Confusion matrix: | . .
mT,drop (FN) mnT,drop(TN) (6)

Commonly, two indicators are used to evaluate the sorting task (Feil et al., 2016):
Purity (Eq. (7)) describes the share of the target fraction in the eject fraction, i.e.,
evaluation of the first confusion matrix row.
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mT,eject _ mT,e]'ect (7)

Cw,eject -

meject mT,eject + mnT,e]’ect

Yield (Eq. (8)) describes how much of the target fraction from the input material flow
is sorted into the eject fraction, i.e., evaluation of the first confusion matrix column.

Rw — mT,e]‘ect — mT,e]‘ect (8)

mT,input mT,eject + mT,drop

Although purity and yield are of high practical importance, both indicators must
always be considered to evaluate the sorting performance. To obtain a single
performance indicator, we propose to unite purity and yield into the F,-score, which
is the harmonic mean of both values (Tharwat, 2021):

Cweiect © R
F1 —2. w,eject w (9)
Cw,eject + Rw

F -scores range between 0 and 1. An F-score of 1 indicates a perfect
sorting performance (c, ., and R =1),), while the F -score becomes zero if
purity or yield become zero.

In cases where purity and yield are not of equal importance, it is possible
to weigh both indicators through a factor  in the £-score (Eq. (10)), which
leads to yield being weighted g-times more than purity (Tharwat, 2021).

Cw,eject Rw

Fﬁ =ax BZ) : (ﬂz " Cw, eject) + Ry

(10)
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3 Case study: Material and methods

In a case study, we tested the technical feasibility of our assessment method with
an industrial scale SBS unit using real-world LWP waste.

3.1 Test setup

The developed test setup consists of a state-of-the-art, industrial-scale NIR-based
SBS unit with a total working width of 2000 mm, an acceleration belt speed of 3 m/s,
and an air nozzle bar with 12.5 mm nozzle distance operated at 5.5 bar air pressure.
For the sorting trials, the effective working width was reduced to 1000 mm to enable
high occupation despite the limited transport capacity of the upstream conveyors.
The sorter was programmed to actively sort out PET, while all other materials were
supposed to end in the drop fraction. The sorting recipe came directly from the SBS
manufacturer, represented an industry-standard sorting recipe used in several LWP
sorting plants, and was not further modified or adapted for the sorting trials.

A first additional NIR sensor (NIR-1) recorded the acceleration belt. After the SBS
unit, the drop and eject fraction then fell on separate conveyor belts respectively
(width: b = 830 mm, belt speed: v = 1.2 m/s), where both material flows were
captured by a second NIR sensor (NIR-2). Afterward, the NIR-2 recordings were
digitally split into eject and drop recordings. To simulate a continuously working
sorting plant, eject and drop material flows were mixed and entered a material loop
before being fed again to the SBS unit. Inside the material loop, a modified ballistic
separator and several belt transfers ensured a material flow homogenization before
re-entering the SBS units.

The used NIR sensors were EVK HELIOS EQ32 sensors from EVK Kerschhaggl
GmbH (Raaba, Austria) working in the wavelength range of 930 nm — 1700 nm with
a spectral resolution of 3.1 nm at an acquisition frequency of 450 Hz. An analysis
recipe (Figure 3a) containing spectral references for the material classes PET,
PP, PE, PS, BC, and PPC was developed and loaded on both NIR sensors. The
NIR sensors classify each pixel based on the analysis recipe, and the resulting
false-color images (Figure 3b-d) were recorded using a self-developed recording
software for subsequent data analysis.
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Figure 3: (a) NIR recipe and resulting false-color images (red marked
areas are used for spectral classification) of (b) acceleration belt (NIR-
1), (c) eject, and (d) drop belt (NIR-2). Grey: unclassified material.

3.2 Material and experimental procedure

The investigated test material is LWP waste from Maribor (Slovenia). To simulate
a realistic 3D plastic fraction typical for SBS applications in LWP sorting, we
preconditioned the material flow before the trials with a ballistic separator to remove
2D materials and fines (< 45 mm) and an eddy current and magnetic separator to
remove ferrous and non-ferrous metals, respectively. To achieve material flow with
a certain percentage of eject material (in this case PET), pure PET and non-PET
fractions were generated firstly. For the PET fraction, post-consumer PET bottles
were used as the source material. To ensure proper classifiability of each bottle
and to exclude false discharges due to poor classifiability of certain bottles (e.g.,
full-sleeve bottles), the PET fraction was delabeled with the STADLER Delabeler
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(Kuppers et al., 2019) to generate a pure post-consumer PET fraction and exclude
the influences of labels and sleeves on the sorting result. A non-PET 3D plastic
fraction was generated by sorting out all PET contents from the preconditioned LWP
waste prior to the sorting trials. Subsequently, a PET content of 30 wt% was set
for the test material by mixing defined amounts of the PET and non-PET fraction.

Different material flow presentations were simulated by gradually increasing the
throughput in 16 throughput steps. The throughput increases were achieved by
adding a defined amount of additional test material to the material loop in each
step. After a buffer time of 5 minutes to equilibrate the material loop, the sorting
results were monitored for 10 minutes (equivalent to about 3.5 material cycles) for
each throughput step.

3.3 Data evaluation

The subsequent data analysis was implemented in Python 3.8. First, all images
were spatially calibrated to obtain results in metric units. Second, the material flow
composition and OD were determined and aggregated to a sampling rate of 15 Hz.
Third, each region was classified into singled and clustered regions, and centroid
distances were determined. After that, the SR was determined, and the centroid
distances were resampled by evaluating the image in chunks of 1/15 s length
in conveying direction. To reduce the artifacts of individual particles and obtain
information on the material flow level, all results were smoothed by a 1s moving
average.

The sorting performance indicators (Eq. (11)-(13)) were then calculated by
comparing the area flows per material class:

(11)

APET,e]’ect

C;ET,eject = T [pX%]
eject
APET eject
Rpgr = —————— [px%] 12
ApeT,eject T APET drop (12)
N CPET,eject * RPET
Fipgr =2- e [px%] (13)

P T
CPET,cject T RpET
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For a mass-based process evaluation, these area-based indicators have to be
transformed into mass-based indicators (Kroell et al., 2021), which we plan to
address in future work. Since the grammages of the investigated material groups
are in a similar order of magnitude, we neglect this effect for the first demonstration
of technical feasibility and report the preliminary results in pixel percent (px%),
cf. Eq. (11) — Eq. (13).

4 Case study: Preliminary results and discussion

4.1 Discrimination of singled and clustered regions

To determine if the classification into singled and clustered regions based on the
NIR-1 recordings (false-color images) is technically feasible, we manually classified
n = 1,000 randomly sampled regions. The resulting dataset contained n = 632
(63.2%) singled, n = 335 (33.5%) clustered regions, and n = 33 (3.3%) regions
that could not be classified unambiguously (which were excluded from the labeled
dataset).

For an initial classifier, we extracted the two features (i) impurity (share of all except
the most common material classes and unclassified material of a particle) and (ii)
projection area of each region and split the dataset into 75% training and 25% test
data. Figure 4 shows the distribution of impurities and projection areas between the
singled and clustered regions.

Based on the training data, we determined two thresholds (i) z.

impurity

=12 px%
(optimal threshold between singled and clustered regions, see Figure 4a) and
(i) 7., = 1,000 cm? (maximum projection area of singled clustered incl. 10% buffer
for different particle positions). Based on these thresholds, we constructed a simple
if/else classifier:

(14)

_ {"CluStered"r lf Iregion 2 Timpurity or Aregion = Tarea
"singled", else

Where [ and 4

region region

and RTis the region type. Figure 4c shows that this simple classifier already achieves

are the impurity and projection area of a region respectively,

a classification accuracy of 92.3% and can sufficiently discriminate singled from
clustered regions (Figure 4d).
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Figure 4: Identification of clustered regions. (a) Distribution of material impurities per region type,
(b) distribution of projection areas per region type, (c) confusion matrix of region type classification
based on impurity and projection area thresholds (dashed line in [a] and [b]) and or-conjunction on
the test set, (d) exemplary false-color image with identified regions (blue: singled, red: clustered).

The classification accuracy can likely be improved by incorporating more features,
extending the training data set, and applying sophisticated machine learning (ML)
models. Especially convolutional neural networks (CNNs) could be promising for
this classification task.

4.2 Interrelation between material flow presentation indicators

Based on the discrimination of singled and clustered regions, the SR was calculated,
and Figure 5a shows the interrelation between OD, SR and relative throughput. As
one would expect, the OD increases with increasing relative throughput, while the
SR decreases. Two segments can be identified: For ODs between 0% and about
20%, the SR stays roughly constant. For ODs above about 20%, the SR decreases
with increasing belt occupation.

The centroid distances (Figure 5b) decrease with increasing OD, i.e., regions move
closer together. However, at ODs above about 30%, increased region distances
can be observed. This effect can be very likely be traced back to the formation of
more clustered regions (cf. Figure 5a) at higher ODs: As the clustered regions have
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larger projection areas than singled particles, the centroid distances increase with
lower SRs and higher ODs.
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Figure 5: Interrelation between (a) OD and SR for different relative throughputs and (b) OD
and centroid distances. CD;: centroid distance to i-th nearest neighbor. (1s moving average;
scatterplot for better visualization limited to a random selection of 1,000 data points each)

These findings show that the SR can be a useful metric to assess the material flow
presentation besides the OD. However, as all sorting trials were conducted on the
identical acceleration belt and with identical material flow guidance, the additional
advantage of SR over the OD can currently only be estimated to a limited extent.

Furthermore, the prelimary SBMM data indicates that the presentation of post-
consumer LWP as a singled monolayer to SBS units is indeed challenging: Even
at the lowest investigated throughputs (mean OD: 8.8%), only about half of the
covered area (mean SR: 52.4%) was classified as singled.

In contrast, the centroid-to-centroid distances seem to be of limited use for describing
the particle proximity at higher ODs due to the formation of clusters. Here, region
distances that describe the distances between individual region borders could be a
potential improvement.

4.3 Influence of material flow presentation on sorting performance
Figure 6 shows the interrelation between the material flow presentation (assessed
by the OD and SR) and different sorting performance metrics (purity, yield, -score).
As depicted in Figure 6a, the sorting performance decreases linearly with increasing
OD from about 91.6 px% purity and 98.7 px% vyield at 8.8% OD to about 74.2 px%
purity and 97.0 px% vyield at 42.6% OD.
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For the investigated SBS unit, a 12.2-fold steeper decrease of the purity with
increasing OD (slope: -0.49) compared to the yield (slope: -0.04) can be observed.
Accordingly, Figure 6b shows an increased sorting performance for higher SR.
Here, the purity increases 12.5 times steeper than the purity with increasing SR.
As graphically shown in Figure 6, the -score can be a useful performance metric to
combine purity and yield.
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Figure 6: Influence of (a) OD and (b) SR on sorting performance.
(5s moving average; scatterplot for better visualization limited to
a random selection of 1,000 data points each)

The significantly reduced sorting performance of SBS units due to suboptimal
material flow presentation (high OD) is consistent with related research (Curtis et
al., 2021; Kuppers, Schlogl, et al., 2020; Kiippers, Seidler, et al., 2020). In contrast,
a quantitative comparison of our findings with the results of Klippers, Seidler, et al.
(2020) highlights the significant influence of individual SBS units, machine settings,
and material flows on the obtained transfer function (quantitative relation between
material flow presentation or throughput and sorting result): While Kippers, Seidler,
et al. (2020) report a decreased yield of on average -0.76% per 1% additional OD,
the yield of our investigated SBS unit decreased with only -0.04% per 1% additional
OD. A possible explanation for this is that in state-of-the-art SBS equipment, the
weighting of purity and yield can be adjusted in the sorter settings, and changing
these weightings would directly affect the slope of the purity and yield in the obtained
transfer function. Moreover, the sorting results are influenced by the characteristics
of the underlying sorting engine and the input material. It would thus be interesting
to compare the sorting performance as assessed through the -score for different
SBS settings or different SBS units in future work.
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4.4 Limitations

It is essential to note that the obtained purity and yield values cannot be directly
transferred to plant scale LWP sorting due to (i) the pixel-based performance
assessment (cf. Section 3.3) and (ii) the removal of articles with limited sortability
(cf. Section 3.2). The first limitation (pixel-based assessment) results in
underestimating the sorting performance, as, e.g., PE bottle caps on PET bottles
are counted as target material in traditional (particle-based) sorting assessment,
but as non-target material in our pixel-based assessment method. The second
limitation causes overestimating of the sorting performance, as articles with limited
sortability would cause additional sorting errors. Here, a direct comparison of
the SBMM- and pixel-based sorting assessment with traditional (particle-based)
performance assessment would be of great value.

5 Conclusion and outlook

In conclusion, our case study shows that an automatic assessment of (sensor-
based) sorting processes is technically feasible and offers significant advantages
over state-of-the-art assessment methods, e.g., in terms of reduced time and cost
expenditure, a higher statistical significance of the results, and greater flexibility
and detail of data evaluation. The introduced indicators singling ratio and particle
distances enable a more nuanced description of the material flow presentation and
demonstrate the difficulty of singling post-consumer LWP wastes on acceleration
belts.

Our results show that increased belt occupation significantly linearly reduces the
sorting performance of SBS equipment in terms of lower purity, yield, and overall
sorting performance (F,-score). These preliminary findings suggest that much of the
discrepancy between theoretically possible and practically achieved LWP sorting
performance can be explained by suboptimal material flow presentation.

In future work, we plan to extend the sorting trials to different material flow
compositions and further improve the developed assessment method. Furthermore,
the hypothesis that large parts of the discrepancy between theoretically possible
and practically achieved LWP sorting performance can be explained by suboptimal
material flow presentation shall be investigated in SBMM trials at plant scale. If this
hypothesis is validated, optimized material flow presentation offers considerable,
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but so far largely untapped, optimization potential in LWP sorting and could largely
contribute to a loss-minimized plastic recycling in general.
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Abstract

The aim of the presented trials is to quantify the delabelling performance by using
sensor-based material flow monitoring (SBMM). To evaluate the usability of SBMM
for that task, the material was analysed before and after the delabelling process
for every batch of samples both with an NIR sensor and by manual sorting. The
samples were taken from plants in Belgium and Germany, to create a variety of
labelled PPW-objects. The examined objects have been covered with different
types (e.g., full sleeve, half sleeve, adhesive labels) and materials (mono- or multi-
layered plastics). Based on the results of these trials regarding fullsleeve PET-
bottles, sensor-based quality control (SBQC) could further be developed and then
implemented in a sorting plant after a delabelling process, to ensure the delabelling
performance and thus enhance the success of the following sensor-based sorting
steps.

55



Sensor-Based Sorting & Control 2022

1 Introduction

The amount of plastic packaging waste (PPW) in Europe has been increasing over
the past decades. Germany, the largest producer of PPW in Europe, generated 3.24
Mio. Mg of PPW in 2018, which is equivalent to an increase of 10% compared to
2009. In Austria the increase in that time span was 3%, in Belgium 6%. Although the
total amount of PPW in Austria and Belgium is significantly lower than in Germany
(AT: 302.000 Mg and BEL: 347.000 Mg in 2018), the demand for higher recycling
rates in combination with increasing numbers of PPW stresses the need for
technical innovation in the sorting and recycling process (European Commission,
2021; Directive 2018/852).

In addition, the design of plastic packaging creates challenges for the waste
management industry. One example are labels, which cover a part of the product
and thus hinder the correct classification of such articles through sensor-based
sorting (SBS) machinery. A trend of enlarged labels for marketing reasons resulted
in an increasing number of full body and bigger adhesive in the last decade. These
labels can be made of a variety of different plastics or even paper. As the resulting
near-infrared (NIR) spectra of labelled objects usually differs from the ones of the
unlabelled objects, reduced yield and product purity in sorting plants and a resulting
lower chance for recycling is the consequence (Cotrep, 2019; Gomes, 2014; Hiittler,
2021; Pomberger, 2021).

An approach to deal with that problem is to use a delabelling device, which separates
the labels from the waste object (e.g., a plastic bottle). If the removal of labels is
successful, the material of the object is then easily detected by SBS. An additional
benefit of delabeling is the absence of ink or colour additives in the resulting material
flow, which might even improve the level of recycling, as some colours cannot be
removed completely in the recycling process (Hittler, 2021). One example for a
problematic colour additive is titanium dioxide (TiO,) which is commonly used in
white objects (Loaeza et al., 2021). If the bottles are both coloured and covered
with a label a separation by colour is impossible without a delabelling step. The
general functionality of the “Label Remover” of STADLER Anlagenbau GmbH for
separating labels from PET bottles was shown by Kuippers et al. (2019).

To ensure a continuously persisting delabelling performance, sensor-based material
flow monitoring (SBMM) methods can be used. One use case is the detection
of malfunctions, which can be caused by necessary maintenance work like the
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exchange of blunt blades. As a consequence of this, or due to special challenges
caused by the input material, the amount of labels in the output stream can be too
high. This can be quantified on-time with sensor-based quality control (SBQC).
Immediate measures like physical changes to the process (e.g., changing blades,
changing the distance of rotor, and stator knives) or using sensor-based process
control (SBPC) in the form of a material re-feed to a point prior to the delabelling
step are the possible consequences.

The results in the following show an excerpt of trials with labelled PPW material
from different European countries. The challenges and possibilities of quantifying
the delabelling performance with SBMM are exemplarily shown for manually sorted
labelled PET-material using an NIR-sensor.

2 Material and Methods

The PET-material for these trials consists of manually picked full-sleeve bottles
of two different PPW sorting plants in Belgium and Germany. The total number of
bottles was 479, with 416 coming from Belgium and 63 from Germany. The type of
bottles in each sample can be seen exemplarily in Fig. 1:

Fig. 1: Input material: PET-bottles from Belgium (left) and Germany (right).

As the grade of labelling differed in the input material it was quantified by
manually sorting all objects and categorizing it in “No label”, “Partly delabelled”
and “Complete label”’. The term “label” in this work includes all kinds of labels and
sleeves independent of the material of the label or type of processing. The number
of objects in each category can be seen in Tab. 1. Both samples originally did
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not contain objects of non-PET-material. An interesting detail was the share of
specific products in the samples. For instance, 26% of the full-sleeve PET-bottles
in the Belgian sample consisted of the packaging of a popular drink from the brand

“Cécémel”.
Tab. 1: Number of input object manually sorted by grade of labelling.
Partly Complete
No label delabelled label Total
PET_Belgium 376 38 2 416
PET_Germany 40 22 1 63
Total 416 60 3 479

The trials were conducted in pilot plant scale in the “Test and Innovation Centre” of
STADLER. The test setup consisted of a screw conveyor followed by an ascending
conveyor belt. The NIR-sensor (Type: EVK Helios EQ32, wavelength range: 930
— 1700 nm [EVK DI Kerschhaggl GmbH, Raaba, Austria]) was mounted over the
conveyor belt. The material then either passed the delabelling step and was directly
discharged or was fed into the “Label Remover” followed by a ballistic separator to
separate fines, labels (2D) and delabelled PET-bottles. The delabelling steps can
be seen in the flowchart in Fig. 2.

Labelled PET NIR-Sensor

i PAN Label Remover

!

Screw Conveyor Ballistic Separator AD[ Delabelled PET

Y

2D

Fig. 2: Flowchart of test setup (“Delabelling phase”).
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A scheme and a picture of the STADLER “Label Remover” can be seen in Fig. 3.
Technical details and the fundamental functionality can be found in Kippers et al.
(2019).

Input Rotor Rotor Knife

=) Stator knife
>§:| < @C L

I
A

) %): (| o

» = rotation

Fig. 3: Scheme and picture of the STADLER “Label Remover” (Kiippers et al., 2019).

After manually sorting the input to determine the grade of labelling the material was
mixed again to ensure an even distribution of all types of objects. To determine the
delabelling performance, the material was scanned before and after delabelling. As
only one NIR-Sensor was used the test setup was changed for the analysis phases
to scan the material multiple times without it entering the “Label Remover”. After
the first analysing phase the material was delabelled (“delabelling phase”) followed
by the second analysing phase. After the second analysing phase, the material was
manually sorted once by grade of labelling and once by colour.

In both analysing and delabelling phases, the samples were fed into to screw
conveyor using a wheel loader. When passing the NIR-sensor the number of pixels
of each material (e.g., PET, PET with label, PE, etc.) was recorded. Usually, the
analysing phase consisted of five repetitions of recording the pixel data per time
unit for the entire material flow plus one repetition of scanning and saving the raw
data of the stream to help with the subsequent interpretation of the collected data.

For the German PET, the first analysing phase only consisted of two repetitions due
to time limitations. To improve the data under those circumstances and to exclude
material loss, as the sample was rather small (63 bottles in total) the material was
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not fed through the screw conveyor and put through the whole pilot plant but put
on the conveyor belt manually before the sensor and collected directly after. The
following steps did not differ from the Belgian material.

As there are multiple conveyor belts between the input and the output of the pilot
plant some material loss was unavoidable. This was aimed to be quantified by
weighing input and output fractions (3D-material, 2D-material, fines). The output
fractions of PET_Belgium are shown exemplarily in Fig. 4. The fine fraction of the
PET-input consisted mainly of broken or small caps (Fig. 4-B) and smaller pieces of
shredded labels (Fig. 4-C). Nevertheless, the majority of labels (both shredded and
complete) ended up in the 2D-material together with some bigger caps.

2D-material

Fig. 4: Output material of PET_Belgium: Fines (left) and 2D-material (right).
A: shredded PS contaminants, B: shredded labels, C: caps

It was not possible to clean the pilot plant after analysing and delabelling phases
of each sample to exclude the possibility of contamination with remains of former
trials. These contaminations can contain material of samples of PS, PE, and PP
with different types of labels. In Fig. 4, a relevant amount of shredded parts of white
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PS-cups can be seen in both fines and the 2D-fraction (Fig. 4-A), although more of
these contaminants were found in the fine fraction.These remained from prior tests
with PS-material.

The used teach-in for the trials was designed specifically for the PET input material
and tested multiple times with various objects to attain the best possible results. The
teach-in includes the definition of background (converyor belt) and the manually
added material classes and their allocated reference spectra. The material classes
for these trials differentiate between PET, PE, paper and cardboard (“PPK”), PS,
PP, PET_Mix-Sleeve, PE_Label and PET_Label. A distinction of PP and PP_Label
was not feasible due to a limited number of possible material classes. Fig. 5 shows
an excerpt of the teach-in:

Configuration (0v

Fig. 5: Excerpt of the Teach-In for PET-material including material
classes (left) and reference spectra (right).

The red areas in Fig. 5 show the spectral ranges which are used for classification.
The chosen sections are 1092 - 1273 nm, 1330 - 1436 nm and 1599 - 1677 nm.
More settings are listed in the following table:
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Tab. 2: Chosen settings within the teach-in.

Setting Value
Wavelength range 220 pixel
Spatial range 232 pixel
Exposure time 450 ps
Frame rate 447 Hz
Background: Dynamics of Spectra <270

The size of pixels is depended of working width, spatial range, belt speed and frame
rate. In particular the pixel width results from the ratio of working width (approx. 700
mm) to the number of spatial pixels monitoring the conveyor belt (“spatial range”).
The pixel length is depended on belt speed (0,83 m/s) and frame rate of the sensor.

3 Results and Discussion

3.1 Analysis of false color images

An excerpt of the live false colour image of the delabelled material flow can be
seen in Fig. 5. The light blue pixels are classified as PET while the dark blue
pixels are classified as PET with a PET-label (“PET_Label”). The picture shows an
occasional systematic misclassification of PET-material as PET_Label in particular
on the edges or at the base of the bottles. This can be explained by the general
phenomenon of refraction on edges as well as remaining liquids or the thicker wall
strength of the bases of PET-bottles. Although a certain level of misclassification
cannot be avoided the overall results have been satisfying both for the labelled and
delabelled PET-bottles.
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Fig. 6: False color image of the labelled (A) and delabelled (B) material flow.

An interesting detail of the delabelled material flow are the missing caps on many
bottles (apparent by the missing pink and green pixels in the false colour image
in Fig. 1-B), which have been separated from the bottles during the delabelling
process. As they have been sorted into fines or the 2D-fraction they can’t be seen
in the false color images of the delabelled objects in the analysing phase. In Fig. 7
the missing caps are marked exemplarily in photos of the manually sorted fractions
“Partly delabelled” and “No label”. In these photos a high number of bottles with
missing caps is observable.
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Fig. 7: Pictures of manually sorted “Partly delabelled” (left) and “No label” (right)
material after delabelling. A: Exemplary bottles without caps.

3.2 Analysis of NIR pixel data

Comparing NIR pixeldata of the material flow before and after delabelling an
increase of PET-pixels is evident. For the Belgian material, the share of PET-pixels
increased on average by 40 percentage points (pp.) while the German increase
was 35 pp. (See Fig. 8: Black shares).

BEFORE DELABELLING AFTER DELABELLING

2%
mpET
mPE

38% ups

gium

upp upp

 PET_Mix-Sleeve  PET_Mix-Sleeve

PE_Label PE_Label
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not classified not classified

mPET

y

mpE
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 PET_Mix-Sleeve  PET_MixSleeve

PE_Label PE_Label

PET_Label PET_Label
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1%
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Fig. 8: Mean shares of detected pixels before (left) and after (right) delabelling
of Belgian (up) and German (down) PET-material (PET: black).
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As the removal of labels increases the unimpaired surface area of PET-bottles the
detection of more PET-pixels is the immediate consequence. The share of “PET_
Label” decreased from 38% to 13% for the Belgian and from 45% to 17% for the
German material. This was the highest reduction on pixel shares of all material
classes of labels. This implies that the majority of labels were made of PET.

Looking into the repeatability of these results Fig. 9 shows the total amount of
pixels per trial. One trial represents one repetition in the analysing phase. For
PET_Belgium the coefficient of variation was 3.3% before delabelling and 3.6%
after delabelling. For PET_Germany the affiliated numbers are 0.0% and 6.0%.
Considering the low number of objects (63) in the German sample these results
show a high reliability on NIR sensor data in this context.
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Fig. 9: Total number of detected pixels before (left) and after (right) delabelling
of Belgian (up) and German (down) PET-material (PET: black).

Another finding concerns the total amount of pixels before and after delabelling.
For both the Belgian and the German material a significant loss of pixels can
be detected. The main reason for this effect is the separation of caps during
the delabelling process (see Fig. 5) and the separation of PP-labels which were
classified as PP (as they are assigned to the same material class). This is implied
in the NIR-data by the reduction of about 83,000 PP-pixels for the Belgian material
and a reduction of about 6,500 PP-pixels for the German material and was validated
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by visual inspection of the raw data. The biggest shift in monitored false colour
pixels was found from PET_Label to PET. The second biggest change occurred in
the reduction of PP-pixels.

It is notable that there is a significant difference of total pixels between the two
samples which can be explained with differing sampling sizes (PET_Beglium: 416,
PET_Germany: 63). The average number of pixels per bottle was 2,242 for PET_
Belgium and 3,536 for PET_Germany. This systematic difference can be attributed
to different consumer behaviours and varying packaging designs in both countries
resulting in different objects collected in the two countries as, e.g., 26 % of the
Belgian material are “Cécémel’-bottles which are rather small compared to the
average size of German bottles. Therefore, the SBMM-data appears to be plausible
and reliable regarding the total amount of pixels as well.

PET_BELGIUM PET_GERMANY
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H No label ® Partly delabelled Complete Label ¥ Loss

Fig. 10: Comparison between manual sorting and NIR-data including losses before
and after delabelling for Belgian (left) and German (right) material (Black: No Label or
PET pixel share, Light grey: Complete Label or sum of non-PET pixel shares).

The sensor data was further validated by a comparison with the results of manual
sorting. Fig. 10 shows shares of NIR-data as PET and non-PET particles and
shares of manually sorted objects classified by grade of labelling (“No label”, “Partly
delabelled”, “Complete label”). To enable the comparison the hypothesis states that
a bottle without a label consists of 100 % PET. A bottle with a complete label on the
other hand is comparable to non-PET-pixels. Both object and pixel shares include
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losses caused by delabelling, sorting the material in the ballistic separator or losses
within the pilot plant (striped areas in Fig. 10).

The results of manual sorting confirmed the usability of the “Label Remover” for
full-sleeve PET-bottles: 80% of the 416 bottles of PET_Belgium were fully or at
least partly delabelled (see black and dark grey shares in Fig. 10) with just 1%
loss of objects. The increase of “No label”-bottles was 68 pp. For the German input
material (63 bottles) the affiliated numbers are 79% with 5% losses and an increase
of 67 pp. In both 3D-output fractions no contaminations with non-PET objects were
found.

The corresponding NIR-data showed an increase from 36% to 64% for PET
Belgium which equals an increase of 27 pp. with losses of 15%. This increase
is significantly lower than the value in manual sorting (68 pp.) which might be
explained by the fact that both partly and completely labelled objects in fact show
some PET-surface area at least on the bottom of objects. This results in a higher
value before delabelling than the presented hypothesis implies. Comparing only the
information for delabelled bottles (Fig. 10: “After”) the correlation of manual sorting
and NIR data is better: 69 % (“No label”) and 63 % (“PET”) for PET_Belgium. The
same principle can be observed within the PET_Germany data with 68 % (“No
label”) and 57 % (“PET”).

To improve that correlation the average share of PET-pixels of partly and completely
labelled objects is needed. However, the results show that the increase of PET-
pixels due to the increased exposed surface area caused by the delabelling
process can be detected successfully without having any information about the
characteristics of the input material.

Lastly, the delabelled bottles were classified by colour. The number of bottles in
each category can be seen in Tab. 3. The majority of all delabelled bottles consisted
of clear PET (93 %), the rest was dominated by white PET (6%).
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Tab. 3: Number of delabelled bottles sorted by colour.

clear white brown green
PET_Belgium 396 26 3 0
PET_Germany 56 2 0 1
Total 452 28 3 1

These results emphasise the importance of high-quality delabelling processes
to enable the separation of white PET-bottles as their colour additives hinder the
possibilities of recycling.

4 Conclusion

The demanded higher recycling rates of the European Union stress the need of
innovation in the waste management industry. To improve the chances for recycling
of commonly used labelled objects the industrial use of delabelling machinery is
a possibility. To enable a consistently high delabelling performance sensor-based
material flow monitoring (SBMM) can be used in a sorting plant, enhancing the
success of the following sensor-based sorting steps.

This work presented the following findings for manually picked full-sleeve PET-
bottles from PPW sorting plants in Belgium and Germany:

e The delabelling causes a shift in the NIR pixel data from detected “PET_
Label” pixels to “PET” pixels due to the increased exposed surface of the
PET-bottles after removing labels.

e The total number of PP pixels decreases through the delabelling process
which is caused by the removal of PP-caps and labels classified as PP.
This separation of non-PET-material from the PET-stream might increase
the chances for a high-level recycling

o The coefficient of variation among repeated sensor recordings was low
(0% to 6%) for both input materials which shows the reliable analysis of the
material using an NIR-sensor.

e A lower average number of pixels per bottle was detected for Belgian
material. This was validated with the results of manual sorting which revealed
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differences in the samples from Belgium and Germany caused by different
consumer behaviours and varying packaging designs.

e The correlation between sensor data and results of manual sorting works
better for delabelled objects. Nevertheless, the increase of delabelled
objects is evident in the NIR-data in form of an increase of the total number
of PET-pixels as well as PET-shares for both materials.

e The delabelling process revealed that 7 % of all examined bottles contained
colour additives (6 % even potentially problematic white additives).

Overall, the results demonstrate the feasibility of using sensor-based quality control
(SBQC) to evaluate the delabelling performance concerning full-sleeve PET-
material. Regardless, future research could continue to explore the possibilities and
challenges of using sensor-data to quantify the delabelling of other materials such
as PE, PP, or PS. Furthermore, the potential of object-based instead of pixel-based
analysis could be reviewed.
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Abstract

To gain better insight into the composition and recycling opportunities of commercial
and industrial (C&l) waste, a sensor-based material flow characterization (SBMC)
study was conducted at a C&l waste sorting facility. The 2D and 3D fractions
from ballistic separation were monitored so that the material composition of both
fractions could be determined. While previous studies and studies in the literature
have mainly focus on the SBMC results, this paper will highlight the challenges
encountered during the measurement that have a potential impact on the results.
The focus in this regard will be on non-NIR related challenges, SBMC preparation
challenges, and classification challenges.
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1 Introduction

To meet the European Union’s ambitions to increase recycling rates further and thus
move closer to a circular economy (European Commission, 2020), waste streams
that do not originate from households, such as commercial and industrial (C&l)
waste, must also be taken into account for recycling. In comparison to household
waste, only little information on the composition of C&l waste is available in scientific
literature even though its potential for high recovery rates has been documented in
previous studies, especially for the plastics fraction (Kleinhans et al., 2021).

To fill this knowledge gap and pave the way for improved recovery rates for C&l
waste, a series of near-infrared (NIR)-assisted material flow measurements were
conducted at a C&l waste sorting facility in Vantaa, Finland. Better knowledge of the
composition of C&l waste will help evaluate the potential for prevention or reuse and
can assist in the development of innovative, targeted waste management solutions.

While the typical use of sensor technology is material classification for sensor-based
sorting, this and previous studies (Hernandez Parrodi et al., 2021; Kuppers et al.,
2019a) show the optimization possibilities that arise when sensors are used not
only for sorting, but also for sensor-based material flow characterization (SBMC).
In addition, SBMC enables real-time material flow monitoring of the current material
composition and plant downtimes, but the various challenges of applying SMBC at
plant scale have rarely been discussed in depth.

In this case study, the 2D and 3D fractions from ballistic separation were
monitored, allowing us to determine the material composition of both fractions,
and thereby quantifying the separation performance of the ballistic separation
process. In the respective process line, further separation is realized with state-
of-the-art NIR sorting technology. The material fractions wood, cardboard, high-
density polyethylene (HDPE), clear polyethylene (PE) film, and colored PE film
are recovered. With the monitoring in this study, also the amounts of recovered
polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and
expanded polystyrene (EPS) were quantified to get a better understanding of the
composition of non-household plastics.

The encountered challenges throughout this project are the focus of the present
article. These challenges can be grouped into non-NIR related challenges,
challenges in preparatory work for SBMC and classification challenges. Aim of
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this research is to point out the possible the influences of these challenges on the
results of SBMC on the example of conducted C&l monitoring.

2 Material and Methods

This case study has taken place in a sorting facility in Vantaa, Finland that belongs
to the Remeo Oy group and operates two lines: one construction and demolition
(C&D) and one C&l waste sorting line. The measurements have taken place during
18 — 20 October 2021 in the C&l line, of which a simplified layout can be found in
Fig. 1. The C&l line operates on average 15 Mg/h and recovers PE film, HDPE,
wood, cardboard, ferrous and non-ferrous metals, solid recovered fuel (SRF) and
inert fractions.

As shown in Fig. 1, the SBMC took place after the ballistic separation, this means
that the input material has already been shredded (to < 300 mm), sieved, and
ferrous and non-ferrous metals have been extracted via magnetic and eddy current
separators. Furthermore, the ballistic separator was equipped with 80 mm paddle
holes to produce another fine fraction in addition to the 2D and 3D fractions. After
the ballistic separation, several downstream NIR sorting steps are applied to
produce the desired output fractions.
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Fig. 1: Simplified flowsheet of the studied C&l line (square shapes stand
for separation equipment, oval shapes stand for products)

Similar to previous studies (Hernandez Parrodi et al., 2021), two hyper-spectral-
imaging NIR sensors (Helios EQ32 from EVK Kerschhaggl GmbH, Raaba, Austria)
with a possible spectral range of ca. 930 nm — 1700 nm were used for the material
flow monitoring. Halogen lamps (each 400 W covering 300 mm working width) were
utilized as emitters and positioned as displayed in Fig. 2 (two lamps on the 2D line

and four lamps on the 3D line).
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Fig. 2: Test setup in the sorting plant (left: 2D line, right: 3D line),
A: NIR sensor, B: Lamps, C: Conveyor belt handover

2.1 NIR-Analysis

The analysis of the measured NIR spectra was based on a classification recipe that
translates the raw spectra into classified data. Further, this recipe links every spatial
pixel with 220 spectral information (spectral pixels) and derives, smoothens, and
normalizes it to generate stable material-specific spectra. The black conveyor belts
constituted the background showing low intensity and dynamics compared to the
detected objects. The spectra of different material types of substances (see Fig. 3
and Fig. 4) were defined in the analysis recipe, distinguishing the material classes
PVC, PE, PP, EPS, PET, cardboard, wood, and inert. Detected materials whose
specific spectrum is not part of the analysis concept are classified as ,unknown* or
were wrongly detected as another material if they had a similar spectrum. Only the
wavelength ranges marked in transparent red (see Fig. 3 and Fig. 4) were used to
classify the different material classes, since these were the ranges that are most
important for distinguishing the spectra between the material classes.
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Fig. 3: Used analysis recipe (first derivative, smoothed) for the 2D fraction
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Fig. 4: Used analysis recipe (first derivative, smoothed) for the 3D fraction

The interpreted spectra can be assigned to the measured pixels so that false-color
images, as shown in Fig. 5, can be generated.
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Fig. 5: Example false-color image of the 3D line
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3 Encountered challenges

Although SBMC offers many opportunities, there are some challenges that influence
the validity and the accuracy of the measurements.

3.1 Non-NIR related challenges

Fire safety

Proper lighting is of utmost importance in SBMC, but if lamps are used, as in our
case with several 400W lamps, one must be aware of fire hazard. To prevent the
lamps from shining on a standing belt and overheating of the black surface, the
lamps were controlled via a built-in belt speed monitoring device and switched off
when the belt stopped. Furthermore, it is important to choose a sufficient distance
to the belt to avoid that waste items, especially film material, might be touching the
lamps and could be melted or ignited. Additionally, in case there is a significant dust
build-up on the lamps, it is important to clean them frequently as this represents
a fire hazard as well. Whereas this does not directly influence the SBMC, one
must be aware of the maintenance effort. However, it is possible that dust adhesion
on the glass of the lamps might have a slight influence on the measurement, as
specific wavelengths may not be detected because they are absorbed by the dust,
which is an inert material.

Data transfer

To enable real-time flow monitoring, a stable connection to a server that stores
the data must be provided. During this and previous studies, we have found that
having a connection, e.g., to an LTE or Wi-Fi network or using Ethernet cables, is
not always possible at every location in a sorting facility, but it is a prerequisite for
real-time monitoring.

3.2 Challenges in preparatory work for SMBC

Spectral range selection

The choice of the spectral range to be evaluated greatly influences the classification
accuracy. Whereas it is desired to not loose spectral regions that hold important
information to distinguish the desired material classes, it should be noted that
scaling effects can occur if high absorbance is measured at the margin of the
measuring range. For example, a PP spectrum, as reported in previous studies
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(Kuppers et al., 2019b), shows a high intensity in the raw spectrum between 1000-
1150 nm, if this region is included for classification, all other peaks are scaled down,
also those that might be interesting to distinguish from other material classes. This
might lead to misclassifications if spectra of different material classes cannot be
adequately distinguished anymore. In case other classification algorithms are used
different effects can occur.

Moreover, the choice of the range to distinguish the spectra is important and should
always be made according to the composition of the waste stream and the goal of
the classification. If necessary, individual ranges can also be weighted differently to
improve the classification, effects of this depends on options of the postprocessing
software.

Recipe creation

When adding spectral information of sample material to the classification recipe, it
is important that a representative selection of items from the waste stream is made,
paying attention to the variability of certain waste items. This means, for example,
that a dry and a wet version of a waste item, or an item with a label or sleeve made
of a different material, should be included in the desired classification. This will
result in adding a variety of spectra for each material class. This preparatory work
can greatly impact the accuracy and reliability of the SBMC and should therefore
be carried out thoroughly.

Background definition

In this study, a further challenge for classification was the attached dirt on the 2D
and 3D line and conveyor belt cleats on the 2D line (see Fig. 6). Although it was
possible to adjust the classification recipe to correctly classify both conditions as
background, it was necessary to add additional classification rules, e.g., PET is
still classified as PET despite low intensity. As a result of this recipe adaption, false
classification of some PET pixels as background, or vice versa, might occur.

It is important to find a good balance between not recognizing cleats and not
compromising the recognition of waste items to avoid further systematic errors
in the SBMC, e.g., recognizing dirt on the belt as inert material. Therefore, it is
necessary to handle the background definition and additional classification rules, if
any, with care. This problem is more pronounced with low belt occupancy.
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Fig. 6: Photo impressions of the conveyor belts at the location
of measurement (left: 2D, right: 3D with cleats)

Object recognition

The main challenge for classification is also the material flow presentation to the
NIR sensor, especially the spatial singling of individual particles. In our study the
3D line had a better object singling, which resulted in less to no touching and
overlapping of the waste items. On the 2D line, on the other hand, small debris
accumulations occurred frequently and overlays were often seen (see Fig. 7). This
is also confirmed by the mean occupation density of approximately 12% on the 3D
and 42% on the 2D line. An improved material flow presentation can be achieved
by measuring after conveyor belt transfer points or through the use of speed belts.

In general, SBMC can be performed on object or pixel basis. Using object-based
SBMC can be useful, e.g., for sorting purposes to control air valves, but is not
necessarily useful for material flow monitoring purposes. In particular, the use of
SBMC at suboptimal locations in a sorting system, e.g., locations with increased
material overlay due to low bandwidth, belt speed, or high throughput, can benefit
from pixel-based material flow analysis.

Fig. 7: Photo impressions of object singling on the 2D (left) and 3D (right) line
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3.3 Classification challenges

Systematic misrepresentation due to overlays

Due to the overlays, there is a systematic error in recognition of the overlaid objects,
as only the surface is scanned. This underestimation cannot always be assigned
to a specific material class. However, it can be discussed that due to density
differences, lighter materials may be found more often at the top of the overlays.
In case a transparent plastic film is part of an overlay, it is also possible that parts
of the underlying material are detected, the question to what extent the film and
the underlying material are correctly detected would need systematic studies to
be assessed. The same effect could also occur in other materials, e.g., in the 3D
stream with transparent PET, so systematic studies in both 2D and 3D streams
would be of interest.

Carbon-black plastics

In addition, visual control noted that the 2D line contained significant amounts of
black film that were not previously removed at the PE film NIR-sorter. As commonly
known, carbon-black items cannot be detected via NIR technology, therefore,
this fraction was not monitored in this study. According to our visual analysis, the
majority of black items were film materials from garbage bags, assuming these are
mainly made of PE we might have an underestimation of PE in the flow monitoring
of the 2D line.

False classification of dust adhesions

A previous study by Parrodi Hernandez et al. (2021) showed the potential of SBMC
for monitoring inert materials. In our study, we added several spectra of inert
material to the NIR recipe, but no large amounts of inert material could be observed
in the 2D nor in the 3D stream. However, our measurements showed a fraction of
inert material (see Fig. 8). This was because attached dirt on the waste objects is
classified as inert pixels. Thus, we acknowledge this as a systematic error and an
overestimation of inert material.

Pulp-based materials

A further issue in this study was the limited classification results of the pulp-based
materials wood and cardboard. Both materials were noted to be partly misclassified
as the other, especially in the 2D line where the waste items were less separated.
This negatively influences the validity and accuracy of the SBMC for the material
classes cardboard and wood. We noted that this effect was less prominent on days
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with less dust in the air (see Fig. 8). The reason for the lower dust content was
rainfall, which increased the moisture content of the waste items, affecting detection
quality as reported in previous studies (Kippers et al., 2019b).

- PE
) Cardboard
. ' Wood
AN

Misclassified cardboard

Inert material
attached to
cardboard

 classified EPS
wood object

PP

Inert
" Better classified ne
‘ cardboard PET

18-Oct-2021 20-Oct-2021

Fig. 8: False color images to show differences in detection quality
related to dust content and further systematic errors

Light overexposure/ direct reflectance

We encountered that, while measuring EPS, we might have a systematic
underestimation of pixels. Due to its white color, EPS has a high reflectance and is
therefore often partly not recognized (see Fig. 9). This effect could also occur, when
monitoring shiny objects, e.g., metal parts.

vy '
Partly not
classified PE
EPSobjects [ Cardboard
\
Il Wood
W EPS
Fully
classified — M FP
EPS object Ea ‘ ‘

Fig. 9: Screenshots of false color images with differently classified EPS (purple) on the 3D line

Another cause for this error could be a suboptimal white calibration. The white
calibration was performed with the help of white tiles placed on the conveyor belt.
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Since the tiles are very flat, the maximum brightness from the sensor’s point of view
is set approximately to the height of the conveyor belt. Therefore, white 3D objects
may not be fully detected, as they exceed the maximum brightness. This effect
would be even more pronounced with, e.g., trough conveyors or rising conveyor
belts with cleats and should be kept in mind while performing the white calibration.

Fig. 10 shows some examples of challenges for the white calibration and the light
exposure in general. To be able to perform SBMC independently of ideal situations,
like a speed belt with good object separation, one is confronted with for instance
different types of conveyor belts, high belt occupancy, overlays, and different sizes
of waste items. In the case of high belt occupancy or bigger 3D objects, it might
happen that the waste items hinder ideal light exposure, see case (b) in Fig. 10. In
addition, white calibration might be challenging on non-straight conveyor belts (see
situation c¢) and d) in Fig. 10), as the focus point of the lamps calibrated via a white
tile might not match the real location of the waste items. The items might lie higher
or lower depending on the type of belt. This might influence the measured intensity
and therefore cause missing pixels or lead to misclassification.

a) b)
! ‘ ! ‘ i Waste item
-
Ay U »
Light source
ideal situation waste items with different sizes
c) ! d) ! ! NIR sensor
J.E- 4

trough conveyor belt rising conveyor

Tile for white calibration

belt with cleats

Fig. 10: Challenges for white calibration and light exposure
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4 Conclusion

This paper discussed the challenges of SBMC of a three-day long (18-20 October
2021) measurement campaign on a C&l sorting line in Vantaa, Finland, after
ballistic separation. The tests carried out as part of this study showed that real-time
monitoring in C&l sorting systems using NIR sensors is possible, and can be used
to create a new data set that can determine the composition of C&l waste.

Various challenges have been identified, ranging from non-sensor related matters,
like fire safety or data transfer, to preparatory work for SBMC and classification
difficulties. Although some of these challenges might limit the validity and accuracy
of the flow monitoring, the potential of this technology outweighs the drawbacks
in a significant manner. The potential includes real-time flow monitoring, quality
assessment, and the possibility to set the basis for future applications to optimize
and control sorting equipment. To do this, it is important to be able to measure
under suboptimal conditions (e.g., overlays, dust problems, different belt types and
speeds, or varying throughput rates), which was demonstrated to be possible in this
and previous case studies.
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Abstract

The ideal mass throughput of sensor-based sorting units is usually an economic
compromise between product quality and productivity. If the mass throughput is too
high, the quality of the sorted products does not meet the requirements, while low
throughputs result in insufficient production rates.

Although it is desirable to constantly feed the sorting unit with this ideal throughput,
practical applications often suffer from significant throughput fluctuations, especially
when treating non-bulk materials. With an unregulated feed, a sorting unit is often
operated alternately with a too high or a too low throughput. This can usually be
explained by an uneven material discharge from the upstream dosing hopper,
caused by the material behaviour on the feeding unit. Because of factors such as
the filling level of the bunker and partial blockages due to interlocking parts, the
material discharge is not constant over time despite constant conveying parameters.

In order to minimize this effect, STEINERT has developed a regulation concept
which significantly reduces the throughput fluctuations by continuously regulating
the bunker. State-of-the-art camera technology permanently records the current
material discharge from the dosing bunker. Utilizing this data, the conveying
parameters of the dosing bunker can constantly be adjusted according to the current
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situation to generate a more consistent material flow. In addition, the material
flow can be adapted to the needs of the downstream sensor-based-sorter. This
control circuit clearly homogenizes the material discharge from the dosing bunker
and consequently also the throughput of the sorting unit. This approach allows
a significant increase in the average throughput of the sorting unit. The system
positively impacts on technical and organizational processes, which also contribute
to the increased throughput, such as the timely refilling of the bunker. Additionally
positive effects on the achieved product qualities have been observed, due to the
reduction of overfeeding.

1 Introduction

Ongoing development work leads to a constant shift in the limits of what is
feasible. Much of what is considered state-of-the-art today was unthinkable a short
time before. In the sensor-based sorting of bulk goods and non-bulk goods, the
requirements for the sorting goals to be achieved are shifting ever further. With the
relation of product quality and product yield, there is a high priority for the maximum
throughput to be achieved, in order to keep the operating costs per processed
tonnage low. This publication is not about improving one technical parameter of a
sorting machine itself, but about improving the performance of a sorting process
as a whole. As a producer of sorting equipment with over 130 years of experience,
STEINERT sees itself as a provider of technical solutions for various raw material
industries. The following technological concept can be of advantage in the
mechanical processing of primary resources as well as in the secondary resources
like waste and metal recycling.

The material infeed to a sorter can be measured and controlled by using existing
data points in combination with additional data recorded by sensors outside the
sorter itself. Efficient material feed control significantly improves the technical
limitations of a sorting process like strongly fluctuating throughput rates. With flow
control sorting processes can be brought closer to the ideal operating conditions.
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2 Current feeding of sorting processes

Functional units in mechanical treatment plants can be categorized into comminution,
screening and sorting processes, which are connected by conveyors. In most plants
sorting happens in-line after at least one comminution and a screening step. The
amount of sorting steps in a row depends on the desired level of sorting depth.

Plants that aim for a high sorting depth produce a lot of intermediate products
with small quantities. These intermediates usually need to be re-processed on a
multi-sensor unit that is operated in a batch mode as the economics do not allow
an own sorting machine per material due to low quantities. These multi-use sorting
machines are often built as a stand-alone process with its own peripheral equipment
like an own hopper that feeds the material to the sorting unit. The batch process is
often used to cover a high variance of different tasks and materials.

Another case are short sorting lines for specified material streams that run in-line
without further conditioning, e.g., comminution. These process lines are typically
loaded discontinuously by a wheel loader. As a starting point for continuous
processing, a hopper or bunker feeder is commonly in use. In common systems
different options to design a bunker feeder are available, like vibratory feeders with
either electro-magnetic or imbalanced drives, belt or chain conveyors or walking
floor conveyors.

To reach constant operating conditions close to ideal throughput, continuous feeding
is of key interest, which is true for bulk material as well as for non-bulk material
like scrap metals. Practical applications often suffer from significant throughput
fluctuations, especially when treating non-bulk materials. The sorting unit is then
operated alternately with a too high and a too low throughput. This can usually be
explained by an uneven material discharge from the upstream dosing hopper, as
depicted in Fig. 1.

The graph shows the material throughput in a sensor-based sorting machine
arranged subsequently to a dosing hopper recorded with a 3D-recognition system.
In the diagram, four feeding cycles of one bunker can be identified, which start
when the bunker is filled by a wheel loader and emptied over the time with constant
conveying parameters. The diagram shows that during operation, the feeder
creates a very uneven material distribution to the following sensor-based sorter.
At the beginning of each cycle the material flow is far above the targeted ideal
throughput. During emptying the achieved throughput is constantly decreasing. The
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graph drops to zero when the feeder is empty. The filling level of the feeder has to
be visible for the operators, in order to perform on time re-filling cycles. Between
start and end of each cycle, the throughput shows a clear trend of too much material
at the beginning and too little material discharged at the end.

Volumetric Throughput

Throughput

Operating Time

Fig. 1: Uneven material discharge of a non-regulated bunker

2.1 Processing dependencies

Once the loading of a sensor-based-sorting machine excesses the ideal operating
point, the quality of the sorting products decreases. With too much material on the
belt the sorting process cannot be sufficient due to increased object collisions or
overlapping pieces, which subsequently leads to a disturbed detection, increasing
number of false classifications and interferences in the discharging area using
compressed air. As a result of these inefficiencies the product qualities are
decreasing because more impurities are transferred into the product fraction. Also,
the recovery of target material into product stream is decreasing, as the number of
lost pieces into the residual fraction is proportional to the overload.

On the other hand, feeding a sorting machine below the ideal level means a loss
of operating capacity. The potential amount of material being processed efficiently
cannot be reached and it also cannot be compensated by feeding above the ideal
level as described before. In an economical evaluation, the unused capacity will
significantly impact on the operating costs (measured in €/t).
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In terms of product quality, the average daily production is affected by the different
operating states through the day. On market sale, the mixed product must admit
deductions on the target price, which will impact on the revenues, as well.

2.2 Impacts on conveying

The conveying speed of a vibration conveyor depends on several factors like
vibration amplitude, vibration frequency, material layer height, inclination of the
conveyor trough, friction generated by the lining material and characteristics of the
feeding material. As most of the conveying parameters can be seen as constant,
the material height in the bunker and therefore the weight of the filling that is lasting
on the vibrating trough is changing while emptying. The impact of the changing
material weight is depending on the installed drive of the vibration conveyor, which
can be either electromagnetic or imbalance drives. Electromagnetic driven vibration
conveyors are less robust against such changing conditions.

Another significant impact on the conveying behavior are the characteristics of the
feeding material. Especially non-bulk material tends to build partial blockages due
to interlocking pieces. While bulk material like gravel generally has a similar shape,
it is also easy to define a specific particle size distribution, non-bulk materials vary a
lot due to the shape and therefore it becomes challenging to even define a particle
size. In an auto shredder residue (ASR) material almost every imaginable shape
can be found. There can be flat sheets, longish pieces, wires, wire balls, deformed
sheets, stripes, bars, balls or foils. Besides the shape, the material composition can
vary a lot as well. Common ASR material consists of different non-ferrous metals,
ferrous metals, stainless steel, wood, rubber, plastics and minerals, such as stones
or ceramics. Consequently, a high variance of the specific particle weight can be
observed for non-bulk materials, which impacts the specific conveying behavior.

Another significant influencing factor in operating a sorting plant at ideal capacity is
human behavior. Defining the optimal operating point with regards to the throughput
is often done based on optical estimation of the operator at single points and is
therefore highly subjective. A readjustment of the feeding parameters is often based
on some observations over a short period of time, which most likely does not lead
to an improvement in long term. By knowing Fig. 1, any readjustment based on one
point in time cannot lead to an enhancement of the full discharging cycle.
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To use the sorter to capacity the material supply must be steady, and the bunker
must never be emptied completely. In some plants it occurs that a hopper is not
refilled right on time due to organizational reasons. Without monitoring the filling
level of the bunker, this can happen several times a shift, which means unused
operation capacity and therefore monetary losses.

3 Optimizing the material feed

Running a mechanical sorting machine close to the ideal operation point requires
steady operating conditions. One key aspect of optimization is to continuously
transfer resting feedstock in a bunker to an even feed and thereby achieve a
throughput that balances productivity and quality. Depending on the material
properties the technical challenge to reach and maintain an even material flow is
high.

3.1 Technical set-up

As our observations have shown, the hopper is the key element regarding the
actual throughput that arrives at a sorter. Therefore, there is a need for a technical
installation that monitors the material stream that leaves the hopper. This monitoring
must happen right at the discharge of the hopper or very close to the hopper on a
subsequent conveyor.

As described by (Rémisch, 2011, p.187), a volume flow on a continuous conveyor
system can be described as a product of the cross-sectional area (A) and the
velocity (v) of the material.

In the described set-up, a 3D camera is used to record aforementioned values.
Optical flow calculations provide a sufficiently accurate information on the volume
flow that is moving through the observed area. This information is sent to a control
unit, where a controller algorithm translates the deviation from the targeted volume
flow into a change in hopper speed, which is transmitted as an analogue signal
to the frequency controller of the hopper drives or as a digital signal into another
control unit, e.g., via a standardized bus system.
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Fig. 2 shows the control loop model of “flow control”. The upper part of the figure
shows the control loop at the hopper, where the 3D-camera records the previously
explained measured volume flow (actual value) and compares it constantly to a set
target volume flow (setpoint). In order to reach the setpoint, the hopper speed is
then regulated.

The hopper control loop furthermore receives constant validation from the sensor-
based sorter (sbs). In a second control loop, the measured volume flow (actual
value) is compared to an ideal volume flow (setpoint). A deviation from the ideal
flow in the sensor-based sorting unit is translated into an in- or decrease to the
target volume flow at the hopper.
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Fig. 2: “Flow control” - control loop model

As can be seen from the description of the control loop, the evaluation of the
volume flow in the sorting machine happens ‘close to sorting’ and is decisive for
the short-term control of the feeder (distant to sorting). Both units transfer data
and signals with direct machine-to-machine (M2M) communication. Applied direct
M2M communications are of advantage as no vertical signal exchange to a higher-
level control system is necessary. The essential signal exchange stays horizontal
between the involved units.
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As keeping the material flow steady is the main target, the system also has to deal
with different situations. An empty hopper discharge can have two reasons: (A) the
bunker is empty or (B) the material has blocked the upstream funnel. For case (A)
the system must recognize that the hopper is empty in order to prevent a continued
increase of the feeder speed due to automated regulation. In case (B) the blocked
material needs to be liberated by a spontaneous shaking at high drive speed. To
recognize the fill level of the infeed bunker, the system is equipped with additional
Sensors.

Another use case for level metering is to indicate when to refill the hopper to ensure
a continuous operation. This information can either be forwarded to a control room
to start other processes or to a machine operator to manually refill the system, for
example using a wheel loader.

The volume flow measuring module with the 3D camera itself can also be installed
on a conveying system independently from a feeder. This would enable the
detection of volume flows at almost any point in a treatment plant to monitor also
other processing machines like crushers, screens or non-sensor-based sorters like
eddy-current separators.

If the volume flow needs to be regulated, the system has to be installed on or close
to a bunker. STEINERT offers either a fully equipped bunker feeder or the option
of retrofitting an existing bunker. The retrofitting option depends on some technical
and organizational requirements, which are described below.

3.2 Technical and organizational conditions

In order to add the flow control system to an existing processing plant, the layout
and equipment is required to match several conditions. To be controlled by the
flow control system, the bunker’s conveying speed needs to be adjustable via an
electrical input signal. The range of this control should be enough to eliminate
blockages in the bunker on the one end and completely stop conveying at the other
end. Bunkers with magnetic vibrating hoppers offer larger flexibility, due to their
wide range of control and the fact, that they can be adjusted very precisely and
react quickly to rapid changes in the input signal (Schubert, 1984, p. 378).

Positioning of feeding devices and the sensor-based sorter also has a huge impact
on the performance of the flow control system. As described in chapter “Technical
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set-up”, the flow control system uses the volume flow measured at the bunker and
at the sensor sorter and combines these measurements to continuously set the
bunker speed to its optimal value. Short distances between those two points of
measurement are favorable while long distances result in a slow responding system.
However, with the feedback from the sorter, the usual deficit of long distances can
be partially compensated.

Regarding the input material, it is crucial, that the individual pieces can be separated
and do not stick together. Especially high contents of wires and cables in the input
material tend to create clusters of material which decrease the performance of the
flow control system significantly. In cases with a large quantity of such material,
the feeding of a process with liberated material requires other solutions, such as
additional comminution to liberate material and create steady material flows. The
flow control system has originally been designed for particle sizes above 4 mm, but
first tests have also shown a good performance at smaller size ranges for certain
input materials. Some recognition systems often suffer when the material surface is
shiny, e.g., for stainless steel. In all tests carried out, the described system showed
a high robustness towards shiny surfaces.

Furthermore, it is important to provide a proper training to equipment operators,
working with these systems daily. As for any technical installation that is operated
in harsh environmental conditions like treatment plants it is crucial to maintain
the equipment properly. Especially cleaning the system as well as conducting the
necessary maintenance steps should be included into a company’s modus operandi
to keep the flow control system operational and in ideal conditions.

4 Improving production and qualities

Regulating the material flow to run a sorting machine close to an ideal operating
point impacts on both, the achievable sorting qualities and the production of a
material processing facility.

4.1 Impacts on sorting qualities

The three key parameters of a recycling sorting process, as described by (Bunge,
2011), are recovery rate, product quality and throughput rate. In Fig. 3 this
interdependency is depicted.
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Fig. 3: Qualitative sorting dependencies

Ahigh level of all three parameters is obviously desirable. However, the parameters
influence each other. Shifting the focus to one of the parameters has a negative
influence on the others. For example, very high product qualities can only be
achieved when throughput rates are kept low to have an optimal object singulation
on the belt and accepting losses in recovery by ignoring material compounds at the
same time.

While recovery rate and product quality can be influenced in a sensor sorter itself,
e.g., by changing sorting algorithms or compressed air settings, the throughput rate
needs to be controlled before entering the sensor-based sorter.

To optimize all three parameters, an additional system like “flow control” is
necessary to achieve an optimal sorting state and thereby high economic feasibility.
“Flow control” automatically adjusts the material flow rate as predetermined by a
process engineer and the plant operator according to the desired sorting target.
Not only finding an ideal throughput rate but also assuring that this rate is achieved
constantly, is an important factor to constantly achieve high product quality and
recovery rates.

Scrap and waste streams are generally very heterogenous and thus in many cases
difficult to convey and discharge. Especially automotive shredder residues (ASR) or

94



Increase throughput and sorting quality with flow control

cable-rich input materials often tend to clog hopper outlets. In manually controlled
systems, it can take a long time until blockages are noticed by the operator and the
hopper speed is manually increased to unclog the material.

Fig. 4 shows a statistic of a volume flow rate generated in a STEINERT KSS sensor
sorter. The material sorted was an ASR material. The graph shows two states of
operation. First state from approx. 5:30 to 7:25 am shows manual operation by the
plant operator controlling the hopper speed from a control cabinet. The second
state begins at around 7:25 am when “flow control” was activated for automated
operation.

Volume flow measured in sensor sorter [m*h] and hopper speed [%)]

20 -
.

- .
“flow control" - activation |\.
B

ideal throughput rate

volume flow [m*h ]
hopper speed [%]

Fig. 4: Volume flow in sensor sorter and hopper speed

A few interesting states can be observed in Fig. 4. At around 5:50 am there is a
decrease in volume flow for around 30 minutes that has been caused by a blockage
in the hopper outlet (1). With manually increased hopper speed, the blockage was
removed at 6:20 am. However, this increased hopper speed later on leads to a
higher flow that was either not seen or misinterpreted by the plant operator leading
to a volume flow that, at its peak, is more than three times higher than the ideal
operating point (2).

With “flow control” activated blockages are detected immediately and the hopper
speed is increased automatically to the maximum (3). Idle time with no or only low
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throughput entering the machine is thus reduced significantly. While operating, “flow
control” does small adjustments keeping the machine operating at the predetermined
ideal operating point (4), which impacts positively on the sorting qualities, as well.
The level of regulation cycles underlines the necessity for constant monitoring of
the material feed, which proves the necessity for a system as described.

4.2 Impacts on production

In recycling processes, sensor-based sorters usually are the most expensive
sorting equipment (compared to screening, magnetic sorters, etc.) with regards to
both acquisition and operating costs. It is hence desirable, to especially operate
sensor sorters at full capacity and thus reduce processing costs.

Sensor-based sorters are often used as stand-alone applications for multiple input
materials. “Flow control” also offers more advantages here, as it is fully integrated
with the sensor-based sorter software. A customized sorting program can be stored
together with a customized “flow control” program resulting in optimized controls
for the three key parameters throughput rate, recovery rate and product quality for
every input material.

The filling measurement inside the bunker provide the plant operator with
information on the material quantity that is available to the plant. This data can
either be sent to the control room or can be linked to visual indicators, like a traffic
light system, to give information on the necessity to add material. Assuring the
system is constantly filled with input material and thus operated without idle times,
furthermore, decreases overall processing costs.

4.3 Installations

The first application of “flow control” has been installed in a STEINERT line sorting
system (LSS) equipped with either a LIBS sensor for aluminium sorting or XRF
sensors for heavy metal scrap sorting. Line sorting systems have the highest
requirements for a constant infeed as the input material needs to be isolated into a
single file. Peaks in the machine infeed result in an overlapping of objects and thus
in poor sorting results. Since line-based sorting systems are immanently lower in
capacity than standard belt sorters, it is even more crucial to run them at their ideal
operating point.
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“Flow control” was later successfully implemented with other STEINERT belt (KSS)
and chute (CHUTEC) sensor sorters and is now in operation at various sites.
Furthermore, existing hopper and sensor sorters in operation were retrofitted with
the 3D-camera module and a software upgrade. Many different types of infeed
material and particle sizes down to 4 mm were successfully controlled.

5 Conclusion

The introduced system can make a difference in achieving production targets of
mechanical treatment plants. Regulating the material feed to a sensor-based sorter
is an important parameter to reach constant production conditions and subsequently
improved and steady sorting qualities.

At the same time the overall throughput can be increased due to a reduction of
underutilization and systems running idle. As shown before demanded quality goals
do not allow a compensation of lost production time by running higher throughput
rates. The targeted full capacity can only be reached by operating machines on
a constant level. The automated regulation system supports to avoid production
losses.

The installation positively impacts also on the operating procedures on site for two
reasons. Firstly, the operator gets the information when the bunker needs to be
refilled, which normally has to happen by visual inspection. Secondly, the operator
does not need to regulate the conveying speed manually, as the system regulates
the material flow automatically. The necessity to monitor the feeding equipment by
the operator while interrupting other tasks becomes obsolete. Therefore, the daily
workload of staff can be reduced.

The system is available and can be offered for different plant configurations.
Retrofitting of an existing bunker in combination with a STEINERT sensor-based-
sorter is possible as well as a fully new installation including an automatically
regulated bunker.

Possible routes for further development are applications of the system for more
complex processing lines and extend it to systems that are not controlled by
complex routines, such as magnets, eddy currents or other mechanical processing
equipment. The application of additional sensors for such approaches have already
been tested positively.
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Abstract

Climate change, environmental pollution, resource scarcity, global population
growth are amongst the defining issues of the 21t century. Approaching them by
transitioning to a circular economy is one of the central challenges of our time.

Making the shift from linear to circular while building thriving economies requires
decreasing the environmental impact of extracting raw materials radically, reducing
the use of primary resources, designing waste-free products, including recyclable
materials, and implementing technologies to ensure the system is regenerative.
Sensor-based sorting solutions have proven their worth, as a ground-breaking
technological innovation, in both the primary and secondary resource industry.

Further technology development is essential to approach circularity, but technology
alone is not enough to create a circular economy: public policy, consumer
engagement, and collaboration across the complete value chain are necessary too.
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1 Introduction

Today, we follow the linear economy. Resources are extracted from the earth; raw
materials are processed to create products and the products are disposed of after
use. A shift is made in how we think about the use of minerals and metals from a
production-disposal mentality towards ongoing use and re-use underpinned by a
transition to renewable energy resources, the circular economy.

As the world addresses the environmental challenges of our time and the recycling
industry and consumer goods companies dominate the conversations on this, the
mining industry has an important contribution to make, as a major producer of
minerals and metals, as well as a big consumer of energy.

Mining companies need to find ways to maximize the efficiency of their operations
to cut back on the use of water and other limited resources while reducing waste
and the total impact on the environment as much as possible.

The total inventory of resources in use by humankind is ever-increasing, both
in mass as well as in diversity. Even in case, the circle can be closed with high
recycling rates there will always stay a need for primary resources. However, this
can be seen as an opportunity for the mining industry to re-think the way it fulfils
this essential role with minimum impact on the environment and without losing sight
of profitability. The primary resources entering the circle should be extracted in the
most sustainable way.

2 The role of sensor technology

Technology plays an essential role in achieving the ambitious aim of a circular
economy. It is necessary to employ state-of-the-art approaches that push
boundaries. Sensor-based technology in reverse vending equipment recovers
material and enables a clean look recycling of for example beverage containers
and sensor-based sorting solutions have proven their worth in both the primary and
secondary resource industry.

Sorting is implemented in the fields of waste management and recycling, where it
can be used to increase precision and streamline processes. It is used as large-
scale industrial technology to sort mixed waste into different material types. This
optimizes yield and quality of recyclable materials such as plastic, metals and paper.
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The importance of recycling is not just for material purposes, but also for a reduction
in emissions associated with production.

e One metric ton of recycled plastic feedstock on average offsets green-
house gas emissions equivalent to 1.9 t CO, (https://systemiq.earth/
breakingtheplasticwave/).

o If we sort and recycle one tonne of mixed waste before sending it to landfills,
we could save 0.309 t CO2 emissions.

e If we sort and recycle one tonne of mixed waste before sending it to
incinerators, we could save 0.349 t CO2 emissions.

e By collecting and sorting mixed waste materials before they are burned or
tossed into landfills, we can avoid up to 730 million t of CO2 emissions by
2030.

Sensor-based sorting technologies can also significantly reduce the environmental
impact of mining operations and, at completion, contribute to rehabilitating
the site. They also enable much more efficient use of resources. Implementing
sorting may result in a smaller footprint for the mining operation, the need to use
specific chemicals in beneficiation plants to be reduced, and the ore recovery to
be maximized. These solutions bring the dual benefits of greater sustainability and
better profitability for the mining company.

3 Potential value add of sorting in mining

Sensor-based sorting technology is in comparison to other mineral processing
techniques a technology that uses little resources such as water and chemicals
per ton of product. The average energy consumption of the equipment is around
0.5 kWh/ per ton of feed. No water is needed as a sorting medium, only occasionally
for material preparation. The sorters can be containerized and the footprint is
relatively small.

In mining and processing, there are three areas for sorting to have a
positive impact on the environmental footprint.

101



Sensor-Based Sorting & Control 2022

e ROM waste removal, i.e. reducing energy, water, chemicals use by using
sorting to reduce the barren material which needs to be processed.

e Extension of the life of mine, as lower grade material can be upgraded and
thus be economically processed.

e Re-processing marginal dumps.

According to a study conducted by the IEA (IEA, Key World Energy Statistics
2020 Report) mining consumes up to 4% of global energy production annually. An
estimated 50-75% of the energy used is for the liberation/comminution of ore and
minerals only, making grinding the most energy-intensive part of the production
cycle. Considering that grinding is the most energy-intensive part of the production
cycle, implementing sorting in the early stages of processing reduces waste material
and shrinks the carbon footprint while increasing profitability.

In the table below an overview is given on estimated average savings caused by
sorting.

Tab. 1: Estimated environmental and productivity value add of sensor-based sorting

Effect of sensor- Environment Cost & Savinas
based sorting productivity 9

Decreased I115&"t<(;/r\ilglsé:wed per ton of
energy ti 2% to 3%
$?annssl;)r:r$ fon X X of the world energy
pumping & consumption is used

) for crushing, screening,
dewatering, and milling °
disposals 9

Decreased water
consumption
Cooling, transport
in the process

3 to 4 m® water saved per
X X ton of material

CO,/Green counter, 7.5 kg
Reduced carbon X X per ton of material sorted
footprint
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Effect of sensor- Environment Cost & Savinas
based sorting productivity 9
Decreased Costs down €0.30/ton/km

Transport cost

Chemical usage
decrease
Flotation reagents,
acid for leaching
and cyanide

Reduced tailings
Fine particles

Productivity
increase
De-bottleneck
conventional
process

Lifetime of mine
increased

Waste into value
Create sellable
product

Reduced cut-off
grade

Higher dilution in

the mine, process
marginal dumps

Legislation

A few grams up to a few
kilos per ton

3 m? tailings volume per
ton (2 m*® material plus 1 m®
water)

Per ton of waste 1
additional ton of ore
production

30-50% longer life of a mine

The coarse waste rejected
can be sold (for a low price)

30-50% more reserves

Up to 3 years quicker
approvals
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4 Conclusion

There are economically viable solutions available today that can accelerate the
path towards a circular economy and a green mining industry. Sensor-based sorting
solutions are proven in both the recycling and the mining industry. The synergies
of the applications in both industries are not only the technical similarity of the
equipment but also the achievement of environmental improvements.

The mining industry must contribute to the approach of the circular economy. Beyond
efficient operation and resource management in extracting primary resources, it is
necessary to curtail excessive consumption and ensure products are designed to
be reused, and once at the end of life, easily recycled. This means the roles of all
actors along the value chain, including the industries and the customers, have to
be considered, so that holistic and integrated recovery and recycling systems can
be developed and tested.

A combined effort, support, and willingness to collaborate from government, industry
bodies, and the public will be required to help achieve circularity. The perfect time
to start to make the future more sustainable is now -with the technologies available
and proven.
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1 Sorting systems in the recycling economy

Attendant with the rapid development of computer technology and significant
advances in sensor engineering, the development of sensor-supported sorting
processes has been observed since the mid-1980s. In waste processing, the
introduction of sensor-based processes began with the sorting of waste glass
on channel sorters. Since then, the performance of the machines and equipment
has been continuously improved. Today, the detectors used range from visual
spectroscopy to X-ray fluorescence spectroscopy. The particle size range in which
the sensor-based processes are applied is also steadily further developed. The
lower limit currently stands at 1 mm for sorting ceramics, porcelain and stones from
waste glass [1; 2]. But there are also examples of the optical sorting of large and
heavy fragments with a mass up to 2 kg [3]. In the recycling economy, sensor-based
sorting is indispensable today — for example for the recovery of secondary raw
materials from mixed plastics or for the separation of recyclables from mixed paper
waste. It forms the basis for the realization of material cycles. In contrast, sensor-
based sorting is still found only rarely in the recycling of Construction Demolition
Waste (CDW), although it is the only process offering the possibility to separate
different types of mineral construction materials. As a key player in sensor-based
sorting, OptoSort GmbH has developed “Apollo”, a freefall sorter. Its efficiency in
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sorting construction waste has been analyzed by the company IAB Weimar gGmbH
in wide-ranging sorting and separation tests. The results are presented here refer to
the detection of components in CDW with the help of near-infrared (NIR) technology
and the separation of the mixes based on this. Colour sorting as another option that
can be realized with the “Apollo” or the combination of the two detection options is
currently undergoing tests.

2 Features of the sorter

The “Apollo” freefall sorter (Fig. 1) is a “channel machine” in accordance with the
classification introduced by Pretz and Julius [4]. A vibrofeeder is first used for the
singularization and uniform distribution of the recyclate that is fed over the entire 600
mm working width of the sorter. From there, the stream of material is transferred to
an inclined channel, where it is further accelerated and the particles singled. During
freefall of the feed below this channel, the particles are inspected.

© 00 O

Bulk solids feed

Vibrofeeder for ®
singling particles

Evaluation unit

FEXS

Two-sided lighting and S
two-sided RGB -
NIR camera systems
O
Command to valve

O @ battery: Pulse of

compressed air

o
Rejected material ‘ Accepted material

e.g. gypsum e.g. clay brick

Fig. 1: Schematic showing the freefall sorter, ©OptoSort GmbH, IAB Weimar gGmbH
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For inspection, it is possible to combine colour detection and hyperspectral NIR
technology with each other. Sensors arranged on both sides of the material stream
scan two opposite surfaces of each particle. This setup is essential for sorting
construction waste, making provision for the fact that coarse particles in construction
waste can consist of several components. For example, layers of mortar or gypsum
often stick to wall construction materials, and these cannot be detected with only
one-sided detection. The technical layout of the individual machine groups in the
recycling test centre at IAB Weimar gGmbH begins with feed of the mix to be
sorted on the “Material feed” level (Fig. 2). From there, the material is transferred
on the vibrofeeder to the “Sorting machine” level. The materials are identified in
the freefalling stream of material, with colour recognition and hyperspectral near-
infrared (NIR) scanning being performed individually or in combination with each
other. In either case, sensors on the two sides of the material stream scan two
opposite particle surfaces. Depending on the scanning results, at the “Material
discharge” level, the particles are either discharged by means of compressed air as
“rejects” or leave the sorter in freefall as “accepts”. To minimize the consumption of
compressed air, generally the material present in smaller concentrations in the feed
mix is “blown out” of the material stream. The sorter is suitable for sorting particle
sizes from 8 mm to 75 mm with a maximum particle size ratio of 1:4. For example,
8/32 mm or 16/64 mm fractions can be sorted [5].
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Fig. 2: “Apollo” freefall sorter at its installation site, ©/AB Weimar gGmbH

3 Results of selected sorting tests

In the processing of CDW, different sorting tasks must be combined. On the one
hand, it may be necessary to remove impurities from a mixture of CDW to make
it usable for defined applications. Frequently occurring mineral impurities include
gypsum or lightweight building materials like autoclaved aerated concrete. As a
non-mineral impurity, wood can also be contained, because this cannot generally be
removed completely with conventional dry sorting techniques. On the other hand,
the recovery of useful materials from CDW is often required. For example, the
recovery of unmixed brick particles from building rubble is of great interest because
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these can be used in vegetation technology. For recycled aggregates, which are
needed in the production of R-concretes, a defined composition must be maintained.
With the help of sensor-based sorting, the composition can be selectively modified
to meet relevant specifications. In the extraction of raw materials for the production
of construction materials, their extraction is mostly controlled such that starting
materials meeting requirements are produced. Where raw materials are becoming
scarce, as apparent in the gypsum industry, sorting can help to selectively control
the composition of previously unusable raw materials so as to make these usable
for subsequent production of construction materials.

3.1 Removal of gypsum from a building rubble mix

The starting material was a mix of building rubble consisting of brick, concrete
and gypsum in the size range 22.4/63 mm. The gypsum content, which made up
4.9 wt% of the material makes on the one hand recycling impossible and on the
other hand landfilling required. Prior to the sorting process, the NIR spectra of
the construction materials to be separated were captured (Fig. 3) and the sorting
program taught to detect these materials. Around 60 kg of the mix for separation
has passed the sorter.

- Clay brick o "
@ o . /‘ o 1 3. &
T | (Wi | e S
3wy /— Concrete i3 ¥
O am ; ) \
O, =y — ol F AW i ‘
- e - . o = - | ! L)
O = L S il
o = \_ et | 8 /4
N Sk | 8| ¥
& - Gypsum AL |

- il

|84

- , ‘;li :E

s 1 |

4
Wavelength [nm]

Fig. 3: First derivative of NIR spectra for brick, concrete and gypsum ©IAB Weimar gGmbH
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The gypsum content remaining in the product after it had passed through the sorting
machine was determined by means of visual inspection based on manual sorting
analysis. The result of machine sorting is shown (Fig. 4) that the gypsum content
could be reduced considerably. With the remaining 0.4 wt% gypsum in the accepted
product discharged on freefall, application of the product in unbound base courses
in road construction is possible [6].

Material feed
59.33 kg

Compressed
air discharge
3.57 kg

Concrete + brick:
238 mass%
Gypsum: 76.2 mass%

Concrete + brick 95.1 mass%

Concrete + brick 99.6 mass%

[l
Gypsum
0.4 mass%
Freefall discharge

55.55 kg

Fig. 4: Sorting result for the separation of gypsum from mixed construction rubble, ©/AB Weimar gGmbH

3.2 Separation of a brick-concrete mix

The starting material was a mix of building rubble consisting of brick and concrete.
In this case, concrete was the impurity to be detected by means of NIR sensors and
then discharged with the help of compressed air. The feed mix was a 22.4/63 mm
fraction, which corresponds to a particle size ratio of around 1:3. The NIR spectra
were used as the feature (Fig. 3). The brick content in the starting mix accounted
for 81.7 wt%. The content of concrete was 18.3 wt%. With sorting, the brick content
could be increased to 97.6 wt%. 2.4 wt% concrete remained as “bycatch” in the
product (Fig. 5). Accordingly, the brick content could be increased considerably
compared to that in the starting material. As a result, use of the recovered sorted
material for greening roofs would be possible.
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Material feed
86.67 kg

Compressed
air discharge
15.84 kg

Brick 81.7 mass%

Brick 20.5 mass%
Concrete 79.5 mass%

Brick 97.6 mass%

AN

Concrete

Concrete
183 mass% e Freefall discharge

70.83 kg

Fig. 5: Sorting result for the separation of brick and concrete, ©AB Weimar gGmbH

4 Conclusion

In this paper a report on sorting tests on mineral CDW with the “Apollo” freefall sorter
is presented. The standout feature of this sorter is the pairs of sensors arranged on
two sides of the free falling material stream. In this way opposite particle surfaces
are scanned so that any adhesions or coatings can be detected. Identification of the
particles are based on NIR spectra. For this purpose, the spectra of phenotypical
representatives of the components are first captured, and then used to teach the
sorting program to detect these materials. The aims of the mechanical sorting tests
presented here are the reduction of gypsum from CDW and the extraction of single-
variety bricks. The results show that the aims can be achieved.
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Abstract

Within the next decade, the recycling rates of all waste streams in the European
Union are to be consistently increased (EU, 2018). Sensor-based sorting plays a
crucial role in achieving those aims. However, the composition of the operating costs
of sensor-based sorting systems (SBS), which are made up of compressed air and
electricity costs, for example, has not yet been adequately investigated. The main
cause is the massive experimental effort required to investigate these costs. In this
paper, we propose a systematic approach for determining the operating costs of
SBS systems by using Design of Experiments (DoE). For this purpose, experiments
are carried out to investigate whether the methodology of DoE is applicable to
the use case of SBS. The resulting models are validated with statistical measures
and additional experimental runs. For comparability of the results, two different
materials, namely construction and demolition waste as well as plastic flakes, with
grain sizes between 0 - 10 mm are investigated. With the presented approach high
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coefficients of determination of the regression models are reached. Consequently,
the results show that precise regression models can be derived with reduced effort.

1 Introduction

In various industries, such as minerals, food and waste processing, sensor-based
sorting (SBS) systems have become indispensable. In the recycling sector, such
systems have found application for more than 20 years (Bilitewski & Hardtle, 2013).
Within the next decade, the recycling rates of all waste streams in the European
Union are to be consistently increased (EU, 2018). SBS systems play a key role to
achieve these official regulations while maintaining high fraction purities, which are
mandatory for an efficient circular economy.

With SBS systems, high volumes of waste can be sorted automatically. However,
an important aspect for sorting plant operators to stay competitive is to optimize
their present sorting processes. Regarding German and lItalian material recovery
facilities, where the economic success greatly depends on gate or sorting fees
(Cimpan, 2016; Gadaleta et al., 2020) or evaluating existing, separate waste
collection and recycling systems. This study mitigates the current pervasive scarcity
of data on process efficiency and costs by documenting typical steps taken in a
techno-economic assessment of MRFs, using the specific example of lightweight
packaging waste (LWP), it is important to be aware of the cost drivers of these
processes.

Research has tended to focus on the techno-economic assessment of recycling
processes, where the specific costs of SBS systems are treated as a black box.
In (Cimpan, 2016) or evaluating existing, separate waste collection and recycling
systems. This study mitigates the current pervasive scarcity of data on process
efficiency and costs by documenting typical steps taken in a techno-economic
assessment of MRFs, using the specific example of LWP the authors conduct a
techno-economic assessment of different material recovery facilities and describe
that 2/3 of the total energy consumption of the recovery process are connected to
sorting and refining. Precisely because of the high share of energy consumption in
the recovery process, the links between sorting and refining process parameters
and the resulting costs must be understood. In turn, this enables the modeling of
the subsystem and thus provides the basis for a cost-optimization. Additionally,
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a realistic profitability assessment of application of SBS systems is not possible
without knowledge about the cost model of such systems.

The techno-economic assessment of sorting plants gives important insights about
economic aspects like revenues and economies of scale but is often based on
constant values for the energy consumption of different components (Cimpan,
2016; Gadaleta et al., 2020) or evaluating existing, separate waste collection
and recycling systems. This study mitigates the current pervasive scarcity of data
on process efficiency and costs by documenting typical steps taken in a techno-
economic assessment of MRFs, using the specific example of LWP With the use of
models for the energy consumption of subsystems, a model with higher granularity
can be established. Therefore, in this work, we combine the results of previous
works which investigate the influence of process parameters on SBS systems with
results of techno-economic assessments of sorting plants.

In this paper, we propose a systematic approach for determining the operating
costs of SBS systems by using Design of Experiments (DoE). For this purpose,
experiments are carried out to investigate whether the methodology of DoE is
applicable to the use case of SBS. Three factors that are supposed to have a
significant impact on the electricity and compressed air consumption of an SBS
system are analyzed in a response surface design. For the assessment of the
applicability of this method to various scenarios, two different materials, namely
construction and demolition waste (CDW) as well as plastic flakes, with grain sizes
between 0 - 10 mm are investigated. With this systematic and transferable method,
precise models of the energy consumption of the SBS system are derived and
validated by analysing coefficients of correlation. Additionally, validation runs are
conducted to validate the models’ predictions.

Related works focusing on the influence of process parameters of SBS systems
that are referred to in this work include (Kuppers et al., 2020, 2021). There, the
influence of the parameters occupation density and eject fraction ratio on the
sorting efficiency is investigated with lab scale experiments. In (Mdlinitz et al.,
2020), the authors analyze the influence of pre-screening on the sorting process
of mixed municipal solid waste and mixed commercial waste, including an SBS
system. A recent work which investigates the implementation of SBS systems
in CDW processing is (Vegas et al., 2015) guaranteeing optimal technical and
environmental performance, are required for high-grade construction applications
such as concrete. The main problem constituents causing a decrease in the quality
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of recycled aggregates to be used in high grade applications are: organic material,
gypsum and autoclaved aerated concrete (AAC). There, the authors analyze the
potential of SBS systems in CDW sorting and derive specific costs between 0,80
and 1,50 € / t. Works which perform a techno-economic assessment of sorting
plants with different capacities can be found in (Cimpan, 2016; Fleischhacker, 2011;
Gadaleta et al., 2020; Oliveira Neto et al., 2017; Porten & Feltes, 2014; Rudolph et
al., 2020; Gadaleta et al., 2020; Oliveira Neto et al., 2017; Porten & Feltes, 2014;
Rudolph et al., 2020).

On this basis, we create a systematic procedure for modeling the specific costs
connected to SBS systems. Therefore, in the following section we introduce the
experimental setup and materials used for the experiments. As a next step, the
concept of DoE is presented and applied to the system. The results are then
analyzed and evaluated based on statistical measures. Lastly, the results are
summarized, and the principal conclusions are drawn.

2 Methods

In the following section, the equipment and materials used in the experiments are
depicted. Furthermore, the concept of DoE is explained in general and the process
of applying DoE to the investigated SBS system is described.

2.1 Equipment

The sorting system analyzed in this work is a laboratory-scale SBS system with
a line-scan camera, a conveyor belt 140 mm wide, and pneumatic separation.
The pneumatic resolution is 5 mm. To guarantee stable and reproducible feeding,
a vibrating feeding tray is used. The system was developed for demonstration,
research, and development purposes with state-of-the-art components.
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Fig. 1: Schematic depiction of the sorting procedure of the investigated SBS system

The sorting procedure is schematically depicted in Fig. 1. Starting from a vibrating
feeder, the material is fed onto a conveyor belt. By utilizing a slide between vibrating
feeder and conveyor belt, the particles in the material stream are separated by pre-
acceleration for better detectability. A line-scan color camera is used to scan the
particles after exiting the conveyor belt. Lastly, a binary separation is enabled by
ejecting particles with impulses of compressed air.

2.2 Materials

The materials used for the experiments are CDW as well as mixed plastic flakes
with grain sizes between 0 - 10 mm (see Fig. 2). The CDW is a mixture of clay- and
sand-lime-brick and thus has higher average particle weight (0.184 g) than the
plastic flakes (0.037 g). Each experimental run is conducted with 1000 g of CDW or
250 g plastic flakes, respectively. In the experiments with CDW, sand-lime-particles
are handled as the eject fraction. In those with plastic flakes, blue particles are
ejected. By analyzing different materials, the applicability of the approach to other
scenarios in the field of SBS is assessed.
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Fig. 2: Three particle size classifications (0 mm — 4.0 mm, 4.0 mm — 5.4 mm, and
5.4 mm — 10.0 mm) for the materials CDW (left) and plastic flakes (right)

3 Description of Design of Experiments

Generally, analyzing a system with continuous variable parameters is complex
and expensive. Exemplary parameters of an SBS system are feed rate, particle
size, particle shape, eject fraction ratio as well as the operating pressure and
the splitter position (Gilcan & Gulsoy, 2017; Kuppers et al., 2020, 2021) a better
understanding of this method is required concerning general properties and
mineral sorting applications. To date, optical sorting has been widely studied in
terms of industrial applications and performance evaluation particularly in mineral
processing. Nevertheless, process optimization requires better understanding
of qualitative and quantitative figures based on real life sorting. To identify the
influence of parameters on the quality of a system, approaches like trial-and-error
or one-factor-at-a-time (OFAT) are expensive. Therefore, in this work, an approach
for analyzing the running costs of an SBS system by using DoE is depicted. Due to
the large number of factors influencing these costs, this established method for an
efficient analysis of processes is necessary. Methods for the systematic analysis
and subsequent optimization of a system based on multiple target figures are
described in (Siebertz et al., 2017) in detail, as are all the steps mentioned below.

Initially, the system is delimited, which means process parameters are identified and
target figures, with which the assessment of the system’s quality is possible, are
chosen. Intuitively, the experimental effort increases with the number of additional
parameters. From the set of parameters, a subset is chosen for conducting the
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experiments. Those parameters in the subset are called factors. For each factor,
the settings to test, which are called levels, are determined in advance. This is
necessary to create the experimental design.

Target figures are continuous measurement values that measure the system’s
quality. For these target figures, regression models are later generated based on
the experimental data obtained. These models can be used for further purposes
like optimization or continuous prediction within the design space.

After delimiting the system, an experimental design is generated. For this purpose,
many established experimental designs can be used from packages in Python
and R. Additionally, specific statistics and DoE-software like Design Expert,
Minitab and SPSS Statistics offer DoE-functions. There is also the possibility to
create individual designs as described in (Siebertz et al., 2017) and realized in
(Khodier et al., 2021). According to (Siebertz et al., 2017), this is mostly applied
in the areas of chemistry and process engineering because not every combination
of factors is executable. In this case, the individual design is created based on
statistical criteria from which the person responsible can choose. The theoretical
basis behind this procedure is explained in (Siebertz et al., 2017). The potential of
the usage of individual designs is depicted in (Khodier et al., 2021), where real-
scale experiments in waste processing were conducted. Therefore, two continuous
factors are investigated on 11 or 5 levels respectively and one categorical factor
with three different characteristics. In a full-factorial design, this would result in 165
runs (n =11-5-3) but could be reduced to 32 experimental runs with the use of a
D-optimal design. In the case of (Khodier et al., 2021), this minimization is necessary
because of the high costs connected to conducting real-scale experiments.

According to (Siebertz et al., 2017), the mathematical basis of the reduction of
the experimental designs is pairwise orthogonality of the setting-vectors of each
factor. A setting-vector represents all the settings of one factor in the design. That
way, multiple factors can be modified between experiments and their effects on the
target figures can be estimated separately. This reduces the expense and enables
an analysis of variances (ANOVA) for determining the significance of the factors’
effects. An ANOVA includes hypothesis tests for determining whether a factor has a
significant effect on the target figures.

The correctness of the ANOVA and the resulting regression model depends on
three assumptions, which must be validated after calculation of the regression
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model. One must confirm that the model’s residuals are independent, normally
distributed and have constant variance. To enable optimal preconditions for the
validity of those assumptions, three different concepts, namely randomization,
replication, and blocking, can be used.

Randomization refers to the randomness of the running order in the experimental
design. By randomizing, systematic effects, for instance the pollution of the camera
lens, can be uniformly distributed on the experiments. Without this, the effect of
factors, whose levels are varied only in the last few runs of a design, would be
affected stronger than those in the first runs.

Replication is important to be able to estimate the dispersion of measurements.
Therefore, the whole design can be repeated.

The last concept described in (Siebertz et al., 2017) is blocking. Blocking should
be used if the experimental runs of the design can be grouped into subgroups, that
are conducted under different conditions which are expected to influence the target
figures. That way, the blocking information can be considered for the analysis.

The fundamental principle of an ANOVA is to test differences among means in
grouped data. Therefore, the total sum of squares (TSS) of the measurements of
one target figure is separated into two parts, namely the sum of squares within
groups (SSW) and the sum of squares between groups (SSB). According to
(Siebertz et al., 2017), the equation TSS=SSW+SSB holds true. Intuitively, if the
SSW is small and the SSB is high, the factor is likely to influence the target figure.

Lastly, with a hypothesis test, it is investigated if the share of that is explained
by the is high enough to reject the null hypothesis with a high certainty. The null
hypothesis claims that the factor does not have a significant effect on the target
figure. Two errors, namely the type 1 and type 2 error, exist for this test. Type 1 is
the error of assuming the factor has an effect, although it does not, and type 2 is the
error of assuming the factor does not have an effect, although it does. Therefore,
two upper limits for the risk of a wrong decision must be defined in advance. The
significance level o defines the maximally acceptable risk for a type 1 error and
for a type 2 error. The decision, whether the null hypothesis is rejected, is based
on the p-value, which is the probability that the variance between groups is not
caused by the factor’s effect. If p < a holds, the risk for a type 1 error is smaller than
the acceptable risk and the factor is considered to have a significant effect. As a
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last step, the tree assumptions mentioned above must be validated by analyzing
the corresponding plots as described in (Siebertz et al., 2017). ANOVA is hence
used as a preliminary step for the regression of the target figures. Factors which
are not considered to have a significant effect are excluded and not modeled in the
respective regression model.

For each factor with a significant effect, the effect can be modeled with a regression
model. Lastly, these individual models are aggregated to a multiple regression
model of the target figure. If all effects are modelled linearly, the model is referred
to as a multiple linear regression model.

4 Application to the SBS system

To apply this knowledge on the present problem, the SBS system is delimited first.
Target figures which are closely linked to the operational costs of an SBS system
are selected, namely compressed air consumption, electricity consumption of the
valves and purity of the reject fraction. The compressed air consumption is used
for estimating the necessary power of the compressor unit. The consumption of
compressed air is measured in liters with a flow meter (Festo SFAM-62-30001-M-
2SA-M12) for each experimental run. The electricity consumption of the valves is
expected to have a small influence on the running cost but is not a constant electricity
consuming part of the SBS system. The electricity consumption is calculated with
an application that documents the frequency and duration the valves are being
activated for in each run. Additionally, the purity of the reject fraction is considered
as a target figure. The associated regression model, however, is not necessary for
estimating the costs related to the SBS system.

Regarding these target figures, the influence of factors is investigated. In (Kippers et
al., 2020) the occupation density of the conveyor belt is shown to have a significant
effect on the sorting quality of the system. For designing an optimal sorting process,
the throughput must be considered (Cimpan, 2016) or evaluating existing, separate
waste collection and recycling systems. This study mitigates the current pervasive
scarcity of data on process efficiency and costs by documenting typical steps
taken in a techno-economic assessment of MRFs, using the specific example of
LWP. The throughput rate can be mapped linearly to the occupation density of the
conveyor belt. This is why the correlation between the occupation density and the
target figures is analyzed within the scope of this work. The eject-fraction ratio in
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the material stream is likely to be correlated with the operational costs of an SBS
system, too. The more eject particles are contained in the stream, the higher is the
expected consumption of electricity. Although this seems obvious, the correlation of
this factor to the operational/electricity costs has not been investigated yet. Another
factor that is expected to have an influence on the operational costs is the particle
size of the material. The particle size directly influences the duration of compressed
air impulses. For larger particles, the duration of the impulses is typically higher
than for smaller ones.

With three factors, a face-centered Central-Composite-Design can be used
(Siebertz et al., 2017). This design is a combination of a 2-level factorial design
and additional orthogonal combinations originating from the center point, which can
be seen in Fig. 3. Therefore, each factor is investigated on three levels, leading
to an experimental plan containing 15 experiments. Additionally, five replicate
runs of the center point run are conducted to enable a lack-of-fit-test (LOF), which
tests if the model fits well throughout the design space and thus describes the
correlation between the factors and target figures correctly. Therefore, the variation
of the center points is tested against the variation between the actual and predicted
values, also referred to as residuals. If the variation of the residuals is significantly
larger than the variation of the replicated center point measurements, the model
does not fit the data well, potentially. This results in a total sum of 20 experiments
for each material.
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Fig. 3: Visualization of a face-centered central composite design

Important preparatory actions are to randomize the order of the runs in the
experimental plan and to determine the number of replications necessary for
minimizing the risks of false conclusions. For this system, a=0.05 and $=0.2 are
chosen as reasonable risks as they are common values in the literature (Siebertz
et al., 2017). The risks influence the number of necessary runs. Due to the low
variance of the target figures in replicate runs, which are experiments with the same
factor settings, the experimental plan does not have to be repeated to reach the
preconditions for the risks named above. This variance is determined in preliminary
tests. In this case, blocking is not needed, because all experiments are conducted
under the same conditions.

The three factor levels of each factor must be determined. In our case, all three
factors are numeric. Hence, the influence of every factor can be included into the
regression model continuously.

In preliminary tests, the highest feasible occupation density was determined at
10 %. Additionally, the idea is to examine a large design space. Therefore, the
lower limit of the occupation density of 1 % and an upper limit of 10 % is chosen.
The three factor levels are depicted in Fig. 4.
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Fig. 4: Occupation densities (1 %, 5.5 %, 10 %) of the medium particle size
with sand-lime particles on the left and clay particles on the right.

In terms of the particle size, both materials are screened into three different
fractions. The resulting fractions are 0 mm — 4.0 mm, 4.0 mm — 5.4 mm, and
5.4 mm — 10.0 mm and are shown in Figure 2.

Lastly, levels for the factor eject-fraction ratio must be determined. The upper limit
is chosen to be 20 %, whereas the lower limit is set to 5 %. The resulting factor
levels are shown in Tab. 1.

Tab. 1: Factor levels

Factor levels

- 0 +
Occupation density 1% 55% 10 %
Particle size 2 mm 4.85 mm 7.7 mm
Eject fraction ratio 5% 125 % 20 %

The approach for the analysis of the measurements after conducting the experimental
design is the same for both materials. Therefore, only the procedure for the analysis
of the experiments with CDW is presented. Exemplary for all three target figures,
the ANOVA results of the compressed air consumption is depicted in Table 2. After
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the collection of data within the experiments, the ANOVA is applied. Therefore, the
probability p for every effect or interaction of a factor not to be significant is calculated
and those with a p-value higher than a are eliminated from the model. In the following,
the three factors occupation density, particle size and eject-fraction ratio are referred
to as 4, B, C, respectively.

The fact that 42, the quadratic effect of the occupation density, is not eliminated from the
model is caused by the principle of hierarchical integrity (Siebertz et al., 2017). Since
the interaction of 4° and C is significant, 4> must be respected in the regression model.

Tab. 2: ANOVA table for the target figure compressed air consumption

Sum Degrees
Source of of F-value p-value

Squares Freedom Square
Model 0.0652 8 0.0082 89.85 <0.0001 significant
Qégsf“pam” 0.0272 1 0.0272 299.8 <0.0001
B-Particle size  0.0173 1 0.0173 190.34 <0.0001
gtiEged fr 0.0011 1 0.0011  12.18  0.0051
AB 0.0020 1 0.0020 22.22  0.0006
AC 0.0027 1 0.0027 29.23  0.0002
A 0.0000 1 0.0000 0.1231 0.7323
c? 0.0011 1 0.0011 1240  0.0048
A®C 0.0005 1 0.0005 4.97  0.0476
Residual 0.0010 11 0.0001
Lack of Fit 0.0009 6 0.0002 13.49 0.0059 significant
Pure Error 0.0001 5 0.0000
Cor Total 0.0662 19

The validation of the ANOVA assumptions is conducted by confirming that the
residuals are independent, normally distributed and have constant variance.
Therefore, different plots are used. The independence of the residuals is confirmed
by analyzing the residuals-vs-run-plot, which depicts the residuals at each run in
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the ascending run order. If trends exist in this plot, independence of the residuals
cannot be confirmed. With the data obtained in the experiments, no such trends are
found in any of the residuals-vs-run-plots. To confirm the assumption of normally
distributed residuals, the normal plot of residuals is used. For all the models, no
significant deviation of a normal distribution can be found in this plot. Therefore,
the assumption of normally distributed residuals is validated. Lastly, the residuals-
vs-predicted plot must be analyzed to confirm the assumption of constant variance
in the experimental space. The representation of the residuals in the plot does
not contradict this assumption. With this analysis, the ANOVA-assumptions are
validated, and the model’s quality must be assessed.

5 Results

Figure 5 shows the model for the target figure compressed air consumption for
CDW. The respective mathematical description is depicted in eq. (1).

Q(a,b,c) = (0.152 — 0.004 - a + 0.008 - b — 0.012- ¢ + 0.001-a - b
+0.0007 -a - ¢+ 0.001 - a®+0.0003 - c2 (1)
—0.0001-a%-¢)72
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Fig. 5: Regression model for the occupation density in | per kg CDW

On average, sorting the plastic flakes consumes 2.64 times more energy for the
valves and 1.96 times more compressed air for the same amount of material

compared to CDW. This can be explained by the lower average particle weight of
the plastic flakes.

The activation duration of the valves is reduced for the sorting of plastic flakes,
which leads to a reduction of the average air consumption per activation by 46 %
compared to the sorting of CDW. The sorting quality is not affected by this and lies

between 89.48 % and 99.57 % for the plastic flakes. For the sorting of CDW, the
values lie between 91.92 % and 99.67 %.

In the case of the center point measurements of the experiments with both materials,
the energy consumption of the valves amounts to 1 % of the energy consumption for

generating the compressed air. Therefore, the model for the energy consumption of
the valves will not be discussed further.
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For CDW, the compressed air consumption decreases with higher occupation
density from 90 I/kg to 30 I/kg, which is caused by higher share of overlapping
particles. With rising particle size, the compressed air consumption decreases from
80 I/kg to 30 I/kg. Compared to that, the main effect of the eject-fraction ratio causes
a rise in compressed air consumption from 30 I/kg to 40 I/kg. The courses of these
main effects are like the effects calculated for the plastic flakes.

For the assessment of regression models quality, the coefficient of determination R’
is frequently used. In DoE-software, three variants of this coefficient, which can be
seen in eq. (3) and (4), are listed by default.

R’ is a measure between 0 and 1 for the correlation between the model’s predictions
and the measurements. If the model fits the data perfectly, R’ equals 1. A problem
about this is that this measure does not consider whether parameters with low
effect are respected in the model. Therefore, RZadj is used. As depicted in eq. (3),
the number of measurements and model parameters are respected. If parameters,
which are not significant enough, are added to the model, R’ decreases and
the effect of overfitting can be detected. Additionally, R*, , shows how well the
model predicts new data in the design space. For that, the model is built on all
measurements of the experimental design except one. This process is repeated
for each measurement and the residuals of the predictions to the real values are
aggregated as predicted residual sum of squares (PRESS). R2adj and R-’prcd should be
within 0.2 of each other to exclude overfitting (Siebertz et al., 2017).

R2=1-— Sum of SQUares qsiguals —1_ Yo X — 9i)?
Sum of squares, o2y —¥)?
2
9; = prediction i of the regression model, ( )
n = Number of datapoints
RE —1_ Sum of squares, a5/ M — K)
adj Sum of squares,,, /(n — 1) 3)

K = Number of factors,
n = Number of datapoints

2 _,__ PRESS
pred = © Sum of squares,g,, 4)
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For conducting the LOF, five repetitions of the center point setup are conducted.
The LOF test is significant for the CDW models, which implies the model potentially
does not fit the data. In this case, this is caused by the fact that the center point data
is nearly identical. For experiments with high occupation density and low particle
size the experiments show more variation. Therefore, the variation of the center
point data is not representative for the variation in the experimental space.

In 4 of the 6 models, R° , reaches values over 0.9, which shows that the models
predict points well within the design space (see Tab. 3). Furthermore, the quality
of the predictions of the regression models is assessed with validation runs. The
measurements of those runs all lie within the 95 % confidence interval for each model.

In 5 of 6 cases, the deviation of RZadj and R2prcd are significantly smaller than 0.2 so
no overfitting effects are present. The high deviation of R2 - and R’ of the model
for the purity of the eject-fraction for plastic flakes could be traced back to higher
variance in the measurements caused by air turbulences, which affect the light-
weight plastic particles more than the heavier CDW particles.

All three factors are shown to have a significant effect on the target figures. It must
be highlighted that the energy consumption of the valves is marginal compared to
the energy consumption for generating compressed air.

Tab. 3: Quality measures of the regression models

Energy cons. Compressed air Purity of eject
valves cons. fraction
CDW
P 0.0002 0.0047 0.0029
LOF
R, 0.9658 0.9726 0.9771
R 0.8618 0.9149 0.9057
Plastic flakes
PLor 0.1355 0.2442 0.1288
R’ 0.9959 0.988 0.9413

adj

R? 0.9795 0.9672 0.7517

pred
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6 Conclusion

The identification of specific characteristics of the operating costs related to SBS
has not been subject to recent literature. Therefore, in this work an approach for
modeling the influence of multiple parameters on the consumption of electricity and
compressed air of an SBS system was proposed.

The results of our study show, that precise regression models can be derived
with reduced effort compared to methods like trial-and-error or OFAT. The choice
of a response surface design resulted in 15 experimental runs. The method for
analysis of the experimental data was ANOVA. By using two different materials for
the execution and analysis of the experiments, the applicability of the presented
procedure was assessed. Due to high coefficients of determination of the regression
models (R, R* , and R’ )
validation runs, the applicability of DoE to model SBS consumption was shown in

and the confirmation of the models’ predictions with

this contribution. Thus, especially in real scale experiments where the number and
duration of experiments should be reduced, this approach can be used.

All the factors investigated in the experiments, namely occupation density, particle
size, eject-fraction ratio, have a significant effect on the three target figures. The
distances between factor levels are a good compromise between investigating a
large experimental space and precise modeling of the target figures.
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Abstract

For the industry to be able to obtain efficient sorting of different types of material
flows, a testbed has been developed in Sweden: SenSoRe - Sensors and
sorting for innovative recycling. This has been done in a consortium consisting of
representatives along the recycling chain: research institutes, sensor manufacturers,
system manufacturers, recyclers, and production industry. The purpose of the
testbed is for actors to test, develop and/or combine different sensors on material
flows and have possibility to use different analysis methods for e.g., quantification
or classification. SenSoRe then serves as a link between the initial lab-development
and the final industrial implementation. A strength with the testbed is the possibility
to test large flows of materials, which is important when e.g., training models for
development of machine learning (ML) approaches. Another strength with the
testbed is its consortium with actors in production, recycling and research, while still
being an open and neutral platform. The technique LIBS (laser-induced breakdown
spectroscopy) is suitable for analysis in harsh industrial environments and can in
principle detect all elements in the periodic table, it has thus served as a central
technique for the development of the testbed. Two of the pilot tests based on the
machine learning algorithm SIMCA (Soft Independent Modelling of Class Analogies)
are presented, where the first pilot test concerns quality control of non-ferrous (NF)
fractions at a Swedish recycling company, and the other investigated black plastic
sorting. Results of both pilot tests show that analysis of LIBS data based on SIMCA
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could potentially provide online-sensors increased quality and sorting of both NF-
metals and plastic materials at recycling plants. These pilot tests show the technical
usefulness of the SenSoRe project, and its benefit with actors in both the sensing
and recycling industry represented.

1 Introduction

Laser-induced breakdown spectroscopy (LIBS) is a fast, contactless and flexible
technique for chemical analysis of materials. The measurements mainly provide
information about the elemental composition, but some molecular information can
also be obtained. Measurements can be carried out off-line or on-line without pre-
treatment of sample materials and on all aggregation states of a material (Noll
et al.,, 2012). LIBS has started to be developed for being used industrially for
sorting on refractories and for identification of steel blooms (Noll et al., 2018). The
metals research institute Swerim (former Swerea KIMAB) has a long experience
in LIBS and is conducting research to develop, improve and implement LIBS in
industry. In 2016, Swerim and a project consortium consisting of research institutes,
sensor manufacturers, system manufacturers, recyclers, and production industry
got granted financial support from Vinnova (Sweden’s innovation agency) for
developing and establish a testbed for recycling with sensors. The background is
a general need to implement new techniques in industry for more efficient sorting
of different types of material flows and a testbed with an infrastructure to simulate
industry conditions can be beneficial before implementing in industry.

2 The testbed SenSoRe - Sensors and sorting for
innovative recycling

The testbed SenSoRe — sensors and sorting for innovative recycling, was officially
launched in May 2019 with financial support for a 5-year-period until Dec 2021. The
testbed includes both competence and physical facilities, where the competence
part consists of a sharing knowledge and know-how among the project consortium
with research institutes, sensor manufacturers, system manufacturers, recyclers
and production industry. The idea is to provide a participating actor with an enhanced
network and a neutral platform for an innovative meeting place. Besides, the testbed
should be open and flexible, thus not limited to specific interests of participating
actors. The physical part of the testbed mainly consists of an infrastructure located
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at Swerim, with a conveyor belt, having the flexibility to attach different sensors,
run with different speeds (from 3,4 cm/s to 6 m/s) and circulate different types
of materials (see Fig. 1). This lab environment simulates a real conveyor belt
application for material sorting at recycling facilities. The physical part also includes
other test-labs in the project consortium and modular parts with sensors, adapted
to be implemented in industry.

Fig. 1: A physical infrastructure part of the testbed with a LIBS equipment
installed and material circulating on the conveyor

In the development of the testbed, there have been pilot tests and shorter studies
done with the aim to get relevant examples to show the possibility within the
testbed. Since LIBS is suitable for analysis in harsh industrial environments (Noll
et al., 2018), it has served as one of the central techniques in the development of
the testbed infrastructure. Two of the pilot tests were quality control of non-ferrous
metals and identification and classification of black plastics, which are further
presented.

2.1 Pilot test 1: Quality control of non-ferrous metals

The use of LIBS for online analysis of shredded metal fractions has in the recent
years reached attention amongst the recycling industry (Legnaioli et al., 2020). It
has the possibility to classify the scrap pieces by their metal and alloy type directly
at the conveyor belt, including identification of light elements such as aluminium
and magnesium, which makes it an interesting complement to online XRF. The
main benefits for recyclers are continuous quality control of shredded metal scrap
and classification of scrap pieces for subsequent sorting. With this pilot test, the
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possibility of using LIBS as an online quality control of shredded non-ferrous (NF)
fractions was tested and evaluated at a recycling facility.

One of the initial steps was to use the testbed to try different positionings of the
LIBS-equipment to see how best detection could be achieved on a continuous flow
of material (e.g., to get the best hit-rate). The conclusion was that the best detection
would be hitting the samples at the end of the conveyor, with a horizontal detection,
see Fig. 2. The LIBS equipment used has been developed in collaboration with
RISE and is a further development of equipment previously published (Noharet
et al., 2015 & Gurell et al., 2011). A dedicated software for displaying the relative
content of the identified metal alloys was also developed in connection to the trials
of the testbed.
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Fig. 2: Schematic view of different configuration tests, resulting in a detection horizontally
on the samples. The top configuration shows tests with detection on falling material, the
configuration at the bottom shows test with different angles on the flow of material.

The prototype was then tested and implemented at the recycling facility for
continuous measurement for 4 days at the conveyor end, just before separation.
Since the analysis was only done on a spot in the middle of the belt, around 10%
of the samples were detected by the LIBS-sensor. The aim was to see if it could be
assumed an even distribution along the width of the belt and thus give representative
results in the analysis. The complete batch of materials were collected and later
analyzed separately with an XRF-equipment.
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The LIBS-analysis used the supervised machine learning algorithm, SIMCA (Soft
Independent Modelling of Class Analogies) for classification in the different metals:
Cu, Brass, Al, Stainless steel, Zn, Pb and an unknown class. The algorithm was
trained on known samples in the testbed before the installation at the recycling
facility. SIMCA is in general a suitable method for handling unknown samples, not
found in the test set, and to classify them according to a “unknown” class. The
result can be seen in Fig. 3, where the LIBS analysis with SIMCA is compared to
the XRF measurement of the same batch. The results show overall reasonable
resemblance between the two methods and thus that the LIBS point-measurement
could be representative for the entire batch.

The LIBS-prototype could also detect a change in metal class distribution when
there was a change to another batch of scrap, which showed an increased fraction
of Zn and decreased fraction of Cu. This can be seen in Fig. 4. This distribution was
also expected from the supplier of that batch.

LIBS XRF

60 60 55%
50 50

39% 39%
40 40

32%
30 - 30
20 + 20
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8% 8%
10 + — —— 10 %
1% . 1%

0 - 0

Cu Brass  Stainless Zn Pb Cu Brass  Stainless Zn Pb

Fig. 3: Histograms showing LIBS analysis using SIMCA for classification of a batch (left) and
XRF analysis of the same batch (right). The analysis shows the distribution of the samples
classified in the different metals. The histograms are re-normalized to not show unknown.
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Fig. 4: Between 06:35 and 07:45 there was a change of scrap from another batch
which showed an increase in Zink and a decrease in Copper content (from 26 to
22 % and 8 to 14 % respectively). This was expected from that batch.

2.2 Pilot test 2: Identification and classification of black plastics
Recently, interestin the applicability of the LIBS technique for plastic sorting has been
raised, especially for black plastics, due to limitations of the existing technologies
based on NIR spectroscopy and X-ray fluorescence (XRF). Several groups have
demonstrated that LIBS can be used to identify different types of polymers (Lui
et al., 2019). LIBS spectral data from polymers provide complex information and
a classical spectral analysis based on element line identification is not sufficient
to distinguish the different polymers. Instead, machine-learning algorithms for
LIBS data-analysis has been successfully applied to distinguish plastics (Vinicius
et al., 2017 & Shameen et al., 2006). However, most studies considered a small
sample set and clean plastic fractions with LIBS measurements carried out off-line
in controlled lab environments. Plastic scrap materials encountered at recycling
plants often contain various additives, which in addition to dust, perturb the LIBS
spectra and thus become more challenging to classify. This makes it important to
have a large representative training set and test set of samples to ensure that the
ML-algorithm is based on signals originated from the material of interest and hence
increase robustness of the analysis.

In the pilot test, series of LIBS measurements were performed on clean recycled
plastics and on real plastic scrap with the testbed infrastructure, simulating
conditions for plastics sorting at industrial recycling facilities. This provided an
extensive sample set of several independent measurements on different black
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plastics including polypropylene (PP), polyethylene (PE), polystyrene (PS),
acrylonitrile butadiene styrene (ABS), medium-density polyethylene (MPE) and
polyvinyl chloride (PVC). A schematic view of the experimental set up and a photo
of the on-line LIBS prototype used in this study for identification of the plastics is

shown in Fig 5.
Ta
ol .\!
Plastic scrap —
RN CUAY el e s S mm
@@ Conveyor belt

Fig. 5: Schematic of the experimental set up for LIBS measurements (left). Plastic
scrap and LIBS prototype used in this study mounted on the automatic conveyor
belt to simulate conditions for sorting at industrial recycling facilities (right).

The supervised machine learning algorithm, SIMCA was used to classify the
polymers. First, the algorithm was trained for all reference classes of plastics. Then,
the scrap plastics was introduced as a test set for the algorithm to predict the class of
those samples, based on the training set. For the two scenarios, the performance of
the algorithm in terms of classification accuracy was used as metric and calculated
through dividing the number of correctly classified samples by the total number of
samples in the class. In Fig. 6, the result is presented for both the reference samples
and the scrap samples, with an average of over 80 % classification accuracy with
respect to the plastic type, both for the reference material and the scrap material.
Fig. 7 compares the LIBS spectra of a sample of clean recycled PS after extrusion
and a sample of PS from recycling facilities. There are clear spectral differences
that may arise from e.g., additives and dust. Hence, it demonstrates the importance
of large and representative sample sets to identify element specific features and to
avoid the risk of models built on spectral features that are not specific for the plastic
of interest (i.e., overfitting).
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Fig. 6: Classification accuracy (%) for the reference samples (left) and the real scrap samples (right)
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Fig. 7: Comparison of the LIBS spectra of a clean sample of PS and
a real scrap sample of PS from recycling facilities

The analysis of the LIBS data based on supervised ML algorithms could potentially
provide online-sensors for increased sorting of black plastic materials at recycling
plants. Further improvement in classification accuracy can likely be achieved by
higher sampling frequency (e.g., use of pulsed laser with repetition rate > 10 Hz) and
the next steps from here would be to do field tests at industrial recycling facilities.
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3 Conclusion

Overall, there is a great usefulness with an industrial-like testbed as SenSoRe,
where the two pilot tests show the benefit of testing setup and large material flow
in industrial-like conditions and the success of using results from lab-scale trials
to install and measure in-situ in industry. It can also be concluded that analysis of
LIBS data based on SIMCA provide accurate quality control for non-ferrous metals
at a recycling facility and could potentially provide online-sensors for increased
sorting of plastic materials at recycling plants. Though there is a great usefulness
with SenSoRe for actors in recycling and sensor development, it is hard to build a
business around it and the testbed need continued financial support to be able to
develop further.
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Abstract

This contribution addresses the latency evaluation of a fully field programmable
gate array (FPGA) implemented sensor-based sorting application. The FPGA
design is modified to provide timing insights from camera trigger to image
processing to actuator signaling. In addition, the signals of the valve are captured
with an oscilloscope, providing its voltage, current and the nozzle pressure. A matrix
camera is placed in the process side view to track the object. For reproducibility,
black plastic balls (diameter: 6 mm, mass: 0.12 g) are used to carry out 659 single
experiments. The sorting design is specified to have system latencies under 1 ms.
Our measurements show that this is the case for the whole image processing chain,
with approx. 200 ps latency, but not for the actuator signaling, with approx. 1.8 ms
latency.
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1 Introduction

In the field of sensor-based sorting with line scan cameras, three performance
measures of processing are important in addition to recognition performance:
latency, jitter, and throughput. Detecting small defects requires high-resolution
imaging that leads to a high data rate. In comparison to ore sorting, image
processing poses a bottleneck if the detection of small defects is required, e.g., in
plastic pellets sorting (Robben & Wotruba, 2019). The distance between scan and
separation can be minimized through low processing latency and jitter (Fig. 1). A
minimal distance leads to less oversorting due to less accumulation of unexpected
material shifts and tumbling (Stelzl, 2019).

The field programmable gate array (FPGA) integrated sorting design by MSTVision
GmbH was developed in 2018. Its specification comprises 1 ms or less overall
latency, including image processing and actuator triggering. The design uses an
8192 px Camera Link line scan camera, running at a line frequency of 100 kHz. This
results in a throughput of roughly 820 MB/s. (Stelzl, 2019)

The main motivation of this contribution is to get a detailed overview of the whole
system latency, from camera triggering to object movement. The test setup is
explained in detail in Section 2.
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Fig. 1: Side view into the sorting process of plastic balls. Black balls are separated from white balls.
The distance between scan line and actuator line is ca. 7 cm. Modified version from (Stelzl, 2019)

2 Setup and Methods

A full-scale sorting system with undefined bulk material is not suitable for detailed
timing assessment. An experimental setup was designed to obtain controlled
conditions for a single experiment. To overcome unavoidable variations each
experiment is carried out repeatedly. The overall timing assessment is done by
automatically running single object experiments with three splitted data acquisition
systems. A line scan system is used to run the sorting application. An area scan
system is used to track the falling object. An oscilloscope is used to measure the
timing of the valve and its controller. With these three systems, it is possible to
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capture all relevant timings. A programmable logic controller (PLC) is used to run
the object dispenser and to start the image acquisition. A detailed description is
contained/presented in the Section 2.3.

The timing analysis of the process is divided in multiple stages: (1) Camera
triggering: width, period; (2) camera image transfer: delay to trigger end, duration,
period; (3) image preprocessing with segmentation; (4) object detection; (5) actuator
timing; (6) valve controller; (7) valve current; (8) pressure; and (9) object movement.

2.1 FPGA image processing

All FPGA processing in this contribution has been developed with Basler (formerly
Silicon Software) VisualApplets. VisualApplets enables graphical development of
image processing applications on/for Basler frame grabbers. (Basler AG, 2022)

2.2 MSTVision high speed sorting

The MSTVision high speed sorting system is entirely built in VisualApplets
(Section 2.1). It is built for Basler microEnable 5 VCL Camera Link frame grabbers
and allows to process the Camera Link bandwidth with 10 taps at 85 MHz clock.
The actuators are controlled with a direct bus connection from the frame grabber
to the valve control board. The specification is 1 ms overall latency, which is the
latency between detecting the last line of an object to the earliest possible actuator
signal. The used frame grabber, camera, and lens (Section 2.4) are the same as in
(Stelzl, 2019). The offset between camera scan line and the middle of the nozzle is
70 mm +/- 4 mm in the test setup (Fig. 1). Fig. 2 shows the basic operation principle
of the system. For this contribution, the original FPGA design has been extended
to deliver the relevant timing insights. The actuator timing block refreshes the bus
output every 1 ms. The precision and interval of actuator delays depend on the
user definable timebase. Here we use a 1.66 ps timebase, and the delays are set
according to our mechanical setup (delay: 9000 timer increments, 15 ms; width:
4000 timer increments, 6.7 ms).
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Fig. 2: Basic system diagram

2.3 Measurement concept

The measurement principle is to dispense single plastic balls with 6 mm diameter and
0.12 g mass to fall through the line scan system which runs the modified MSTVision
sorting application. After passing the line scan camera, it is pneumatically shot after
a specified delay to change its trajectory, as it would occur in a sorting scenario.
The modified design collects various timing stats for offline diagnosis in the FPGA.
The collected timing information comprises:

e Camera trigger rising and falling edge,

e Camera line first and last pixel received,

e Camera line first and last pixel processed,
e Object detected,

e Actuator bus telegram first and last element processed.
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Every time the FPGA sends a bus telegram with an activated actuator, a pulse
signal with 0.5 ms width is emitted on one frame grabber digital output connected
to the oscilloscope, too.

In parallel an area scan camera observes the process from the side. This enables
the tracking of the ball trajectory. In Fig. 4 and 5 images of the two cameras are
shown. Both camera systems are operated in transmitted light setups.

To achieve the possible data merging afterwards, the two systems share the same
world clock, whose frequency is 601 kHz. For distortion correction, the camera is
calibrated.

The oscilloscope has four inputs:

Frame grabber signal “active telegram”,
Valve controller output voltage,
Valve current via a shunt resistor,

PoDd -~

Pneumatic pressure in the hose connecting valve and nozzle.

With the frame grabber signal (1) a data merge into the world clock domain is
enabled. This allows to track single valve activations to the object seen in the
camera images. The valve controller output, which is the valve voltage, is used to
trigger the oscilloscope.

A PLC is used to control the whole process. A mechanical unit for feeding,
separating, and dispensing of the balls is PLC controlled. The two frame grabbers
are enabled by the PLC with a digital signal, which starts acquiring images.

All grabbed images, actuator values and oscillograms are stored on SSDs. The
mentioned timing information of the two camera systems is embedded in the images
provided from the frame grabbers. The machine runs fully automatic, enabling the
collection of big datasets to compensate mechanical variations using statistical
methods.

148



Latency evaluation of an FPGA-based sorting system

Oscilloscope

r— f mm @ e n mmm 0 mEs 3 men @ mms 8 mem 8 eew 8 sew oo mmo@ [

“ Ball separator
PLC .
Compressor |
controls : I
lllumination

line scan camera

|
-
B

Line scan camera
N . e E— Frame grabber I
*s,  Nozzle line scan camera
Valve “‘ |
Y | [llumination
| - matrix camera l
. Pressure
sensor
I _—— === == 4-J
Valve control card Matrix camera Frame grabber
f matrix camera
Caption:
Actuator bus == \alve power
== = == Apalog = = == Camera Link
= == Digital 10 == == CoaXPress
sessssss  Pneumatic World clock

Fig. 3: The measurement setup
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Fig. 4: Global minimum image of all images of one sample captured by the area scan
camera. This shows the trajectory of a single ball falling and being shot in the system.
Left to right: Falling direction, Bottom to Top: Direction to the line scan camera.

Fig. 5: Cropped image of the line scan camera showing a falling ball. The line scan frequency
is higher as it should to get quadratic pixels, therefore the object looks elliptic.

2.4 System components
The test setup consists of the components listed in Tab.1-3.
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Tab. 1: Line scan system components

Component

Model/Configuration

Frame grabber
Valve controller

Basler (formerly Silicon Software) microEnable 5 VCL
MSTVision MSTMatrix32-Board

Valve SMC SX11F-AG
Nozzle Single nozzle with 1.5 mm diameter

Teledyne e2v Eliixa Plus EV71YC2MCL8005-BA1
Camera

(8192x1 pixels,100 kHz line frequency)
Lens Myutron LSF5028-F
Line light MTD BL 350-B-D5-M16r-Ta

Tab. 2: Area scan system components

Component Model/Configuration

Frame grabber

Basler imaWorx CXP-12 Quad
Basler boA1936-409cmHSP

Camera
(1920x512 pixels, 1 kHz trigger frequency)
Lens Linos MeVis-C 25 mm 1:1.6
Lighting Array of Schott HB-LED line lights + diffusor
Tab. 3: Oscilloscope system components
Component Model/Configuration

Oscilloscope

Pressure sensor
Current sensor

Pico Technology PicoScope 2406B

(4 Channels, 8 Bit, 1 GS/s)
Keller PA-21PHB/10 bar
0.1 Ohm Shunt resistor

3 Results

This section shows the results of the measurements with the setup and methods

described above. The results are shown in the chronological order of the process.
At last, the data is merged to show the complete timing context of the process.
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3.1 Camera timing with triggering and image transfer

The process begins with the camera triggering. In the MSTVision design, the line
scan triggering is done via the Camera Link CC1 signal, where its period determines
the line frequency, and the width determines the exposure time. The camera runs at
100 kHz line frequency with 6 us specified exposure time. After the triggering, the
line sensor readout begins. After the line readout, the data transfer via Camera Link
starts after an unknown delay. As the camera is configured with Camera Link Deca
mode at 85 MHz pixel clock, the expected transfer time is 9.64 ps. The expected
transfer period is the same as the Trigger: 10 ys. The “Trigger to full transfer” time
describes the time from Trigger start to receiving the last pixel of a line. It is the sum
of trigger period, transfer delay and transfer period. The measured values (Tab. 4,
a) are within expectation...

3.2 Image preprocessing and segmentation

After line triggering and line acquisition the image preprocessing and segmentation
takes place. They require some lines to be buffered as there are two-dimensional
kernel operations implemented. The expected delay is a multiple of the transfer
period, it is measured from acquiring the first line pixel to the availability of the first
processed pixel of this line. The processing time is the timespan from the first to
the last processed pixel of a line. With taking parallel processing into account, the
expected value is ca. 8.2 ys excluding unknown latencies. The processing period
is the time between the beginning of two consecutive lines, its expected value is
10 ps. lts measured value (Tab. 4, b) is 10.0 ys but with a standard deviation of
1.12 ps, which is rather large compared to the other values. The minimum value is
8.37 ps, the maximum value 15.0 ps. As the image acquisition is steadily running,
the variation is either caused by waiting cycles in the processing and segmentation
pipeline or by waiting cycles in the object detection pipeline. The mean value is
within expectation, which explains why the system is always capable to process
the incoming data.

3.3 Object detection

With the preprocessed lines, the object detection is carried out. Its timing latency
(Tab. 5, a) is the time stamp of the object subtracted by the interpolated time stamp
of the last and first pixel of the preprocessed line. The mean value is 23.1 ys with a
standard deviation of 3.52 ps.
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3.4 Actuator timing

The actuator timing latency is measured from the object detection time stamp
to the actuator processing end time stamp (Tab. 5, b). For this measurement, a
separate dataset is recorded, where the output delays are set to zero. Additionally,
the dataset of the working setup is evaluated, too. The value range is approx. 1 ms,
which is explained by the 1 ms polling period. The zero delay values are within
expected values. The working setup’s value range has an offset of 1 ms, which
effects that the valve triggers too early. This behaviour is currently not explainable
and further investigation has to be done, although it never posed a problem in real
world deployments. The sample count is 297 and 586 respective.

3.5 Valve controller

The valve controller timing is measured with the oscilloscope data from the frame
grabber pulse to the beginning of the voltage output to the valve (Tab. 5, c). Two
dedicated measurement series are used, one with a 64 actuators telegram and
one with a 32 actuator telegram set, their sample count is 904 and 586 respective.
Example signals are plotted in Fig. 6.

With nearly identical value ranges and their histograms (Fig. 6) it seems that the
controller has an internal polling cycle similar to that value, while the difference
between the measurement series, 40.8 us, seems to be the bus cycle time for a set
of 32 actuators.
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Fig. 6: (a): Histogram of valve controller latencies in 32 actuator setup. (b):
Histogram of valve controller latencies in 64 actuator setup.
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3.6 Valve current

The valve current latency is measured with the oscilloscope data from the beginning/
end of the voltage output (Fig. 7, second subplot) to the valve current exceeding/
subceeding a current threshold of 0.5 A (Tab. 5, d). An example signal is plotted in
Fig. 7, third subplot. The sample count is 986. Energizing the coil needs a longer
time than deenergizing, by a factor of ca. 7. The relative variation is inverse to the
energizing/deenergizing time by ca. 1/6, which is explainable by the different slew
rates.

3.7 Pressure

The nozzle pressure is measured with the oscilloscope data from the beginning
of the voltage output to the valve to the point of exceeding a pressure threshold
of 0.25 bar (Tab. 5, e). The pressure off delay has a bigger value range compared
to the pressure on delay. The reason is that there are some measurements which
have only 1 ms of power on period. This results in a lower peak pressure thus also
in a shorter pressure decay. The sample size is 986.
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Fig. 7: Example plot of the recorded oscillograms, low pass filtered. The frame grabber sets the
output high for two consecutive bus cycles (1ms each), the resulting pressure pulse is about 4
ms long while the controller output (second and third Plot) turns the valve on for ca. 2 ms.

3.8 Object movement

The latency of the beginning of the object movement is measured from the
beginning of the pressure pulse to the starting time of object movement (Tab.
5, f). The starting time of object movement is determined by two least squares
line fits, one on all observations before turning the valve on and the other on all
observations after turning the valve on (Fig. 8). From the line fits, the deflection
angle is calculated, too. The transfer to world coordinates is done with all objects
bounding box sizes. The matrix camera angle was adjusted before, its difference
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from an ideal orthogonal setup is considered negligible. The sample size is 659

single experiments.

All data is merged in one timing context, with the trigger time stamp of the first
object’'s camera line. The trajectories shown in Fig. 8 look as expected, except
some samples with low deflection angles. These samples are either misdirected in

x- or y-axis (Fig. 9, Fig. 10).

Tab. 4: Timing values for Section 3.1 and 3.2, all values in us. The sample count is denoted
as N. *) The calculated standard deviation of multiple values is lower than one FPGA
clock cycle (8.0 ns), which implies to add the standard deviation of the corresponding

continuous uniform distribution with the width of one clock cycle period (6.48 ns).

Expected Mean Std* N

(a) Camera timing with triggering and image transfer (Section 3.1)

CC1 period 10.0 10.0 0.0 25680836
CC1 width 6.0 6.0 0.0 25680836
Transfer delay - 27.5 7.842e-3 25680062
Transfer time 9.64 9.64 3.973e-3 25680836
Transfer period 10.0 10.0 7.614e-3 25680062
;:ggf;rm full 43.1 43.2 7.839e-3 25680836

(b) Image preprocessing and segmentation (Section 3.2)

Processing

- 129.8 0.865 25665356
delay
Processing time 8.2 8.35 50.8e-3 25680062
Processing 10.0 10.0 1.12 25660721
period

Tab. 5: Timing values for Section 3.3 to 3.8, all values in us
Min Mean Std Max Max-Min
(a) Object detection (Section 3.3)
Obj. detection 12.7 23.1 3.52 36.7 24.0
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Min Mean Std Max Max-Min

(b) Actuator timing (Section 3.4)
0 delay 13.7 516 277 1004 990
Working del. 13.7e3 14.2e3 292 14.7e3 1001

(c) Valve controller (Section 3.5)
Delay 32 act. 57.9 104 27.4 152 94 .4
Delay 64 act. 98.2 145 28.0 194 95.8

(d) Valve current (Section 3.6)

Del. current on 382 384 1.28 392 10.3
Del. current off 44 .4 55.8 712 102 57.9

(e) Pressure (Section 3.7)

Del. pressure on 768 778 3.09 787 19.0
Del. pressure off 1091 1888 62.6 1942 851

(f) Object movement (Section 3.8)
Movement delay 8.34e3 9.04e3 324 10.8e3 2.41e3
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Fig. 8: Merged experimental data with object trajectories and time marks for
several process steps. The thickness of the horizontal lines results from the
deviation of measurements relative to the first object scan line.
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4 Conclusion

The developed measurement concept has proven to deliver reproducible system
timing insights of practical interest. With the described system, approx. 1 TB of raw
data was acquired and processed afterwards. It was identified that the main latency
and jitter contributor of the system is the actuator control chain, after classification
until the pressure rises, with over 1 ms jitter and over 1.8 ms latency. These values
are at least one order of magnitude higher than the sum of the other values. Several
improvement options exist: optimization of the actuator timing module, valve
controller board and pneumatic setup.

The measurement concept of single experiments proved to provide interesting
timing insights. Whereas the image acquisition, processing and object detection
latencies are well below the 1 ms specification, the actuator latency and jitter are
not. For latencies below 1 ms the polling cycle should be reduced. In addition, an
offset between set actuator delay and real actuator delay could be observed, it is a
constant offset. Future development in this technology should address this issue. In
future work, the impact of the valve itself needs to be put in focus as well the system
characteristics under high load scenarios. The developed measurement system
and environment will help us to test and benchmark our future improvements
which include better latencies for actuator control and the implementation of more
complex image processing, including convolutional neuronal networks.
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Abstract

Prior to actual metallurgical extraction, the value of individual entire Waste Printed
Circuit Boards (WPCBs) can currently only be estimated roughly by optical inspection
by a human or with very high effort (e.g. ICP analysis). At the moment, no system
is available that can estimate the monetary value of WPCBs online. We introduce
a sorting method for the automated evaluation and sorting of WPCBs based on the
predicted value of each individual WPCB. The system acquires dual energy X-ray
images (DE-XRT) from the WPCBs on a conveyor belt. These images are pre-
processed and fed into a deep neural network. The system calculates the value of
each WPCB based on features in the DE-XRT images. Furthermore, XRT is a more
robust imaging technique in the context of application in dirty/soiled environments.
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For the purpose of machine learning, a representative database is indispensable
for model training and evaluation. Therefore, our first step was to generate such
a machine-readable data and label base from real-world WPCBs, starting with a
sample of 104 individual WPCBs. The next steps include the acquisition of the X-ray
images and the chemical analysis of the components to obtain the concentrations
of the valuable metals. This information provides the ground truth for the calibration
of the model that predicts the actual value of the WPCB.

Our approach is based on the detection of components that contain valuable
materials like ICs (integrated circuits), BGA/PGAs (ball grid/pin grid arrays), TCs
(tantalum capacitors), connectors and others. For training and evaluation of our
database we followed the established evaluation scheme in machine learning. The
data is split into three individual sets, namely training, validation and test. Validation
is used to tune the training process of the model and to validate its performance.
Once that final model is found the test data serves as its independent final evaluation.

Our research shows good results in the detection of value-bearing components
from single WEEE WPCBs. The achieved scores on the harmonic mean of recall
and precision for the four component classes IC, TC, connector and BGA/PGA are
87.83 %, 82.54 %, 79.25 % and 88.89 %.

1 Introduction

The value of Waste Printed Circuit Boards (WPCBs) from Waste of Electrical and
Electronic Equipment (WEEE) differs greatly due to high variance in the content
of valuable elements (mostly gold and tantalum). In the recycling process, the
value of complete WPCBs can currently only be approximated roughly before the
actual metallurgical recovery. Especially the value of a larger batch can only be
extrapolated based on a few random samples and visual examination by human
experts which is time consuming and error-prone. This situation is unsatisfactory for
both buyers and sellers of WPCBs. A fully automated evaluation and, if requested,
sorting of the WPCBs is desirable.

There are first scientific publications on detecting the components on
PCBs (Mallaiyan Sathiaseelan, Paradis, Taheri, & Asadizanjani, 2021) and value
estimation of WPCBs (Silva, Junior, Azevedo, Oliveira, & Fernandes, 2021).
However, both are based on visual images of the (W)PCBs instead of X-ray images.
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For (W)PCBs populated with components on both sides, this approach can only
provide incomplete information, as only one side can be analyzed at the same time
when using images based on visible light. This limitation also applies for all other
types of imaging using a type of radiation that is not penetrating the object, but only
providing an image of the surface (reflected light imaging). Examples include, but
are not limited to, near infrared, ultraviolet and terahertz.

2 Measurements and Methods

Our general approach was to scan the WPCBs on a conveyor belt to acquire dual
energy X-ray transmission (DE-XRT) images. The next step was to detect the
components of value for the recycling based on these X-ray images using state
of the art deep neural networks. In our case we selected the component classes
integrated circuits (ICs), tantalum capacitors (TCs), ball and pin grid arrays (BGAs/
PGAs) and connectors, which we expect to have the highest material value (i.e.
predominantly gold and tantalum). We have developed a model to predict the value
of the WPCB for the recycling based on those components. The component based
model allows flexible adaption to the requirements of the user of such a system.

2.1 Measurements

X-ray imaginary: 104 WPCBs were scanned on a conveyor belt in our lab set up
at a speed of 0.45 m/s (27 m/min). The X-ray images were acquired using a Comet
MXR225/HP11 X-ray tube operating at 100 kV with 15 mA and a Hamamatsu
C10800 dual energy line detector with a pixel pitch of 0.4 mm. Fig. 1 shows a visual
example of a WPCB and its resulting DE-XRT data as grayscale images.

Visual Image (RGB) Low Energy Image High Energy Image

Fig. 1: A WPCB sample visualized in RGB (left) and DE-XRT (center and right) domain
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Value estimation: The distribution of valuable material of components of each
class was determined by inductively coupled plasma optical emission spectrometry
(ICP-OES analysis) of a random sample of 10 ICs, 7 BGA/PGAs, thickness
measurements of gold coatings on connectors using REM and literature values
for tantalum content in tantalum capacitors. Each selected component class is
presented in Fig. 2.

BGA / PGA IC Connector Tantalum Capacitor

~w: IS

iy Y
-

Fig. 2: Visualization of one example of the component classes (BGA/PGA, IC, connector
and TC (tantalum capacitor)) each presented in visual and DE-XRT data domain

Visual Image (RGB)

Low Energy Image

RLIILIII s

High Energy Image

2.2 Preparation

In a first step of image pre-processing, the X-ray images were normalized (division
by the unattenuated intensity /) and logarithmized (applying the negative natural
logarithm) leading to a pixel value according to the following formula:

V= —log(;) (1)

The value is then scaled to fit into the value range of standard image data formats.
The example for the resulting image of WPCB ID 063 is shown in Fig. 3.
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Fig. 3: Preprocessed X-ray image (WPCB-ID 063)

2.3 Database

In total, the X-ray images of 104 WPCBs were acquired with the proposed
measurement scheme. The components on the individual WPCBs were annotated
manually according to the four component classes (ICs, BGAs/PGAs, tantalum
capacitors and connectors) in the images with reference to visual images of the
respective WPCB.
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Fig. 4: Ground truth labels of WPCB ID 065
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Fig. 5: Ground truth labels of WPCB ID 063

In machine learning consistent and representative data and labels are crucial.
To fulfil this criterion a subset of 77 WPCBs are selected for our studies after an
observation of inconsistent annotations in 27 WPCBs. This was necessary due to
the fact that representative annotations are time-consuming. The components of
77 WPCBs resulted in a total of 1516 annotated components. Two examples of the
ground truth labels are shown in Fig. 4 and Fig. 5 (ID 065 and 063). The occurrence
number of each component class in the entire data set is shown in Tab. 1.

The sample WPCB were randomly split into three categories according to the
standard procedure in deep learning applications:

1. Atraining set: It is used to train the machine learning model.

2. Avalidation set: It is used to validate the performance of the training process
during the training.

3. A test set: After a model is trained, this set is used to finally evaluate the
performance of this model with samples not seen by the model.
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Tab. 1: Quantity of available component classes in the data sets for training, validating and testing

Component classes

Sets IC TC Connector BGA/PGA
Training 733 201 197 22
Validation 67 32 34 7

Test 122 69 28 4

Sum 922 302 259 3

The individual data sets are composed of 55 WPCBs for model training and 11
WPCBs each in the validation and test set.

2.4 Deep Learning Model

The prediction of the component classes on the WPCBs is a typical object detection
task. We use the object detection network YOLO (you only look once) that shows
state-of-the-art results for real time object detection in visual images and videos
(Redmon, Divvala, Girshick, & Farhadi, 2016)(Bochkovskiy, Wang, & Liao, 2020;
Redmon, Divvala, Girshick, & Farhadi, 2016; Redmon & Farhadi, 2017, 2018). The
YOLO approach expresses the object detection task as a regression problem for
spatially separation of bounding boxes with a class probability assignment to each
of the boxes. This is realized with a single neural network that predicts bounding
boxes and class probabilities directly from an input image (end-to-end). Using a
single shot architecture is not only beneficial for the prediction speed of detecting
objects, it also ensures that the model can implicitly encode contextual information
about classes and their appearance during training.

Similar to other state-of-the-art models for object detection, the YOLO architecture
can be separated into two parts: a backbone, which is used for extraction of relevant
features and a head that final predicts the sizes and locations of bounding boxes
with its class assignments of objects (Bochkovskiy et al., 2020). The deep neural
network model mainly consists of convolutional layers that are combined with other
type of layers and mechanism that the development in recent years found to be
helpful for accurate detection. In the following, the used operations and the detailed
architecture of the model (shown in Tab. 2) are presented:
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Conv: The basic operation is the convolutional layer that applies a 2D convolution
on a given input followed by a batch normalization (loffe & Szegedy, 2015) and a
SiLU activation function (Elfwing, Uchibe, & Doya, 2018).

Focus: The focus operation is proposed in YOLOV5 as first stage for processing
the given input. It down samples the spatial dimensions of the given input by a
factor of two with different sampling steps and is applied four times. The results
are concatenated to an output that consists of four times larger channel dimension
and a two times smaller spatial dimension and is finally processed with the Conv
operation. This accelerates the speed for training and inference, while preserving
the results of the affected operations.

C3: Furthermore, an operation denoted as C3 is proposed in YOLOvV5, which is
mainly composed of three Conv operations from which one is followed by a possible
cascading of a bottleneck residual block (He, Zhang, Ren, & Sun, 2016). This
bottleneck processes a given input through a Conv operation with a 1 x 1 kernel
followed by another Conv operation with 3 x 3 kernels and adds those results to
its input.

SPP: To become robust to arbitrary images sizes deformations, a spatial pyramid
pooling (SPP) operation (He, Zhang, Ren, & Sun, 2015) with max pooling and kernel
sizes setto 5, 9 and 13 is applied. This SPP operation follows the scheme proposed
in YOLOv3 (Bochkovskiy et al., 2020; Redmon & Farhadi, 2018) that processes a
given input via Conv with a 1 x 1 kernel before applying a SPP operation and finally
processes a Conv operation on the concatenated output.

Upsampling: The upsample operation processes a given input by enlarging the
spatial dimension by factor of two with a nearest interpolation mode.

Detection: And finally, the detection operation for bounding box and one-hot
encoded class predictions (in our case for four different components) are assigned
in different grid cells.
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Tab. 2: Summary of the used object detection model

Operations Filters Size Stride
1. Focus 32 3x3 1
2. Conv 64 3x3 2
3. C3 with 1x bottleneck 64
4. Conv 128 3x3 2
@ 5. C3 with 3x bottleneck 128
S 6. Conv 256 3x3 2
S 7. C3with 3x bottleneck 256
@ g  Conv 512 3x3 2
9. SPP 512 1x1
10, S:n\;v(iat:til):] bottleneck no residual 512
11. Conv 256 1x1 1
12. Upsampling
13. Concatiation with 0. 0. 7
14, Sgnﬂ:nl):, bottleneck no residual 256
15. Conv 128 1x1 1
16. Upsampling
17. Concatiation with 0. 0. 5
. 18, S:npv;tzﬂlﬁ bottleneck no residual 128
£ 19. Conv 128 3x3 2

20. Concatiation with 0. 0. 15

21 C3 with .1x bottleneck no residual 256
connection

22. Conv 256 3x3 2
23. Concatiation with o. 0. 11

o4 C3 with _1x bottleneck no residual 512
connection

25. Detection based on 0. 0. 18, 20 and 24

*0. 0. = operation output

In total the model consists of 283 layers and 7,071,633 parameters.

The configuration of the training process with the proposed WPCB data set was set
to 2000 epochs, a batch size of 8 and input image dimensions of 640 x 640 pixels in
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which the corresponding WPCB samples are centred and rescaled to the required
dimensions. Furthermore, data augmentation strategies are used and randomly
applied for each iteration step. We use standard methods like scale, translate and
flip for tackling geometric distortions. For dealing with distortions in the colour space
of the image, adjustments to hue, saturation and brightness are added. In addition
Mosaic data augmentation is applied, which processes four image mosaics instead
of one single image (Bochkovskiy et al., 2020).

During training the model performances are validated with the validation data and
the model parameters are stored when performances increases. The final model is
evaluated with the test data which was not included in the training and validation
process and is - until the test evaluation - unseen from the model.

2.5 Value model

The value model is the part of the system that calculates a value for a specific
WPCB based on the output of the object detection system (in this case the YOLO
network) and a number of parameters that are set by the end-user. For example,
these parameters could be the daily rates for the high value materials like gold and
tantalum, the recovery rate in the subsequent recycling processes, average content
of high value material in each component class or the size of the overall WPCB and
the components.

Using this approach, the method allows a very flexible adaption to different
circumstances in the recycling process and allows a realistic value estimation even
in different applications. A simple example of what the value estimation looks like
is as follows. Every detected component from a given class contributes to the total
value with an amount that is specific to that class. The resulting total value is the
sum over all component classes:

Veor = ) vy @
i

where v is the total value of the WPCB, », is the number of detected components
of class i and o, is the mean value of a component of class i. The mean value per
component is known from the chemical analysis of a representative sample set for
all component classes.
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In our test set that was analysed by ICP, we found a mean gold content for ICs
of 0.457 mg per piece, for BGA/PGAs of 4.71 mg per piece and for connectors of
0.914 mg per piece. With a gold price of 1516 € per troy ounce (31.1 g) in October
2021, the price per mg is 4.87 ct (€). This results in an average value of 2.2 ct per
IC, 22.9 ct per BGA/PGA and 4.4 ct per connector. The mean mass for an analysed
whole TC was 767 mg. Market price for one kilogram of waste tantalum capacitors
in October 2021 is about 25 €/kg (Sauer, 2022). This results in an average value
of 1.9 ct per TC.

3 Results

In this section the achieved performance scores of the object detection model
are shown first, followed by the estimated value of the WPCBs from the value
model based on the given predicted input of the component classes. All results are
obtained from the test set.

The absolute numbers of true and predicted component classes can be seen in the
Fig. 6. For evaluation of the object detection model, the harmonic mean of recall
and precision (F1 score) is selected as performance score. It takes the amount of
correct predicted component classes with respect to their absolute amount into
account and also considers the number of wrongly predicted classes with respect
to the correct predicted ones (model precision).
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Fig. 6: Confusion matrix

The resulting F1 scores for the four component classes IC, TC, connector and BGA/
PGA are 87.83 %, 82.54 %, 79.25 % and 88.89 %.

Based on these results, the value model is estimating an overall test set value of
4.62 €. From the mean value per piece in every component class derived from ICP
and the announced price model in Section 2.4, the total value of the test set is 4,93
€. In Tab. 3 the estimated component class values are presented and faced with the
underlying value of the test set components.

Tab. 3: Target and estimated value of the component classes

Component class IC TC Connector BGA/PGA Total
value

Target value 244€ 1.31€ 0.28 € 0.90 € 493 €
Estimated value 2.16 € 1.08 € 0.25 € 1.13 € 4.62 €

In the following a detailed example for two WPCBs are given. The prediction of
components with our model in the WPCBs ID 063 and 065 is shown in Figure 7
and Figure 8.
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When compared with Fig. 4 and Fig. 5, the performance of the component detection
model can be seen. With ID 065, only one IC (bottom center) was missed and one
false IC was detected (bottom right), all other components were detected correctly.
In ID 063, all components were detected correctly. The detected components
and the actual value estimation is performed as can be seen in Table 3. WPCB
ID 065 shows the same quantity for all component classes even although not all
components were detected correctly. Specifically, one IC in the lower left corner
was not detected, while the model mistakenly detected an IC in the lower right
corner. Thus, the total number of IC did not change.

Fig. 7: Predicted Components WPCB ID 065
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Fig. 8: Predicted components WPCB ID 063

Tab. 4: Total value estimation in €-cents of an example WPCB ID 065

Component  Detected Ground Value Predicted
quantity truth per unit value
quantity
IC 6 6 2.2ct 13.2 ct
TC 1 1 1.9ct 1.9 ct
BGA/PGA 0 0 229 ct 0ct
Connector 1 1 1.0 ct 4.4 ct
Total Value 19.5 ct
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Tab. 5: Total value estimation in €-cents of an example WPCB ID 063

Detected Ground Value Predicted

Component uantit truth er unit value
q y quantity P

IC 5 5 2.2ct 11.0 ct
TC 3 3 1.9 ct 5.7 ct
BGA/PGA 1 1 22.9ct 22.9 ct
Connector 1 1 1.0 ct 4.4 ct
Total Value 44.0 ct

4 Conclusion and outlook

Despite the relatively small sample number for training, the model showed good
detection performance of the component classes. The statistical analysis of the
object detection in the test sample set, i.e. the samples that were previously unseen
by the prediction model is shown in the test. The achieved scores on the harmonic
mean of recall and precision for the four component classes IC, TC, connector and
BGA/PGA are 87.83 %, 82.54 %, 79.25 % and 88.89 %. With that performance
in component detection and the statistical knowledge gained from the chemical
analyses, the value prediction model provides the possibility to estimate the value
of every single WPCB in the material stream. In Figure 6 the absolute numbers of
true and predicted component classes can be seen, which leads to an overall test
set value of 4.93 € resulting from IC worth 2.44 €, TC worth 1.31 €, connectors worth
0.28 € and BGAs/PGAs worth 0.90 €. The prediction achieves in total a worth of
4.62 € resulting from IC worth 2.16 €, TC worth 1.08 €, connectors worth 0.25 € and
BGAs/PGAs worth 1.83 € for the test set with the above mentioned performance
scores of the harmonic mean of recall and precision.

For an advanced value estimation, we are currently developing methods based
on the size and weight of the components and the concentration of the high
value materials rather than their number to account for the size variation within a
component class. Furthermore, we are planning to include the dual energy X-ray
analysis using the basis materials decomposition (Firsching, Nachtrab, Uhimann,
& Hanke, 2011) in future, which is able to provide additional material information.
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Abstract

Knowing particle size distributions from streams inside waste treatment plants is
crucial for dynamically controlling a plant to achieve better process performance
and improved output streams. Here, an existing dataset of particle-describing
parameters extracted from single-particle images was used, and particle sizes were
predicted for the fractions paper & cardboard and wood in the size classes (in
mm) 10-20, 20-40, 40-60, 60—-80 and > 80 based on the classification algorithms
RUSBoosted Trees and Bilayered Neural Network. The results show that the correct
classification rate for a material fraction depending on the model type is between
64% and 82%.

1 Introduction

A current research vision for mechanical waste treatment plants is the “Smart
Waste Factory Network”, which — among other aspects — deals with dynamic
process control (Sarc et al., 2021). The concept of a dynamically regulated waste
treatment plant is a viable method for future plant operation and the generation of
optimized output streams. Hence, ideal feeding of the individual machines in the
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plant is required. Therefore, knowing the material-specific particle size distribution
(PSD) is a key factor. Usually, PSDs in the waste management sector are
determined by screening analyses of representative samples; sorting analyses are
implemented mainly by manual sorting. These analyses lead to a high personnel
and time expenditure and are usually only carried out for specific questions (e.g.,
the description of the material quality (regards material composition and PSD) for
subsequent recycling processes). In addition, the time delay until the results from
this method are obtained does not allow its utilization for process control since the
material has already left the plant and can no longer be influenced by it.

To enable a beneficial influence of the particle size of material streams in near
real-time, a trinity of three requirements needs to be fulfilled, according to Khodier
et al. (2019): controllable actuators — especially in dosing devices like shredders
(Feil and Pretz, 2018) — such as shredder gap widths or their shaft rotation speed,
which were investigated by Khodier et al. (2021), optimization algorithms, as well
as methods for real-time metrology. To determine PSDs, individualizing particles
is expected to be necessary to make their geometry accessible to sensors.
Furthermore, some conversion is needed, from what the sensor detects to actual
particle weights. An approach is made through databases of surface weights, which
is part of research activities from Kroell et al. (2021), Weissenbach and Sarc (2021,
2022) and Wiinsch et al. (2015). The reliable determination of the behaviour of
particles in a screen, based on 2-dimensional sensor information, was already
investigated by Kandlbauer et al. (2021). Here, a large number of particles with
known material and particle size class was collected from screening analyses using
drum screens (screen cuts in mm: 10, 20, 40, 60, 80) with additional manual sorting
into five material classes (wood (wo), plastic 2D and 3D, paper/cardboard (p&c),
residuals). These particles were subsequently photographed with an RGB camera
on a conveyor belt and processed in binary images resulting in over 11,000 RGB
images of individual particles (see Figure 1 for an example). The images were
used to calculate various shape descriptors, later used in a Partial Least Squares
(PLS) Regression Model, to predict the particle size based on the image data
only. Depending on the material, the method resulted in a correct classification for
individual particle sizes between 15% (paper & cardboard) and 100% (3D plastics).
This work investigates Artificial-Intelligence- (Al) based approaches for determining
particle size from the available shape descriptors.
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Fig. 1: Example of the used images: original RGB image (left), greyscale image (middle),
and binary image (right) of singlified waste particle (Kandlbauer et al. 2021)

2 Materials and Methods

For processing the already available data (11 descriptors, see Kandlbauer et
al. 2021 for more details), MATLAB® 2021a was used as the programming
environment, particularly the Machine Learning and Statistics Toolbox and the
Classification Learner App. All models were trained with 10-fold cross-validation to
obtain meaningful results. For first comparisons with the results from Kandlbauer
et al. (2021) the models RUSBoosted Trees and Bilayered Neural Network
(see Matlab 2022a, 2022b) were tested in a first approach and presented in the
contribution here, but additional models are of interest for further research. To make
the results comparable with the numbers reached with the method from Kandlbauer
et al. (2021), the same number of particles was used for training and testing the
algorithms. For a detailed description see chapter 2.4 in Kandlbauer et al. (2021).
Here, it must be mentioned that a different number of particles is available for each
material-specific particle size class (see Kandlbauer et al. 2021, Table 3). The
results are presented as the share of correctly/falsely classified particles for each
particle size class.

3 Results

Results for the models Bilayered Neural Network and RUSBoosted Trees are
presented in Tab. 1 (fraction p&c) and Tab. 2 (fraction wo).

For the overall correct classification (all five particle size classes combined) of the
material fraction p&c, the Bilayered Neural Network model achieves a classification
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accuracy of 82%, and the RUSBoosted Trees model 64%. The overall performance
(all five particle size classes combined) for the Al-based models is 75% in both
cases. Additional Al-based classification models and material fractions are
investigated at the moment to determine similarities and differences between the
results coming from the PLS regression and Al-based classification models. Also,
Al-based regression models are considered.

To understand and explain abnormalities in the results from the classification (e.g.,
for p&c 60 mm — 80 mm), relations between the individual descriptors/images need
to be investigated in future work. Nevertheless, the presented method shows a
promising way for real-time metrology of particle sizes of mixed commercial waste
for the future. Especially for the size classes 20 mm — 60 mm (p&c), the new models
can be seen as a suitable prediction method since the PLS performed below 20%
(Kandlbauer et al., 2021) in these cases, which indicates that these particle size
classes are not well distinguishable from each other with the used method.

Tab. 1: Results for the fraction paper&cardboard for different classification models (values in %,
particle size classes in mm). Note: bold numbers show the share of the correctly classified objects.

to to to to to
10-20 20-40 40-60 60-80 >80

E from 10-20 87 13 0 0 0

§ from 20-40 6 90 2 0 2

g from 40-60 0 4 25 1 70

% from 60-80 0 1 5 3 91

g from > 80 0 0 2 1 97

from 10-20 93 7 0 0 0

é from 20-40 7 88 5 0 0

E from 40-60 0 7 68 21 4
o

g from 60-80 0 2 23 49 26
[

from > 80 0 1 14 25 60
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Tab. 2: Results for the fraction wood for different classification models (values in %, particle
size classes in mm). Note: bold numbers show the share of the correctly classified objects.

to
>80

from
10-20

from
20-40
from
40-60
from
60-80
from >
80
from
10-20
from
20-40
from
40-60
from
60-80

from >
80

Bilayered Neural Network

RUSBoosted Trees

to to to to
10-20 20-40 40-60 60-80
92 8 0 0
4 90 5 1
0 4 73 19
0 1 21 63
0 0 7 22
93 7 0 0
5 87 8 0
0 10 73 16
0 3 21 63
0 1 7 20

0

15

7

13

72

4 Conclusions

Compared with the results from Kandlbauer et al. (2021), the tested Al-based models

result in a better classification for p&c in the size classes 20 mm — 60 mm, where

the PLS model just reached a correct classification of max. 18%. If considering

the particle sizes > 60 mm, the PLS model reaches a higher correct classification

rate. Comparing the results for the fraction wood, the differences between the PLS

model and the Al-based models are not as substantial as for p&c. However, overall

the results from Kandlbauer et al. (2021) lead to higher accuracy for this specific

material fraction. Additional algorithms are tested at the moment to be compared

with the already available results to determine a suitable method for sensor-based

particle size distribution in waste treatment processes for mixed solid waste.
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Abstract

Within the European Union, approximately 500 Waste-to-Energy plants are currently
in use that generate approximately 19 Mt/year of bottom ash. The metals contained
within are only partly recovered by magnetic and eddy current separation. The
ERA-MIN2 project INSTANT developed innovative sensor-based characterization
technology to enhance (metal and mineral) resource recovery from these bottom
ashes. Due to the exterior dust layer, traditional surface-based sensor techniques
are inadequate to accurately identify particle composition.

The INSTANT characterization technology uses a combination of dual-X-ray
transmission and 3D laser triangulation sensors to get in-depth knowledge of the
particles. After alignment and segmentation, various features including mass,
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density, atomic number and shape are determined. Subsequently, the data is
processed by a machine learning model to classify particles in 6 classes (glass,
ceramic, slag, ferrous metal, Al, Cu), with an overall accuracy of > 90 %. However,
the preparation of representative training fractions proved a key issue to ensure
applicability of the model to new unseen bottom ashes. Overlap in the training
fractions complicates the particle classification.

Furthermore, INSTANT applied the CombiSense Chute machine to separate glass
from the mineral fraction of bottom ash for better valorisation, with a resulting purity
of > 98 % (for slag) and 80 % (for glass).

1 Introduction

Within the European Union, approximately 500 Waste-to-Energy plants are in use
that generate approximately 19 Mt/year of bottom ash per year (CEWEP, 2018).
Bottom ashes are the incombustible residual part of the incinerated waste, and
contain 80-85 m % mineral fraction and 10-12 m % metals, including 2-5 m % non-
ferrous metals (of which 2/3 aluminium) (CEWEP, 2017). Recovery of metals from
bottom ashes is beneficial both from an economic and environmental perspective,
due to the inherent value of the metals and the greenhouse gas emission savings
by replacing virgin metal production.

State-of-the-art bottom ash treatment plants use a combination of physical
separation techniques to recover the metals and produce clean mineral fractions
for use in construction. Typically, the process sieves the incinerated bottom ash in
several size fractions, followed by magnetic separation to recover ferrous metals,
and Eddy current separators to sort out non-ferrous metals. About 80 % of the
metals embedded in the bottom ash are thus recovered (CEWEP, 2017), with
significant portions of (NF) metals lost particularly in the fine particle range. The
efficiency of the treatment steps is determined based on representative sampling
and chemical analysis of the output streams, which is a costly and time-consuming
process. Due to the long lag time between sampling and analysis, continuous
process steering to optimize metal recovery is not possible. Surface-based sensor
techniques are inadequate to accurately identify particle composition because of
the exterior dust layer.
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The ERA-MIN 2 INSTANT project (2018-2021) developed an innovative sensor-
based characterization technology (Characterise-to-Sort, CtS) for bottom ashes,
based on machine learning. With this non-destructive technology, continuous inline
analysis of the composition is possible, enabling improved steering of the process
plant and higher value recovery. In addition, sensor-based sorting technologies
were applied for glass separation to increase the valorisation potential of the
mineral fraction.

2 Characterise-to-Sort (CtS) technology

The CtS technology (patent application PCT/EP2020/087063) uses a combination
of dual energy X-ray transmission (DE-XRT), 3D laser triangulation (3DLT) and
RGB imaging (colour camera) to determine a wide range of parameters e.g. mass,
shape, composition, etc. on individual particle level (https://vimeo.com/545185006).
Classification models are constructed based on this data, using advanced image
processing algorithms and machine learning.

To train the model, learning fractions were prepared for six target classes from the
different output streams: glass, ceramic and slag from the mineral fraction, ferrous
metals, and Al and Cu from the non-ferrous metals. At least 500 particles were
handpicked for each of the 3 size fractions (4-8, 8-20 and 20-40 mm) of the output
streams of the Suez bottom ash treatment plant VALOMAC, located in Grimbergen,
Belgium.

The learning fractions were scanned at a belt speed of 20 mm/s. The materials were
fed using a vibrating feeder to ensure optimal spreading of the particles. Calibration
of the sensors is executed prior to each scan. For each learning fraction, the
materials were separated in 3 sets: TRAIN (used for training the model), VALIDATE
(used to optimize the model) and TEST (used to determine model accuracy,
“unseen” by model).

Custom-made alignment and segmentation algorithms were developed and applied.
A large array of (hand crafted) features are extracted for each particle related to
e.g. mass, volume, density, shape, chemical composition (average atomic number).
Classification models were trained employing both hand-crafted and machine
learned feature sets (deep learning, CNNs). Fig. 1 shows an example of the scan
results for the 4-8 mm training fractions. As this figure shows, identification based on
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visual information is impossible due to the strong similarity of the different particles.
The information on density and chemical composition gained from the DE-XRT is
indispensable in the classification of bottom ash particles.

When applying the model to the unseen TEST particles, an overall accuracy of 90
% is reached (Fig.2). The accuracy for glass is lower (77 %) due to confusion with
the chemically similar ceramic and Al fractions, and impure (overlapping) training
fractions (notice e.g. green specks of Cu-particles in the Al fraction in Fig. 1). The
impurities in the training fractions are due to the difficulty in visually identifying the
proper class during handpicking.
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Fig. 1: Training fractions, 4-8 mm. A) Colour scan, resolution 0.25 mm, B) dual energy X-ray transmission
scan, total energy, resolution 100 um, C) Average atomic number DE-XRT, resolution 100 um
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Fig. 2: Confusion matrix of INSTAnT bottom ash classification model

When the model was applied to new samples taken from production, accuracy
dropped significantly. Analysis showed that the new samples were much coarser
than the training fractions, most likely due to preferential handpicking of larger
particles. As such, the training fraction were not representative of the whole
production, causing the model to underperform. This shows that the preparation of
pure, non-overlapping (mutually exclusive) training fractions that are representative
for the target stream, also on a longer term, is crucial for the development of machine
learning models. The presence of material composites, often found in bottom ashes
(and other materials), poses an additional problem.

3 Glass separation

The mineral fraction of bottom ashes contains a certain amount of glass due to the
presence of glass in the input (household) waste that is incinerated. The maximum
amount of glass allowed in aggregates for concrete in Belgium is determined by the
European standard for concrete EN 206-1 (NBN 2016) and its Belgian annex (NBN
B 15-001 (BNB, 2018), while limitations for other uses are listed in the Belgian
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national regulation for aggregate quality, PTV 406 (COPRO, 2020) (Tab. 1). In
summary, for low value applications such as roadbase and foundations a maximum
of 2 % glass is allowed. For recycling of concrete granulate in concrete (high value
concrete aggregate/concrete granulate A+) a more stringent limit of 0.5 % for all
impurities, including glass, is imposed.

Tab. 1: Glass limitation in aggregates

Standard Aggregate quality Limitation (*)
EOBGN 1EN Type A recycled aggregates XRg<1%
Type B recycled aggregates XRg <2 %
NBN B 15- . o
001:2018 High value Concrete granulate Type A+ XRg<0.5%
High value mixed granulate Type B+ XRg<2%
PTV 406 Concrete granulate Rg<2%
Asphalt granulate Rg<2%
Mixed granulate Rg<2%
High value concrete granulate XRg=<0.5%
High value mixed granulate XRg <2 %

(*) Rg = fraction glass, XRg = fraction glass + other contaminants such as gypsum, organics

etc.

Based on Suez historical data, the mineral fraction contains approximately 3.6 m %
glass (ranging from 0.9 m % up to 23.4 m %), which exceeds the limit values.
Additional glass removal is therefore required for valorisation.

In a first step, feasibility tests on 25-75 kg of material of size 4-8 mm and 8-20
mm were done in the TOMRA testing facility at Mulheim-Karlich (Germany), using
different sensor-based sorting equipment, namely:

e Autosort Laser, which combines laser technology, to distinguish glass from
other mineral phases such as ceramic, stones and porcelain (CSP), with
NIR to separate transparent polymers from glass (Fig. 3).

193



Sensor-Based Sorting & Control 2022

e Combisense, that uses a colour line scan camera to sort according to colour,
brightness, shape and size. This method distinguishes glass based on its
lustre. The Combisense was used in two different setups: a belt system for
the 8-20 mm fraction, and a chute for the 4-8 mm fraction (Fig. 4).

e Prototype Laser Unit, that sorts based on laser illumination (Fig. 4).

o Feeding of unsorted material

O NR

O Laser

o Electromagnetic Sensor (optional)
© separation chamber

Fig. 3: Principle of Autosort laser

Feeding of unsorted material
Sensor system
Optional electromagnetic sensor o

o000e

Separation chamber

Fig. 4: Principle of Combisense chute and Prototype Laser

The feasibility test results (Tab. 2) show that the Combisense chute performed
best for both glass and aggregates. Therefore, this method was chosen for further
optimisation in larger scale tests on the 4-8 mm sample, which was found to contain
the most glass.
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Tab. 2: Performance of glass sorting techniques

Glass Glass Aggregate Aggregate

purity recovery purity recovery

4-8 mm

Autosort 164%  82.1% 95.3 % 7.0 %
Laser . 0 . 0 5 0 5 . (s]
gf’ur?;’ise”se 819%  943% 94.9 % 98.6 %
8-20 mm

Autosort 11.9° 150 94209 86.7 9
putos 9%  515% 42 % 7%
gé’l;“bisense 60% 723 % 96.5 % 72.1 %
E;gfrtype 246% 816% 97.8 % 90.1 %

In the optimization trials, glass purity could be increased from 9.6 % to 81.9 %
in one step, with a 94.3 % recovery. It is expected that the purity can be further
increased by adding treatment steps. However, the inherent quality of the glass is
low as it is a mix of various colours, shapes and chemical compositions.

The purity of the aggregate fraction could be increased to > 99 %. The glass content
in the aggregate fraction was determined according to the Flemish standard for
analysis CMA/2/II/A.22, which is based on EN 933-11 (EN, 2009). Approximately
10 kg of sample was dried at 105°C and sieved at 4 mm to remove fine particles.
Contaminants are visually removed from the sieved fraction by handpicking. The
sample is then submerged in water, and a separation is made between floating
and non-floating particles. Finally, a second handpicking is done on the washed
samples. The test results showed a presence of 0.35 % glass (Rg), and 0.44 %
other contaminants (X). As such, the requirements for low value application of
the aggregates (XRg < 2 %) are met. The glass fraction is also in line with the
requirements for high value concrete application. However, the combination of
contaminants (XRg) is slightly above 0.5 % and warrants further investigation.
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4 Conclusion

In the INSTANT project, a bottom ash classification model was developed based on
DE-XRT and 3D Laserimages. The model achieved an overall accuracy of 90 % for 6
classes of materials (slag, glass, ceramic, ferrous, aluminium, copper). Preparation
of long-term representative and pure training fractions is the main challenge for
further improvement of the accuracy towards industrial implementation.

The sensor-based sorting technology CombiSense Chute was able to separate
glass from other mineral components, achieving a high (> 99 %) purity of the
aggregate fraction.
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Abstract

Sorting systems in the recycling industry are crucial for an efficient and sustainable
reuse of used materials. This requires robust and precise sorting systems to distinguish
between different materials. Current systems mainly rely on rule-based methods that
need to be parametrized by human experts. In this work, we propose a deep-learning-
based sorting system that learns important features for the sorting decisions from
the acquired data from scratch. In the context of major household appliance (MHA)
recycling, we acquired an application-oriented database from shredded MHA on a
conveyor belt with an integrated dual energy X-ray scanner. These dual energy X-ray
images of the flakes were then processed with a convolutional neural network model
to enable an automated separation and to distinguish high-grade aluminum flakes
from low-grade residual flakes. In the recycling context, one often faces the trade-
off between optimizing precision and recall as a performance metric. In this context,
we describe the use of a customized performance metric to account for the specific
purity requirements that are present in such recycling tasks. Our work shows promising
results for automated aluminum sorting via deep learning yielding an Fyo, of 91.74 %
and a resulting precision of 93.08 %. Further, we provide local explanations of the model
decision via Attribution Maps to foster trust of practitioners in the proposed solution.
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1 Introduction

1.1 Motivation

The finite nature of primary raw materials and the increase in the global consumption
of raw materials are placing greater focus on the use of secondary raw materials,
as the industry is dependent on the availability of raw materials. This substantiates
the goals of the circular economy in which the recycling industry plays an important
role, making it possible to process end-of-life materials efficiently and sustainably
for reuse and to secure the availability of secondary raw materials.

This requires robust and accurate sorting systems that can distinguish different
materials. Currently deployed systems mainly use rule-based methods that need
to be parameterized by human experts and provide hardly any information about
the actual sorting decision which would be valuable for the recycler itself and the
downstream industries. This parametrization is a labour-intense task and scarcity
of experts is a bottleneck in this context. In this work, we propose a deep learning
based pipeline to automate this process and learn the sorting decisions in a data
driven way.

1.2 Literature
The progress made in the past in the field of computer vision has also translated
into sensor-based visual sorting systems used in material sorting and recycling.

In this context, (Bircanoglu, 2018) introduced the RecycleNet architecture and
trained it on an annotated dataset of 2527 RGB images to separate waste from
six different classes including metal, trash, plastic, glass, and cardboard. Despite
an opaque evaluation strategy, they showed strong predictive performance of an
InceptionNet-based architecture with a test accuracy of 95 %. (Bobulski, 2019)
used a similar RGB-based system for the separation of plastic waste in four
different classes leveraging different data augmentation techniques. In their recent
work on ScrapNet, (Masand, 2021) experimented with different model architectures
for visual waste separation on a collection of four open-source datasets with RGB
images for trash sorting annotated with varying amounts of classes. Next to the
successful use of pretrained model weights, they investigate the trade-off between
model inference time and model performance under a realistic model evaluation
scheme. They found an EfficientNetB3 architecture to yield the best performance of
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92.87 % test accuracy on a combined dataset containing 8100 annotated samples
over seven trash categories.

Next to visual sorting of waste from a broad range of sources, there also exists
research on the use of deep learning for sorting of metal waste. (Diaz-Romero, 2021)
investigated CNN-based architectures to distinguish cast from wrought aluminum
samples from a proprietary dataset consisting of 548 annotated RGB images. The
focus of their work lies on different representations of the image flakes, the fusion
of various sensor inputs and the applicability of transfer learning in such settings.
They further built upon the work of (Dang, 2019) that proposed a computer vision
pipeline for the separation of aluminum from copper samples (4769 samples) as
well as a three-class sorting task of brass, copper, and a rest class (7608 samples)
with reported test accuracies of 99.93 % and 97.15 %, respectively. The proposed
pipeline consists of a camera module to capture RGB images of samples on a
conveyor belt followed by a Region of Interest (ROI) extraction module after which
the preprocessed ROI boxes are fed into a deep learning module for the sorting
task.

1.3 Contribution

Our contributions are the following: 1) we investigate the applicability of different
deep learning architectures of varying complexity and size for automated trash
sorting of high-grade aluminum from low-grade residual flakes based on dual
energy Xray scans of shredded major household appliance (MHA) flakes. Thereby,
we 2) propose a multi-rater annotation scheme for data collection in such complex
settings and 3) focus on a realistic model evaluation scheme throughout the
experiments. We further explore the usage of explainable Al methods to 4) foster
trust of the practitioners in such an automated system, which is crucial for its
adoption in practice.
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2 Data and Label Collection

A representative database is crucial for successful training of deep learning models
as well as reliable model evaluation. Consequently, our data was collected in a real
world environment in the recycling industry and measured via an X-ray system. In
particular, the date used in this work consists of major household appliance recycling
scrap. In the following, we describe the preprocessing steps for the acquired sensor
data and their use for supervised training of different deep learning architectures.

2.1 X-Ray System

X-ray systems are established as robustdevices to acquire information thatis relevant
for the sorting of used materials. Those systems integrate well in a processing line
with additional systems and can handle tough and dirty surroundings. Such X-ray
systems are usually preceded by shredding and vibrating modules which enables
better handling of the material flow and subsequently sorting with a higher purity.

The used measurement system includes an X-ray source set to 160 kV acceleration
voltage and 2 mA tube current, a dual energy line detector with 896 pixels at pixel
pitch of 1.6 mm and a conveyor belt on that the material stream is transported. The
two information per pixels are then processed with conventional image processing
methods such as filtering and morphological operations. Further, the dual energy
information was processed within consideration of physical properties of the
underlying measurement setup and the law of attenuation of X-rays. This allows
to utilize the basis material decomposition (BMD) which is used to distinguish
between different basis materials (Firsching, Nachtrab, Uhimann, & Hanke, 2011).
One benefit of the BMD is the representation of the data in a way that facilitates
human annotation.

2.2 Data Preprocessing

The preprocessing steps are illustrated in the Fig. 1. Starting with the measured
pixel lines in step 1 that shows the low energy information of a few pixel lines. Step
2 illustrates the merging of those pixel lines into an image where only low energy
information is shown in this a grayscale image. In step 3, the region of interest for
each individual flake is marked in which the relevant information is present. The last
step shows the extracted flake and its location in a 224x224x2 shaped dual energy
data sample.
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Fig. 1: Overview of the applied steps to preprocess the measured dual energy information

Those steps ensure that the entire spatial information for each energy channel per
sample (flake) is captured in one individual resulting data sample. This procedure
enables the further application of the proposed deep learning model which operates
on a two-dimensional spatial image domain. The energy information per pixel for
each flake are centred in a 224x224 sized image to ensure a fixed input dimension
for the deep learning model. This size was chosen for the extracted flakes to not
exceed the maximum height and width which lies between 10 to 120 mm of the
shredded flakes. Further, a filter checks if the extracted flakes exceed 224 pixels
in height or width and removes larger flakes accordingly. In summary we process
single dual energy pixel lines to a data stream and extract individual flake images
with related spatial information prior to feeding it to the model.

203



Sensor-Based Sorting & Control 2022

2.3 Annotation Scheme

As shown in Fig. 1, the resulting data information of one shredded and scanned
flake can be illustrated as a grayscale image. That shows energy E dependent
attenuation x and material dependent areal density p of intensities I(E) in terms of
Lambert-Beer’s law (Firsching, Nachtrab, Uhlmann, & Hanke, 2011):

I(E) = Iy(E)e #®r (1

For the human visible system, this grayscale information is hard to distinguish
especially for differentiation between two materials. Therefore, we use a different
colour scheme and the processing of the dual energy information with the BMD for
annotation. As shown in Fig. 2, this facilitates the data annotation where experts are
tasked to separate flakes into a high-grade pure aluminium or a low-grade residual
class.

For the annotation process, three human annotators were briefed by two human
experts with a strong background in recycling and physics. We measured the
agreement level among each other of the experts and the non-experts regarding
their votes of the annotation task on 100 randomly chosen flake samples as a proxy
for the annotation quality of the non-expert annotators. Therefore, we measure the
inter-rater reliability via Cohens Kappa « € [0;1] where « =1 represents complete
agreement and « =0 means that there is no agreement among annotators. A further
interpretation of the resulting Kappa scores are: 0.01-0.20 as slight, 0.21-0.40 as
fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost
perfect agreement (Cohen, 1960), (Artstein & Poesio, 2008), (McHugh, 2012).
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Fig. 2: lllustration of two flake examples per class of the extracted dual energy X-ray data
and the processed results of the images that are used for annotation (BMD samples).
It can easily be observed, that the BMD representation facilitates the data annotation

process as it helps visualizing the structural properties of the residual waste class.

The Kappa scores among annotators from Tab. 1 shows substantial agreement for
the mutual comparison of experts. This holds for two of three non-expert human
annotators according to the agreement to expert number one. Interestingly, we
measure a moderate to substantial inter-rater agreement among both experts and
non-experts. This leads us to two conclusions: 1) the task at hand is not trivial and
2) non-experts that were instructed accordingly by experts in the field can annotate
these flakes with a considerable quality. As a result, 3000 flakes were randomly
selected from the total set of 7346 flakes. These selected samples were then
annotated via the trained non-experts were each flake received three annotations
to account for the potential annotation uncertainty introduced by the hardness of
the task.
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Tab. 1: The Cohens Kappa scores between two recycling and X-ray
physics experts and three non-expert annotators

Expert1 Expert2 Non- Non- Non-
Expert 1 Expert2 Expert 3
Expert 1 1.00 0.62 0.58 0.72 0.68
Expert 2 0.62 1.00 0.40 0.47 0.53
Non-Expert 1 0.58 0.40 1.00 0.59 0.69
Non-Expert2 0.72 0.47 0.59 1.00 0.76
Non-Expert 3 0.68 0.53 0.69 0.76 1.00

2.4 Final Database

The available database consists of 7346 single flakes of major household appliance
recycling scrap. The appliances are shredded previously that leads to resulting
flake sizes between 10 to 120 mm. As described, 3000 flakes x, were randomly
selected and annotated with our proposed annotation scheme into two classes
Y € {0,1}: where pure aluminium = 0 and low-grade residuals = 1. The resulting
class distribution follows a 1:2 ratio of pure aluminum to residual flakes. Out of the
3000 annotated flakes, the three annotators assigned 2172 the same class label,
later referred to as the certain dataset. The validation and test datasets, sampled
with a test and validation split of 20 % respectively, were generated from this certain
dataset. The remaining 828 samples, termed noisy dataset, were used in further
experiments as described in Section 3.3. We leave the use of the remaining 4346
unlabelled samples for un- and semi-supervised learning model training open for
future research.
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3 Methods

Fig. 3 illustrated the proposed pipeline starting from the measurement of recycling
data and its acquisition over the preprocessing steps to the final classification of the
individual flakes via a machine learning (ML) unit. In the following subsections, we
provide a detailed description of this ML unit and its underlying methods.

Classifi-
cation

X-ray
Measuring
Unit

Data
(recycling
scrap)

Preprocessing
Unit

Acquired
Data

Database

Fig. 3: Proposed pipeline for the deep learning based sorting of MHA trash flakes into aluminum and
residual waste where ML Unit describes the actual Machine Learning model

3.1 Architectures

We experimented with different backbone architectures that were established for
image classification tasks. Next to the Resnet18 model architecture (He, Zhang,
Ren, & Sun, 2016), we ran experiments with different versions of the EfficientNet
architecture (Tan & Le, 2019). This latter architecture class offers a methodology to
scale the complexity and size of a modular basic architecture and was introduced
with the rationale to provide a scalable choice for the trade-off between the
architecture size and the required inference time as expressed in model complexity.
In particular, we employed the B0, B1, B2 and B4 versions of the EfficientNet in our
experiments. The use of this model architecture allowed us to evaluate the effect
of the model complexity on predictive performance. All those model architectures
were initially designed to work with 3-channel RGB images, whereas our data
has a 2-channel dual energy format as outlined in Section ,2 Data and Label
Collection“. Therefore, we added a learnable linear layer to the beginning of the
model architecture that projects the input data from a 224x224x2 to a 224x224x3
format to train above mentioned architectures with our dual energy data.
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3.2 Data Augmentation

Data augmentation strategies are a crucial component of modern deep learning
training strategies. Especially in scenarios with a limited amount of labelled
data it helps regularizing the model and avoid overfitting. We used a set of data
augmentation procedures and wrapped them via the RandAugment procedure to
facilitate the tuning towards our use case.

The following data augmentation procedures were applied to the individual flakes
within the 224x224 grid: 1) Random rotation, 2) Horizontal flipping, 3) the addition
of Gaussian noise and 4) The addition of salt and pepper noise. Refer to Fig. 4 for

an illustration of the procedures.
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Fig. 4: lllustration of the data augmentation strategies applied on the Dual Energy Data

Each of these procedures were parametrized with a magnitude parameter mag €
[0; 1] that controls the strength of the augmentation. For 1) random rotation, mag
controls the degree of the rotation, for 2) it refers to the probability of a flip for 3)
it refers to the standard deviation of the Gaussian noise distribution and for 4) it
controls the ratio of salt and pepper pixels (white and black) as wells as the amount
of those noisy pixels. The RandAugment strategy (Cubuk, Zoph, Shlens, & Le,
2020) serves as a wrapper for different data augmentation procedures to allow
an elegant tuning of those individual procedures towards the task by introducing
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two hyperparameters n and mag. Therein, n controls the amount of procedure that
are randomly selected at each training step and mag controls their strength as
described above. Next to the facilitation of the tuning procedure, RandAugment
follows the rationale that potentially detrimental data augmentation procedures
would be averaged out in the training process, reducing their potential harm.

3.3 Annotation Noise

As described in Section ,2 Data and Label Collection® and motivated by the
complexity of the annotation task, we mined annotations from three human
annotators in the data labelling process. Thus, for each annotated flake x,, there
are three annotations y, , y,, y,, with y, € {0; 1}. This allows for different schemes to
aggregate the individual annotations to one global annotation y* used as target in
model training.

1. Clean Annotations: only those flakes for which all three annotators align
in their annotation decision are selected as training data. Practically, this
means that “unconfident” flakes e.g., where y, =0, y,=1, y,=0, are excluded
to guarantee a noise-free training data set at the cost of reducing the amount
of training samples.

2. Majority Vote: the majority of the three annotations is selected as global
annotation y.. This procedure allows the use of all annotated samples in
model training at the cost of ignoring the uncertainty in data annotations
(Tanno, Saeedi, Sankaranarayanan, Alexander, & Silberman, 2019).

3. Soft Annotations: the three annotations are averaged to a continuous score
as global annotation y’€ {0.0,0.33,0.67,1.0} i.e., soft labels (Szegedy, 2016).
This scheme allows the use of the whole training data set while reflecting the
annotation noise in model training.

As part of our experiments, we empirically compared those three aggregation
schemes and describe the results in more detail in Section ,Results®.

Conceptually, we distinguish Label Noise from Annotator Noise. The former
describes label noise on the macro level of the task and can, for instance, be
modelled via noise transition matrices with estimated probabilities for the mis-
annotation of the true label into other labels (Song, 2020). These approaches try to
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estimate the inherent noise of the task annotations. On the other hand, Annotator
Noise describes the disagreement of multiple observers on annotations on a micro
level of individual samples (Tanno, Saeedi, Sankaranarayanan, Alexander, &
Silberman, 2019). As we mined annotations from three different annotators, this
setting of Annotator Noise fits our task at hand. While there exists a multitude
of different approaches to modelling annotator noise, we restricted ourselves to
the three above-described settings and leave the application of more advanced
methods open for future research.

3.4 Model Explainability

High trust of practitioners in the model decisions are crucial for its adoption in
practice. Next to a sound evaluation of its predictive performance, trust can be
fostered by making the model decisions explainable to the user. Such explainable
Al (XAl) solutions also allow debugging of the models and ensure it is not performing
shortcut learning but learns features from the data that are relevant for real world
deployment (Geirhos, 2020).

We focus on local interpretation methods, which allow us to assess the attribution
of each input feature towards the model prediction (Molnar, 2019), that is the
contribution of each pixel in this setting. Attribution maps based on the concept
of Shapley Values (Shapley, 1952) allow the calculation of pixelwise attribution
scores that describe the attribution of said pixel to the respective classes. Shapley
values satisfy axioms of interpretability, theoretically backing the model explanation
(Molnar, 2019). While these are computationally expensive for high-dimensional
data, the Integrated Gradients method approximates the Shapley value to an infinite
number of input features (Sundararajan, Taly, & Yan, 2017). This makes Integrated
Gradients more tractable than the sampling of Shapley values for each input.
Expected Gradients further extend Integrated Gradients to approximate SHAP
values based on its differentiation from a baseline that is sampled from a subset of
the dataset. The resulting attribution maps are illustrated in Section ,Results®.

210



Deep-Learning-based Aluminum Sorting on Dual Energy X-Ray Transmission Data

4 Experimental Section

4.1 Performance Metric

The main objective of this work is the training of a model that allows the separation
of aluminum and residual flakes where aluminum recyclate is more valuable. As
the value of recycled aluminum in downstream re-use is heavily dependent on the
purity of the resulting recyclate, we needed to employ a performance metric that
reflects this purity requirement. Specifically, this performance metric had to reflect
our interest in a high Precision at the potential cost of a low Recall for the aluminum
class. The F,-Score allows for the adjustment of this trade-off via the f-parameter
via its definition:

Precision - Recall

Fg=(1+p9 (B? - Precision) + Recall @

Discussions with the domain experts involved in this project revealed that a False
Positive is 5 times as costly as a False Negative given a positive label corresponds
to the aluminum class. Practically speaking, the misclassification of a true residual
flake as aluminum incurs a cost that is 5 times higher than the misclassification of
a true aluminum flake as residual. We integrated this requirement in the performance
metric via a f=0.2-Score attributing Precision a relative weight of 5 over the Recall
for the aluminum class.

4.2 Evaluation Protocol

The limited size of the annotated dataset left us with a small test data set. To yield
a realistic estimation of the generalization performance of the final model, we used
a 5-fold Cross Validation scheme as an outer loop in the model validation step
(Hastie, 2009). Further, we included an inner loop with a holdout validation split
to tune the hyperparameters of the different model architectures and backbones.
For hyperparameter tuning, we used the Hyperband algorithm with an equal tuning
budget across folds (Li, 2017). A test and validation split ratio of 20 % was used
respectively and the validation and test data were sampled from the certain dataset
only. The tuning budget was set to 100 GPU hours while the performance metric
from Section ,4.1 Performance Metric* was used. We report the mean and standard
deviation of model performance across folds in the results section.
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4.3 Results

The experimental results are illustrated in Tab. 2 and structured following the
structure of the methods Section: 3.1 Architectures, 3.2 Data Augmentation
Strategies and 3.3 Annotation Noise.

Tab. 2: Final results of the proposed methods and their experimental setups

Backbone: Strategies Score
Augmentation:  Annotation:  F_, |
ResNet18 mag = 0.5 Clean 87.60 %
+/- 3.80 %
EffNet-BO  mag = 0.5 Clean 88.36 % |
+/-2.08 %
EffNet-B2  mag = 0.5 Clean 89.56 % |
+/-3.10 %
EffNet-B4 mag = 0.5 Clean 91.74 % l
o +/-1.39 %
ResNet18 None Clean 87.12 %
+/-2.61 %
ResNet18 mag = 0.5 Clean 87.60 % l
+/- 3.80 %
~ ResNet18 RandAugment Clean 87.88 % l
o) +/-1.80 %
ResNet18 RandAugment Clean 87.88 %
+/-1.80 %
ResNet18 RandAugment  Majority 88.72 % l
2 +/-1.50 %
% - ResNet18 RandAugment  Soft 86.98 % l
= o +/-1.10 %

The experiments on the use of different backbone architectures reveal that stronger
model performances can be achieved with an increase in parameters and therefore
an increase in complexity of the investigated backbone architectures (ResNet18,
EffNetBO, EffNetB2, or EffNetB4). This is observed in terms of our proposed
performance score F_, which was used as a criterion for the tuning procedure

212



Deep-Learning-based Aluminum Sorting on Dual Energy X-Ray Transmission Data

of the architectures, as well. EffNetB4 shows the best results in this comparison
where the certain dataset was used as training dataset.

Regarding data augmentation strategy, we found RandAugment to yield a slight

performance increase over regular data augmentation with mag = 0.5 (£, , = 87.60

%), resulting in a F,_ , score of 87.88 % given a Resnet18 backbone. Both data

$=0.2
augmentation strategies increase model performance over the use of no data

augmentation (FBZO_2 =87.12 %).

The experiments on the use of different schemes to deal with annotation noise
revelated the majority vote scheme to outperform the clean and soft annotation
=88.72 % given a Resnet18 backbone.
Surprisingly, the use of clean annotations, i.e., the certain dataset, yields stronger

strategies with a model performance of 7,

model performance (£,

= 86.98 %) in this specific application.

= 87.88 %) than the explicit modelling of annotator noise

via soft labels (£,

Overall, best model performance across experiments was achieved using the
EffNetB4 architecture as backbone trained with clean annotations resulting in a
Fy,,0f91.74 %.

Next to the predictive model performance, we wanted to shed light on the decision
making of the model on individual input flakes. As motivated in Section 3.4, we
therefore applied SHAP Expected Gradient as postprocessing step on the trained
model to enable an interpretation of the single pixels attribution towards the model
prediction. These attribution maps obtained for a subset of test examples are
illustrated in Fig. 5 jointly with the BMD representations that were used for data
annotation samples. For the present binary task, we visualized the attribution of the
individual pixels towards the model prediction on a scale [-1; 1] where -1 indicates
a respective pixel as being attributive towards the aluminum class and, vice versa,
+1 towards the residual class while an attribution value of 0 signifies the model did
not rely on that respective pixel for its prediction. Further, taking the absolute value
of these class attributions allows the creation of absolute attribution maps which
indicate regions of interest for the model.

Interestingly, we found the model to focus pixel regions such as the edges of the
flakes, elevated regions, or regions with heterogeneous structure. These areas
were also crucial in the data annotators’ decision making based on the BMD
samples. For instance, the model shows high attribution for the rest class within
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the elevated area on the middle-right edge in sample 4 as well as the elevated
are in the top left region of sample 3. Furthermore, we find the model to show high
absolute attribution towards the edges of the aluminum flakes 1 and 2, and while it
does integrate the elevated are in the top right of sample 1 in its decision making it
finds this area of being indicative of the aluminum class, which is also revealed by
the BMD representation.
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Fig. 5: Attribution Maps obtained via SHAP Expected Gradients on test samples for both
classes combined with the BMD representations that were used to annotate those samples

In general, these findings confirm our hypothesis that the developed models learn
to make use of the subtle features and structure of the flakes that are also revealed
by the time- and labour-intensive BMD for its prediction and do not rely on shortcut
learning. While the quality of local attribution maps is hard to quantify and should
be taken with caution, we believe that the use of XAl methods can contribute to the
acceptance of such deep learning based pipelines in sensor based sorting systems.
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5 Conclusion

We propose a pipeline for the distinction of high-value aluminum flakes from
low-value trash flakes that are acquired as dual energy X-ray data via a material
stream of recycling scrap on a conveyor belt. The core of the pipeline is a deep
learning module based on state-of-the-art deep learning architectures. Further,
we integrated the high purity requirements for the aluminum flakes into the model
selection process via a weighted 7,
found an EfficientNet-based architecture to achieve a strong test performance of
F of 91.74%.

p=0.2

— Score. Within our experiments, we

In this context, we overcame common challenges in the application of machine
learning in such settings: the collection of sufficient annotated data, a crucial
component especially for the training of supervised learning models. We provide
a detailed description of our data annotation scheme via three human annotators
and the integration of expert knowledge from the recycling domain to compile a
representative labeled dataset. Therein, we paid special attention to the handling
of annotator noise that stems from the use of three human annotators during
model training and explore different suitable model architectures for this problem.
We further used a set of data augmentation strategies that were tailored towards
dual energy X-ray data to prevent the model from overfitting to the relatively small
amount of training data.

A small amount of labeled data also renders model evaluation a difficult problem.
Thus, we employed a 5-fold nested cross validation scheme with a holdout validation
set for hyperparameter tuning to ensure a realistic and comparable performance
estimate of the final model.

Next to sufficiently strong model performance, the final deployment of such deep
learning approaches depends on the acceptance by the practitioners and their trust
in such models. We therefore employ state-of-the-art local explainable Al methods
to open these black box models and provide insights into how the model makes its
predictions over different flakes. This can foster trust amongst practitioners, which is
an important step towards the final deployment of such automated sorting systems.
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Abstract

Sorting of material streams in mining and mineral processing has always been a
fundamental process for productivity and efficiency improvements. As technology
has developed over the years, various techniques to enhance sorting capabilities
have been adopted to assist in achieving these goals of various improvements.
Bulk ore sorting or bulk diversion has become an area of particular interest in recent
times, where capability for diversion of full material streams based on measurements
of the input material has become a reality. A variety of technologies are capable
of measurement of different properties and aspects of the material stream, with
some measuring a single or limited set of qualities, some measuring only on the
surface, and some being able to provide fully penetrative analysis. Coupled with
advances in the signal processing of prompt gamma neutron activation analysis
measurements, fully penetrative analysis for bulk ore sorting has become a reality
using the GEOSCAN to analyse material streams in real time, allowing for true
bulk diversion based on representative analysis of short measured increments.
This paper outlines the underlying technology and advances that have made this
possible, as well as detailing examples from a series of successful installations
around the world.
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1 Introduction

Advances in technology have enabled many efficiency gains across the mining
and mineral processing value chain. An area of significant interest has been
incorporating sensors to provide representative analysis to enable decisions to be
made to keep or divert material based on grade or other economic properties. In
the past, sensors have been fast but not able to provide representative data, or
have been representative but have given data too slowly for use with diversion
systems. Many optical systems provide analysis very quickly, but the sensors are
not able to sufficiently penetrate the material to provide representative analysis,
and are also susceptible to variations in particle size and weathering, and even
the presence of dust. By contrast, analysis techniques like prompt gamma neutron
activation analysis (PGNAA) utilise radioactive interactions and are fully penetrative
of material flows, but rely heavily on measurement statistics to build confidence in
results, and thus have had relatively long integration periods in the past before
producing a result (Keeney et al, 2020, Scott et al, 2020).

Recent developments with Scantech’s GEOSCAN PGNAA elemental analyser
has allowed for analysis to be both fast and representative, essentially acting as
an enabler of bulk diversion (Balzan, 2017). A number of GEOSCANs have been
successfully implemented around the world, with significant economic impacts for
the sites in question. Typically, the first phase of an installation is to characterise the
material, where the extent of material variability can be observed and is often found
to be more than first expected, and then diversion systems can be established to
lead to material handling, processing and economic gains (Nadolski, 2018, Kurth,
2019). This paper describes the underlying analysis system and the enhancements
that have been made to allow for rapid and accurate analysis, and describes case
studies in a number of installations including copper, nickel and platinum across
multiple continents. Examples of feed ore variation in each case are provided,
together with data demonstrating the effects of being able to differentiate and sort
on small tonnage increments. The gains are shown both in tonnage and economic
terms. Examples making comparisons for different performance and sorting
increment bases are provided.
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2 GEOSCAN analysis technology

In order to enable diversion of material in real time, it is necessary to have both
accurate representative analysis of the material and to have rapid access to this
data. Traditionally, data about material flows was obtained via laboratory analysis of
samples collected from the material stream. While such analysis could be considered
representative, assuming a finite sampling error, analysis data is available only
after significant delays for handling and assaying. Additionally, sampling of primary
streams, typically comprising either large material throughputs or large particle
top size, or both, is challenging. The development of online analysis techniques
has allowed for the measurement of material streams in real time, removing the
delays associated with sampling and laboratory analysis. Obtaining representative
analysis however remains challenging, as many analysis techniques are optical
and therefore only measure the surface of the flow, or are only able to observe
a small portion of the material flow. Prompt gamma neutron activation analysis
(PGNAA) overcomes the issue of analysis data being representative, as it is a fully
penetrative technique, and when combined with the correct physics of measurement
and appropriate signal processing and calibration techniques, a PGNAA system
such as Scantech’s GEOSCAN is able to supply truly representative analysis of the
entire belt load and full bed depth of material, and it can supply this accurate and
representative data rapidly to allow timely process control decisions to be made.

Originally developing the GEOSCAN for use in the coal and cement industries
(Butel et al, 1993; Ortiz & Harris, 2002; Harris et al, 2005), Scantech recognised the
potential for applying the GEOSCAN on belt analyser to the minerals sector, with
great success across many commodities in the minerals industry. The GEOSCAN
became the first successful application in minerals in the early 2000s when it was
applied to iron ore (Matthews & du Toit, 2011; Balzan et al, 2015), and developments
and learnings obtained through experience in other industries continue to yield
benefits in this sector (Balzan & Nieuwenhuys, 2021). The benefits of GEOSCAN
elemental analysis were also able to be exploited in other commodities, including
copper (Arena & McTiernan, 2011; Balzan et al, 2016 a), lead-zinc (Patel, 2014),
manganese (Balzan & Harris, 2015), iron sinter for steel making (Balzan et al,
2016 b), phosphate (Balzan & Kalicinski, 2019), bauxite, and many more. In each
commodity, different applications and motivations for use of the technology apply,
from varying suites of elements for analysis, different elemental ranges, and different
analysis periods, though similar gains are obtainable by accessing accurate data
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about the material stream and its composition in real time. The remainder of this
section gives a brief overview of how the GEOSCAN works to provide real time
analysis, how it can be adapted to give rapid results to enable bulk diversion, and a
summary of the bulk diversion process.

2.1 How GEOSCAN works

The GEOSCAN on belt analyser utilises thermal neutron capture technology to
determine the elemental composition of conveyed bulk materials in real time. A
Californium-252 radioactive source located within the instrument below the belt
generates a flux of neutrons, which are then absorbed by the conveyed material
as it passes through the tunnel of the GEOSCAN. The neutrons are captured by
the nuclei of the atoms in the material flowing on the belt, and gamma-rays are
instantaneously produced at specific energies for each element. The gamma-ray
spectrum is captured by an array of high performance detectors located at the
top of the GEOSCAN, where Scantech’s signal processing algorithms resolve the
signal into a set of individual elemental results.

The measurement technique is completely penetrative allowing for analysis of the
full material stream, and entire bed-depth and belt-width. It is also independent of
ore mineralogy, particle size, and belt speed, thereby allowing for fully representative
analysis of the conveyed material. Since all material is analysed continuously, the
GEOSCAN does not suffer from sampling errors, such as if any of the top surface
only measurement techniques were used. Results are produced for a suite of
elements calibrated for the specific requirements of the particular application, which
can vary from installation to installation, and is tailored to account for variation due
to changes in the belt load and material composition.

Additionally, through-belt moisture (TBM) analysis systems, utilising a microwave
transmission measurement technique to directly measure the moisture content
of the conveyed material, are installed alongside the majority of GEOSCANs
providing both elemental and moisture results. The TBM has undergone scrutiny
for use within the iron ore industry, and has become widely accepted for its high
level of accuracy (Balzan & Harris, 2015) in this and the majority of commodities in
the minerals industry.

Results from the GEOSCAN and TBM are output to the plant control system typically
every two minutes in the majority of installations. This analysis period has been
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traditionally selected as it allows sufficient time for reliable and repeatable results
while minimising inherent randomness from radioactive decay. In the majority of
cases, this analysis period is also fast enough to provide results that can be acted
upon in downstream process control (feed-forward control) or upstream material
management (feedback control) as required.

Unfortunately, while two-minute analyses have proven to be sufficient for a majority
of applications, it has given rise to the idea that PGNAA analysis is too slow for bulk
diversion (Valery et al, 2016). Other PGNAA configurations from other manufacturers
utilise alternative physics of measurement, which also may necessitate slower
analysis in order to yield sufficient confidence in individual results. As a result of this
perception, adoption of PGNAA for bulk diversion has not been as readily accepted
as its adaptation to varying mineral commodities. In 2016, Scantech recognised a
need to increase the speed of analysis so that the GEOSCAN data could be used to
determine process control decisions on small material flow increments, and thus to
enable the concept of bulk sorting based on representative and accurate analysis.
Scantech undertook research to satisfy this requirement, and has since been able
to have analysis performed rapidly in as short as 30-seconds while maintaining the
repeatability statistics (precision) expected over longer integration periods. This is
discussed further in the following section.

2.2 Rapid analysis enabler

As discussed above, the vast majority of GEOSCAN installations in the minerals
sector utilise a two-minute analysis increment. Two minutes has been found to be
sufficient for a majority of process control purposes. In some cases, such as where
GEOSCAN data has been used to control mill feed based on grade variation, even
longer periods such as up to 30-minutes of analysis are used to enact process
control (Arena & McTiernan, 2011). Similarly, GEOSCANSs in iron ore are used
to instigate process control using analysis periods and accumulated data over 2,
10, 30 and 60-minute integration times. Bulk sorting has been implemented using
such data, as described by Matthews & du Toit (2011), where two-minute data
was used to sort ore from separate mines on an overland conveyor into different
grade stockpiles. Product quality ore bypassed the beneficiation circuit and this
saved significant processing cost and ensured plant capacity was utilised for only
the ore that required upgrading. For density control of a heavy medium plant in
lead-zinc, 10-minute analyses were utilised to update controller parameters hourly
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(Patel, 2014). In feedback and feed-forward control applications, such as in cement
raw mill recipe control, sinter basicity control and phosphate acid reactor control,
variously two and five-minute results have been utilised successfully. In each of
these cases, the GEOSCAN has been specified with components to enable a high
degree of accuracy across the calibrated range for elements of interest, as well
as maintaining sufficient measurement repeatability (precision) to enable a high
degree of confidence in individual results.

As described above, a need for shorter analysis was recognised to enable the use
of PGNAA's representative and penetrative analysis for bulk diversion.

The PGNAA technique is a statistical analysis technique that is based on a number
of inherently random processes. The decay of neutrons is random, the interaction
of neutrons with elements is random, the production of gamma rays is random, and
the detection of gamma rays is random. Additionally, gamma rays are produced at
different energies and distributed as a unique spectrum for each element. In order
to produce accurate analysis and have a high degree of confidence in results, it is
necessary to integrate a sufficient amount of data on which to base the analysis.
This sufficient amount of data, often referred to as counting statistics, can be
controlled either by changing the integration period or by changing the volume of
observations. These may be traded off against each other, such that a doubling of
observations can enable a halving of the integration period.

There is nuance to increasing the observations, and it is not sufficient to increase
detector area or volume (such as described by Noble & Ferguson (2020)), as the
detection random process is fundamentally non-linear and this does not consider
either detection efficiency, pile-up (simultaneous incidence of detection), or
analogue-to-digital-conversion (ADC) speed. These non-linearities are outside the
scope of this paper, but this remains an important consideration since different
PGNAA analysers have different physics of measurement and different specifications
(and different economics associated with these). This paper instead presents a
quantitative summary obtained empirically by varying analysis time and the number
of observations by varying the number of detectors used for analysis. The summary
is therefore relative specifically to the GEOSCAN’s physics of measurement, which
may already exceed other specifications.

Following the approach of Balzan, et al (2017), and to continue to utilise existing
infrastructure and systems, the minimum analysis period has been selected as
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30-seconds. An outline of variation in measurement repeatability (precision)
over 30-seconds, 1-minute, 2-minute, and 5-minute integration periods is shown
for varying detector numbers in Table 1. The longer measurement increments
are shown as a baseline on what is already considered widely acceptable, and
demonstrate that the achieved 30-second results are also acceptable in successful
applications (described in the following section).

Measurement repeatability (precision) is calculated as the standard deviation
of repeated results for an unchanging sample presentation. To determine the
measurement repeatability, a series of eight typical copper samples was statically
analysed repeatedly in a production GEOSCAN over a period of three hours each.
Multiple repeated analyses of each sample were obtained, and the standard
deviation in calibrated results for each element calculated for each sample. The
standard deviations across the eight samples were averaged to yield the average
repeatability for each element across the typical range under a variety of scenarios
of different analysis periods and different detector configurations. The repeatability
results for copper across the range of 0.2% to 1.6% Cu are shown in Table 1 below.

Tab. 1: Average GEOSCAN repeatability performance for copper

Number of detectors

Analysis

Perigd 4 6 8 12
5 minutes 0.022 0.018 0.016 0.013
2 minutes 0.035 0.029 0.025 0.020
1 minute 0.050 0.041 0.035 0.029
30 seconds 0.070 0.057 0.050 0.041

The results here demonstrate the relationship between result repeatability and
both the number of detectors and the analysis period. As shown, it is possible to
achieve a similarly acceptable level of result repeatability in a short analysis period
by increasing the number of detectors. The work shows how analysis time can be
traded off against the equipment specification, and that to achieve a short analysis
time, a high specification is required. This is important to consider in specifying
equipment, since an increase in the specification has a direct relationship to the
cost of equipment, and there is no merit in obtaining a short analysis period if the
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frequency of data is faster than any action that can be implemented based on the
results.

Importantly, the results seen in Table 1 dispel the myth that analysis using PGNAA
is necessarily slow, and a range of installations where 30-second analysis has been
utilised for bulk diversion are proof of this concept. The following section describes
the bulk diversion process and how GEOSCAN analysis is fundamental to the
approach.

2.3 Bulk diversion explanation

The concept of bulk diversion is fundamentally different to the more common particle
sorting, and is in many ways is complementary and does not suffer from limitations
in throughput. At the most basic level, both bulk diversion and particle sorting
seek to achieve the same objectives of increasing economic grade and discarding
waste, particle sorting does this with a resolution of the individual particle and
thus requires careful analysis of each particle in the material stream. By contrast,
bulk diversion makes its assessment on the entire flow of material, producing an
average elemental composition for the complete parcel of material in each analysis
increment. The two approaches yield significantly different measurement resolution
and sorting sensitivity and thus can be considered as complementary approaches
with similar but different objectives and different set points.

In a typical bulk diversion system, the desired sorting increment is an important
consideration. Since the minimum analysis time is currently a 30-second analysis
period, the sorting increment will depend on the tonnage throughput at the location
of the GEOSCAN installation. For a 500 tonnes-per-hour (tph) flow, 30-seconds
corresponds to approximately 4 tonnes of material, for 1000 tph it is 8 tonnes,
and for 2500 tph, it would be approximately 21 tonnes. In many cases, this level
of resolution is less than a shovel or haul truck and certainly less than a typical
mining block. An important advantage over other measurement techniques on
similar increments, such as an XRF sensor on a shovel, is that PGNAA offers a
truly representative analysis by being fully penetrative of the entire flow, and not
just observing the surface of the material. This has led to bulk diversion using the
GEOSCAN to be a favoured approach by a number of users (Keeney et al, 2020,
Rutter et al, 2020).
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Abulk diversion system has the GEOSCAN analysis close to the start of the process,
usually after some crushing and/or hopper-buffer, to ensure a steady throughput not
exceeding the amount of material or particle size that can fit within the GEOSCAN’s
analysis tunnel. The GEOSCAN variously allows for bed depths of 280mm, 380mm,
530mm or 1200mm depending on frame size. Following the GEOSCAN analysis,
the analysis period needs to be considered such that the diversion mechanism is at
least 30-seconds of belt travel time downstream from the GEOSCAN location. This
allows the GEOSCAN’s analysis to be completed and the entire 30-second plot to
be fully diverted.

A variety of diversion mechanisms have been employed by different end users.
These have included diversion using a plough, where the belt is lifted into a diversion
plough or cutter to divert material from the main stream. Another mechanism
involves a diversion gate or flop gate at the head of the conveyor, where the gate
can allow material to transfer in two or more directions in a transfer chute. Screens
may also be incorporated into such a system to allow fines to pass, but larger
particles to be diverted. Grade by size analysis is used to determine whether a
screen or gate is appropriate as in many cases the fines fractions have proportionally
higher metal concentrations than coarser material. A range of suppliers have
systems capable of bulk diversion, and these can even be implemented on a semi-
mobile basis (for example, Keeney et al, 2020 b, Scott et al, 2020). An important
consideration is the activation time for the system to physically divert material.
Delays associated with diverting the stream can be a source of error and need
to be taken into account in the control system. Similarly, employing good control
paradigms incorporating hysteresis and state-based models for changing material
path need to be considered in light of mechanical movement and potential wear and
tear versus the economics of diversion. Cut points for diversion can be modified
dynamically, with the GEOSCAN having provision for this, so any dynamic and
changing economic factors can be considered as part of any diversion regime. In
all cases, the GEOSCAN is able to send both the estimates of any and all elements
of interest, as well as providing a signal recommendation to divert or not based on
user inputs. The plant can then utilise this signal to implement control as required.
The GEOSCAN maintains a running total of tonnes and grade of material above
and below the diversion threshold value/s.
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3 Case Studies

Scantech has had a long history with over 35 years of experience in bulk sorting
(Kurth & Balzan 2020). The earliest examples involve measurements in coal and
diversion based on ash measurement using a flop-gate diverter, and longer analysis
increment diversion has been implemented successfully in iron ore. In more
recent times, the approach has focused on rapid analysis in base and precious
metals commodities, with some results outlined below. It has been observed at
multiple sites that high precision measurement provides a significant reduction in
misallocation of material than lower precision measurement, even when the latter
measurement occurs over shorter time increments.

3.1 Base Metals

The largest area of interest in bulk sorting has come from base metals commodities
such as copper and nickel. Scantech has implemented a large number of copper
bulk diversion projects around the world, including two in Canada, two in Chile,
one in Peru, and two in Australia. For nickel, two projects have been successful in
measuring nickel in Brazil and Australia respectively. Each site has taken a different
approach depending on local requirements, but in all cases, a similar process has
been undertaken in the development of successful bulk diversion.

The first steps involve a successful and reliable calibration of the GEOSCAN,
calibrated against samples collected and subsequently verified using the same
method. The next step involved characterisation of the material variability by
collecting 30-second GEOSCAN analyses over a period of time and evaluating
the variability considering the economics of diversion. From this study, suitable
analysis periods have been selected (usually 30-seconds, but in some cases, 1
minute or 2 minutes), and the bulk diversion regime implemented accordingly.
Customer feedback has suggested improvements from 10% to 30%. Paramount to
this success is the GEOSCAN’s analysis performance, with Figures 1 and 2 below
showing results for copper and nickel respectively.
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Fig. 2: GEOSCAN and Laboratory results for Ni %
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3.2 Precious Metals

In recent times, Scantech has led developments in the direct measurement of
precious metals in ore using PGNAA (Balzan et al, 2022). However, due to the
typically low concentration of precious metals in ore, the direct measurement
analysis of these elements is typically significantly slower than for other elements,
such that direct measurement of elements like gold, silver, and platinum cannot
be used in a typical bulk diversion system, where 30-second analysis is usually
required. However, for many sites, there are strong correlations between elements
like gold or platinum and other elements that can be readily measured on a
30-second basis. This has formed the basis for a number of installations of bulk
diversion for precious metals, including two in Africa, one in Canada, and three
in Australia where precious metals are reported by proxy measurement of other
elements including sulphur, copper, and nickel. Figures 3 and 4 below highlight
the GEOSCAN'’s performance in such proxy measurements for gold and platinum
respectively.
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Fig. 3: GEOSCAN and laboratory results for Au ppm
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Fig. 4: GEOSCAN and laboratory results for Pt ppm

It is important to note that it remains a possibility to measure the precious metal
directly on a longer time basis and report this on a longer time interval. This can
be done on the same system that is otherwise set up for bulk diversion. While
such data may not be useful in the bulk diversion control, particularly where longer
conveyors are absent, it can still be valuable for operations and can verify the bulk
diversion approaches. The GEOSCAN is simultaneously able to output results of
direct elemental analysis and proxy measurement on a 30-second basis, and direct
precious metal measurement on a longer time basis with less frequent results.

4 Conclusion

This paper has provided an outline of the concept of bulk diversion for a variety
of mineral commodities. It has provided a basis for technology that has enabled
the practice of bulk diversion, focused on elemental analysis from Scantech’s
GEOSCAN PGNAA elemental analyser. It has discussed the technology and
principles of analysis, including advances that have allowed for rapid analysis to
enable bulk diversion. It has provided an overview of bulk diversion systems and
provided case studies where such systems have been implemented in a number
of commodities. The examples provided demonstrate the case for using such a
system for bulk diversion, providing performance results and a demonstration of the
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effectiveness. The successful implementations show that the GEOSCAN’s PGNAA
analysis is an effective tool enabling true representative analysis for bulk diversion
of conveyed flows that can be implemented in real time.
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Abstract

Cave mining methods, principally block and panel caving, have become the main
underground bulk mining methods of choice as a result of the exhaustion of near-
surface high-grade ore deposits. Mining companies are looking into the application
of caving methods to extend the life of their open-pit operations as well as to develop
new mines for large and deeply situated low-grade ore deposits. Despite that cave
mining can offer comparably high production rates with low operating costs, it
inherently suffers from a lack of grade selectivity due to various blending and size
reduction events that take place in draw columns and during the handling of the ore
underground (Nadolski et al., 2016). Therefore, caving run-of-mine grades often
trend towards the orebody average (Moss et al., 2018)

As a pre-concentration method, sensor-based bulk ore sorting can potentially
address the limited grade selectivity associated with cave mining methods by
rejecting the barren or low-grade material ahead of processing, providing the mill
with more consisted and higher-grade feed. The potential of a bulk ore sorting
application is dependent on the grade heterogeneity of the ore and the ability of
sensors to detect the heterogeneity (Klein and Bamber, 2019). Though the former
is usually present in different ore types at varying amounts, mixing in cave mining
methods decreases the grade variability naturally present in the ore. The latter
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is usually limited for the elements present in trace amounts such that longer
integration times of sensors are needed for more accurate grade predictions.
However, prolonged measurement times of sensors obscure the grade variability in
the ore due to the increase in the sorting scale.

To assess the impact of mixing and scale on the bulk ore sorting potential, a
quantitative assessment was carried out for the Cadia East panel cave mine,
where two of the bulk ore sorting technologies — Prompt Gamma Neutron Activation
Analysis (PGNAA) and Magnetic Resonance (MR) are in use. Heterogeneity
analyses were conducted using the drill core assay data, draw point sampling
data, and real-time sensor data to show the change in sorting potential of the ore
as it caves and flows to the extraction level and is subsequently being crushed
underground and conveyed to the surface. The results of the study showed that
both mixing and scale have a negative impact on heterogeneity, thus on the sorting
potential, such that:

1. Mixing in the cave columns and during the material handling decreases
copper and gold variability in the ore, although retained to a certain extent.

2. Larger ore pods due to the increase in mining and sorting scale obscure the
grade heterogeneity, which results in the decrease of the bulk ore sorting
potential.
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Abstract

Process control decisions in mineral processing rely on real-time information
about the composition of particulate material streams. While process control in the
minerals industry is done with techniques that report the chemical composition of
an aggregate sample, little information is known about the intrinsic heterogeneity.
As all physical separation processes, including flotation, depend on the exploitation
of heterogeneity, it is evident that appropriate sampling protocols must be combined
with a laboratory technique that captures this relevant property, such as X-ray
computed tomography (XCT).

With the recent developments in XCT equipment and software processing
capabilities, an entry barrier would appear to be overcome. We here present
results from a first technical and financial feasibility study conducted on a 117 g
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cassiterite ore sample in the size range 1-4 mm. We focus on the information that
can be derived for process monitoring and control, i.e. particle size distribution,
grade frequency distribution and upgrade potential — while emphasising relevant
demands for primary ore sampling validity.

1 Introduction

About ten years ago, the author conducted a series of measurements on various
X-ray tomographs from different suppliers on different base-, precious- and ferrous
metal ores as well as industrial minerals.

It was evident, that X-ray computed tomography (XCT) already showed the following
advantages over other available technologies, such as mineral liberation analysis
with the scanning electron microscope:

e Fast and easy sample preparation

e Reduction of Total Sampling Error

o Safe to operate, no reagents are required

e Content as well as shape information can be derived
e Relatively short measurement times

e Non-invasive

e Non-destructive

o Ability to automate

The XCT technology therefore offers several advantages for sample characterisation
in mineral processing and metallurgy. Waygate Technologies, Thermo Fisher
Scientific and SIX-S have teamed up to demonstrate the capabilities and value add
for different applications along the mineral process value chain. One application
identified as being of high value is the combination of process sampling and XCT
analyses.

What information, and what potential added value can be gained from optimizing
the genric sampling/analysis process?
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Primarily, the approach exemplified here will allow the assessment of the Total
Analytical Error uncertainty (TAE) in relation to the observable Total Process
Variability (TPV). This will further illustrate the potential economic value-added
information available at more frequent intervals (essentially in real-time), potentially
allowing plant process decisions to be made with less uncertainty. How can
increased sampling resolution and increased in-sight in the mineral processing
variations be used to optimise the control of the process?

Reliable quantitative information of real-time variability within a particulate process
will enable analysis, understanding, and subsequently opportunities, to be better
controlled, when matched with the TPV and the economic drivers of the operations.
Equipment control and optimization must be data-driven and process-focused,
using fit-for-purpose sampling procedures and equipment to optimise the mineral
process value chain.

The quality of primary samples is crucial for reliable calibration of complex process
analytical systems, XCT no exception. There is a universal demand for being able
to conduct a fully representative primary ore sampling process; this has to be
governed by the Theory of Sampling (TOS), Esbensen (2020).

2 Introduction of X-ray Computed Tomography

X-ray computed tomography falls under the umbrella of non-destructive testing
(NDT); and XCT is a method that examines the target sample by penetrating it
with X-rays (wavelength 1 nm to 1 pm), measuring the levels of radiation that is
scattered and absorbed, and collecting projection images during one full rotation
of the sample. Computed tomography then provides a three-dimensional, spatial
image of the object, or in this case, the bulk particulate sample, under inspection.

The CT-image shows different material attenuation effects which appear as
different shades of grey. To generate a three-dimensional image, a high number
of two-dimensional X-ray images (projections) are taken around a single axis of
rotation(360 °). These X-ray images - containing different grey values according
to material properties and thicknesses - are then reformatted as volumetric
representations of structures (3D) using a complex reconstruction algorithm.

Mineral phase differentiation in the three dimensional is therefore possible based
on differences in X-ray attenuation coefficients of the matter in each voxel in the
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volume inspected. Differences of X-ray attenuation measured, which are usually
displayed in grey scale, can therefore be related to the mineral phases present in
each voxel respectively.

Applications of XCT in the geosciences have developed over three decades and
correlate with steadily increasing computing power, allowing to render in-creasing
large image data sets to volume models, with the main application for petrologic
characterisation of drill cores to define permeability and pore volume (Kyle &
Ketcham, 2015). Fractures can be analysed as well for different scales to study
deformation processes (Kaufhold et al., 2016). Also, the scientific fundamentals of
XCT of minerals are well developed, allowing determination of particle size, shape,
and damage, as well as porosity and pore network structure of packed particle beds
used to determine permeability, mineral composition, coal-washability, mineral
liberation, and exposed grain surface area (Wang & Miller, 2020).

3 Aim of the Test Work

The present test campaign is designed to assess the state-of-the-art of micro
X-ray computed tomography with regards to its application in the context of
characterisation of particulate assemblies in mineral processing. The aim of the
work is to define the optimum equipment and measurement parameters, as well as
sample preparation requirements as basis for developing standard procedures for
assaying and sample characterisation in mineral processing.

3.1 Sample Description

For this study, a sample of cassiterite ore was selected. This ore is a suitable
starting point as it represents two discrete mineral phases, a quartz dominated
host rock with the ore mineral cassiterite. Cassiterite mineralisation occurs in high
grade along quartz veins; the cassiterite size can be described as rather coarse
(Mlynarczyk, Sherlock, & William-Jones, 2003). Since 2015, XRT-based particle ore
sorting has been applied for coarse waste rejection which is based on 2-dimensional
X-ray imaging of the ore, determining the presence or absence of Cassiterite as
basis for physical separation (Robben, Condori, Pinto, Ronald, & Takala, 2020). It
is therefore expected to be well suited for the present purpose, as different sized
mineralisation can be expected at scales easy to be detected with XCT.
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The sample was extracted from the primary screen feed to the sorting plant at San
Rafael using stratified random extraction of 100 kg parallel increment belt cuts per
day. Increments were alternatingly discharged into three plastic one cubic meter
big-bags, thereby combining them to a composite sample of 3 t, sized 0-70 mm.
Geometric lot transformation was not possible, so a 25 kg sub-sample had to be
extracted from the top of the big-bags in a stratified-random manner, attempting to
penetrate as deeply as possible into the bag. This is a violation of the Fundamental
Sampling Principle (TOS), but is considered acceptable here because the objective
of the present study is to determine the technical and financial feasibility of the XCT
approach only, not yet implementing this for routine process monitoring and control.
Multiple size fractions were then separated using laboratory wire mesh screens.
This paper here describes the test program and results obtained on the 1-4 mm
size fraction. A total of 7 kg in the size range 1-4 mm is then split five times with a
16-slot riffle splitter to 117 g of the sample is and filled into a cylindrical PE container
with 50 mm outer diameter, as shown in Figure 1.

Fig. 1: Cassiterite ore sample

3.2 Test Equipment

The tests are conducted with a Phoenix V|tome|x M from Waygate Technologies
at their premises. The tomograph is a powerful industrial computer tomography
(CT) system, designed for 3D metrology and analysis, provides industry-leading
magnification up to 300 kV. It applies a so-called Scatter|correct technology, to
automatically removing scatter artifacts for higher image quality. With a variety of
proprietary CT technologies, the Phoenix V|tome|x M delivers faster scans and
higher throughputs without compromising image quality, which is an important
driver in reducing specific costs per scan in an industrial environment.
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Fig. 2: XCT scanner used for measurement

The Phoenix V|tome|x M, as seen in Figure 2, comes standard with the so-called
4 MP Dynamic 41200 next-generation industrial X-ray detector. It provides a 10
times increased sensitivity relative to the state-of-the-art 200 ym pixel-size DXR
detectors producing a 2-3 times cycle time increase without image quality impact,
making inspections and measurements more efficient and productive.

3.3 Test Procedure

The test procedure is two-staged, starting with the measurement within the
instrument itself, followed by image pre-processing and construction of the volume
model. The second stage includes processing of the image volume model.

3.4 Measurement

The sample container is loaded into the tomograph and mounted on the sample
manipulator between the X-ray source and the detector. The manipulator is
articulated with three translatory and one rotational degrees of freedom. The three
translatory movements allow the sample to be placed in the position that delivers
the desired projection on the detector. The sample rotates stepwise around the
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vertical axis. At each step, a single or multiple images are recorded. Table 1 shows
the main parameters of the measurement.

Tab. 1: XCT scan parameters

Parameter Value

Tube xs|300 d

Tube voltage 270 kV
Current 80 YA

Filter 0.5Cu+0.5Sn
Recording time 18 min

Voxel resolution 25.32 ym

The final result of a measurement is a reconstructed and pre-processed volume
model with grey-scale classification. The volume model has the dimensions: 46 mm
cylinder diameter, 38 mm cylinder height. Figure 2 shows three cross-sections
along the centre x, y and z planes of the volume model. High density voxels are
displayed in brighter shades relative to low(er) density voxels. The fourth image
shows a three-dimensional representation of the pre-processed density model, in
which low-density voxels representing air, as well as sample holder voxels have
been repressed (hidden).

Fig. 3: Four views of the pre-processed density model; Sample plug
dimensions are: diameter 36 mm and height 46 mm respectively
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3.5 Volume Image Processing

The volume model is then further processed applying Thermo Scientific’s Avizo
software, which allows analysis and visualization of the volume imaging data. The
following images describe the software process flow as applied to the volume

model.

Fig. 5: Particle segmentation (a) and particle separation and rejection of particle touching the border (b)

Fig. 6: Cassiterite particle segmentation (a) and separation of Cassiterite particles (b)
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The information on segmented grains and cassiterite particles can be combined to
calculate the cassiterite content in each particle.

4 Results and Discussion

A total of 7,222 particles are segmented from the volume model. 2,275 are in
contact with the outer borders and are excluded from further analysis. Therefore, a
data set containing 4,947 particles is further analysed and the results are presented
in the following paragraphs.
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Fig. 7: Particle Number Frequency Distribution

A first assessment is done based on the frequency distribution of the particles
in different particle size ranges. The industry standard is still sieve analysis,
measuring the shape with the probability, that a particle will pass a certain square
mesh opening. To relate particle volume properties to the probability of passing a
square mesh opening, it was decided to apply the calculated average between the
measured maximum and minimum Feret diameter per particle as a measure of
particle size. The following figure shows the frequency distribution of the particles
in bins of 0.1 mm intervals.

Understandably, the number of particles per size fraction distorts the potential
information, as it is disproportional to the weight. Therefore, the weight per particle
is calculated, applying i) a matrix density of 2.8 g/cm?® and ii) Cassiterite density
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of 6.98 g/cm? to the volume proportions of each particle. These results are shown
in Figure 11. The particle sizing derived from the calculated average Feret length
corresponds well will the sieve size applied for preparation of the sample (1-4 mm
square mesh). The d, value derived from the volume image analysis is 1 mm, d; is
1.7 mm and dg, is 2.9 mm average ferret length respectively.
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Fig. 8: Particle size distribution

The average Sn grade of the sample is 6.06%. Further analysis is done on the grade
distribution per size fraction. The grade distribution per size fraction, displayed in
Figure 12, shows a relatively steady grade between 3% and 10% Sn up to 3 mm
size. Above this particle size, it increases to 50% Sn.
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Fig. 9: Tin grade distribution per size fraction

This is to be explained by the nugget effect. In the two size intervals in question,
only one particle each is found with a high grade. This may mean that competent
Cassiterite minerals are accumulating in this size fraction but could also be
introduced by a sampling error. This result underlines the need for impeccable
primary sampling in order that all samples used for calibration are defensible as
representing the mineralisation in its full features; the mineral top-size is a well-
known victim of non-representativity.

A further analysis reveals the liberation characteristics of the sample. It is done by
applying the grade versus mass frequency distribution of the particles, which can
be seen in Figure 13. About 85% of the particles do not contain any Cassiterite. For
this reason, the y-axis is displayed with logarithmic scale.
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A resulting Mayer-I diagram displaying the yield-recovery- and grade-recovery
functions is shown in the next figure. Figure 14 shows the maximum possible
separation efficiency fully exploiting the heterogeneity of the sample. For example,
when product specification is 60% Sn, the maximum possible yield is 7% with a
waste grade of 2% Sn and a recovery of 73% respectively.
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Fig. 11: Mayer-I grade recovery function
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5 Discussion

It appears that the screen mesh size used for sample preparation corresponds
well with the average Feret length, considering a brittle ore phase with a right-
skewed normal distribution. Due to geometrical calibration of the equipment, high
image quality and discrete particle boundaries, it is expected that the actual particle
shape corresponds accurately with the reported volumes by the software. It may
be necessary to further calibrate the analysis to the standard of square mesh sieve
analysis for specific ores, which may show specific shapes and mass distributions.
Efforts necessary for this are estimated to be low to moderate.

It needs to be further assessed, if the accumulation of grade is due to insufficient
sample size and a nugget effect - or if it indeed correlates well to ore mineral
crystallisation grain size. These are issues related to the validity of the primary ore
sampling, issues which are governed by the Theory of Sampling (TOS), Esbensen
(2020). One may take advantage of such sampling effects in process technology
design when better understood.

6 Conclusion and Outlook

It has been demonstrated that state-of-the-art XCT equipment can deliver a volume
model with the quality needed for measuring particulate systems in dimensions
necessary to render relevant sample information at sufficient voxel resolution for
minerals processing and acceptable speed. Costs per scan are relatively low,
considering the low measurement time, the degree of automation possible and
the significant reduction of manual sample preparation. Contrary to surface-based
analytical methods, e.g. electron scanning microscope or microscope spectroscopy,
the volume-based measurement of XCT captures a significantly larger sample
volume. With the option to scan relatively high sample volumes, XCT contributes
significantly to minimising the Total Sampling Error (TSE).

It was demonstrated that state-of-the-art volume image processing software is
available to extract the information necessary for relevant economic management
decisions for the ore mineral processing pathway, such total tin grade, particle size
distribution and grade frequency distribution.

XCT volume imaging and image processing allow a detailed analysis of particulate
systems, which are the basis of mineral raw materials processing systems. In
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addition to averages of components delivered by laboratory chemical analyses
(e.g. X-ray fluorescence, ICP-OES), it can deliver statistically relevant information
on density class ratios per particle, shape information, contact surfaces and more.

Further work must be done on matching samples size requirements to the specific
heterogeneity of the ore in question, but this is a standard demand from TOS,
which also delivers all necessary means for execution, (Esbensen 2020). Even
though 4,947 particles are reported in the data set, there are not enough particles
in each size interval for countering the Fundamental Sampling Error (FSE) across
all scales. Future developments will likely include multiple XCT measurements to
be combined (scan acquisition composite sampling) to achieve statistically more
substantiated data sets. Considering the moderate unit costs per measurement
with an automated system, this is an economically feasible option that could find
wide application.

It will be beneficial to conduct further work on ore-specific calibration for developing
more automated laboratory procedures; there is a vast industrial calibration scope
in front of the successful XCT technology, but everything needed is now available
in the sufficient-and-necessary toolkit as presented here.
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Abstract

Common challenges for metallurgical testing are to gather samples representative
of the orebody and to conduct testing in a cost-effective manner; this is especially
true for pre-concentration evaluations. The authors have developed processes that
answer these challenges, including new lab protocols that can be applied across a
range of projects, particularly those considering particle-based ore sorting.

Heterogeneity is assessed from exploration drill hole data to determine waste
and ore distributions in both ore and marginal waste zones. Drill core intervals
are targeted for sampling as being representative of these distributions, as well
as ore types. These samples are commonly 50 kg of half core — similar to current
comminution test requirements as part of a metallurgical testwork program.

Samples are sent to an independent laboratory for assay by size testing as well as
sample preparation for mineral sensing testing. Presently, mineral sensor testing
samples are sent to specialty research centres or particle sorting equipment
suppliers. The new protocol adopts a more cost-effective approach than the current
rock by rock, sensor testing which incurs considerable assay costs.
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The paper will describe the heterogeneity techniques, sample selection process,
and new protocol for pre-concentration testing. Real projects will be presented that
have followed these processes.

1 Introduction

Critical to the evaluation of any mining project is having a good understanding
of the relevant metallurgical processes and how different materials respond to
these processes. This includes being able to estimate metal recovery and mass
pull (i.e. concentrate grade) of milled material at any point in the ore deposit or
mine plan. Pre-concentration is no different, but unlike established metallurgical
processes, there is little consensus or standards on how to conduct testing for pre-
concentration.

For the purposes of this paper, pre-concentration is defined as “methods to reject
waste from mill feed when still coarse, dry and transportable”. This typically
means any combination of screening, bulk sorting and particle sorting (McCarthy
& Dance, 2021). Screening, required in any case in advance of particle sorting,
can segregate material based on the deportment of mineralization to different size
fractions (Burn & Grimes, 1986; Dupont, 2016). Bulk sorting can be accomplished
with mineral sensing and diversion of conveyed materials or bucket/truck sensing
and sorting (Henning, 2018). Particle sorting, applied to material 12 mm to 250 mm
in size, accomplishes separation with targeted air bursts applied to either accepted
or rejected particles.

To date, most sampling and testing for pre-concentration has focused on particle
sorting as the expected process. Either large samples of hundreds of individual
rocks (or core pieces) are taken for bench scale mineral sensor testing and assaying
or several hundred-kilogram bulk samples are taken for pilot testing (Robben et
al, 2017; Assis et al, 2021). Both are challenged to ensure that the sampling is
representative of what sorting systems may see at any point in the life-of-mine
(LOM) plan; and both can be expensive.

The authors have developed processes that answer these challenges, including
new lab protocols that can be applied across a range of projects, particularly those
considering particle-based ore sorting. The objective in developing these processes
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was to address not only representativeness, but also the costly nature of early
testing.

This paper describes new analytical and testing processes and describes two case
studies where elements of these processes were deployed.

2 Heterogeneity Analyses

2.1 Heterogeneity and Scale

The authors have developed two heterogeneity analyses. The first is referred to as
“Heterogeneity and Scale”, which assesses how heterogeneity varies with scale,
particularly mining scale. It is effective in assessing the bench height in open pit
mining but also projects how pre-concentration can be effective at different scales.

Fig. 1 shows the results of a Heterogeneity and Scale analysis for the project
referred later in the case studies as “Company B”. The analysis is based on drill
hole data whereby, for each sample interval, adjacent samples in the same drill hole
are aggregated over increasing distance from that sample. Statistical measures
can then be run against these aggregations; two of which are shown in Fig. 1
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The blue line in Fig. 4 is the average grade (in this case, net smelter return or NSR)
of material above the cut-off grade (COG), which is $45/ton here. It shows that
the average grade of aggregations decreases as the aggregation distance (mining
scale) increases. The decrease is more pronounced at shorter aggregations,
eventually levelling off. Similarly, with the other measure, “waste in ore” (W/O),
which is the portion of below-COG material in an aggregation that is above-COG,
the rate of increase in W/O at shorter aggregations is quite high, tailing off at longer
aggregations. Both these suggest that the smaller the mining or sampling scale, the

Fig. 1: Company B Sample Heterogeneity and Scale

greater the heterogeneity and potential to exclude waste.
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2.2 Composite-Sample Relationship

The other heterogeneity analysis, called “Composite-Sample Relationship”, uses
grade or NSR for each of the sample intervals in the drill hole dataset as well
as those calculated for bench (or underground sub-level) composites. The sample
interval grades are then compared to the composite grades. Fig. 2 shows the
Composite-Sample Relationship for select 20-ft composites, again for case study,
Company B, described later in the paper.
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Fig. 2: Company B Composite-Sample Relationship

In Fig. 2, four composite ranges are shown, two above the NSR COG and two
below the COG. The composite ranges are each $9/t in size. The chart shows the
cumulative length of samples (y-axis) against the grade or NSR values of those
samples (x-axis). The red vertical line is drawn at the COG.

The dataset is limited in these grade ranges and thus the erratic nature of the plots.
However, two phenomena can be seen. For composites above the NSR COG,
which represent “ore” (the $45-$54 and $54-63 lines), there are sample intervals
left of the COG line. These samples represent “waste in ore” (W/O). Similarly, for
composites below the COG, which represent waste (the $27-$36 and $36-$45
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lines), there are sample intervals right of the COG. These samples represent “ore
in waste” (O/W). By quantifying these heterogeneity measures, W/O and O/W, one
can make predictions of preconcentration.

2.3 Heterogeneity Visualization

The heterogeneity described here can be visualized by plotting parameters such as
W/O and O/W against drill holes in 3D. This gives the most direct visualization of
spatial relationships of these parameters.

Fig. 3 shows three drill holes for a gold property. The top image shows the sample
intervals with their varying grades colour coded. Purple, red and orange are above-
COG intervals (>=0.25 ppm Au), while other interval colours are below-COG (0-
0.25 ppm Au). The middle image shows composites that are below-COG, and these
are colour coded by O/W percentages. The bottom image has composites that are
above-COG, coloured by W/O percentage.

While all the holes in the image have either waste or ore composite intervals, the
far-right hole is of particular interest. In close proximity, there are long contiguous
intervals of both ore (above) and waste (below), with elevated W/O and O/W
respectively. These can be targeted for sampling and further testing.

3D visualizations such as this, as well as elevation plans of bench composites, can
be used to identify holes of interest for sampling. Ore types and areas of the deposit
representative of the LOM plan can be targeted.
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3 Sample Selection

3.1 Bulk Sampling
Four types of sampling are defined in this report: bulk sampling, composite sampling,
contiguous interval sampling, and rock-by-rock sampling.

Bulk sampling, in a preconcentration context, is generally done for performance
testing of sorting technology whether this is particle sorting or bulk sorting. It
involves gathering hundreds of kilograms of material from excavations (surface,
underground) or from one or more drillholes. The former is a good test of what a
sorting technology might see at a moment in time, while the latter (drill holes) is
mostly a procedure to get a large enough sample for testing. Neither bulk sampling
method results in testing outcomes that are fully representative of what can be
expected throughout a LOM plan.

3.2 Composite Sampling

Composite sampling is when drill core is sampled in a length long enough to provide
a sample of sufficient mass for testing. Specifically, the SRK Protocol introduced
in this paper requires about 50 kg of sample. These samples can be of variable
composition, including above- and below-COG sample intervals, though generally
ore zones are targeted.

Composite samples can be used to perform variability testing. Samples can be
targeted for differing ore types or regions of the deposit that are representative of
the LOM plan.

3.3 Contiguous Interval Sampling

Contiguous interval sampling is a subset of composite sampling. After observing
in heterogeneity studies that ore zones can contain extended lengths of below-
COG material, the authors developed a sampling procedure that targets both
above-COG and below-COG material independently in the same ore or marginal
material zones. In testing these samples independently, it is believed that this better
represents the variation in feed that might be encountered by sorting technologies.
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Contiguous samples of above and below-COG core are taken in sufficient lengths
to make up 50 kg samples. Samples are gathered within a single bench composite
where possible, but, if necessary, adjacent bench composites are included.

Per composite sampling, smaller samples taken in this way (as opposed to bulk
samples) allow cost effective variability testing that best represents different ore
types and time frames of the LOM plan.

3.4 Rock-by-Rock Sampling

This form of sampling has been common for bench scale testing for particle
sorting. It relies on taking 200 to 400 grab samples that are then subject to bench
scale mineral sensing testing. The testing responses can be used to project the
performance of particle sorting.

However, the challenge with this form of sampling and testing is ensuring that
samples are representative. The authors contend that the nature of such grab
sampling makes it quite difficult to ensure representativeness.

So, in the end, the authors have used and will continue to use composite sampling
or contiguous interval sampling in assessing projects for pre-concentration.

4 SRK Laboratory Procedure

The protocol used for pre-concentration assessment, shown schematically in
Fig. 4, was originally developed to estimate metal upgrading following crushing
and screening. The sample mass and size was established to also meet current
comminution (size reduction) testing requirements — namely, 30 kg to 50 kg of half
drill core. This is typically the only source of samples available during the early
study phases of a mineral project.
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4.1 Assay By Size

Metal deportment estimates are done by comparing the size fractions grades
(assayed for both metals of interest as well as waste elements) after lab crushing as
well as comminution testing. The comminution test subjects narrow size fractions
(typically 32 x 27 mm) to a range of specific energy (in kWh/t). These energies
reflect those occurring during blasting and first/ second-stage crushing — processes
needed to prepare material for particle sorting.

50kg %2 HQ

Lab Crusher

32x27mm 32x27mm Assay by Size
Comminution XRT Sensing (6 fractions assayed)

3 energy levels 100 particles

Assay by Size 4 Response

(3 fractions Groups
assayed) (assayed)

Fig. 4: SRK Protocol sample processing flowsheet (simplified)

Measuring material response to these specific energies allows the actual grade-by-
size distribution following primary and secondary crushing to be estimated. In the
authors’ opinion, this overcomes a significant deficiency in current particle sorting
studies — the ability to estimate the amount of fines bypassing particle sorting
(typically, all crushed material finer than 10 mm or 15 mm).
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4.2 Mineral Sensing Testing

In addition to measuring metal deportment following crushing, the test also provides
a sub-sample for mineral sensing. A representative set of specimens (typically
100 particles) are submitted to either equipment suppliers and/or independent
research centres which have an assortment of mineral sensing equipment. The
particle responses to sensors are ranked and grouped into typically four categories.
Only these groups are assayed to measure the metal recovery versus mass pull
relationship. In other words, the mineral sensor(s) estimates grade and the assays
confirm if the metal of interest deports accordingly. This saves a considerable
amount of time and money processing each sample. As SRK’s Protocol uses
much smaller sample masses and can be done quickly and cheaply, a much larger
number of samples can be tested — allowing orebody variability to be determined.

SRK'’s Protocol is to assess half drill core samples of both waste and ore, specifically,
intervals of above and below COG material. As the sample mass is relatively small,
only a few metres or half core is required, making assessments possible on different
lithologies, spatial locations and structural intercepts.

5 Laboratory Data Interpretation

5.1 Particle Size Distribution Prediction

An example output of the grade-by-size information gathered from the comminution
test results is shown in Fig. 5 for a copper porphyry sample. Note that both the mass
and metal deportment can be estimated following primary crushing, screening at
100 mm and 50 mm as well as secondary crushing. For example, the -50 mm
fraction after primary crushing is 63% of the mass at 0.30% copper. The +100 mm
fraction is 17% of the mass at 0.19% copper — a measure of the metal deportment
between these sizes.
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Fig. 5: Example flowsheet showing size and grade deportment (SRK test output)

5.2 Mass Pull and Metal Recovery
Using the SRK Protocol, specimens are grouped according to their mineral sensor
responses. At least four response groups are suggested per test, and these typically

can be referred to as “High”, “Medium”, “Low”, and “Waste”. The specimens in
these groups are weighed and then combined and prepared as group samples for
assaying. So instead of dozens of specimen assays, only four assays per sample

are needed.

Using ranking of sample groups by sensor responses, cumulative distributions of
mass pull and metal recovery are developed for the samples. The resulting metal
recovery — mass pull curve represents a range of outcomes for particle sorting.
Since the SRK Protocol tests above-COG (ore) and below-COG material (waste)
separately, this results in two sets of curves.
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The case study for Company A produced the recovery curves shown in Fig. 6 for
gold and silver. Eight ore samples and ten waste samples of four to five response
groups each are plotted on the respective charts.
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Fig. 6: Metal Recovery versus Mass Pull (samples above COG and below COG)

5.3 Pre-Concentration Predictions

The W/O and O/W heterogeneity measures can lead to pre-concentration
predictions. W/O can be representative of waste rejection in above-COG feed,
while O/W can predict above-COG material recovery in marginal feed. However,
owing to the source data scale (one to three metres), such predictions would be
more indicative of bulk sorting outcomes — not particle sorting. Nonetheless, the
authors suggest that variations in composition at the drill core sample interval scale
are indicative of variations in particle sorter feed.

Consequently, the authors have developed methods to integrate the W/O and O/W
measures with the metal recovery and mass pull relationships from lab testing. In
a mine plan, W/O can be used to estimate the portion of below-COG material in
ore sort feed, and with this, the recovery modelled from testing ore samples would
apply. O/W estimates the above-COG portion of marginal material, and recoveries
from testing waste would apply.

If mineral sensor testing has resulted in optimization of sensor settings and
algorithms, the resulting deterministic mass pull and metal recovery predictions
can be applied directly to the W/O and O/W portions in the mine plan. However, if
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testing generates more stochastic recovery curves, such as for the SRK Protocol,
an alternate approach is required.

The suggested approach is to consider multiple scenarios across several mass
pulls. Metal recoveries are determined for a minimum of three selected mass
pulls per ore and marginal material. These then are applied to the mine plan in
an economic analysis for evaluation. By studying the range of results, one can
determine which mass pulls for ore and marginal material work best. These can be
related back to appropriate sorter settings.

6 Case Studies

6.1 Company A

The authors were asked by Company A to conduct a pre-concentration evaluation
on its gold property in North America. Original drill hole assays and half core were
available for investigation.

Unlike the methodology outlined in this paper, the heterogeneity study and lab
testing were not conducted sequentially; the lab testwork was done in advance
of the heterogeneity study. Nonetheless, these two activities were conducted in
accordance with the processes described herein, and it was possible to integrate
the work to drive some conclusions for the project.

Heterogeneity analyses were conducted on the deposit resulting in the Composite-
Sample Relationship plots for ore and waste in Fig. 7. The analysis was constrained
to data within the reserve pit of the time.
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Fig. 7: Company A Composite-Sample Relationships
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The underlying data to Fig. 7 provides the following heterogeneity results:

e Using an upper limit of $60/t for ore to be sorted, the W/O was 36%.

e Using a lower limit of $20/t for marginal material, only 4% additional material
(beyond the above-COG ore) was available, with O/W of 15%.

The above suggests that the opportunity for sorting marginal material may be
limited and that the real opportunity might be in rejecting waste from the ore feed.
For further analyses, these W/O and O/W values were applied to the LOM plan to
derive quantities that were subject to the recovery curves generated from sensor
testing at both Tomra and Steinert (refer back to Fig. 6).

Subsequently, economic analyses were run at different mass pulls. The analyses
showed that at no mass pull was it worth sorting the above-COG ore. This is
understood by looking at the ore recovery curve in Fig. 6. The authors find that for
precious metals projects, metal recovery needs to stay in the high 90%+ range;
otherwise, metal losses negate any benefits of waste rejection. Here, achieving this
level of metal recovery required pulling almost the entire sorter feed into accepted
product. And while there was some additional revenue provided by processing
marginal material, it did not sufficiently cover additional costs to make this option
truly attractive.

6.2 Company B

Company B holds a copper-nickel-platinum group metal (gold, platinum, palladium)
project in North America. The authors were engaged to evaluate the pre-
concentration potential for a restart of this historic mine.

Extensive exploration drill hole data was available for heterogeneity analysis, as
was drill core from recently drilled holes for core testing.

The two heterogeneity analyses (Heterogeneity and Scale and Composite-Sample
Relationship) were conducted on the drill core data (refer back to Fig. 1 and Fig.
2). The analyses showed potential to reject waste, with the Homogeneity and Scale
analysis showing W/O of over 30% at mining scales of 20 ft. As well, the underlying
data for the Composite-Sample Relationship in Fig. 2 result in the heterogeneity
analysis outcomes in Tab. 1.
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Tab. 1: Heterogeneity parameters for pre-concentration evaluation

Parameter Ore Material Marginal Material
Target Ore Sort >$45/ton, no upper limit ~ N/A
% Waste in Ore (W/O) 49.3% N/A
Target Marginal Sort N/A $36/ton < Sort < $45/ton
Additional Marginal N/A 8.7%
Material
% Ore in Waste (O/W) N/A 34.6%
Sorter Feed Grades
Cu 0.34% 0.18%
Ni 0.24% 0.11%
Au 0.90 ppm 0.23 ppm
Pt 2.79 ppm 0.79 ppm
Pd 1.57 ppm 0.37 ppm
% Reporting to Waste
Cu 13.9% 41.4%
Ni 9.9% 27.4%
Au 6.1% 27.2%
Pt 5.4% 17.3%
Pd 5.5% 22.0%

Based on the distribution of W/O and O/W values among all drill hole composites,
two drillholes were selected for sampling and testing. Six lengths of contiguous
sample intervals were selected for testing. Two were considered “ore” (>COG), while
four were “waste” (<COG). The half drill core samples were sent to a commercial
laboratory for preparation. After light crushing, specimens were randomly selected:
20 from each of the ore samples and 30 from each of the waste samples. These
specimens were mounted and sent to Steinert for mineral sensing testing. Following
sensor testing, the samples were returned for assaying. In this case, the individual
specimens were assayed as opposed to the suggested methodology to assay
whole groups defined by sensor response.

Steinert conducted tests with various sensors arriving at an optimized combination
of XRT, laser and induction sensors. This resulted in accept or reject simulations
for each specimen. Aggregating these results across all specimens provides the
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mass pull portion of the recovery curve, while the specimen assays helped build
the metal recoveries.

The results are presented in Tab. 2. They indicate that upwards of 70% of contained
metal in marginal material can be recovered in 34% of the feed (66% waste
rejection). And for ore feed, upwards of 97% of the metal is recovered in 70% of the
sort feed (30% waste rejection).

Tab. 2: Mass pull and metal recoveries derived from Steinert test results

Waste Material Ore Material

Product Mass Pull 34.2% 70.0%
Metal Recoveries

Cu 74.2% 98.2%

Ni 63.6% 97.1%

Au 81.1% 97.5%

Pt 87.1% 96.6%

Pd 81.7% 98.7%

The authors integrated the results in Tab. 1 and Tab. 2 and fed these into mine
plans for the project. As well, there was a grade recovery relationship, which meant
with the sorter-upgraded feed, higher mill recoveries resulted.

In applying the W/O to the ore fraction (2$45/ton NSR) and the O/W to the marginal
fraction ($36/ton < NSR < $45/ton), an overall 49% waste rejection was estimated.
And with the recovery-mass pull projections, metal recoveries were estimated at
98% Cu, 94% Ni, 92% Au, 93% Pt, and 97% Pd. With these inputs, the economic
evaluation of implementing particle sorting showed a positive outcome.

7 Conclusions

Up until now, there have been different procedures developed to sample and test
materials for pre-concentration investigations. For particle sorting, these have
largely involved gathering grab samples for bench scale testing or much larger,
several hundred-kilogram samples for performance testing of sorting machines.
There are two challenges in such approaches: (1) cost effectiveness and (2) ensuring
sampling and study outcomes are representative of LOM plans. The authors have
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developed and presented herein a methodology that combines heterogeneity
analyses with bench scale testing of drill core to answer these challenges.

Heterogeneity analysis assesses the potential for segregating ore zones and
marginal zones into their above- and below-COG constituents. It is applied to drill
hole datasets and thus is flexible enough to evaluate ore types and regions that are
representative of a project’'s LOM plan. The analysis can also aid in the selection of
samples for pre-concentration testing, targeting for instance, contiguous intervals
of above- and below-COG drill core within ore types.

For lab testing, the authors have developed the SRK Protocol, which can be readily
included in a metallurgical test program as the sample requirements follow that
for comminution (hardness) testing — namely, 30 kg to 50 kg of half drill core. The
Protocol can generate estimates of metal deportment by size, following multiple
stages of crushing. This includes the amount of fines that bypass particle sorting —
an important factor in assessing coarse pre-concentration.

By providing a consistent method for assessing both size upgrading and mineral
sensing of coarse particles, the SRK Protocol can be adopted by the mineral industry
as an early-stage assessment tool. Once mining projects have confirmed their
material is suitable for pre-concentration, current ‘performance testing’ methods
used by sorter suppliers should also be conducted on larger sample masses.

An end objective of heterogeneity analyses and the SRK Protocol is to be able to
integrate their outcomes in economic evaluations. This is possible by assessing
potential sorter feed as a combination of above- and below-COG materials, each
with their own recovery, mass-pull relationships.

Case studies have been presented that adopted elements of the methodologies
described herein. They have jointly demonstrated the efficacy of the approaches,
allowing mining companies to assess at an early stage, and without significant
expense, whether their projects have pre-concentration potential.

Investigations are being proposed which adopt the full methodology described
herein, giving proponents the full benefit of a comprehensive, representative and
cost-effective approach to pre-concentration evaluations. The focus of the paper
has been around particle sorting; however, the methods can be extended for the
other pre-concentration strategies of screening and bulk sorting.
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Abstract

Due to the high variability of alloys in industrial use, it is desirable to sort input
material automatically into a high number of target fractions for an economic
industrial sorting application. Instantaneous multi-element measurements by laser-
induced breakdown spectroscopy (LIBS) are used for classification of individual
scrap pieces. Since a high number of different alloys can be classified by LIBS,
the best use of this technology is obtained in combination with a sorting approach,
which is capable of discharging individual pieces into a large number of fractions in
a single pass. For the treatment of input material distributed on a belt conveyor, the
concept of combined 3D laser imaging and scanning LIBS is extended to include
now also image-based robotic picking and sorting of the scrap pieces.
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1 Introduction

An increasingly broad range of metals is used industrially on a large scale, and the
supply of numerous raw materials is critical for European industry (EC, 2020). The
recovery of raw materials from scrap metal plays an important role in the supply,
and the re-melting of used alloys directly in the target composition generates the
highest value and the highest impact for a sustainable economy. There is a need
for industrial equipment, which is able to generate a variety of well-defined alloy
fractions out of an input stream of mixed materials.

2 Approach

In many established sorting applications, the incoming material stream is separated
into one or two value fractions and a residual fraction. If the residual fraction is not
classified as waste, then it is sorted again in subsequent processes or run through
the same machine again with another parameterisation. However, when a larger
number of output fractions is desired, it has clear economic advantages to sort the
material directly into all fractions in a single process step.

A large number of chemical elements is used in the metals industry to produce
an even larger number of different alloys for specific applications. The value of
metal scrap is determined by both the value of the individual chemical constituents
contained and the precision to which its composition is determined and can be used
to provide the composition required for recycling.

A system has been developed to demonstrate in an industrial environment the
interlinked metal identification by laser-induced breakdown spectroscopy (LIBS)
and robotic sorting of the classified pieces of tool steel and carbide metal. LIBS
measurements are carried out remotely over a scanner-guided beam path based on
a patented approach. The targeted measurement spots are calculated beforehand
on the basis of 3D images, taking into account the often highly structured surface
geometry. Since tool steel parts for recycling are often covered by hardening
surface coatings, such as TiC and TaC, their local removal prior to material analysis
is inevitable for correct identification. Here, it is realised by a single laser in tailored
operation mode. A classification algorithm has been worked out which evaluates
multiple chemical elements simultaneously to identify individual scrap pieces
correctly within a hierarchy of material classes and subclasses. The geometry
information is also evaluated to determine handling positions for gripping the
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individual pieces and allowing a robotic transfer into the alloy fraction defined by
the end-users selection.

2.1 3D laser imaging

Scrap pieces are fed into the sorting machine onto a belt conveyor. A combination
of vibration feeders is used for singularisation of the scrap pieces. Careful
parameterisation allows to obtain for different types of mixed scrap a high loading
of the belt with still sufficient separation of individual pieces. After the pieces have
come to rest relative to the moving belt, they are first imaged by a colour camera
and a laser line section system. The projected laser line enables to determine the
height of the surface in each position. From the 3D contour, not only the position
of each piece on the belt is determined. The geometry is also used to calculate
automatically the surface locations, which are best suited for the following LIBS
measurements. The selection of flat surface regions, for example, can increase
the quality of the chemical classification. Furthermore, the geometrical structure
contains also the required information for picking the pieces by the robot for sorting.

2.2 LIBS classification

LIBS is a method for fast and remote multi-element analysis of materials of any
constitution. A pulsed laser beam is focussed onto the surface of each piece and
ablates a small amount of material. The laser further excites this material until
it emits an element specific radiation, which is detected by a spectrometer and
evaluated to determine the chemical composition of the material.

In our configuration, fast adjustable scanning mirrors guide the laser beam to the
position of the piece to be classified and the location selected on its surface for
analysis while it is moving on the belt conveyor. The laser beam is steered in three
dimensions what allows to reach pieces at any position on the belt, to measure
subsequently at several selected spots on one piece, and to measure two or
more pieces lying beneath each other and passing the detector at the same time.
Thereby, a continuous use of the laser operation without temporal gaps is achieved,
which allows an economic use of the LIBS sensor with high throughput.

Figure 1 exemplifies the scanning LIBS processes. While the measuring object
(MO) moves on the belt, a series of individual measurements is carried out at
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times t, to t,. At pre-defined positions the laser induces the material ablation and
excitation of the plasma (LP), which is visible in white on the photography and
spectroscopically analysed in the system. For the subsequent measurement,
another position is selected which is independent of the previous measurement
position (MP). For composed objects it is important to acquire chemical information
from each part, e.g., in the case of a drill bit from the shaft and the cutting part, as
depicted in Fig. 1. Since the beam steering is executed in parallel and perpendicular
to the direction of the belt movement, the measurement positions can be reached
independently of the position and orientation of the object on the belt.

Beyond laboratory use, LIBS sensors have been introduced in the past years into
several industrial applications (Noll et al., 2014). For metal recycling, we have
previously demonstrated the separation of two classes of aluminium scrap (Aydin
et al., 2006) and realised the first classification of a range of different aluminium
wrought alloys in an automated sorting machine (Werheit et al., 2011). Furthermore,
it has been demonstrated that LIBS can be successfully applied to improve material
recovery in e-waste recycling (Noll et al., 2021).

For the classification of tool steel, a high-resolution spectrometer is applied and up
to 14 chemical elements are detected and evaluated in a multivariate calculation.
For example, the cobalt content plays a major role in valuation of scrap and appears
in a broad range of concentrations. It is therefore not only classified into a high
and a low Co fraction, but into several degrees of different Co concentration. By
measuring scrap pieces at several spots, it is also possible to identify and sort
pieces that are composed of different alloys. This is often the case for drill bits or
milling cutters.

As in many scrap sorting applications, dirt or oxidation layers usually cover the
surface of the pieces. In addition, tool parts are partly protected by hardening
coating, for example TiC and TaC. Direct LIBS measurements of such surface
contaminations would result in a misclassification since the bulk material is
of interest. Therefore, at each measurement location, the surface is first locally
cleaned by a part of the laser light, which is specifically formed to provide efficient
ablation of the contamination, before it is analysed by the second part of the laser
pulse train applied to the same spot.
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Fig. 1: A series of LIBS measurements on a drill bit moving on a belt conveyor from

left to right; left: long-exposure photography; right: schematic of the scanning LIBS
measurement process, MO — measuring object, LP — laser-induced plasma, MP —
measurement position, see text for further explanation [property: Fraunhofer ILT]

2.3 Robotic sorting

Downstream of the LIBS sensor, the scrap pieces are sorted individually. An ABB
“FlexPicker” is employed here, which is used in several automated production and
packaging lines. For each piece, the handling procedure is determined from the
images. When using a finger type gripper, as shown in Fig. 2, the most suitable
positions at two opposite sides of a piece are calculated using a pre-trained
algorithm. For reliable picking, it is necessary to achieve a tight contact, as well
as to balance the mass of the piece. With this type of gripper, structures in any
orientation as small as 2 mm are taken from the moving belt. Alternatively, other
gripper types can be used, for example a suction gripper for flat pieces.

Once the robot has picked a scrap piece, it is free to transport it to any location next
to the belt conveyor. In our configuration, six slots are located on both sides of the
belt, in which the pieces are dropped according to the classification calculated from
the LIBS measurement. With a single “FlexPicker”, up to sixty pieces per minute
are sorted into any of these fractions. Throughput can be increased by employing
additional robotic stations down the belt.
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Fig. 2: A drill bit is picked by a robot gripper [property: Cronimet Ferroleg.]

3 Conclusion

A system was developed and implemented, which is to our knowledge the first
realisation of a LIBS sensor with robotic sorting for metal recycling. The system
is installed in an industrial scrap sorting plant. Sorting trials have demonstrated
the ability of the system to classify and separate tool steels of various grades into
a high number of sorting fractions. For example, high speed steel is sorted into
fractions with different levels of cobalt as alloying element and at the same time
other alloying elements are also regarded. The multi-element classification by LIBS
is obtained in spite of surface contaminations encountered on the scrap pieces by
using an integrated optical surface cleaning process. Optical acquisition of location
and geometrical structure of each scrap piece is proven to provide a common basis
for both multi-fraction classification and sorting in fully automated operation.

The sorting system is in preparation for the routine operation in a recycling plant of
CRONIMET Ferroleg. GmbH in variable applications, in which up to 6 simultaneous
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sorting fractions are defined by assignment of 20 sensor-identified alloys for
extraction.

The work presented was supported by funding from the German ministry of
education and research (BMBF).
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Abstract

Sensor based sorting (SBS) is one of the powerful unit operations to achieve
highly efficient separation for example to realize mutual separation of metal alloys
which was impossible with conventional sorting technologies. Our laboratory has
intensively investigated novel metal recycling processes using the SBS for the last
ten years, such as removal of stainless steels from shredder magnetic products,
mutual separation of aluminium alloys and iron alloys, by using existing and newly
developed visible light, X-ray transmission (XRT), X-ray fluorescence (XRF), and
laser induced breakdown spectroscopy (LIBS) sorters. This paper introduces the
outline of the above results and proposes a next generation metal recycling process
by combining high performance comminution (liberation) technology and the above
SBS technologies.

We are investigating the application of the LIBS sorter to the mutual separation of
iron alloys, and here introduces one of the results, in which we removed stainless
steel from carbon steel by detecting LIBS Cr/Fe peak ratio and realized complete
removal of Cr bearing stainless steels.

We developed, in 2012, a novel process to separate high purity (over 99 wt%)
6063 aluminium alloy from the other aluminium alloys by applying XRT and XRF
sorters, and we improved, in 2015, this kind of sorting by applying newly developed
LIBS sorter, to achieve mutual separation of most of the aluminium alloys, involving
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1000 to 7000 series and casting alloys, with the efficiency of approx. 100 %. The
high purity aluminium alloys obtained by this process are currently used as interior
materials for “Shinkansen” trains.

Finally, we would like to propose a super energy saving metal recycling process by
combining the above “intelligent comminution (liberation)” and “intelligent sorting
(SBS)".

1 Introduction

Sensor based sorting is usually assumed to be one of the most innovative sorting
technologies in this 40 years in sorting engineering because of their high sensing
accuracy, possibility of various sensing systems combination and applicability to
recent digital transformation systems. Our laboratory has developed and applied
various sorting processes to achieve horizontal recycling systems which could not
be realized by conventional sorting technologies.

This paper introduces such results involving (i) Removal of stainless steels from
magnetic products in shredder plant, (ii) Mutual separation of aluminium alloys by
combining X-ray transmission (XRT) and X-ray fluorescence (XRF) sortings, (iii)
Mutual separation of aluminium alloys by laser induced breakdown spectroscopy
(LIBS) sorting.

We would like to create, near in the future, super energy saving recycling processes
by developing novel sorters and applying various kinds of sorting systems and
hereby propose one of the future metal recycling processes as an example.

2 Removal of Stainless Steels from Magnetic Products in
Shredder Plant

In most of the shredder plants, various kinds of scraps, involving automobiles,
home appliances, etc., are finely shredded and iron components are recovered in
the first step by magnetic separation. But the magnetic product usually involves not
only carbon steel but also Cr bearing magnetic stainless (ferrite and martensite)
steels, and their removal should be important to reutilize the magnetic products for
raw materials of iron and steel making. Since LIBS could detect the Cr components
sharply, we detected optimum conditions for the removal by using the LIBS sorter
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which was originally developed in 2015 by our laboratory in corporation with
the German company, Secopta, Japanese AIST, National Institute of Advanced
Industrial Science and Technology, and several Japanese companies.

First of all, we determined the optimum Cr and Fe peaks for the LIBS sorting, as
“Cr11286.573 nm* and “Fe | 366.974 nm*“, considering their strength, linearity of the
calibration curve, effect of self-absorption, etc.

Figure 1 shows the LIBS detection results for the real scrap materials and also
standard samples. The linearity between Cr contents and peak intensities for
the stainless steel particles is not so high, and the separation efficiency (SE) of
stainless steel from carbon steel, as a function of threshold Cr peak intensity, was
not so high (see Figure 2). On the other hand, as showing in Figure 3, the linearity
between Cr/Fe contents ratio and Cr/Fe peak intensities ratio quite high, almost
the same as that for standard samples, and the SE of stainless steel from carbon
could be kept high values in wide range of threshold Cr/Fe ratio. We could conclude
that magnetic stainless steels could be removed from shredder magnetic products
completely with a SE of 100 %.
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Fig. 1: Relation between content and LIBS peak intensity of chromium in the shredder magnetic product
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Fig. 3: Separation efficiency of Stainless steels from carbon steels by LIBS sorting

3 Mutual Separation of Aluminium Alloys

3.1 Combination of XRT and XRF sorting

Most of the scrap aluminum alloys are usually mixed at wholesalers and the mixed
alloys are used as raw material of automobile gasoline engine. This process is just
a cascade recycling and the mixed alloys should be separated from each other
and utilize them as each wrought materials to establish a horizontal recycling (see
Figure 4).
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We applied two kinds of sensing technologies, XRT and XRF, to achieve mutual
separation of such aluminium alloys (Owada, 2014), which could not be done with
any conventional physical separation technologies. In the NEDO project (2010-
2012), our target to be recovered was 6063 alloys, which was the raw material of
window sash, from scrap aluminums. We have finally made a novel recycling flow
as shown in Figure 5 and constructed a pilot plant (Figure 6) in which over 99 mass%
of 6063 aluminium alloys could be produced from the mixed scrap aluminium alloys
with the recovery of approx. 95 %, and was now operating as a commercial scale.

Primar - Rolling, Wrought products __
aluminum psling Extruding — (Sash, Can, etc.)
Secondary : Casting, Cast products  _|
aluminum heliing Die Casting — (Auto. Engine etc.)

i
High purity wrought alloys
High Performance Esran: :'Q;‘ E::"ng Saving
Sorting Process ashto sash™ Frocess
alfrizizm <

Fig. 4: Typical aluminium circulation flow

Shredded sash scrap Shredded sash scrap
Magnetic sep. Electro-Mag. sort.

Non-ferrous & Non metals Iron Metals Non metals

Eddy current sep. - XRT sort.
Al alloys with heavy Non metals Mixed Al alloys Heavy metals,
impurities, Heavy metals with no heavy impurities Al alloys with

heavy impurities

XRT or XRF sort

Mixed Al alloys Heavy metals 6063 Al alloy Non 6063
with heavy impurities Al alloys

Fig. 5: Novel and conventional aluminium recycling flow
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Fig. 6: Pilot plant to realize horizontal recycling for aluminium in the NEDO project (2010-2012)

3.2 Application of LIBS Sorter

We recognized in the above project that the XRT and XRF sorters have had quite
a good performance, but XRF sorter could not detect light elements, such as Si,
Mg, etc., then, we adopted the LIBS sensor and assembled as a LIBS sorter to
identify them. Conceptual diagram of the LIBS sorter and the appearance are
shown in Figures 7 and 8, respectively. Typical separation result for various kinds
of aluminium alloys are shown in Table 1 (Togawa, et.al., 2016), in which we
understood that high purity aluminium alloys could be recovered from each other
with relatively high recoveries. If we apply this process to 70 % of all the aluminium
scraps generated in Japan, we could save 1.63 billion L in oil base energy per year.
Now several projects are running by using the LIBS sorters in order to realize the
horizontal aluminium alloy recycling.
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Fig. 7: Conceptual diagram of LIBS sorting
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Fig. 8: LIBS sorter developed by our laboratory in the project of “High Efficiency
Rare Elements Extraction Technology Area, Tohoku Univ.”

Tab. 1: Typical separation result in case of mutual separation of various aluminium alloys

2000 3000 4000 5000 6000 7000 Casting
series series series series series series alloys

Grade (wt%) 100 100 100 100 100 100 100
Recovery (%) 99.9 99.2 100 100 100 99.5 100

4 Conclusion -Proposal of Next Generation Metal
Recycling Process

We have many kinds of sensors which could be applied to sorting technology
and we will be able to establish a super energy saving and more economically
feasible metal recycling process by utilizing these technologies near in the future.
For example, if we develop novel copper recycling process as shown in Figure 9,
huge amount of energy could be saved compared with the conventional process as
shown in Figure 10 and 11, because physical, in other words solid base, separation
requires much less energy and cost compared with pyro- and hydro-metallurgical,
liquid base, processes.

But one other key technology must be the liberation. Conventionally, comminution
technologies were developed to reduce particle size, but important in recycling
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engineering is not the reduction but liberation of compositional elements in the

scraps. If we can realize the liberation in coarse size ranges, such as over 10 mm,

we can apply the high performance sensor based sorting technologies. Figure 12

shows the comminution technologies, “Intelligent Comminution®, expected to be

developed and sensor based sorting, “Intelligent sorting*.

It is possible that these “intelligent comminution/sorting“ technologies could

contribute much to improve recycling process from the viewpoint of energy saving

and economic feasibility, and thus, could establish a sound material cycle society.
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Fig. 9: Conventional and novel metal recycling processes
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Fig. 10: Results of the LCA compared several scenarios of Cu manufacturing processes
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Abstract

To prevent the emergence of a scrap surplus, it is essential to implement alloy
based sorting of post-consumer aluminium scrap on an industrial scale. This can
be achieved by integrating Laser-Induced Breakdown Spectroscopy (LIBS) in
sorting systems. The presented research evaluates the performance of machine
learning methods that classify post-consumer aluminium scrap samples based
on the spectral data collected by a LIBS system. The classification performance
is assessed with X-Ray Fluorescence (XRF) reference measurements on 834
aluminium scrap pieces, demonstrating that an accuracy of up to 60.76%, a
precision of 60.8%, a recall of 60.7%, and an f1 score of 57.9% can be achieved.
Furthermore, composition measurements indicate that the desired concentration
thresholds for alloying elements can be met by implementing the developed
methods.
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1 Introduction

Sorting post-consumer aluminium scrap into different qualities is of commercial
interest for recycling companies, as aluminium with lower concentrations of alloying
elements can today be sold at a higher price due to its broader applicability compared
to mixed aluminium scrap. In addition, it is of strategic importance to prevent the
emergence of an aluminium scrap surplus, which is expected to occur in the coming
decade (Van den Eynde et al., 2021). Therefore, this research investigates the
opportunities of LIBS based aluminium sorting for a large Belgian recycling facility.

2 Materials and Methods

2.1 Selection of sorting targets

The output fraction of the aluminium recycling facility in this case study is a mix
of shredded post-consumer aluminium scrap containing wrought and cast alloys
from electric and electronic equipment, automotive and construction waste. The
selection of the sorting targets of the LIBS sorting step in this case study is based
on discussions with the involved recycling company. The first of the three target
fractions is the “Premium” class. The purpose of separating a Premium fraction from
the rest of the scrap is to sell it at a significantly higher price than that of the current
output fraction, either to refiners for diluting low purity scrap for the production of
cast alloys or to remelters for the production of secondary wrought alloys. This
class has strict limits to the concentrations of the most common alloying elements.
The most severe concentration thresholds are for copper (0.04 wt%), zinc (0.05
wt%) and manganese (0.06 wt%). The second class is called “Desox”. It stands
for “deoxidation aluminium” which, according to the EAA definition, is aluminium
consisting of alloys with a high concentration of metallic aluminium (usually
exceeding 95%) used to remove free oxygen from liquid steel (European Aluminium
Association, 2016). This class has specific thresholds on the concentrations of
alloying elements as well, but they are less severe than those for the Premium
class. The last target fraction is the “Secondary” class. This fraction is meant to be
sold to refiners at a similar price as the current output fraction for the production of
cast alloys.
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2.2 Sampling and measuring procedure

A representative sample of the existing output fraction, consisting of 834 pieces
weighing 39.28 kg in total, has been collected by adopting a systematic sub-
sampling procedure. Subsequently, each metal piece in the acquired material
library has been labelled with a unique number. A small part of each piece’s surface
has been cleaned, after which the composition of each piece is measured with an
Olympus Vanta handheld XRF device on the cleaned surface. Based on the results
of the XRF analysis, every piece in the dataset is assigned to one of the target
classes. The Premium, Desox, and Secondary classes constitute 28.3%, 28.8%,
and 42.9% of the mass of the total sample, respectively. Next, the LIBS experiment
is conducted. The gated LIBS system has a pulse energy of 80 mJ and a frequency
of 10 Hz. The Echelle type spectrometer has a spectral range of 180 - 800 nm. The
exposure time is 85 ps. Ten LIBS measurements are conducted for each piece in
the dataset on the uncleaned part of the surface.

2.3 Classification method

Various classification algorithms, such as Random Forest (RF) (Zhan et al.,
2019), Support Vector Machine (SVM) (Dai et al., 2021) and Logistic Regression
(LR) (Menking-Hoggatt et al., 2019), have been investigated in recent research.
These three methods are implemented in this research with 217 custom designed
features. The performance of these methods is expressed with four metrics:
accuracy, weighted average precision, weighted average recall, and weighted
average f1 score. 80% of the samples are used to train the classifiers, while 20%
is used as a test set to evaluate the performance. As an additional way to evaluate
the classification performance, the composition of the sorting outputs is calculated
considering the mass and composition of all sorted test set samples.

3 Results

In terms of accuracy, the SVM classifier (60.76%) slightly outperforms the RF
(59.49%) and LR (55.10%) classifiers. The other metrics are close to the accuracy
score and indicate the same ranking between the classifiers, as shown in Table 1.
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Tab. 1: Performance metrics classifier algorithms

Classifier Metric Score
Accuracy 55.10%
Precision 0.560
Logistic Regression
Recall 0.551
f1 score 0.525
Accuracy 60.76%
Precision 0.608
Support Vector Machine
Recall 0.607
f1 score 0.579
Accuracy 59.49%
Precision 0.583
Random Forest
Recall 0.595
f1 score 0.585

Table 2 shows the composition of the sorted output fractions when the test set
samples are classified with the SVM method. This composition is calculated based
on the XRF composition measurements and the mass of the test set samples. The
concentration limits are met for all elements in the Desox and Secondary class.
In the Premium class, only the concentrations of copper and manganese slightly
exceed the specified thresholds (0.04 and 0.06 wt% respectively).
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Tab. 2: Composition of the output fractions when classified with SVM (concentrations in wt%)

Element Premium Desox Secondary
Al 97.975 98.400 94.054
Cu 0.079 0.125 0.860
Zn 0.023 0.054 0.564
Fe 0.358 0.299 0.521
Mn 0.134 0.075 0.293
Mg 0.957 0.271 0.308
Si 0.281 0.740 3.228

4 Conclusion

A novel method is presented to evaluate spectroscopic sorting systems for metal
recycling and shows that the use of classification algorithms on LIBS spectra is
highly promising for sorting post-consumer scrap. The SVM classifier shows the
best results. While the accuracy of the classifiers is rather limited, the presented
results demonstrate that the thresholds on the desired output fractions are almost
reached. Therefore, ongoing research investigates opportunities to further tune
and improve the classification and to adopt data fusion techniques to enhance the
performances while increasing the throughput. In addition, melting experiments are
ongoing to validate the sorting performance.
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