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Predictors of drought‑induced crop 
yield/losses in two agroecologies 
of southern Tigray, Northern 
Ethiopia
Emmanuel Eze 1,2,7,8*, Atkilt Girma1,3, Amanuel Zenebe 1,3, 
Chukwuebuka Christopher Okolo 1,3,4, Jean Moussa Kourouma 1,5 & Emnet Negash 1,6

The consequences of prolonged precipitation‑deficient periods are primarily substantial water deficit. 
The spatial characteristics of drylands and various socioeconomic factors worsen droughts’ impacts 
and deepen poverty among agrarian communities, with attendant food security (stability dimension) 
implications. This study utilizes a combination of climate, remote sensing and field survey data to 
obtain first‑hand information on the impacts of recent (2015 and 2017) droughts on crop yield in 
southern Tigray, northern Ethiopia. Annual and seasonal rainfall, annual and seasonal Normalized 
Difference Vegetation Index (NDVI) and Deviation of NDVI (Dev‑NDVI), and monthly Standardized 
Precipitation Index (SPI) (SPI‑1, SPI‑3 and SPI‑12) for June to October, were considered as likely 
factors that could relate with yield and yield loss in the area. Correlation and multiple linear stepwise 
regression statistical techniques were used to determine drought‑yield relationships, and identify 
more accurate predictors of yield and yield losses in each of the drought years. The area witnessed a 
more widespread precipitation deficit in 2015 than in 2017, where the lowland area recorded entire 
crop (sorghum) losses. Also, droughts manifested spatiotemporal variations and impacts across the 
two different agroecologies—primarily reduction in vegetation amounts, coinciding with the planting 
and maturing stages of barley and sorghum. Crop failures, therefore, translated to food shortages 
and reduced income of smallholder farmers, which denotes food insecurity in the time of droughts. 
Seasonal rainfall and June Dev‑NDVI predicted 66.9% of 2015 barley and sorghum yield‑loss, while 
NDVI predicted 2017 sorghum yield by 96%. Spate irrigation should be further popularized in the low‑
lying areas of Raya Azebo to augment for future deficiencies in the kiremt rainfall.

Global climate change has resulted in the increasing occurrence of extreme weather and climatic events such as 
floods and droughts. According to Eze et al.1 and Negash et al.2, outputs of rain-fed agriculture are at risk of influ-
ence by drought events. Droughts occur when a shortage of precipitation is received in a given season, or when 
there is a departure from a known average. An abnormally prolonged dry condition is designated as drought by 
Bayissa et al.3, whereas in the view of  Wilhite4, the timing and the effectiveness of precipitation could be linked to 
drought, hence making each drought event unique in impacts and characteristics. The consequences of prolonged 
precipitation-deficient periods are primarily substantial water deficit. Water shortages are exacerbated by the 
spatial characteristics of drylands, especially in arid and semi-arid environments. Additional disadvantages such 
as a largely rural population with very little education, totally dependent on agriculture for living and livelihood, 
and a limited capacity to withstand droughts could further extend impacts of droughts.
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Ethiopia is a Sub-Saharan country in East Africa largely susceptible to droughts. Although some parts are 
more vulnerable than the other, the intensity and frequency of droughts are increasing. While Viste et al.5 indicate 
that Ethiopia is largely drought-prone, the account of  Mera6 shows that the northern parts of Ethiopia experi-
ence droughts every 3–5 years, with a recent successive occurrence in 2015–2017. Such circumstances have been 
opined by Qu et al.7 to worsen food security issues. In describing the impacts of the most recent droughts, the 
Federal Democratic Republic of Ethiopia (FDRE)8 reports that in 2015, drought in Ethiopia was linked with the 
global El Niño weather phenomenon, thus resulting in food insecurity for 10.2 million people.  Mera6 has it that 
the 2017 short season (March–April) rainfall was virtually a failure. Such impacts are capable of being magnified, 
as Gray and  Mueller9 connect deep rural poverty with the amplification of drought effects in Sub-Saharan Africa.

Economically, droughts could deepen poverty levels especially among the largely agrarian populace of devel-
oping countries. Again, the  FDRE8 estimates the Gross Domestic Product (GDP) losses due to climate variability 
to be around 1–4%. Tigray region in the northern part of Ethiopia has been identified as one of the most drought-
vulnerable crop-production regions. The study of Gebrehiwot et al.10, classifies Tigray as one of the ‘most severely 
affected (regions) during well-known famines’, where a slight rainfall-deficiency can result in crop failure, with 
a direct impact on food security of households. Crop failure has been attributed to the paltry amount of water 
stored in the soil during a prolonged dry  spell11,12. Therefore, protracted precipitation deficit to the extent of the 
depletion of soil moisture becomes critical for crops especially at early stages of development and maturity, with 
profound impacts on eventual yield in any given  season13.

Thus, to detect and estimate droughts with their impacts, some indicators and indexes have been developed 
over the years. Hence, the characteristics of a drought event—onset, intensity, spatial coverage and duration, 
can be expressed using a drought index. In the opinion of  Sivakumar14, parameters such as rainfall, runoff, tem-
perature and evapotranspiration should be included in a drought index to enhance its usefulness in describing 
a drought event. Drought indexes have been generally grouped into meteorological, soil moisture, hydrological, 
remote sensing and composite/modeled indicators, to correspond with their design and scope of operations. This 
study is delimited to metrological and remote sensing indicators, which are described in subsequent sections. 
Two cereal crops—barley and sorghum, which are dominant crops and staple foods in the southern Tigray are 
selected for this study. These crops are hand-cultivated in rows at a small  scale15. Animal-driven ploughs and 
human labour are the sources of farm power. Farmers in the chosen study area are mostly smallholders who 
cultivate these crops for subsistence and sell excess yield for income.

Many drought studies have focused on the assessment of both meteorological and agricultural droughts in 
Ethiopia. While Gebrehiwot et al.10 undertook a determination of spatiotemporal seasonal agricultural drought 
in Ethiopia during the 1998–2013 cropping seasons;  Suryabhagavan16 characterized meteorological droughts 
and climate variability in Ethiopia over 3 decades (1983–2012). The study of Qu et al.7 on impacts of drought, 
includes other countries aside Ethiopia and covering the Horn of Africa, while that of Gidey et al.17 characterized 
the occurrence of drought in northern Ethiopia for 15 years (2001–2015). Only the study of Warner and  Mann18 
adopted an integrative approach of the use of satellite (GIS) data with conventional agricultural survey data to 
assess drought impacts, hence the essence of this study for the area.

This study rather than characterize or report drought impacts by use of indicators, or other secondary data, 
further utilizes the climate and remote sensing data, with field survey data from farmers to obtain first-hand 
information on the impacts of droughts on crop yield. We then determine climatic and vegetation drought indi-
cators which can closely predict farmers’ yield in the recent drought events (of 2015 and 2017). As we focus on 
agricultural droughts in this study, we evaluate the impact of moisture deficit occurring at the critical time of the 
major crop growing season, which could impact crop yields adversely. Therefore, the objective and important 
contribution of this study to scientific knowledge of drought is to provide an insight into what drought indicators 
(meteorological and vegetation/remote sensing) closely relate to and predicts farmers’ crop yield, using a small 
geographical area, with opportunities of further discourse.

Materials and methods
The study area. This study was implemented in two purposively selected woredas (districts) in the southern 
Tigray region, northern Ethiopia. Tigray has been previously established as one of the most drought-vulnerable 
regions in Ethiopia as described in earlier sections of this paper. The study area is located between 12° 38′ 44″–
12° 57′ 10″ N Latitude and 39° 27′ 18″–39° 55′ 56″ E Longitude, with an altitude ranging from 1109 to 3760 m 
above sea level (m.a.s.l.). The two purposively-selected woredas (districts) were to represent the highland and 
lowland agroecology for this study. The study area thus includes one district of mid and highland agroecology 
(Endamehoni) and another woreda (Raya Azebo) of lowland agroecology. Nine (9) tabias/kabeles (villages) are 
included in the portion selected for this study (Fig. 1).

Data sources and analyses methods. Meteorological data and meteorological drought indicator. The 
Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) grid precipitation dataset from 2015 to 
2018, obtained from (ftp:// ftp. chg. ucsb. edu/ pub/ org/ chg/ produ cts/ CHIRPS- 2.0/) was used for this study. The 
CHIRPS is the combination of a “high-resolution climatology, time-varying cold cloud duration precipitation 
estimates, and in situ precipitation estimates”, with high research quality and very low  errors19,20. The high reli-
ability, spatial spread and accuracy of the CHIRPS over the point-based data makes it preferred for this study. 
Also, The CHIRPS has been described as dependable and accurate for use in Ethiopia, especially for obtaining 
data for areas without meteorological  stations21,22. Furthermore, despite the resolution of the CHIRPS dataset 
being at 5 km spatial resolution, Dinku et al.23 conducted a validation of CHIRPS across eastern Africa and 
reports that the dataset offers a higher skill than other alternative rainfall products with low or no bias for Ethio-
pia. Moreover, Peng et al.24 indicate CHIRPS data as desirable for local or sub-basin scale drought monitoring 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
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studies, hence a justification for use in this study. The rainfall variables used in this study include the annual and 
main (kiremt) season (JJAS) rainfall. This data is used to assess meteorological drought using the Standardized 
Precipitation Index (SPI).

The commonly used meteorological drought indicators include the Standardized Precipitation Index (SPI) 
and the Standardized Precipitation Evapotranspiration Index (SPEI). The SPI is recommended by the World 
Meteorological  Organization25 to be used by all National Meteorological and Hydrological Services around the 
world to characterize meteorological droughts. Designed by McKee et al.26 to quantify the magnitude of dry and 
wet conditions in the desired location, the SPI is effective in drought detection in multiple time-scales, generally 
between 1 and 48 months. The WMO and  GWP27 posit that SPI values for 3 months (SPI-3) or less, might be 
useful for basic drought monitoring; while values for 6 months (SPI-6) or less, are fit for monitoring agricultural 
impacts; and values for 12 months (SPI-12) or longer, are ideal for hydrological impacts. Besides the above-
mentioned points, Yildirak and Selcuk-Kestel28 regard SPI as easy to implement and ideal for the determination 
of drought risks due to its ‘intrinsic probabilistic nature’ and favourability in making spatiotemporal comparisons 
among diverse climatic condition. These inform the preference for SPI in this study for meteorological drought 
assessment. We however reiterate the limitation that since cumulative precipitation is the sole input, SPI is defi-
cient when accounting for the temperature component of droughts, as water balance/use are not accounted for.

Figure 1.  Study area map. Source: Authors (ArcMap 10.4).
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Satellite images data and agricultural drought indicators. The Moderate Resolution Imaging Spectroradiometer 
(MODIS) MOD13Q1 composite images with 250-m resolution data obtained from the NASA Land Processes 
Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center 
(https:// lpdaac. usgs. gov/ data_ access/ data_ pool), was used for this study. In the opinion  of29, MODIS data prod-
ucts are accurate and appropriate for drought monitoring. Following download, the images were re-projected 
and resampled from a sinusoidal to geographic projection (WGS84); and then NDVI values were extracted 
from the re-projected (*.tif) images using R scripts. To obtain the conventional NDVI values ranging from − 1 
to + 1, the extracted values were rescaled with the factor 0.0001. The NDVI variables used in this study include 
the Annual NDVI, the Dev-NDVI of the main cropping (kiremt) season, and the monthly Dev-NDVI of June 
to October.

A lot of satellite-based indicators have been developed, with the ability to accurately detect droughts over 
large spatiotemporal resolutions. The Normalized Difference Vegetation Index (NDVI) is a popular drought-
monitoring index developed by  Kogan30, for determination of droughts by the measurement of vegetation vigor 
and cover in an index ranging from − 1 to + 1. However, the NDVI itself needs to be computed vis-à-vis anomalies 
to indicate the presence of drought and its severity. The Dev-NDVI, which is the deviation of NDVI from its 
long-term mean will easily indicate the magnitude of wetness or dryness of an area. Hence, a negative Dev-NDVI 
is an indicator of below-normal vegetation condition/health, thus suggesting a drought situation. The magnitude 
of a drought spell is defined by the degree of negative departure from the long-term mean  NDVI31,32. Kourouma 
et al.33 assert that ‘vegetation in general, and crops productivity, in particular, are responsive to change in NDVI 
values’. The NDVI and Dev-NDVI are therefore used in this study to obtain a clear perception of agricultural 
droughts.

Farmers’ yield (survey) data. Self-reported farmers’ production data were obtained from a survey of 34 small-
holders for this study. A minimum N ≥ 25 is required for more variance and is recommended for regressions or 
meta-regressions34. Hence, a sample size of 34 is considered optimal for our study. A one-time direct interview 
of 34 farmers was conducted to elicit information on the dry grain weight of crop yield measured in quintals per 
hectare. After maturity, farmers harvest their grains and allow them dry in a part of the farmland. The grains are 
beaten for separation from their husks and then bagged. Farmers are able to weigh their grains before storage 
and sales.

Farm owners used in this study (sorghum farmers = 16; barley farmers = 18) were randomly selected, and are 
those with high yield recall from memory. Ethical procedures such as obtaining their consent to participate in 
the study and assurance of anonymity were strictly followed for all participants in the study. While more farmers 
were interviewed as they are always found in groups, only those who met our criteria of crop type and recent crop 
yield memory were included in the study. Their farmlands were measured with the use of HP-IPAQ (a pocket 
PC enabled with GIS features for plotting). The device was useful for appropriate relation of the yield to specific 
farmlands. Two cereal crops—barley and sorghum were selected in the highland and lowland respectively, due 
to their widespread importance as dominant crops and staple foods in the area, and also to improve the accuracy 
of yield recall from farmers’ memory.

The village (Tabia) or plot-level data are not available at either the Agricultural Bureau or the Central Statistics 
Agency. The use of district-level data available in these offices would not be representative of the local situations. 
This explains the choice of plot-level data in the study area, which is considered of optimum quality. Eze et al.1 
adopted the same data to successfully develop proportionally-derived area-yield insurance index with high 
success in estimating payouts even for those who reported 100% losses. Also, Eze et al.35 attempted to develop 
remote crop yield estimation using crop water requirements using this data. From the evaluation of the models, 
there is a good fit with the survey data with a coefficient of determination  (R2) of up to 88%. This data is thus 
applied in this study with the confidence of optimal performance. All methods in this study were carried out in 
accordance with relevant guidelines and regulations for conducting surveys. In particular, informed consent was 
obtained from all human subjects, and anonymity has been maintained in presenting the results obtained from 
analyses of collected data. We confirm that the academic board of the Institute of Climate and Society, Mekelle 
University, Ethiopia orally approved the conduct of this study during the presentation of the proposed research, 
survey instrument and method for data collection. Neither plants nor animals were used in this study, which 
ruled out the need for written ethical clearance or approval.

Data analyses. Data pre‑processing procedures. The analysis of historical meteorological droughts was 
done using the Standardized Precipitation Index (SPI) in R software version 3.4 with the aid of suitable scripts 
and packages. The SPI was calculated on three timescales: 1-, 3- and 12-month (SPI-1, SPI-3, and SPI-12). To 
obtain agricultural droughts Dev-NDVI was calculated using the Eq. (1).

where the NDVIi is the NDVI value for month ‘i’; NDVImean‑m is the long-term mean NDVI for the same month 
m over the spatiotemporal period.

Three operations were implemented to get three variables of yield data for the analyses.

1. Using the raw yield data obtained from farmers, conversion to yield per hectare was done by dividing the 
actual (raw) yield value by the area of land and multiplying the result by 10,000 (which is the area of a hec-
tare). Hence the formula:

(1)DevNDVI = NDVIi − NDVImean−m

https://lpdaac.usgs.gov/data_access/data_pool
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  where: Actual yield = raw yield values obtained from farmers; Area(m2) = total area of farmer’s plot in  m2; 
10,000 = total meter squares  (m2) in a hectare

2. The yield per hectare (YpHa) data was used to compute a Standardized variable of crop yield (SCY) for each 
of the sampled Tabias (villages) within the study area, using Eq. (3).

3. The SCY was then be used to obtain the crop yield loss ratio (YLR) of the area, using Eq. (4). The formulae 
applied to obtain the SCY and the YLR has been used in a recent study of Elhag and  Zhang36 to monitor the 
impact of drought on crop yield elsewhere.

where Yj is the crop yield in j Year of a Tabia (village); Ȳ is the average, and σ is the standard deviation of crop 
yield during the period under review.

Correlating yield, climatic and drought‑indicator variables. To obtain the relationship between drought and 
crop yield in the study area, YpHa, SCY and YLR for 2015 and 2017 were correlated with annual rainfall; kiremt 
rainfall; annual NDVI; annual Dev-NDVI; kiremt Dev-NDVI; monthly Dev-NDVI (for June to October); and 
monthly SPI-1, SPI-3 and SPI-12 (for June to October). The use of all these variables in measuring the relation-
ship is to determine which factor is most related to the declared farmers’ yield and losses for the years under 
review.

The analysis of the relationship between variables listed above with YpHa, SCY and YLR was done in three 
batches. Firstly, the relationships across the entire study area were assessed. Next, a split Woreda-based analysis 
was conducted to ascertain the relationships based on the two different woredas (Endamehoni and Raya Azebo) 
selected for the study. The purpose of the split-site analysis is to account for inherent variations expected in 
rainfall patterns, crop yield and crop loss in the two agroecologically dissimilar districts (woredas).

The non-parametric (Spearman’s) correlation analysis was implemented, as this would not demand bivariate 
normality of the dataset. Some previous  studies37–40 all adopted the Spearman’s correlation for their analyses. 
Interpretation of the strength of association among variables as reflected by the resultant correlation coefficients 
adopted in this study was obtained from the groupings of Cohen et al.41 as shown below (Table 1).

Regressing yield, climatic and drought‑indicator variables. Multiple linear stepwise regression was implemented 
in SPSS to obtain the most significant and relevant predictors for both crop yield and yield loss in the drought 
years of 2015 and 2017. The stepwise regression is an approach to selecting a subset of effects for a regression 
model. This approach has been widely used in literature, with several authors preferring its application where 
little theory to guide the selection of terms for a model exists; or where there is the focus on predictors which 
interactively seem to provide a good fit; and where the performance of a model is to be improved by reducing the 
variance from unnecessary  terms42–46. The stepwise regression also exempts variables of high multicollinearity 
(variance inflation factor—VIF) in the selection of the most relevant predictors, hence its adoption in this study. 
The step-wise multiple regression was therefore conducted using the threshold of probability of the predictor to 
enter as ≤ 0.050 and the probability of the predictor to be removed as ≥ 0.100 (Table 2).

Results
2015 drought and crop yield: relationship and climatic/vegetative predictors. The results 
are presented in three subsections to represent the lowland case study (Raya Azebo), the highland case study 
(Endamehoni), and the entire study area. These sections correspond to the three-batch analyses implemented to 
unravel the relationship of drought with crop yield and arriving at key drought indicators that more accurately 
predicted the crop yield in the event of drought. Figure 2 contains the key spatial variables used to obtain the 
results.

(2)YpHa =

Actual Yield

Area
(

m2
)

× 10, 000

(3)SCY =

Yj − Y

σ

(4)YLR =

Y − Yj

Y
× 100%

Table 1.  Correlation coefficients and their interpretation. Source: Adapted from Cohen et al.41.

Positive relationship Negative relationship

Coefficients Strength Coefficients Strength

0.10–0.29 Weak/small − 0.10 to − 0.29 Weak/small

0.30–0.49 Moderate/medium − 0.30 to − 0.49 Moderate/medium

0.50–1.00 Strong/large − 0.50 to − 1.00 Strong/large
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Lowland (Raya Azebo). For the sampled area in Raya Azebo, only annual rainfall values show a strong positive 
significant correlation with SCY and YpHa, while June and October SPI-1 indicate a strong negative association 
with SCY and YpHa (Table 3). This implies that higher annual rainfall translates to higher crop yield while higher 
meteorological drought in June and September led to lower crop yield. Kiremt season rainfall also had a strong 
positive significant relationship with YpHa. Other notable variables indicating a moderate positive relationship 
with YpHa and SCY are annual Dev-NDVI, kiremt Dev-NDVI; while a moderate negative relationship exists 
between July and August SPI-1, June and July SPI-1; June and October SPI-3 (Table 3). Annual rainfall and 
kiremt season rainfall had a strong negative relationship with YLR. Hence, the lower the (annual and kiremt) 

Table 2.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2015 in the study area. ANRFE annual rainfall, KRFE Kiremt season rainfall, AND annual NDVI, ANDND 
annual dev-NDVI, KRDND Kiremt Dev-NDVI, YpHa yield (Qt) per Hectare, SCY standardized crop yield, 
YLR yield loss ratio, DND dev-NDVI.

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sept Oct

YpHa (rs) 0.74** 0.75** 0.54** 0.44** 0.10 − 0.17 − 0.25 − 0.08 0.13 0.08

SCY (rs) 0.71** 0.73** 0.52** 0.40* 0.08 − 0.15 − 0.32 − 0.17 0.09 0.08

YLR (rs) − 0.73** − 0.71** − 0.43* − 0.31 − 0.08 0.24 0.33 0.27 − 0.10 − 0.10

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) − 0.55** − 0.29 − 0.49** 0.18 − 0.59** − 0.25 0.17 − 0.17 0.61** − 0.29 − .52** 0.66** 0.06 0.68** 0.51**

SCY (rs) − 0.51** − 0.29 − 0.47** 0.15 − 0.56** − 0.23 0.12 − 0.17 0.58** − 0.27 − .43* 0.64** 0.08 0.66** 0.48**

YLR (rs) 0.59** 0.34* 0.51** − 0.12 0.62** 0.37 − 0.09 0.21 − 0.51** 0.35* 0.49** − 0.61** 0.00 − 0.59** − 0.41*

Figure 2.  (a) Kiremt season rainfall (JJAS) (b) Farmers’ reported yield (c) Kiremt season Dev-NDVI, and (d) 
Farmers’ yield loss ratio for the 2015 farming season. Source: Authors (ArcMap 10.4).
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rainfall, the higher the yield loss. On the other hand, annual Dev-NDVI, June and October SPI-1 are strongly 
positively and significantly associated with YLR. Hence, a higher deviation from NDVI and higher meteorologi-
cal drought reflected in higher crop losses. Kiremt Dev-NDVI, June Dev-NDVI, July SPI-1, June and October 
SPI-3, and June SPI-12 were moderately positively correlated with YLR.

Annual rainfall and July SPI-3 are the most significant predictors of SCY in Raya Azebo. The two-step regres-
sion (Supplementary Table S.01) results show that annual rainfall alone explains 38% of the variation in the 
standardized crop yield while and the combination of both predictors—annual rainfall and July SPI-3 for the 
year explain 56.3% of the variation in SCY for Raya Azebo (Table 5). Similar to the SCY, the YpHa is significantly 
predicted by annual rainfall and July SPI-3 with the coefficient of determination (r2) indicating that 35.7% of 
the variations in the yield per hectare obtained in the study area is attributed to annual rainfall alone, while the 
combination of annual rainfall and July SPI-3 explains 53.3% of the variations (Table 5). For the 2015 season, 
about 75% of farmers sampled in Raya Azebo had zero yields and 100% of crop losses. The stepwise regression 
for YLR was unsuccessful due to the multiple zero figures.

Highland (Endamehoni). There are slightly different results obtained in the analyses of data in this area. There is 
a strong negative significant relationship between kiremt Dev-NDVI, June Dev-NDVI, July and September SPI-1 
and SPI-3; and July September and October SPI-12, all with YpHa (Table 4). The SCY had a strong negative sig-
nificant relationship with kiremt Dev-NDVI, September SPI-1; July and September SPI-3; and July, September 
and October SPI-12. Additionally, it is worthy of mention that the correlation between kiremt season rainfall, 
August SPI-1, June, August and October SPI-3, and August SPI-12 with YpHa and SCY was moderately nega-
tive, though not significant. Therefore, higher wetness led to lower yield in this woreda. The crop yield loss was 
strongly and positively significantly related with Annual Dev-NDVI, June Dev-NDVI, August and September 
SPI-1; June to October SPI-3, and August to October SPI-12. Furthermore, kiremt season rainfall, July SPI-1 and 
July SPI-12 showed a moderate positive relationship with the YLR but not significant. Higher rainfall reflected in 
higher yield loss in this area and higher Dev-NDVI did not imply higher yield as crop losses were recorded due 
to excessive rainfall, as confirmed by data obtained during farmers’ survey (Table 4).

Table 3.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2015 in Raya-Azebo.

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sep Oct

YpHa (rs) 0.52* 0.59* − 0.01 − 0.42 − 0.39 − 0.22 − 0.15 − 0.00 0.06 0.09

SCY (rs) 0.52* 0.45 − 0.18 − 0.36 − 0.34 − 0.19 − 0.23 − 0.15 0.07 0.06

YLR (rs) − 0.52* − 0.57* 0.18 0.51* 0.47 0.34 0.01 0.12 0.00 0.09

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) − 0.52* − 0.35 − 0.39 − 0.13 − .52* − 0.43 − 0.13 − 0.13 0.05 − 0.43 − 0.37 0.41 − 0.08 0.33 − 0.02

SCY (rs) − 0.51* − 0.39 − 0.47 − 0.29 − .51* − 0.43 − 0.29 − 0.36 − 0.06 − 0.43 0.00 0.24 − 0.15 0.21 − 0.20

YLR (rs) 0.52* 0.43 0.27 0.219 0.52* 0.48 0.22 0.03 0.08 0.48 0.36 − 0.37 0.08 − 0.21 0.14

Table 4.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2015 in Endamehoni. ANRFE annual rainfall, KRFE Kiremt season rainfall, AND annual NDVI, ANDND 
annual dev-NDVI, KRDND Kiremt Dev-NDVI, YpHa yield (Qt) per Hectare, SCY standardized crop yield, 
YLR yield loss ratio, DND dev-NDVI.

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sep Oct

YpHa (rs) 0.056 − 0.461 − 0.333 − 0.162 − .577* − 0.490* 0.358 0.361 0.224 0.04

SCY (rs) − 0.088 − 0.439 − 0.201 − 0.272 − .567* − 0.385 0.16 0.163 0.067 0.035

YLR (rs) − 0.189 0.389 0.366 0.414 .483* 0.409 0.173 0.144 − 0.245 − 0.251

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) − 0.13 − 0.55* − 0.44 − 0.62** − 0.13 − 0.44 − .58* − 0.44 − .52* − 0.44 − 0.27 − 0.51* − 0.44 − 0.52* − 0.59*

SCY (rs) 0.02 − 0.43 − 0.30 − 0.52* 0.02 − 0.30 − .51* − 0.30 − .53* − 0.30 − 0.12 − 0.49* − 0.30 − 0.53* − 0.52*

YLR (rs) 0.17 0.47 .49* 0.50* 0.17 0.49* 0.57* 0.49* 0.55* 0.49* 0.10 0.45 .049* 0.551 0.61**
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October SPI-12 is the most significant predictor of SCY in Endamehoni for 2015. The coefficient of determi-
nation (r2) shows that October SPI-12 explain 43.7% of the variation in standardized crop yield in the area for 
the year under review (Table 5). For the YpHa, October SPI-12 and August Dev-NDVI are the key predictors, 
with 42.2% of the variations in the yield per hectare obtained in the study area attributed to October SPI-12 
alone, while the combination of August Dev-NDVI with October SPI-12 explains 56.9% of the variations in 
yield per hectare. A two-step regression (Supplementary Table S.01) indicates September SPI-12 and October 
Dev-NDVI as the key predictors of yield loss. The coefficient of determination (r2) show that September SPI-12 
alone explains 38.4% of the variation in yield loss ratio; while the combination of September SPI-12 and October 
Dev-NDVI explain 62.4% (Table 5).

Entire study area. From the results obtained from the entire area analysis, there is a strong positive signifi-
cant relationship between Annual Rainfall and Kiremt Rainfall with farmers’ YpHa and SCY (Table  2). This 
implies that higher rainfall led to higher crop yield. Conversely, there is a strong negative significant relationship 
between annual rainfall, kiremt rainfall and farmers’ YLR. Besides, the annual NDVI shows a strong positive 
significant relationship between YpHa and SCY while annual Dev-NDVI shows a moderate/medium positive 
significant relationship between the same variables. This implies that the deviation of vegetation index from 
the long-term average does not always translate to yield reduction. Farmers’ YLR shows a moderate negative 
significant relationship with Annual NDVI and a weak negative relationship with Annual Dev-NDVI (Table 2).

Furthermore, the monthly Dev-NDVI indicate various relationships with farmers’ YpHa, SCY and YLR. The 
SPI at the 1, 3, and 12-month scales show different levels of relationship for different months with the YpHa, SCY 
and YLR. At the 1-month scale of SPI, there is a strong negative significant relationship between YpHa, SCY and 
SPI-1 values for June and October, with August showing a nearly strong negative significant association (Table 2). 
This implies that higher SPI-1 drought during the planting and maturing stages impacted crops’ performance 
and resulted in yield reduction. A strong positive significant relationship exists between YLR and SPI-1 for June, 
August and October meaning that higher droughts in these months, which are crucial growing and maturing 
phases of the crops studied, translates to higher yield losses. The 3-month scale of SPI shows a strong positive 
significant relationship with YpHa and SCY in September and a strong negative significant relationship with 
YLR. For the 12-month scale of SPI, a strong positive significant relationship exists between YpHa and SCY in 
July, September and October (Table 2). While the YLR has a strong negative significant relationship with July 
and September SPI-12, it has a medium negative significant relationship with October SPI-12 values (Table 2). 
Hence, higher SPI-12 drought in July and September led to higher crop losses, whereas October drought had 
no major impact on crop losses.

Kiremt season rainfall, June Dev-NDVI and annual NDVI are the key predictors for SCY in the entire study 
area. From the three-step regression, kiremt rainfall alone explains 39.8% of the variation in the standardized crop 
yield; Kiremt rainfall and June Dev-NDVI explain 50.4%; and the combination of all three predictors—kiremt 
rainfall, June Dev-NDVI and the annual NDVI for the year explain 57.5% of the variation in crop yield in the 
study area. The key predictors for YLR are kiremt rainfall and June Dev-NDVI. The two-step regression shows that 
kiremt rainfall alone explains 51.3% of the variation in yield loss ratio; while the combination of kiremt rainfall 
and June Dev-NDVI explain 66.9% (Table 5). Some additional variables that are excluded from the step-wise 
threshold, though with significant predictive possibilities but high multicollinearity, include the September SPI-3 
(p = 0.047) and October SPI-12 (p = 0.046). From a one-step regression analysis (Supplementary Table S.01), 
annual rainfall is the most significant predictor of YpHa. The coefficient of determination (r2) obtained shows that 
40.3% of the variations in the yield per hectare obtained in the entire study area is attributed to annual Rainfall.

Table 5.  Predictors of YpHa, SCY and YLR in the 2015 drought year in the study area. ***Regression predictor 
is significant at the above 0.001 level. **Regression predictor is significant at the 0.01 level. *Regression 
predictor is significant at the 0.05 level.

Location Variable Highest regression step Predictors VIF R R2 Sig

Raya Azebo

YpHa 2 Annual_RFE, July15_SPI3 2.953
2.953 .730 .533 .003**

.045*

SCY 2 Annual_RFE, July15_SPI3 2.953
2.953 .750 .563 .002**

.037*

YLR Nil

Endamehoni

YpHa 2 oct15_SPI12, Aug15_DNDVI 1.014
1.014 .754 .569 .001***

.039*

SCY 1 oct15_SPI12 1.000 .661 .437 .003*

YLR 2 sep15_SPI12, oct15_DNDVI 1.014
1.014 .790 .624 .001***

.007**

Entire area

YpHa 1 Annual_RFE 1.000 .635 .403 .000***

SCY 3 KRFE2015, jun15_DNDVI,
ND15

1.731
1.217
1.997

.758 .575
.004**
.002**
.003**

YLR 2 KRFE2015, jun15_DNDVI 1.049
1.049 .818 .669 .000***

.001***
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2017 drought and crop yield: relationship and climatic/vegetative predictors. The pattern 
observable (Fig. 3) is inconsistent with the 2015 drought year (Fig. 2) as no location recorded 100% crop loss. 
Also, areas that had higher crop losses in the previous drought of 2015 had better and improved yield in this sea-
son. As earlier indicated above, the results are presented in three subsections to represent the lowland case study 
(Raya Azebo), the highland case study (Endamehoni), and the entire study area. These sections also correspond 
to the three-batch analyses implemented to unravel the relationship of drought with crop yield and arriving at 
key drought indicators that more accurately predicted the crop yield in the drought events (Table 6).

Raya Azebo (lowland). There is a strong positive significant relationship between annual NDVI with YpHa and 
SCY. A positive moderate not-significant relationship also exists between kiremt Dev-NDVI, YpHa and SCY 
(Table 7). June to September Dev-NDVI values show a moderate negative not-significant relationship with YpHa 

Figure 3.  (a) Kiremt season rainfall (JJAS) (b) Farmers’ reported yield (c) Kiremt season Dev-NDVI, and (d) 
Farmers’ yield loss ratio for the 2017 farming season. Source: Authors (ArcMap 10.4).

Table 6.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2017 in the study area.

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sep Oct

YpHa (rs) 0.37* 0.38* 0.39* 0.00 0.13 − 0.07 − 0.12 − 0.05 − 0.08 − 0.01

SCY (rs) 0.26 0.29 0.45** 0.07 0.22 -0.03 − 0.15 − 0.08 − 0.10 − 0.00

YLR (rs) 0.41* 0.35* − 0.24 − 0.40* − 0.50** − 0.14 0.19 − 0.15 − 0.08 − 0.05

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) − 0.15 0.39* − 0.11 0.44** 0.41* − 0.10 0.04 − 0.12 0.46** 0.43* − 0.45** 0.47** − 0.18 0.33 0.46**

SCY (rs) − 0.07 0.36* − 0.05 0.41* 0.36* − 0.03 0.07 − 0.07 0.37* 0.36* − 0.37* 0.38* − 0.11 0.28 0.37*

YLR (rs) − 0.21 − 0.1 − 0.14 − 0.17 − 0.00 − 0.38* − 0.24 − 0.07 0.25 0.25 − 0.11 0.31 0.05 0.13 0.30
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and SCY. Crop loss relates moderately with kiremt season rainfall, June and July Dev-NDVI, August SPI-1; July 
to September SPI-12 values. All these were not significant in their relationship. However, June SPI-3 has a strong 
negative significant relationship with YLR while October SPI-12 has a strong positive relationship with YLR, 
which is also significant (Table 7).

The results of a seven-step multiple regression (Supplementary Table S.02) indicate that annual NDVI for 
2017, and June to October Dev-NDVI values are key predictors of SCY. The combination of annual NDVI, June 
Dev-NDVI, August Dev-NDVI, July Dev-NDVI and October Dev-NDVI explains 96% of the variation of SCY 
in Raya Azebo for this farming season. Similarly, a seven-step regression presents the annual NDVI and Dev-
NDVI, June SPI-12, June, August and September Dev-NDVI as the most significant predictors of YpHa with 
96.6% explanation of the variation in yield per hectare obtained in Raya Azebo (Table 9). The key predictor of 
crop losses in Raya Azebo during the 2017 drought was Kiremt Rainfall (Table 9). The coefficient of determina-
tion (r2) obtained shows that 37.1% of the variations in the yield loss ratio obtained in the study area in 2017 is 
attributed to the kiremt rainfall values (Table 9).

Endamehoni (highland). Key results found in this area indicate that YpHa and SCY are moderately positively 
correlated with Annual and June Dev-NDVI (Table 8). The SCY, however, shows a strong positive relationship 
with kiremt Dev-NDVI, August and September Dev-NDVI. The YLR had a strong negative significant relation-
ship with kiremt Dev-NDVI, September SPI-3; July, September and October SPI-12. The variable also had a 
moderate negative correlation with annual and June Dev-NDVI; July, September and October SPI-1; October 
SPI-3 values.

The most relevant predictors of SCY in Endamehoni are September Dev-NDVI and the 2017 Kiremt Dev-
NDVI in a two-step computation (Supplementary Table S.02). The coefficient of determination (r2) shows that 
only the September Dev-NDVI is a predictor of SCY explain 29.5% of the variation, while the addition of the 
kiremt season Dev-NDVI for the year explains 46.9% variation in standardized crop yield in the area for the 
year under review (Table 9). Similarly, the September Dev-NDVI is the sole predictor of YpHa in the area with 

Table 7.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2017 in Raya Azebo.

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sep Oct

YpHa (rs) − 0.32 − 0.01 0.66** 0.35 0.53* − 0.30 − 0.49 − 0.43 − 0.43 − 0.11

SCY (rs) − 0.32 − 0.01 0.67** 0.35 0.53* − 0.30 − 0.48 − 0.42 − 0.42 − 0.13

YLR (rs) 0.35 0.46 − 0.17 0.02 − 0.13 0.51* 0.61* 0.20 0.17 0.07

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) 0.37 0.32 0.21 0.59* 0.32 .508* 0.01 0.16 0.04 0.15 − 0.2 0.02 0.07 0.00 0.09

SCY (rs) 0.37 0.32 0.21 0.59* 0.32 .508* 0.01 0.16 0.04 0.15 − 0.2 0.02 0.07 0.00 0.09

YLR (rs) − 0.06 0.00 0.18 − 0.23 0.002 − 0.50* − 0.32 0.228 0.327 0.203 0.18 0.461 0.327 0.38 .507*

Table 8.  Spearman’s (rs) correlation results of yield, drought and several climatic/vegetative indicators for the 
year 2017 in Endamehoni. ANRFE annual rainfall, KRFE Kiremt season rainfall, AND annual NDVI, ANDND 
annual dev-NDVI, KRDND Kiremt dev-NDVI, YpHa yield (Qt) per hectare, SCY standardized crop yield, 
YLR yield loss ratio, DND dev-NDVI. **Correlation is significant at the 0.01 level (2-tailed). *Correlation is 
significant at the 0.05 level (2-tailed).

Yield variables

Factors

ANRFE KRFE AND ANDND KRDND

Monthly DND

Jun Jul Aug Sep Oct

YpHa (rs) 0.02 − 0.17 0.13 0.11 0.23 0.30 0.29 0.54* 0.58* 0.16

SCY (rs) − 0.05 − 0.12 0.30 0.14 0.28 0.39 0.26 0.43 0.43 0.18

YLR (rs) − 0.00 − 0.38 − 0.42 − 0.32 − 0.59* − 0.55* − 0.15 − 0.14 0.05 0.09

Yield variables

Factors

Monthly SPI-1 Monthly SPI-3 Monthly SPI-12

Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct Jun Jul Aug Sep Oct

YpHa (rs) − 0.16 0.10 − 0.13 − 0.04 − 0.06 − 0.12 0.19 − 0.13 0.02 − 0.10 − 0.40 0.07 − 0.18 − 0.7 0.04

SCY (rs) − 0.09 0.12 − 0.02 0.02 − 0.00 − 0.06 0.15 − 0.02 0.07 − 0.01 − 0.28 0.10 − 0.08 0.8 0.08

YLR (rs) 0.07 − 0.44 − 0.19 − 0.42 − 0.45 0.02 − 0.00 − 0.19 − .60** − 0.45 0.041 − 0.57* 0.09 − 0.52* − 0.50*
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45.2% of variations explained in the one-step regression implemented (Table 9). September SPI-3 is the only, 
most relevant and significant predictor of crop losses in this location for the year 2017. The coefficient of deter-
mination (r2) shows that September SPI-3 explains 45.4% of the variation in yield loss ratio in the area (Table 9). 
A nearly-significant predictor is the June Dev-NDVI with (p = 0.052).

Entire study area. The results depict a moderate positive significant relationship between annual rainfall, kiremt 
season rainfall, annual NDVI and YpHa (Table 6). Similarly, a moderate positive significant relationship exists 
between Annual NDVI and SCY. Also, the July, September and October SPI-1; September and October SPI-3; 
together with June, July and October SPI-12 all show a moderate positive relationship with YpHa and SCY. In 
correlating crop loss with the various factors, only the annual rainfall and kiremt season rainfall showed a posi-
tive significant relationship with YLR, while June SPI-3 values show a moderate positive significant relationship.

Annual NDVI and July SPI-12 are the key predictors of SCY from the two-step multiple regression analysis 
implemented (Supplementary Table S.02). Annual NDVI alone explains 19.6% of the variation in the standard-
ized crop yield while the combination of both predictors—annual NDVI and the July SPI-12 values for the year 
explain 33.1% of the variation in SCY (Table 9). However, for the YpHa, July SPI-12 as the only and most relevant 
and significant predictor with the coefficient of determination (r2) obtained shows that 24.4% of the variations 
in the yield per hectare obtained in the study area is attributed to the July SPI-12 values (Table 9).

The most significant predictors of yield loss in the study area are kiremt rainfall and September SPI-3. The 
coefficient of determination (r2) show that kiremt rainfall alone explains 19% of the variation in yield loss ratio; 
while the combination of kiremt rainfall and September SPI-3 explain 33% variations in yield loss within the 
entire study area (Table 9).

Discussion
The year 2015 is adjudged as the most recent drought year of high magnitude and one of the worst events over 
the past 30 years covering a large area and exacerbating food insecurity in  Ethiopia3,47. These literature reports are 
supported by evidence of low crop yield in a larger part of the study area (Fig. 2). Also, the year 2017 is recorded 
as the most recent drought year in some parts of Tigray/Ethiopia with Gross Domestic Product (GDP) losses 
due to climate variability estimated to be around 1–4% excluding human  losses8. These events were expected to 
have impacted on crop yield and yield losses in the study area.

From this study, drought has again been proven to be location-specific, and not a broad spatio-temporal phe-
nomenon at any given time. In an earlier study, Viste et al.5 describe most historic droughts as being more of ‘local 
or regional character’ with dissimilar effects at different places and seasons. Each drought year reviewed (2015 
and 2017) stands out uniquely in its nature and characteristics. The only common denominator is precipitation-
deficit, which in itself may be of different magnitude per location. Overall, the seasonal rainfall benchmark of 
500 mm as stipulated by Haile et al.48 for a rough drought indicator in a season helps to present an outlook of 
the drought. In 2015, the entire study area fell below the 500 mm mark, while in 2017, only one tabia/kabele 
(village) did. Hence the 2015 drought was more widespread than that of 2017, with the majority of farmers in 
the lowland reporting entire crop losses. The predictors of yield and yield losses indicate that droughts coincid-
ing with planting and maturing stages of crops are critical and inimical to crop production and agricultural 
sustainability and food security.

Table 9.  Predictors of YpHa, SCY and YLR in the 2017 drought year in the study area. ***Regression predictor 
is significant at the above 0.001 level. **Regression predictor is significant at the 0.01 level. *Regression 
predictor is significant at the 0.05 level.

Location Variable Highest regression step Predictors VIF R R2 Sig

Raya Azebo

YpHa 7
sep17_DNDVI, jun17_DNDVI, aug17_
DNDVI, june17_SPI12,
DNY2017

2.622
1.191
2.308
1.382
1.755

.983 .966

.027*

.000***

.004**

.000***

.000***

SCY 7
ND17,
jun17_DNDVI, aug17_DNDVI, jul17_
DNDVI, oct17_DNDVI

1.587
1.678
1.624
2.068
1.553

.980 .960

.000***

.000***

.000***

.009**

.029*

YLR 1 KRFE2017, 1.000 .609 .371 .012*

Endamehoni

YpHa 1 Sep17_DNDVI 1.000 .672 .452 .002**

SCY 2 sep17_DNDVI, KSDN17 1.013
1.013 .685 .469 .007**

.043*

YLR 1 sep17_SPI3 1.000 .674 .454 .002**

Entire area

YpHa 1 Jul17_SPI12 1.000 .494 .244 .003**

SCY 2 ND17,
Jul17_SPI12

1.028
1.028 .575 .331 .015*

.018*

YLR 2 KRFE2017, sep17_SPI3 7.822 + 
7.822 .575 .330 .002**

.016*
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Specifically, the stability (time) dimension of food security is of concern in this study. According to the defi-
nition of Food and Agriculture Organization of the United  Nations49 the stability dimension also referred to as 
the time dimension of food security by Peng and  Berry50 refers the ability of a person, community or nation to 
withstand food system shocks arising from either natural or man-made disaster sources. The widespread crop 
losses witnessed in the lowland communities due to the 2015 drought indicate the susceptibility of their food 
systems to drought events. This condition requires the adoption of preventive adaptation measures and improved 
preparedness to forestall future occurrences on the impact. It is necessary to strengthen the stability dimension 
of food security of the vulnerable communities because of its potential effect on other levels and dimensions of 
food  security50.

In both years (2015 and 2017), and for the entire study area, both annual and the kiremt seasonal rainfall 
were related to the crop yield reported by farmers. Crop yield is largely a function of adequate soil moisture at 
all stages of crop growth and maturity. Hence, the shortage of rainfall (occurrence of drought) brought about 
reduced crop yield in the area. These assertions are corroborated by the findings of Gidey et al.17 who reported 
that agricultural drought responds positively to seasonal rainfall. Also, part of the findings of previous  studies51–53 
indicate that rainfall significantly determines the occurrence of drought, hence manifesting high influence on 
the growth and development of vegetation.

Different timescales of SPI, especially the 3- and 12-month scales calculated in this study were recurring pre-
dictors of crop yield in the area. Although, the 6-month scale is excluded in this study, we can infer that it is likely 
to be a predictor of drought. In relating meteorological drought index for drought monitoring, several studies 
have found a significant relationship between SPI and crop  yield54–56. Also, the vegetation anomaly (Dev-NDVI) 
can detect agricultural drought and predict crop yield in the area. These rainfall and vegetation based indices 
used in this study considered vis-à-vis specific crop timelines are helpful to clarify the periods drought were more 
critical. For example, the SPI-3 for July 2015 predicted sorghum yield for the lowland portion of the study area, 
because sorghum crops are at their early stages of growth at this particular time. In the mid and highland areas, 
the Dev-NDVI for October 2015 predicted yield and yield loss as the late maturity period for barley includes 
October. Hence, the satellites detected low vegetation vigor, indicating drought at the time. For the Dev-NDVI 
to detect agricultural drought in October, it also implies that preceding moisture deficit has occurred.

The reduced impact of drought on crop yield in 2017, especially in the lowland area is attributable to the 
increased rainfall received. Most of the tabias (villages) received rainfall higher than 500 mm, which supports 
healthy and sustainable agriculture. Additionally, the report of Madajewicz et al.57 contains Oxfam’s contribution 
to the minimization of drought risks by the construction of canals covering 862 hectares of land to supplement 
rain-fed agriculture in the occurrence of a drought event, pointing to the increased popularity of spate irrigation 
systems. This may likely have been utilised in these areas resulting in reversing the report of 100% crop losses 
witnessed in 2015, and obtaining above-normal crop yield in 2017, despite droughts. Steenbergen et al.58 describe 
the dual benefit of spate irrigation as being a means of both soil and water conservation. Hence, while water 
channeled from the highlands to the midlands and lowlands are stored for use as required, the alluvial deposit 
that accompanies the flood are rich in nutrients to improve crop yields and reduce costs of purchasing  fertilizers58.

Conclusion
This study critically assessed the recent drought years (2015 and 2017) in northern Ethiopia, with a focus on 
a small area containing high, mid and lowland agroecology. Results obtained show droughts as having spati-
otemporal variations and impacts, with its primary and common reflection being reduced vegetation amount. 
This translated to crop failures, the reduced income of smallholders, food shortages and food insecurity. SPI, 
NDVI and Dev-NDVI were found quite useful as indicators of drought and considered able to be applied in the 
preparation of early warning for droughts when they fall below a certain established threshold for the area in 
each cropping season, especially at critical crop growth and maturity stages. Findings of this study can provide 
information for further discussions in improving drought monitoring at lower locational scales. The stability 
(time) dimension of food security was affected by the 2015 drought in the lowland areas as most farmers report 
entire sorghum losses. Irrigation channels to flow from the highland areas to the lowland areas (spate irriga-
tion) could be popularized as an adaptation measure to reduce vulnerability to droughts. This will improve food 
security/stability in the face of climatic events such as droughts by providing supplementary water supply to 
meet the crops’ water requirements especially during the growing and maturity periods. With the provision of 
supplementary water source(s) during rainfall shortages in cropping seasons, the impacts of future droughts 
on food security are reduced. There could be more factors responsible for crop losses not captured in this study, 
hence providing an aspect for future further research.

Limitations and further research
The findings of this study would have been more generalizable if the number of farmers that constituted the 
sample size was more in the number. The complexities and systematic measurement errors in self-reported crop 
production data from smallholders in Africa identified by past  studies59–61 are hereby acknowledged as limiting 
the findings of this study. The exclusion of temperature as a variable in this study is an obvious limitation, which 
would have provided improved outcome for drought assessment, especially with the use of SPEI, instead of SPI. 
Also, the estimation of a 6-month time-step for SPI (SPI-6) was omitted from the study, which could further 
strengthen findings. However, future studies can address these deficiencies, in addition to conducting a more 
detailed analysis of specific crops’ growth stages with climatic variables, and the impact of the use of spate irriga-
tion systems, for more robust outcomes. Spate irrigation was not considered a priori as a factor that could affect 
the impacts of droughts in the area, hence further inquiry was not considered in this regard.
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