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Abstract: InfraRed Thermography (IRT) is a valuable diagnostic tool to non-destructively 

detect defects in fiber reinforced polymers. Often, a range of processing techniques are applied, 

e.g. principal component analysis, Fourier transformation, and thermographic signal 

reconstruction, in an attempt to enhance the defect detectability. Still, for the actual defect 

detection and evaluation, the interpretation by an expert operator is required which thus limits 

the (industrial) application potential of infrared thermography.  

This study proposes a Generative Adversarial Network (GAN) framework, termed IRT-GAN, 

to create a single unique thermal-image-to-segmentation translation of defects in composite 

materials. A large augmented numerical dataset has been simulated for a range of composite 

materials with different defects in order to train the IRT-GAN model. Integrated with the Spatial 

Group-wise Enhance layer, the IRT-GAN takes six pre-processed thermal images, 

thermographic signal reconstruction images in our case, as input and progressively fuses them 

via a multi-headed fusion strategy in the Generator. As such, this proposed IRT-GAN 

framework leads to the automated generation of a unique defect segmentation image. 

The high performance of the IRT-GAN, trained on the virtual dataset, is demonstrated on 

experimental data of both glass and carbon fiber reinforced polymers with various defect types, 

sizes, and depths. In addition, it is investigated how early, middle, and late-stage feature fusion 

in the GAN influences the segmentation performance. 
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destructive testing, Image fusion 

  



1. Introduction 

As an important structural material today, Carbon Fiber Reinforced Polymer (CFRP) and Glass 

Fiber Reinforced Polymer (GFRP) composites are used in a wide range of applications, with 

particular relevance to the aerospace and automotive industries. Inevitably, composite materials 

suffer from defects, such as delamination and porosity, due to the production process and/or 

unacceptable operating loads. Therefore, Non Destructive Testing (NDT) has emerged as a 

critical technology to guarantee the structural integrity of composite components. 

Active InfraRed Thermography (IRT) is an appealing NDT technique for diagnostic purposes 

that utilizes an InfraRed (IR) camera to rapidly and accurately measure the thermal response 

for the purpose of detecting and quantifying defects [1-3]. However, the recorded raw data from 

the IR camera is frequently contaminated by a variety of noise sources, such as external 

reflections, variations in the optical properties of the specimen, non-uniform heating, and 

instrumental noise. And the consequence in this regard is a certain degree of impairment in 

defect detection. To mitigate the various noise effects and to enhance the detectability of defects 

in composite materials, several post-processing techniques have been developed in recent years, 

such as Thermographic Signal Reconstruction (TSR) [4-6], Principal Component 

Thermography (PCT) [7-8], Independent Component Thermography (ICT) [9-10] and Pulsed 

Phase Thermography (PPT) [11-12]. Through a low-order polynomial function, TSR fits the 

surface temperature evolution at each pixel during the cooling-down phase. Typical polynomial 

orders of four to seven are used [13–15], yielding five to eight images representing the 

corresponding polynomial coefficients. Typically, one TSR coefficient image fails to capture 

all defects, and the final solution for identifying defects is usually based on a comprehensive 

evaluation of all TSR images. The PCT technique projects the 3D thermal response data into an 

orthogonal space using Principal Component Analysis. The resulting Principal Component 

images can explain the largest part of the variability in the 3D thermal response data. However, 

it is not straightforward to predict which PC image captures the variance due to the presence of 

defects because this depends on the size, number, depth of defects, and the background noise 

level. In PPT, the harmonic components of the thermal response evolution are extracted in a 

pixel-wise manner using Fourier decomposition, and the phase contrast is evaluated. Depending 

on the defect type and defect depth, different evaluation frequencies provide optimal defect 

detectability. 

What all these techniques have in common is that they compress the recorded IR dataset into 

several representative images, aiming at reducing background noise and improving defect 



detectability. But even then, the selection and interpretation of the post-processed images, in 

order to detect the presence of defects, is not always straightforward. Often, this still requires 

human intervention and experienced experts in order to properly detect and evaluate defect 

features. It would be more interesting if the human factor in selecting and interpreting post-

processed thermal images could be excluded, as such to further enhance the defect detectability. 

The present study proposes a deep learning image segmentation model, termed IRT-GAN, for 

automated analysis of thermography data. The IRT-GAN involves an image fusion strategy 

under the framework of Generative Adversarial Networks (GANs) [16-18], and results in a 

single segmented image revealing the presence of defects. Although image segmentation 

techniques have been widely used in natural image processing, rare applications in infrared 

thermography non-destructive testing have been reported so far [19-22]. Different from the 

deep learning approaches in [19-22], our approach focuses on the post-processed images such 

as TSR, PCT or PPT images, and fuses them into a unique segmentation image via the proposed 

IRT-GAN model. Considering that the origin of the thermographic data is of minor importance 

for our deep learning framework, it can be applied to a range of test modalities employing 

different heat excitation waveforms, e.g. flash heating [23], step heating [24], square wave 

heating [25] and frequency and/or phase modulated heating [26]. 

The novelties of the proposed IRT-GAN segmentation model are highlighted :  

1) A customized generator and discriminator architecture are designed to accomplish the 

goal of detecting defects. 

2) The training of the proposed IRT-GAN model is solely conducted on the basis of a 

virtual dataset (no involvement of experimental data), and it is afterwards tested on 

experimental data. 

3) It generates a single unique defect segmentation image with improved defect 

detectability, thereby avoiding any human intervention and/or threshold selection.  

The paper is organized as follows: Section 2 introduces the proposed IRT-GAN framework. 

Section 3 describes the preparation of training and test datasets. Section 4 illustrates the image 

segmentation results on CFRP and GFRP panels with a range of defects and further discusses 

two alternative fusion strategies. Section 5 concludes the study and outlines the future work. 

2. Methodology 

2.1 The introduction of GAN 

Ian Goodfellow's article on the GAN [16] framework, first published in 2014, has drawn 

substantial attention from researchers working in Machine Learning (ML), as evidenced by the 



constant emergence of new frameworks and applications based on GAN [27-33]. This technique 

can be thought of as a novel synthesis of game and graph theory, which essentially consists of 

two adversarial models: Generator G and Discriminator D. The principal function of the 

generator G is to capture the distribution of real images to deterministically generate new fake 

but plausible images, thus deceiving the discriminator D. The discriminator D need to ascertain 

the genuineness of the received images (real or fake). The objective of the training process is 

to achieve Nash equilibrium [16], which indicates that G has successfully learned the 

distribution of real data and generated plausible fake data, while D has lost the ability to 

distinguish anymore between real and fake data. The schematic diagram of GAN is shown in 

Fig.1. 

 
Fig.1 The schematic diagram of GAN 

 

The objective function of GAN is expressed as below: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺)  = 𝛦𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] (1) 

In which 𝐸  represents the expectation value, 𝑥  is the real data sampled from 𝑝𝑑𝑎𝑡𝑎 , and 𝑧  is 

input noise variable sampled from a prior defined distribution 𝑝𝑧 , for instance, a one-

dimensional Gaussian distribution. The GAN’s training is achieved via the optimization of 

those two terms in equation (1), representing the entropy of the data from the real distribution 

and the learned distribution from G judged by D, respectively. More specifically, the goal of 

training D is to maximize the objective function (1) by assigning the probability scores of real 

and generated data. The training target of G is entirely opposite as it wants to minimize the 

objective function (1), which is equivalent to increasing the probability score of generated data 

judged by D. For more details on GAN theory, readers are referred to the original GAN paper 

[16]. 

Owing to the several distinct advantages of GAN, such as no need for any Markov chains or 

unrolled approximate inference networks during either training or generation of samples, 



several successful applications in various fields have emerged recently, including image-to-

image translation [27], super-resolution images [28-29], image inpainting [30-31], and 

classification [32-33]. 

2.2 Proposed IRT-GAN framework 

One of the primary drawbacks of IRT defect detection approaches based on the post-processing 

techniques such as PCT, TSR, and PPT lies in the diversity and uncertainty of generated outputs, 

which necessitates human intervention in the interpretation with respect to defect detection and 

also complicates fusion techniques in deep learning. In order to overcome this, we propose a 

deep learning framework IRT-GAN which can be applied on post-processed images (e.g. TSR, 

PCT, PPT) with the goal of obtaining a single unique segmentation result and an enhanced 

defect detectability. 

The original pix2pixGAN model consists of a generator (U-Net [34]) and a discriminator (Patch 

GAN) and is applied to the general purpose of end-to-end translation [27]. However, the single-

input-single-output mode confines our case due to the fact that defects in composites are likely 

to be present in more than just a single post-processed TSR/PCT/PPT image. Inspired by 

pix2pixGAN, we propose an IRT-GAN architecture founded on the pix2pixGAN model and 

designed for the defect segmentation task in composite materials. The architecture of IRT-GAN 

still retains the fundamental skeleton of pix2pixGAN but adapts the generator and discriminator 

to enhance defect detectability. Specifically, a multi-headed generator is implemented in order 

to fuse the post-processed thermal images, i.e., the TSR, PCT, or PPT images, while a two-path 

discriminator (GlobalGAN and PatchGAN) [30] is employed in order to not only capture the 

holistic features but also the local continuity in the images. 

The following section demonstrates the formulation and framework of IRT-GAN, followed by 

a discussion of the structures of G and D. By the end of this section, the objective function is 

analysed. 

2.2.1 The overall structure 

This part demonstrates IRT-GAN at the general architecture level, as displayed in Fig.2. The 

IRT-GAN contains a multi-headed generator and two-path discriminator. The original U-Net 

contains a contraction path stacked with multiple convolutions and max-pooling layers used to 

downsample for generating high-level features (bottleneck) and an expanding path used to 

enable precise localization using transposed convolution. In particular, skip-connection as a 

crucial operation in U-Net is used to concatenate the outputs from the decoder to the feature 

maps from the encoder at each step, thus recovering better fine-grained details in the prediction. 



It has already demonstrated its superiority in segmentation tasks for medical images [35-36]. 

As a result, the generator in IRT-GAN employs U-Net as the basic structure, consisting of an 

encoder with multiple encoding paths and a decoder. To summarize, the primary training steps 

are as follows: First, numerical IRT datasets are generated using a simulation model (see section 

3.1), providing a way to obtain a large virtual training database with ground-truth defect labels. 

Then, TSR (can also be replaced by PCT or PPT) analysis is conducted on the simulated IRT 

datasets. For the TSR technique, a 5th order polynomial is adopted to fit pixel-by-pixel the 

temporal evolution of the numerically simulated IRT datasets. This results in six TSR 

coefficient images denoted as Image 1 - Image 6 in Fig.2, for each simulation case. Next, the 

TSR images are fed into the multi-headed generator to get fused feature maps in the encoder 

and to generate a unique segmentation image from the decoder together with the strategy of 

skip connections from the encoder. Then, the segmentation image and ground-truth image are 

concatenated with the raw 6 TSR images, forming a 21-channel image matrix (each TSR 

contains 3 RGB channels, plus 3 channels from the ground truth image, thus resulting in a total 

21-channel matrix after concatenating them) and fed into the discriminator to make a judgment 

on their authenticity.  

Last, the parameters in the generator and discriminator are updated via the backpropagation 

mechanism according to a predefined loss function.  

 
Fig.2 The overall architecture of IRT-GAN 

 



2.2.2 Generator network  

One of the challenges of multi-modal image fusion in deep learning is to optimally extract and 

fuse individual core information from each single (monomodal) image. As the core of the 

proposed IRT-GAN, taking the U-Net architecture as the backbone with an encoder and decoder, 

the multi-headed generator G is composed of convolutional blocks (C), Transposed 

Convolutional blocks (TCN), and Spatial Group-wise Enhance blocks (SGE) [37]. Fig.3 shows 

an in-depth view of the architecture of the generator. Among them, the C block is formed by 

linking a convolutional layer [38], a BatchNorm layer [39], a LeakyReLU layer [40], and a 

dropout layer [41], which are used to downsample and to extract feature maps. TC block is 

designed to be similar to the C block, in which the convolutional layer and the LeakyReLU 

layer are replaced as a transposed-convolutional layer [42] and a ReLU layer [43], respectively. 

Putting these blocks in the appropriate order with skip-connections can form a network to 

realize an adversarial training process. Specifically, the architecture of the training flow for the 

generator is presented in Fig.3.  

 

 

Fig.3 The architecture of the generator G 

 

▪ Encoder 



An encoder is a network that receives an input and delivers a condensed feature vector or map. 

These vectors holding representative information can ideally be mapped to the original input. 

The input of the generator is, in our case, six TSR images with an image size of 256 × 256 × 

3 (Width × Height × Channel). Before demonstrating the technical details, a couple of notions 

are first introduced. 

Convolutional block (C)  

Convolutional neural networks are able to produce image representations that capture 

hierarchical patterns and attain global theoretical receptive fields. And one of the popular 

convolutional blocks C in deep learning frameworks consists of convolutional, BatchNorm, 

leakyReLU, and Dropout layers consecutively in sequence as shown in Fig.4, in which the 

BatchNorm layer serves to stabilize the learning process by setting the units to have zero mean 

and unit variance, while leakyReLU allows for a small, non-zero gradient when the unit is not 

active, and the dropout layer is designed to avoid over-fitting. In addition, the C module also 

serves to transform the original feature map 𝑿 into a new feature map 𝑿𝟏 with dimensionality 

reduction from 𝑊1 × 𝐻1 × 𝐶1  to 𝑊2 × 𝐻2 × 𝐶2,  as indicated in Fig.4. 

 

Fig.4 The schema of the C module  

 

Spatial Group-wise Enhance (SGE)  

In order to suppress noise and further enhance the learned feature maps, a Spatial Group-wise 

Enhance Network (SGE) [37] is being employed on top of a C block, adaptively adjusting the 

weights of each sub-feature by generating an attention factor for each spatial location in each 

semantic group. It is worth mentioning that the SGE module is very lightweight and, by its 

nature, requires almost no additional parameters or calculations. Its schema is illustrated in 

Fig.5. 



 

Fig.5 The schema of the C-SGE module  

From Fig.5, it can be seen the dimensionality of the output 𝑿2 from the SGE block remains the 

same as 𝑿1. For more details about the SGE block, readers are referred to [37]. 

 

Encoder architecture 

The encoder in the generator first takes six TSR images as input and passes them into individual 

C blocks with convolutional kernels 4 × 4 . All strides and paddings are set to 2 and 1, 

respectively. The padding mode is set as “reflect” to avoid causing undesirable grey edges. The 

first C block is designed to extract the feature maps from each input image independently and 

keeps the outputs from the convolution blocks at half the size of the inputs. This operation can 

be expressed using the following equation.  

𝑬𝑶𝑘
𝑙 = 𝑪(𝑬𝑶𝑘

𝑙−1, 𝑬𝑾𝑘
𝑙 ) (2) 

Equation (2) depicts the nonlinear mapping from original input into feature maps, where 𝑬𝑶𝑘
𝑙

 , 

𝑬𝑾𝑘
𝑙  denote the output feature map and the weights of the lth block layer from the kth encoding 

path in the encoder. 𝑬𝑶0 stands for the original input images. The numbers in Fig.3 indicate the 

number of the various block layers.  

The feature maps of each input image are learned and extracted independently via the first three 

layers of the encoder, before being further processed for the fusion purpose. The 

implementation of this process can be described via equations (3)-(5). 

𝑬𝑶𝑘
1 = 𝑪(𝑬𝑶𝑘

0 , 𝑬𝑾𝑘
1 ) (3) 

  𝑬𝑶𝑘
2 = 𝑪(𝑬𝑶𝑘

1 , 𝑬𝑾𝑘
2) (4) 

                           𝑬𝑶𝑘
3 = 𝑪(𝑬𝑶𝑘

2 , 𝑬𝑾𝑘
3)  𝑘 =  1,2,3,4,5,6 (5) 

 

The learned feature maps 𝑬𝑶3 are then fed into the fusion procedure. One of the standard fusion 

operations of feature maps is to concatenate the feature maps at bottleneck level or after several 

convolution layers, yet this involves a significant number of additional parameters to use in 



training. To alleviate and successfully handle the complexity of the training process, the feature 

fusion blocks in the encoder are sparsely connected. More specifically, channel-wise 

concatenation is first applied to 𝑬𝑶1
3
  and 𝑬𝑶2

3
 , with a C block appended to obtain a fused 

feature map 𝑬𝑶1
4
. Likewise, the fused feature maps 𝑬𝑶2

4 and 𝑬𝑶3
4 can be obtained in the same 

manner.  This operation can be described by equations (6)-(8). 

𝑬𝑶1
4 = 𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶1

3, 𝑬𝑶2
3), 𝑬𝑾1

4) (6) 

𝑬𝑶2
4 = 𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶3

3, 𝑬𝑶4
3), 𝑬𝑾2

4) (7) 

𝑬𝑶3
4 = 𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶5

3, 𝑬𝑶6
3), 𝑬𝑾3

4) (8) 

The extracted fused feature maps 𝑬𝑶1
4 , 𝑬𝑶2

4 and 𝑬𝑶3
4 are continually fed into the next fusion 

layer composed of a C-SGE module. And this procedure can be formulated as 

𝑬𝑶1
5 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶1

4, 𝑬𝑶2
4), 𝑬𝑾1

5), 𝑬𝑾1
5_𝑆𝐸) (9) 

𝑬𝑶2
5 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶1

4, 𝑬𝑶3
4), 𝑬𝑾2

5), 𝑬𝑾2
5_𝑆𝐸) (10) 

𝑬𝑶3
5 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶2

4, 𝑬𝑶3
4), 𝑬𝑾3

5), 𝑬𝑾3
5_𝑆𝐸) (11) 

In which 𝑾𝑘
𝑙_𝑆𝐸 means the weights of the lth block layer from the kth encoding path involved in 

the SGE layer. The SGE block appended to the C block enables the quality improvement of the 

feature representations via a learnable attention mechanism.  

𝑬𝑶1
6 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶1

5, 𝑬𝑶2
5), 𝑬𝑾1

6), 𝑬𝑾1
6_𝑆𝐸) (12) 

𝑬𝑶2
6 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶2

5, 𝑬𝑶3
5), 𝑬𝑾2

6), 𝑬𝑾2
6_𝑆𝐸) (13) 

Next, the obtained feature maps 𝑬𝑶1
6 and 𝑬𝑶2

6 are further fused via equation (14) 

𝑬𝑶1
7 = 𝑺𝑮𝑬(𝑪(𝑐𝑜𝑛𝑐𝑎𝑡(𝑬𝑶1

6, 𝑬𝑶2
6), 𝑬𝑾1

7), 𝑬𝑾1
7_𝑆𝐸) (14) 

The outputs of the SGE block are then passed to an additional SGE block to further downsample 

and ultimately achieve the bottleneck signature, the operations of which are demonstrated in 

equation (15). 

𝐵𝑜𝑡𝑡𝑙𝑒𝑁𝑒𝑐𝑘 = 𝑺𝑬(𝑪(𝑬𝑶1
7, 𝑾1

𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘), 𝑾1
𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘_𝑆𝐸) (15) 

▪ Decoder 

A decoder is also a network that takes the feature vectors from an encoder to map them into the 

intended output, segmentation images in our case, via upsampling techniques. Unlike the 



convolutional layers in the encoder, which are typically designed for reducing the spatial 

dimensions of the input and intermediate feature maps, transposed convolutional layers are 

utilized for reversing the downsampling operations by the convolution.  

Transposed Convolutional block (TC) 

A transposed Convolutional block TC is composed of one transposed convolutional layer with 

one batch-norm layer, one ReLU activation function, and one dropout layer. A proper 

combination of these components is expected to accomplish the decoder's objective of 

converting the encoder's extracted feature maps to segmentation images. Convolutional kernels 

4 × 4 are defined. And all strides and paddings are set to 2 and 1, respectively. 

Decoder architecture 

Specifically, the decoder in our generator consists of six TC blocks, one output layer, and nine 

skip-connections. The following equations (16)-(23) illustrate the operating process of the 

decoder. 

𝑫𝑬𝑶1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝐵𝑜𝑡𝑡𝑙𝑒𝑁𝑒𝑐𝑘, 𝑫𝑬𝑾1 ), 𝑬𝑶1
7 ) (16) 

Where 𝑫𝑬𝑶1
 and 𝑫𝑬𝑾1

 represent the output feature map and the weights of the 1st block layer 

in the decoder, respectively. Equation (16) depicts the fact that the bottleneck vector obtained 

from the encoder (15) is first passed through the first TC block to get the output features, then 

fed to the next TC block concatenated with 𝑬𝑶1
7 via the skip connection. 

Operations similar to equation (16) for the next few layers in the decoder can be expressed as 

follows using equations (17)-(22): 

𝑫𝑬𝑶2 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶1, 𝑫𝑬𝑾2 ), 𝑬𝑶1
6 , 𝑬𝑶2

6) (17) 

𝑫𝑬𝑶3 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶2, 𝑫𝑬𝑾3 ), 𝑬𝑶1
5, 𝑬𝑶2

5, 𝑬𝑶3
5 ) (18) 

𝑫𝑬𝑶4 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶3, 𝑫𝑬𝑾4 ), 𝑬𝑶1
4, 𝑬𝑶2

4, 𝑬𝑶3
4 ) (19) 

𝑫𝑬𝑶5 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶4, 𝑫𝑬𝑾5 ), 𝑬𝑶1
3 , 𝑬𝑶2

3, 𝑬𝑶3
3 , 𝑬𝑶4

3, 𝑬𝑶5
3 , 𝑬𝑶6

3 ) (20) 

𝑫𝑬𝑶6 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶5, 𝑫𝑬𝑾6 ), 𝑬𝑶1
2 , 𝑬𝑶2

2, 𝑬𝑶3
2 , 𝑬𝑶4

2, 𝑬𝑶5
2 , 𝑬𝑶6

2 ) (21) 

𝑫𝑬𝑶7 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑻𝑪(𝑫𝑬𝑶6, 𝑫𝑬𝑾7 ), 𝑬𝑶1
1 , 𝑬𝑶2 

1 , 𝑬𝑶3
1 , 𝑬𝑶4

1, 𝑬𝑶5
1 , 𝑬𝑶6

1 ) (22) 

Unlike the previous layers, the resulting feature maps 𝑫𝑬𝑶7  are sequentially fed into the 

transpose convolutional layer and Tanh activation function, to yield the segmentation image 

𝑫𝑬𝑶8. 

𝑫𝑬𝑶8 = 𝑭𝒊𝒏𝒂𝒍(𝑫𝑬𝑶7, 𝑫𝑬𝑾8 ) (23) 



Where 𝑭𝒊𝒏𝒂𝒍 denotes the block composed of a transposed convolutional layer and a Tanh 

activation function. Note that the Tanh activation function is used instead of Sigmoid in order 

to have the generated image fall in the range [-1,1], as the input image is usually normalized to 

[-1,1]. 

In short, both the above-mentioned encoder and decoder contribute to a multi-headed generator, 

intending to fuse the input images (six TSR images in our case) into a single unique 

segmentation image. 

2.2.3 Discriminator network 

Determining an image's authenticity or falsity is a critical task for discriminators in GANs [16]. 

In Pix2pixGAN [27], the PatchGAN approach was formulated to evaluate the local patches 

from the input images, which emphasizes the global structure while paying more attention to 

local details. However, this solution may carry the risk of losing the global features in images. 

Inspired by PGGAN [30], the proposed IRT-GAN model further enhances the performance of 

the discriminator by aggregating local and global information through a combination of 

PatchGAN and GlobalGAN. The architecture of the adopted discriminator in this study is 

shown in Fig.6. 

The most frequently used network block in the discriminator D is termed DC block, which is 

composed of a convolutional layer, a BatchNorm layer, and a LeakyReLU activation function. 

The block in the first layer is without the BatchNorm layer. And the final layer for both 

PatchGAN and GlobalGAN uses the convolutional layer appended by a sigmoid function to 

output the scores of being real or fake.  

 

Fig.6 The architecture of the discriminator D 

 

The workflow of the discriminator can be briefly described as follows: the six TSR images 



along with the ground-truth image or the segmentation image from the generator are first 

concatenated as input to the discriminator, passed through the first three layers, and then split 

into two paths: PatchGAN and GlobalGAN. In the PatchGAN path, the output feature maps 

from the 3rd layer will be sourced to another DC block and 30 × 30 patch discriminators in the 

end. A DC block is appended to the output from the 3rd layer in the GlobalGAN. The resulting 

feature maps will be flattened and fed into a global discriminator. The mathematical expressions 

of the whole flow are omitted here as it is quite straightforward to understand from Fig.6. 

The architectures of networks G and D in the IRT-GAN model are detailed in the Appendix, 

respectively.  

2.2.4 Objective function 

During the training process, the discriminator D receives the generated segmented images from 

generator G or the ground-truth image along with the corresponding post-processed images (six 

TSR images in our case) in an attempt to have them differentiated, while the generator G strives 

to deceive the discriminator D. As long as D succeeds in correctly classifying its input, G 

benefits from the gradient provided by network D via its adversarial loss.  

▪ Adversarial  loss 

The adversarial loss comes from both paths of GlobalGAN and PatchGAN discriminator 

networks during the training process. Generator G and Discriminator D aim to tackle the targets 

𝑎𝑟𝑔 min
𝐺

max
𝐷

𝑉𝐺𝑙𝑜𝑏𝑎𝑙_𝐺𝐴𝑁(𝐺, 𝐷)  and 𝑎𝑟𝑔 min
𝐺

max
𝐷

𝑉𝑃𝑎𝑡𝑐ℎ_𝐺𝐴𝑁(𝐺, 𝐷)  collaboratively, which 

represents GlobalGAN and PatchGAN adversarial loss, respectively, as shown in equations (24) 

and (25). 

𝐿𝐺𝑙𝑜𝑏𝑎𝑙(𝐺, 𝐷𝑔)  = 𝛦𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log 𝐷𝑔(𝑥, 𝑦)] + 𝐸𝑦̃~𝑝𝐺(𝑦̃)[log(1 − 𝐷𝑔(𝑥, 𝐺(𝑥)))] (24) 

𝐿𝑃𝑎𝑡𝑐ℎ(𝐺, 𝐷𝑝)  = 𝛦𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log 𝐷𝑝(𝑥, 𝑦)] + 𝐸𝑦̃~𝑝𝐺(𝑦̃)[log(1 − 𝐷𝑝(𝑥, 𝐺(𝑥)))] (25) 

In which 𝐷𝑔 and 𝐷𝑝 denote the global and patch discriminators, respectively, 𝑥, 𝑦 are the input 

images and corresponding ground-truth labels, and 𝑦̃  is the generated image (segmentation 

image) from G. To train simultaneously for both 𝐷𝑔 and 𝐷𝑝, a joint loss, aiming to capture both 

the holistic features in the images and the local continuity, is defined as (26) 

𝐿𝐽𝑜𝑖𝑛𝑡(𝐺, 𝐷)  = 𝜆𝐺𝑙𝑜𝑏𝑎𝑙 ∙ 𝐿𝐺𝑙𝑜𝑏𝑎𝑙(𝐺, 𝐷𝑔)  + 𝜆𝑃𝑎𝑡𝑐ℎ ∙ 𝐿𝑃𝑎𝑡𝑐ℎ(𝐺, 𝐷𝑝)  (26) 

Where 𝜆𝐺𝑙𝑜𝑏𝑎𝑙  and 𝜆𝑃𝑎𝑡𝑐ℎ  are the weighting parameters assigned to 𝐿𝐺𝑙𝑜𝑏𝑎𝑙(𝐺, 𝐷𝑔)  and 

𝐿𝑃𝑎𝑡𝑐ℎ(𝐺, 𝐷𝑝), respectively.  

▪ Reconstruction  loss 

The GAN model benefits from the involvement of reconstruction loss. For instance, pixel-wise 



𝐿1  distance between the ground truth and generated image. The reconstruction loss 𝐿𝑅𝑒𝑐  is 

defined in equation (27). 

𝐿𝑅𝑒𝑐 =
1

𝑁
∑

1

𝑊 ∙ 𝐻 ∙ 𝐶
‖𝑦 − 𝑦̃‖1

𝑁

𝑛=1

 (27) 

▪ Total  loss 

The total loss for training the IRT-GAN can be concluded as  

𝐿𝑇𝑜𝑡 = 𝜆𝑅𝑒𝑐 ∙ 𝐿𝑅𝑒𝑐 + 𝜆𝐺𝑙𝑜𝑏𝑎𝑙 ∙ 𝐿𝐺𝑙𝑜𝑏𝑎𝑙(𝐺, 𝐷𝑔)  + 𝜆𝑃𝑎𝑡𝑐ℎ ∙ 𝐿𝑃𝑎𝑡𝑐ℎ(𝐺, 𝐷𝑝) (28) 

Note that a coefficient 𝜆𝑅𝑒𝑐  is also assigned to reconstruction loss. In this study, these 

parameters are set to 𝜆𝐺𝑙𝑜𝑏𝑎𝑙 = 𝜆𝑃𝑎𝑡𝑐ℎ = 0.5,  𝜆𝑅𝑒𝑐 = 200. 

3. Numerical and experimental datasets 

3.1 Numerical dataset generation for training the IRT-GAN 

The demand for large datasets containing healthy samples as well as samples with diverse defect 

conditions makes it challenging to train deep learning models for defect detection. From the 

experimental side, it is not straightforward to produce a large set of samples with specific well-

defined defects. Therefore, a virtual dataset has been generated through an adapted version of 

the IRT simulator introduced in reference [44]. In order to establish a virtual database, a square 

CFRP plate model of size 150 ×  150 ×  1.84 mm3 and quasi-isotropic material layup 

[(0/+45/90/-45)]S was adopted in this study, as shown in Fig. 7.  

 
Fig.7 Numerical model of CFRP plate 

 

There is a delamination of variable size and depth located in the middle of the part. The 

delamination is modelled by considering interface elements with a thermal resistance value of 

3.861e-4 K/W. A mesh convergence study was performed, resulting in a discretization of 

approximately 65000 elements for the considered part. The size and depth of the delaminations, 



as well as the material properties, are listed in Table.1. A non-uniform Gaussian-shaped heat 

flux with a 6 kJ is applied on the top surface of the sample, whose center is randomly located 

on the sample surface to mimic actual inspection conditions. The heating stage lasts 10 ms, 

followed by a cooling stage of 14.99 s. Convection boundary condition is considered, with a 

convection coefficient of 5 W/(m2·K). A total of 875 cases are simulated. After the application 

of a temporal standardization procedure, the TSR method (5th order polynomial) is applied to 

the simulated data, yielding a virtual database of 6 × 875 = 5250 images. 

Table.1  Parameters used in the numerical model 

Quantity Value  [44] 

Density 𝜌 [kg/m3] 1530 

Specific heat c [kJ/(kg·K)] 917 

Thermal conductivity k [W/m·K] kx = 2.71, ky = 0.61, kz = 0.53 [45] 

Side length of the delamination with 

rectangular shape [mm] 
1.0 ~ 50.0 

Depth of the delamination [mm] 0.23 ~ 1.61 

The number of simulation cases 875 

Simulation time ≈ 4 min × 875 cases ≈ 58.3 hours 

 

The obtained numerical are then fed into the IRT-GAN model for training purposes. It is also 

worth noting that PCT and/or PPT images may be employed as inputs for the IRT-GAN. 

Due to the fact that only defects with rectangular shapes, located in the centre of the samples, 

have been considered in the numerical dataset, the IRT-GAN model may fall into a monolithic 

learning pattern and may only identify defects similar to those. In order to enrich the labelled 

training set and increase the diversity of defect scenarios, data augmentation techniques were 

applied to the numerical TSR images by leveraging input transformations that preserve output 

labels, as such to enable the IRT-GAN model to detect and segment regions and defect shapes 

that are not present in the original TSR images. The training process incorporates a variety of 

common and beneficial data augmentation methods, including 

▪ ShiftScaleRotate → Randomly translate, scale, and rotate the TSR images. 

▪ GridDistortion → Randomly distort the TSR images. 

▪ RandomGridShuffle → Randomly shuffle grid cells on the TSR image. 

▪ ChannelShuffle → Randomly rearrange channels of the input RGB TSR image. 

 



 

Fig.8 Comparison between original TSR images and augmented TSR images, together with 

corresponding ground-truth images. 

Of the augmentations discussed, nearly all of these transformations come with an associated 



parameter that can be defined by users to adapt to their specific tasks. The functions employed 

in this study are encapsulated in PyTorch’s package: Albumentations [46], which is an open-

source library and a  commonly used image augmentation library. Note that these functions will 

be sequentially implemented in the numerical TSR dataset.  

Fig.8 exhibits an example of data augmentations on the obtained six TSR coefficient images 

from a random numerical case. The implementation of data augmentation results in an increase 

in diversity in terms of defect shapes, background colours, and even textures. Although the 

parameters associated with data augmentation for each TSR image are probably different from 

each other, the corresponding binary augmented labels, indicating the sizes and locations of the 

defects, are preserved across all TSR images. 

3.2 Experimental dataset generation for testing the IRT-GAN 

In order to evaluate the effectiveness of the proposed IRT-GAN, three experimental datasets 

were obtained for different composite materials, and various defect types, shapes, and depths.  

A Hensel linear flash lamp (6 kJ energy, 5 ms flash duration) is used to provide the optical 

energy input, while a FLIR A6750sc infrared camera records the sample’s surface temperature 

in the meantime. The camera is equipped with a focal plane array of 640×512 cryo-cooled InSb 

detectors and has a Noise-Equivalent Differential Temperature (NEDT) of ≤ 20 mK and a bit 

depth of 14 bits. It is sensitive within the mid-infrared wavelength range of 3−5 μm. A 50mm 

lens is mounted on the camera, and the inspected samples are positioned at a distance such that 

they fill the field of view of the camera. Hard- and software modules from edevis GmbH ensure 

accurate synchronization between the optical excitation and the data acquisition. A schematic 

of the thermographic inspection setup is shown in Fig.9(a). 

The first inspected sample is an autoclave manufactured cross-ply [(0/90)5]s GFRP laminate 

with a total thickness of 5.0 mm, and a set of circular Flat Bottom Holes (FBHs) has been milled 

from the backside. In total, 32 FBH’s were created with diameters of 5, 10, 15, and 20 mm, and 

with remaining thicknesses ranging from 0.5 mm up to 4.0 mm (in steps of 0.5 mm). A 

photograph of the sample, which will be called GFRPFBH further on, is provided in Fig.9(b). 

The distance between the GFRP sample and the flash optical excitation was 500 mm. The 

distance between the IR camera and the GFRP sample was 1050 mm, and the cooling regime 

was recorded for 120 s at a framerate of 30 Hz. 

Next, an autoclave manufactured CFRP plate with a thickness of 5.5 mm and a quasi-isotropic 

layup of [(+45/0/-45/90)3]s is studied. 12 circular FBHs were milled from the backside of the 

sample, with diameters ranging from 7 mm up to 25 mm and a remaining thickness of up to 



3.97 mm. Note that FBH 1 completely penetrates the part, and as such, is a through-hole. A 

photograph of the sample, later on, referred to as CFRPFBH, and the defect parameters are 

displayed in Fig.9(c). The excitation lamp was placed at an offset of 400 mm, while the sample’s 

temperature response was recorded for 120 s at 30 Hz at a distance of 1050 mm. 

The third sample of interest in this research is a CFRP laminate with a thickness of 3 mm and a 

layup of [(0/90)3]s. The sample was manufactured using the resin transfer moulding procedure, 

and a range of inter-ply square inserts was introduced during production. The inserts are 

constructed from double-folded brass foil encapsulated with flash breaker tape and measure 

15×15 mm2 and 20×20 mm2. They are located at depths ranging from 0.25 mm to 1.5 mm on 

the back of the plate opposite the heat source. At the resin injection point in the middle of the 

CFRP plate, an additional unintended defect was introduced during the manufacturing. A 

photograph and the information of this sample, named as CFRPInsert, are provided in Fig.9(d). 

The sample was located at a distance of 400 mm from the flash lamp, and at 1000 mm from the 

IR camera (which recorded the cooling down regime for 40 s at 30 Hz).  

The last sample is an autoclave manufactured CFRP plate with a thickness of 5.5 mm and a quasi-

isotropic layup of [(+45/0/-45/90)3]s which was subjected to a low-energy impact event according to 

ASTM standard D7136 [48]. The impactor with a weight of 7.72 kg is equipped with an Endevco Isotron 

23–1 load cell holding a 16 mm diameter hemispherical hardened solid steel impact tip. It was dropped 

from a height of 0.1 m on this sample, and resulting in a measured impact energy of 6 J. This impact 

event leads to the formation of barely visible impact damage in the CFRP laminate [ref to 

https://doi.org/10.1016/j.polymertesting.2017.11.023 ]. A 5 MHz ultrasonic C-scan in transmission has 

been performed in order to assess the size of the impact-induced damage and to obtain a ground truth 

image of the damage. Fig.9(e) shows a photograph of this sample (C-scan data is overlaid), which will 

be referred to as CFRPImpact. The distance between the CFRPImpact sample and the flash optical excitation 

was 500 mm. The distance between the IR camera and the CFRPImpact sample was 1050 mm, and the 

cooling regime was recorded for 120 s at a framerate of 30 Hz. 

 

https://doi.org/10.1016/j.polymertesting.2017.11.023


 

Fig.9: (a) Schematic of experimental setup for flash thermography, (b-e) photographs and 

defect parameters of GFRPFBH, CFRPFBH, CFRPInsert and CFRPImpact. 

3.3 Evaluation metrics 

In this study, the Pixel Accuracy (PA) and Intersection over Union (IoU) values, as the 

frequently-used evaluation metrics to measure the segmentation performance on a specific 

dataset [47], were adopted to validate the effectiveness of the proposed IRT-GAN model.  

PA computes a ratio between the amount of properly classified pixels and its total number, and 

its definition is formulated as follows: 

𝑃𝐴 =  
∑ 𝑝𝑖𝑖

𝑘
𝑖=0

∑ ∑ 𝑝𝑖𝑗
𝑘
𝑗=0

𝑘
𝑖=0

 (29) 

In which k and 𝑝𝑖𝑗 denote the total classes and the number of pixels of class i inferred to class 

j, respectively. In our study, k = 0 and k = 1 indicate the healthy and defective areas, respectively. 

And 𝑝𝑖𝑖 and 𝑝𝑗𝑗 here stand for the number of true positives and negatives, while 𝑝𝑖𝑗 and 𝑝𝑗𝑖 are 

usually interpreted as false positives and false negatives.  

The IoU value is defined as  

𝐼𝑜𝑈 =  
𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝑘
𝑗=0 + ∑ 𝑝𝑗𝑖

𝑘
𝑗=0 − 𝑝𝑖𝑖

 
(30) 

and measure whether the target in the image is detected. 



4. Results and analysis 

4.1 Training details 

The IRT-GAN is implemented using the PyTorch framework in Python (Python 3.7.10 and 

CUDA v11.0.221) using an NVIDIA Tesla P100 GPU card with 12GB of RAM. The IRT-GAN 

model employs the Adam optimizer with an initial learning rate 𝑙𝑟 = 1𝑒−4, and momentum 

parameters 𝛽1 = 0.5, 𝛽2 = 0.999. The batch size for training is 16. The equality of 𝜆𝐺𝑙𝑜𝑏𝑎𝑙 and 

𝜆𝑃𝑎𝑡𝑐ℎ   enables the discriminator to capture both local and global information. The training 

epoch is set to be 100, empirically shown to yield a good performance. 

To demonstrate the performance of the proposed IRT-GAN model, we train the model on the 

augmented TSR images from the virtual dataset and then validate the trained model on the three 

experimental datasets (GFRPFBH, CFRPFBH, and CFRPInsert). Prior to the training process, all 

TSR images have to be resized to 256×256 (pixel×pixel) in order to comply with the input 

requirement of the proposed IRT-GAN model. 

4.2 Experimental results 

The qualitative evaluation of the proposed IRT-GAN model is reported in Fig.10 for the 

different inspected composite samples.  



 

Fig.10 Visualization of each TSR image, predicted segmentation, and its ground truth 

for the GFRPFBH, CFRPFBH, CFRPInsert and CFRPImpact samples 

 

 GFRPFBH CFRPFBH CFRPInsert 



PA  93.79% 96.20% 91.22% 

IoU 56.77% 44.93% 42.97% 

Table.2 PA and IoU for the GFRPFBH, CFRPFBH, and CFRPInsert samples 

Although the IRT-GAN is trained exclusively on numerical data, it correctly identifies the 

majority of defects in the three GFRPFBH, CFRPFBH, and CFRPInsert samples, demonstrating the 

good performance of the proposed fusion strategy in the encoder to learn the cross-correlation 

between the inputs and to enhance the feature extraction and anti-noise interference capability. 

More precisely, a detectability rate of 29/32 was obtained for the GFRPFBH sample. Three of 

the deepest defects were not successfully detected by the IRT-GAN. For the CFRPFBH, and 

CFRPInsert samples, all defects have been successfully identified. It is also worth noting that the 

IRT-GAN appears to be quite accurate at predicting the defect sizes. Though, for sample 

CFRPImpact, IRT-GAN clearly underestimates the size of the damage. This can be easily 

understood by considering the diffusive nature of heat waves (with high lateral diffusion in case 

of CFRP), combined with the fact that the impact damage extends through the whole depth of 

the laminate. Hence, the small defect fragments at large depth are not properly represented in 

the acquired thermal data, and as such can also not be detected by the IRT-GAN framework.  

The obtained PA and IoU values for the GFRPFBH, CFRPFBH, and CFRPInsert samples are 

summarized in Table.2. The low IoU values may be due to an imperfect match between the 

actual defect and the ground truth image. These results suggest that the IRT-GAN is well-suited 

to performing defect segmentation tasks for IRT-based images by fusing TSR images. Note that 

the structure can be easily applied to PPT, PCT, or other pre-processed images. 

4.3 Comparison with other architectures 

This section investigates the influence of the fusion stage on the proposed multi-headed IRT-

GAN. In the implementation described above, the fusion is performed in the middle of the 

network. However, the fusion process can also be used at the beginning or end of the network. 

We refer to this as IRT-GAN_Middle, IRT-GAN_Early, and IRT-GAN_Late in the following 

content. Only a slight modification was made to the architecture of the generator G to 

accommodate the various fusion versions, and all three IRT-GAN models employ the identical 

discriminator D shown in Fig.6. Additionally, both SGE and C blocks are preserved to ensure 

a meaningful comparison. 

Fig.11 demonstrates the architecture of IRT-GAN_Early. Rather than fusing feature maps in the 

intermediate layers of the encoder, the six TSR images are directly concatenated channel-wise 



at the beginning to form a new matrix that serves as the input to the G network without any 

preprocessing.  

 

Fig.11 The architecture of the generator G in IRT-GAN_Early 

Following this, the new input progressively learns a joint representation for the six initial TSR 

images, eventually obtaining a unified representation. It should be noted that, while the early 

fusion method is simple and straightforward, it runs the risk of sacrificing the proper extraction 

of independent features from each TSR image early in the process, resulting in the interfusion 

of irrelevant features and a decrease in fusion power.  

Another extreme variant is the IRT-GAN_Late, in which the multi-image fusion is done at the 

end of the network, see Fig.12. IRT-GAN_Late simply merges the outcome from each G stream 

by max-pooling vote. This severely restricts the potential to exploit the cross-correlation 

between different single images.  

 

Fig.12 The architecture of the generator G in IRT-GAN_Late 

The training process of generator G within the late fusion requires One-to-One image 

translation, i.e. each numerical TSR image corresponds to one ground-truth label, instead of 

Multi-to-One in IRT-GAN_Middle and IRT-GAN_Early. After the training, each TSR image 

serves as an independent input to achieve the segmentation result via the well-trained G. Next, 



following the max-pooling voting mechanism at the pixel level, the segmentation prediction 

can be eventually obtained. The max-pooling voting mechanism employed here is presented in 

equation (31). 

𝑦(𝑤, ℎ, 𝐶) = 𝑚𝑎𝑥{𝑦𝑖(𝑤, ℎ, 𝐶)} 

 𝑖 = 1,2, … ,6;  

0 ≤ 𝑤 ≤ 𝑊;  

0 ≤ ℎ ≤ 𝐻 

(31) 

In which 𝑦𝑖 stands for the segmentation result for the ith TSR image. The channel number for 

the binary segmentation map is set to 𝐶 = 1. 

While the adopted voting mechanism may improve defect detection, it also increases the risk 

of misjudgment, in which defect-free regions are incorrectly identified as defects. And this is 

largely a direct result of the late fusion strategy's failure to take advantage of cross-correlation 

between individual TSR images.  

 

Fig.13 Visualization of predicted segmentations for the GFRPFBH, CFRPFBH, and CFRPInsert 

samples at three different fusion stages 

 

In section 4.3, we trained and evaluated the IRT-GAN_Early, IRT-GAN_Middle, and IRT-



GAN_Late models on the same virtual and experimental datasets in order to evaluate their 

performance in defect detection. Fig.13 summarizes the predicted segmentation maps for the 

GFRPFBH, CFRPFBH, and CFRPInsert samples at early, middle and late fusion stages. IRT-

GAN_Early has the lowest defect detectability and misses several defects. The IRT-GAN_Late 

model, on the other hand, has the highest defect detectability, but it enlarges and distorts the 

defect shapes significantly, and even highlights background noise and artifacts. From these 

results, it seems that the IRT-GAN_Middle shows the highest performance by keeping a balance 

between defect detectability, shape reconstruction, and background suppression. 

Table.3 presents quantitative results where the PA and IoU values for each sample are reported, 

as well as D-PA and H-PA indicators representing the defective pixel accuracy and healthy pixel 

accuracy, respectively. The results indicate that IRT-GAN_Middle is superior to the other fusion 

variants, with high PA and IoU values in each of the three different composite samples. The 

reason for this is that the multi-headed IRT-GAN_Middle can make better use of the information 

from multiple TSR images due to its progressive fusion strategy that tends to learn independent 

feature maps for each TSR image in the initial layers and then integrates or fuses them 

progressively to a unique feature representative until the layer before the bottleneck layer in the 

encoder. Notably, the enlargement and distortion of the defect segmentation using the IRT-

GAN_Late model lead to the highest D-PA values. 

Model GFRPFBH CFRPFBH CFRPInsert 

IRT-GAN_Middle 

PA 93.79% PA 96.20% PA 91.22% 

D-PA 78.00% D-PA 87.19% D-PA 70.16% 

H-PA 95.17% H-PA 96.53% H-PA 93.39% 

IoU 56.77% IoU 44.93% IoU 42.97% 

IRT-GAN_Early 

PA 91.84% PA 96.02% PA 87.82% 

D-PA 64.16% D-PA 83.89% D-PA 66.92% 

H-PA 94.84% H-PA 96.47% H-PA 89.98% 

IoU 47.39% IoU 42.97% IoU 33.96% 

IRT-GAN_Late 

PA 86.41% PA 93.65% PA 78.34% 

D-PA 81.29% D-PA 90.37% D-PA 85.00% 

H-PA 87.12% H-PA 93.81% H-PA 77.67% 

IoU 42.14% IoU 39.29% IoU 26.84% 

Table.3 The PA and IoU results of predicted segmentations for the GFRPFBH, CFRPFBH, and 

CFRPInsert samples at three different fusion stages 

 

5. Conclusions 

In this paper, we introduced a multi-headed IRT-GAN model, a novel architecture to perform 

defect segmentation tasks from IRT images via a progressive fusion strategy. The IRT-GAN 



takes a set of images as input, six TSR images in our case, and progressively integrates the 

information contained in each TSR image via a dedicated multi-headed encoder. These learned 

feature maps in the encoder are then propagated to the corresponding decoding layers via skip-

connections. After the adversarial training, a defect segmentation map is achieved. Additionally, 

SGE blocks for enhancing semantic feature learning are engaged in the feature fusion process 

in the encoder. This approach enables the IRT-GAN to be trained on an augmented virtual 

dataset, and then applied to experimental data.  

Results are presented for three composite samples with a range of defect types, sizes, and depths. 

It is demonstrated qualitatively and quantitatively that the multi-headed IRT-GAN model 

achieves high performance in segmenting the experimental datasets. The influence of the fusion 

strategies, i.e. early, middle, and late fusion in the generator network, has also been discussed. 

The results show the benefit of middle-stage fusion in enhancing the segmentation performance.  

Future work will focus on the application of the proposed IRT-GAN model for assessing 

complex defects in components with industrial complexity, and on the estimation of defect 

depth.  
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8. Appendix 

8.1 Generator architecture 

Let conv., BN, LR, SGE denote convolutional layer, batch norm layer, LeakyRelu layer, and 

Spatial Group-wise Enhance layer, respectively, in the encoder of generator network.  

The encoder architecture of the proposed IRT-GAN model consists of nine layers, shown in 



Fig.14. 

 
Fig.14 The architecture of encoder in the IRT-GAN model 

 

Let convTranspose and RL denote transposed convolutional layer, and ReLu layer, respectively, 

in the decoder of the generator network.  

The decoder architecture of the proposed IRT-GAN model consists of eight layers, shown in 

Fig.15. 

 



 
Fig.15 The architecture of decoder in the IRT-GAN model 

8.2 Discriminator architecture 

The discriminator architecture of the proposed IRT-GAN model consists of seven layers, shown 

in Fig.16. 

 
Fig.16 The architecture of discriminator in the IRT-GAN model 
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