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1 |  INTRODUCTION

To promote human well- being and ensure healthy lives, the 
United Nations has set an ambitious sustainable develop-
ment goal to reduce illnesses and deaths associated with soil 
contamination by 2030 (UN,  2015). Soil is a fragile, non- 
renewable resource that is fundamental to life on earth (FAO, 

2015; Hou et  al.,  2020). However, anthropogenic activities 
have led to widespread soil degradation and contamination 
(FAO, 2018). In Europe, there are approximately 2.5 mil-
lion sites that are potentially contaminated by heavy metals 
and organic contaminants (EEA, 2018). In USA, 235,000– 
355,000 sites need to be remediated (US EPA 2004). In 
China, it is estimated that 16.1% of the nation's land contains 
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Abstract
Heavy metals and metalloids can accumulate in soil, with potentially toxic effects to 
human health and ecosystems, threatening the sustainable use and management of soil 
resources. Although a number of remediation technologies, such as Solidification/
Stabilization (S/S), soil washing, electrokinetic remediation and chemical oxidation/
reduction can be applied for the immobilization, removal or detoxification of heavy 
metals in soil, the environmental, social and economic impacts associated with these 
conventional approaches hinder their overall sustainability. More attempts have been 
made to maximize the ‘net environmental benefit’ in various ways, including recov-
ering resources, embracing nature- based solutions (NBS), and saving energy with 
the emergence and development of the ‘green and sustainable remediation’ (GSR) 
movement. This review critically discusses these green remediation strategies, and 
the novel soil amendments being utilized in these sustainable approaches. Iron- 
based amendments are the most promising candidates in green remediation due to 
the highest stabilization performances for both oxyanions and metallic cations as 
well as relatively low disturbance to soil. In comparison, waste- derived materials 
suffer from risks of contaminant release in the long run, reducing the overall sustain-
ability despite their low costs. It has been found that phytoremediation and green 
amendment- based S/S are typically the ‘greenest’ remediation strategies, but wise 
decisions should be made on the basis of case- specific sustainability assessment re-
sults. Finally, it is proposed that integration of several green remediation techniques 
may have a synergistic effect on remediation efficiency.
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heavy metals and other pollutants that exceed soil quality 
standards (MEP, 2014). Toxic metals and metalloids in soil 
(hereinafter referred to as ‘heavy metals’) have aroused much 
concern due to their toxic effects on human beings and eco-
systems (O’Connor et al., 2020; Wang et al., 2021). Therefore 
to achieve the goal of sustainable development, it is neces-
sary to seek sustainable approaches for soil heavy metal 
remediation.

Heavy metals can be removed or stabilized using various 
approaches. Conventional remediation technologies, includ-
ing Portland cement- based Solidification/Stabilization (Shen 
et  al.,  2019b), containment (Liu et  al.,  2018), soil washing 
(Zhang et al., 2010), electrokinetic remediation (Al- Hamdan 
& Reddy, 2008), thermal desorption (Park et al., 2015), and 
chemical oxidation/reduction (McCann et  al.,  2018), have 
proven effective for the immobilization, removal, or the 
transformation/detoxification (i.e. arsenic (As), chromium 
(Cr) and mercury (Hg)) of heavy metals. However, they have 
been criticized due to environmental concerns such as high 
energy consumption, greenhouse gas emission, long- term 
metal leaching risks and air pollution, economic concerns 
such as high capital cost, and social concerns such as low 
public acceptance. To overcome those criticisms attempts 
have been made to maximize environmental, social and eco-
nomic benefits through the ‘green and sustainable remedi-
ation’ (GSR) movement to assure the sustainability of the 
remediation processes.

Over the last 20 years, research on GSR as well as GSR- 
associated topics such as nature- based solutions (NBS), 
green chemistry and sustainability assessment has boomed 
(Figure 1). Environmentally friendly soil amendments with 
less secondary impact on the environment, lower cost and 

higher social acceptance have been gradually adopted, includ-
ing waste- derived materials (e.g. biochar, compost and red 
mud), natural minerals (e.g. montmorillonite, palygorskite, 
zeolite and diatomite) and green- synthesized nanomaterials, 
to remediate heavy metal contaminated soils in a more sus-
tainable way. With the aims of recovering valuable resources, 
minimizing the human impacts, and saving the energy, green 
remediation approaches have also emerged and are being ad-
opted by remediation practitioners. However, there is a lack 
of literature summarizing these novel attempts critically and 
systematically.

This review focuses on the remediation mechanisms as 
well as the environmental, social and economic impacts of 
the green materials and remediation technologies. Green re-
mediation technologies were divided into several categories, 
namely resource recovery strategies, nature- based solutions, 
and energy- efficient techniques. Roles of organisms, includ-
ing plants and microorganisms, were examined, and the rela-
tionships between nature- based remediation technologies and 
the GSR movement were investigated. Several challenges and 
potential future directions have also been critically proposed.

2 |  OVERVIEW OF GREEN AND 
SUSTAINABLE REMEDIATION

2.1 | An emerging movement

The remediation industry has been through three stages 
(Hou et al., 2020). Owing to unrealistic regulator demands 
and pressure from the public, remediation practitioners 
were once expected to ‘remove the last bit of contaminants’ 

F I G U R E  1  Growing numbers of publications on green and sustainable remediation (GSR)- related topics over the last 20 years. Literature 
search was carried out in Web of Science Core Collections on 25 October 2020. Keywords include ‘green remediation’, ‘green and sustainable 
remediation’, ‘sustainable remediation’, ‘nature- based solution*’, ‘nature based solution*’, ‘green chemistry’, ‘phytoremediation’, ‘sustainability 
assessment’, ‘life cycle assessment’, ‘life- cycle assessment’, ‘multicriteria assessment’ and ‘multi- criteria assessment’
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(stage 1). However, by the 1990 s, many nations realized 
that the cost of a ‘remove all’ strategy would significantly 
outweigh the perceived social benefits. Remediation prac-
titioners have also recognized that significant biogeophysi-
cal constraints made it impossible to return contaminated 
soils to pristine conditions. A compromise solution was 
therefore put forward that remediation should aim to make 
land suitable for certain uses (German Bundestag,  1998; 
Hou, 2020). Risk- based remediation therefore emerged, al-
lowing the contaminated site cleanup standards to be set at 
a more realistic and acceptable level (stage 2). However, 
based on the scientific findings that remediation opera-
tions themselves may bring about adverse impacts (e.g. 
emissions of greenhouse gas, air pollution, groundwater 
contamination and eutrophication) (Anon, 1990; Diamond 
et al., 1999; Tadesse et al., 1994), and the fact that more 
remediation stakeholders came to realize the importance 
of ‘sustainability’ in a modern society, demand for a 
sustainable remediation approach that minimizes envi-
ronmental, social and economic impacts has been grow-
ing. Therefore, the concepts of ‘green remediation’ (in 
the USA) and ‘sustainable remediation’ (in Europe) have 
emerged, and the term ‘green and sustainable remediation 
(GSR)’ has been adopted to unite these two concepts (Hou 
& Al- Tab  baa,  2014; Hou et  al.,  2012; Hou et al., 2015; 
NICOLE, 2008; US EPA, 2010). The GSR movement has 

blossomed in the last 10  years. With careful design and 
implementation, GSR could help to optimize resource utili-
zation, promote human well- being, improve environmental 
quality and help establish an energetic remediation market 
(Hou et al., 2020).

2.2 | Fundamental principles

GSR is a holistic remediation strategy where environmental, 
social and economic benefits are maximized. To achieve this 
goal, several general principles are proposed (Figure 2) (Hou 
et al., 2020):

• A GSR strategy should look beyond the site boundary. 
Secondary impacts, such as the environmental risks of 
landfill waste, noise and air pollution during transport and 
greenhouse gas emissions during the whole remediation 
life cycle should be quantitatively assessed;

• A GSR approach should consider the impacts on future 
generations. For instance, passive containment treatments 
appear superior to active remediation strategies due to low 
capital cost. However, the high maintenance cost may hin-
der its overall sustainability in the long term;

• A GSR approach should focus on social and economic 
sustainability. Although the environmental impact of the 

F I G U R E  2  Five general principles of GSR. Information obtained from (Hou et al., 2020)
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entire life cycle has been addressed by many studies, social 
and economic impacts are often overlooked. A proper se-
lection of measurable socioeconomic indicators, as well as 
the combination of quantitative and qualitative methods in 
sustainability assessment is therefore needed;

• Sustainable remediation strategies should be resilient to 
environmental, social and economic changes. A GSR 
approach should be able to meet evolving environmental 
standards, adapt to various future site reuse purposes and 
resist the changing environment (e.g. sea level rise and 
groundwater depletion);

• Adoption of NBS ensures environmental, social and eco-
nomic sustainability (section 5). However, nature- based 
remediation strategies are not equivalent to ‘GSR’. For 
instance, although phytoremediation may extract, volatil-
ize or stabilize soil metals effectively, the long duration of 
the process decreases the overall sustainability. To meet 
the goal of GSR, nature- based remediation strategies may 
need to be modified (e.g. phytomanagement).

3 |  GREEN SOIL AMENDMENTS

3.1 | Biochar

As a carbon- rich solid material derived from the pyrolysis 
of hydrothermal carbonization of biomass feedstock, bio-
char has been widely used in soil remediation due to the 
well- developed porous structure, dynamic surface function-
ality, and the relatively low cost compared with activated 
carbon (Table 1) (El- Naggar et al., 2019a; IBI, 2015; Wang 
et al., 2020f). Biochar can be prepared via the thermal treat-
ment of various biological wastes, including crop residues 
(e.g. corn stalk, rice straw, rice husk and rapeseed stem), 
grass, wood, sewage sludge, anaerobic digestate and animal 
waste (e.g. poultry litter, swine manure and chicken manure) 
(El- Naggar et al., 2019b; Palansooriya et al., 2019; Shaheen 
et  al.,  2019). Biochar interacts with heavy metals in vari-
ous ways (Table 1, Figure S1). Outer- sphere complexation, 
inner- sphere complexation, electrostatic interactions, surface 
precipitation and ion exchange are potential metal immobili-
zation mechanisms (Ahmad et al., 2014; Lebrun et al., 2020; 
Shaheen et al., 2019). To enhance the metal binding affini-
ties of biochar sorbents, new trends have emerged in biochar 
pyrolysis and post- pyrolysis modification strategies (Wang 
et  al.,  2020g). For instance, to enhance inner- sphere com-
plexation between biochar surface and heavy metals, novel 
pyrolysis strategies, such as NH3- ambiance pyrolysis and 
co- pyrolysis, or modification methods, such as alkaline acti-
vation, acid activation and oxidant activation can be applied 
to introduce more oxygen or nitrogen- containing functional 
groups on the biochar surface. In addition, steam activation, 

microwave- assisted pyrolysis, modification with clay miner-
als and acid/alkaline modification can be applied to remove 
the tars or improve the pore structure of the resulting biochar, 
favouring the non- specific interactions such as physical ad-
sorption and ion exchange.

Apart from immobilizing soil metals directly as a stabi-
lization agent, biochar could also assist in phytoremediation 
processes. The activities of rhizosphere microorganisms 
will be enhanced, and nutrients in the biochar will be re-
leased in the longer term, thus promoting plant growth (Lu 
et al., 2015; Nejad et al., 2017; Vamerali et al., 2012; Wang 
et  al.,  2020d). Furthermore, biochar may act as a carbon 
source in the anode of microbial fuel cells (section 6) (Liu 
et al., 2020b; Md Khudzari et al., 2019). In general, biochar 
is a sustainable soil amendment, offering a variety of bene-
fits, including waste management (O'Connor et al., 2018b), 
renewable energy generation (the by- products such as bio- oil 
and syn- gas can be used as energy sources) (Thangalazhy- 
Gopakumar et  al.,  2015), improving soil fertility (Xiao & 
Meng, 2020; Ye et al., 2020), preserving microbial commu-
nities (Wu et  al.,  2020), preventing soil acidification (Shi 
et al., 2020), and most importantly, carbon sequestration for 
climate change mitigation (Table 1) (El- Naggar et al., 2018; 
Hou et al., 2020; Woolf et al., 2016).

3.2 | Industrial waste- based materials

Industrial by- products have received much attention due to 
the large amounts produced each year (Table 1). Reusing 
them as soil amendments is a feasible approach for the sus-
tainable utilization of these low- value by- products. Coal 
combustion fly ash is a typical coal industry by- product; 
it is estimated that 780 million tonnes are produced an-
nually. Despite the fact that the chemical compositions 
of fly ash may vary due to different sources and compo-
sitions of the coal combusted, all types contain consider-
able amounts of SiO2, Al2O3, Fe2O3 and CaO (Leelarungroj 
et  al.,  2018; Palansooriya et  al.,  2020; Robl et  al.,  2017; 
Zha et al., 2019), and have a similar metal immobilization 
mechanism with oxides (i.e. liming & precipitation, sur-
face complexation) (section 3.4). Red mud is a by- product 
from the Bayer process of the alumina industry (Taneez & 
Hurel, 2019). Similar to fly ash, red mud is also a mixture 
of oxides, including Fe2O3, Al2O3, SiO2, Na2O, CaO and 
TiO2 (Zia- ur- Rehman et al., 2019). Therefore, red mud can 
also be adopted as an immobilizing agent for heavy met-
als since it has similar remediation mechanisms (Huang 
& Hao, 2012; Taneez & Hurel, 2019; Wang et al., 2018c). 
Other oxide- containing industrial wastes, such as steel 
slag (León- Romero et  al.,  2018; Ning et  al.,  2016) and 
coal gangue (Chu et al., 2020), have also been applied for 
the sustainable remediation of heavy metals. However, 
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industrial wastes may contain considerable amounts of 
toxic metals and organic contaminants (Table 1). Once ap-
plied to the soil, these contaminants may be released and 
migrate in the long run, posing risks to the environment 
(section 7).

3.3 | Natural minerals

Minerals are promising candidates for GSR due to their 
relatively low costs and their environmentally benign 
features. Clay minerals have attracted much attention for 
metal stabilization due to their high specific area, lim-
ing (pH- increasing) effect, excellent ion exchange ca-
pacity and abundant surface hydroxyl groups (Table  1) 
(Chen et al., 2019; Doni et al., 2020; Xu et al., 2017). In 
clay- based S/S approaches, liming, surface complexation 
and precipitation are the dominant stabilization mecha-
nisms (Wang et  al., 2019a, 2020e; Xu et  al., 2017; Yang 
et  al.,  2017a). However, unmodified clay minerals suf-
fer from low adsorption capacity, low selectivity towards 
metal types and rapidly diminishing stabilization perfor-
mance (Table 1) (Wu et al., 2011, 2016; Xu et al., 2017). To 
overcome these obstacles, several attempts have been made 
to modify natural clays to produce more ‘powerful’ immo-
bilizing agents. For instance, Wang et  al.,  (2020e) modi-
fied montmorillonite with humic acid to enhance Cd and 
Hg stabilization. The oxygen- containing hydroxyl, amino, 
carbonyl and carboxyl groups in the humic acid layer fa-
voured surface complexation, resulting in a decrease in 
leachable metal concentrations (> 65% for both metals). 
Liang et al., (2019) used a novel mercapto- modified atta-
pulgite for the immobilization of soil Cd. Modified atta-
pulgite could reduce plant accumulation of Cd by 75%, due 
to enhanced sorption of bioavailable Cd onto the modified 
clay mineral. Interestingly, Wang et al., (2019a) found that 
sulphur- modified organoclay mobilized soil Hg (the water 
and acid- soluble fractions of soil Hg increased by 700%), 
thus promoting the phytoextraction efficiency. Apart from 
clay, several other types of natural minerals can also aid in 
heavy metal remediation. For instance, zeolite, an alkaline 
aluminosilicate mineral with a well- developed micropo-
rous structure, immobilizes toxic metals via non- specific 
adsorption and the liming effect (Lee et  al.,  2019; Shi 
et al., 2009; Tahervand & Jalali, 2017). Diatomite, a natu-
rally occurring siliceous mineral, is able to stabilize metals 
through surface complexation and non- specific adsorption, 
while promoting plant growth simultaneously due to its 
high Si content (Radziemska et al., 2020; Ye et al., 2015). 
Compared with metal- rich industrial waste- derived amend-
ments, minerals have few adverse impacts on soil (Table 1). 
Once the obstacle of long- term stability has been solved 

through proper modification strategies, mineral- based ma-
terials have great potential for the sustainable remediation 
of soil metals.

3.4 | Metal oxides

Oxides (including hydroxides, oxyhydroxides and hydrous 
oxides) have been extensively investigated as immobilizing 
agents for heavy metals due to their excellent sorption af-
finities. Iron oxides (e.g. α- FeOOH, γ- FeOOH and α- Fe2O3), 
manganese oxides (e.g. γ- MnOOH and β- MnO2), aluminum 
oxides (e.g. γ- AlOOH, α- AlOOH and γ- Al(OH)3) and mag-
nesium oxide (MgO) are four major types of metal oxides 
in heavy metal stabilization (Komárek et  al.,  2013; Shen 
et  al.,  2019a). Metal oxides are regarded as promising im-
mobilization agents with long- term stability, which is due 
to inner- sphere complexation (Eq. 1– 4) (Karamalidis, 2010; 
Komárek et al., 2013):

where ≡ XOH0 refers to the surface of metal oxide (hydroxide) 
particles, M2+ refers to the divalent metal cation. Both cationic 
and anionic metal(loid)s can be stabilized through the forma-
tion of complexes, offering more stability in the long term than 
non- specific adsorption (such as Van der Waals force and elec-
trostatic interactions) (Table 1) (Hou et al., 2020).

Precipitation may also play a vital role in oxide- based 
metal stabilization processes. For instance, due to the alkaline 
environment created during the hydration process of magne-
sia, MgO- based binders could achieve promising stabilization 
performances for Cd and Pb due to precipitation (Table 1) 
(Shen et  al.,  2018, 2019a; Wang et  al.,  2016b). However, 
the pH- increasing (liming) effect is highly dependent on the 
amendment type. When it comes to the application of ferrous 
sulphates, a reverse trend is observed where the oxidation of 
FeSO4 releases protons, resulting in the acidification of soil 
(Eq. 5) (Di Palma et al., 2015; Komárek et al., 2013):

In this case, alkaline amendments (e.g. biochar and lime) 
should be added simultaneously to avoid a remobilization of 
cationic metals (e.g. Cd, Hg, Cu and Zn).

(1)≡ XOH+

2
→ ≡ XOH0

+ H+

(2)≡ XOH0
→ ≡ XO−

+ H+

(3)≡ XOH0
+ M2+

→ ≡ XOM+
+ H+

(4)≡ XOH0
+ AsO3−

4
→ ≡ XOHAsO3−

4

(5)4FeSO4 + O2 + 6H2O → 4FeOOH + 4SO2−
4

+ 8H+
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3.5 | Nanomaterials produced by green 
synthesis methods

Conventional manufacturing strategies for nano- sized re-
mediation agents that involve the use of toxic reagents 
(e.g. NaBH4) have been criticized (US EPA, 2017a; Zhang 
et  al.,  2020b). Green synthesis aims at minimizing the en-
vironmental impact and preventing pollution at the molecu-
lar level (US EPA, 2017a; Wang et al., 2019c). This can be 
achieved either by (a) using green materials, such as plant 
extracts and other nature- derived materials as precursors; 
or (b) running chemical reactions under mild conditions 
(ACS, 2020; US EPA, 2017a).

Green- synthesized nanomaterials can aid in green reme-
diation in various ways. Iron- based nanoparticles can be used 
as immobilization agents directly. For instance, nano zero- 
valent iron (nZVI) derived from waste tea could be applied 
for Cr(VI) reduction in the soil (Chrysochoou et al., 2012). 
Iron oxide nanoparticles prepared using leaf extract could 
stabilize Cd and As in the soil through co- precipitation (Lin 
et al., 2019; Su et al., 2020). For more information regard-
ing the applications of nZVI and iron oxide nanoparticles, 
we refer readers to Wang et  al.,  (2019c). Green nanoparti-
cles can also assist in soil remediation in an indirect way. 
Plant extract- mediated Ag nanoparticles could promote 
plant growth through increased soil pH, bioavailability of 
nutrients and water holding capacity (Das et  al.,  2018). 
Environmentally benign nano- sized mineral- based soil con-
ditioners can be prepared with feldspar and lime using a mild 
hydrothermal method (Liu et al., 2017). However, nanomate-
rials are usually criticized due to their potential toxic effects 
on soil microorganisms, plants and human beings. In addi-
tion, the relatively high cost of nanomaterials has hindered 
their practical applications (Table 1).

4 |  RESOURCE RECOVERY 
STRATEGIES

4.1 | Phytomining

Plants have different response patterns towards heavy met-
als in soils. Most plant species are sensitive to a high metal 
concentration, while others have developed tolerance and re-
sistance, and may even accumulate them in their tissues (Jia 
et al., 2019; O'Connor et al., 2019; Wang et al., 2020d). The 
phenomenon of accumulating unusually high concentrations 
of toxic metals in plant tissues is termed hyperaccumulation. 
A hyperaccumulator is typically defined as a plant that can 
accumulate metals to a concentration that is over 100 times 
higher than ordinary plants growing in the same environment 
(Lopez et  al.,  2019; Rosenkranz et  al.,  2017; Tognacchini 
et  al.,  2020). Phytomining takes advantage of hyperaccu-
mulation to recover valuable metals. Hyperaccumulators ex-
tract metals from the metal- rich soils (e.g. mine tailings, low 
grade ores and metalliferous soils) and translocate them in 
aboveground tissues. After harvesting and drying, the plant 
is reduced to ash, which is further subjected to sintering or 
smelting, allowing the metals in plant tissues to be recovered 
(Anjum et al., 2012; Novo et al., 2017; Zhang et al., 2014).

A high biomass yield and metal concentration in crop tis-
sues assure the success of a phytomining process. In order 
to produce a ‘crop’ of metals, several issues must be con-
sidered. It is widely established that an increase in metal 
bioavailability results in high bioaccumulation in plant tis-
sues; therefore, an increase in labile forms of metals favours 
phytomining. This can be achieved either through changes 
in soil pH (e.g. an increase in pH mobilizes the oxyanion 
As, while a decrease in pH mobilizes most metallic cations) 
(Huang & Chen, 2003; Zheng et al., 2019), or the addition of 

F I G U R E  3  Concentrations of metals 
in plant tissues that would be need to 
achieve a gross value of $500 ha−1. Prices 
of metal (in 2019) were obtained from 
London metal exchange (https://www.lme.
com/) and the KITCO (https://www.kitco.
com/). For hyperaccumulators, the threshold 
concentration is regarded as 1,000 mg/kg, 
except for Au (1 mg kg−1), Cd (100 mg 
kg−1) and Zn (10,000 mg kg−1) 
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chelating agents (such as EDTA) (Nedelkoska & Doran, 2000; 
Robinson et al., 1999). Besides, a higher biomass can be har-
vested through the addition of various amendments such as 
inorganic fertilizers and organic amendments (such as com-
post, biochar and animal waste). In addition, the selection 
of a proper planting density, as well as a suitable planting 
and harvesting strategy (such as double cropping and dou-
ble harvesting), will also lead to higher biomass yields. The 
mechanisms involved in these promising strategies have been 
discussed by Wang et al., (2020d).

Phytomining is a ‘green’ method for metal mining, since 
its impact on the environment is minimal compared with 
the erosion caused by opencast mining activities (Table 3). 
Phytomining can also be regarded as a remediation strat-
egy for highly contaminated soils. Natural revegetation of a 
mining- affected area may take hundreds of years, while phy-
tomining offers a relatively fast approach for the restoration 
of degraded lands (i.e. cutting the restoration duration to sev-
eral years) (Table 3) (Sheoran et al., 2009). The plant cover 
minimizes wind erosion and run- off, and the rhizosphere 
also reduces the migration of toxic elements to groundwater. 
Therefore, it is an environmentally benign, non- destructive 
and aesthetically pleasing strategy with high public accep-
tance. However, many studies have neglected the economic 
considerations of this ‘mining’ process. The most import-
ant factor determining the economics of the operation is the 
price of the metal being phytomined (Figure 3). In addition, 
metal concentrations and biomass yield also affect the gross 
value that can be achieved in a phytomining process. For hy-
peraccumulators, there exists a maximum concentration of 
heavy metals that can be accumulated in plant tissues (Alford 
et al., 2012; Burge & Barker, 2010; Clemens, 2017; Deinlein 

et al., 2012; Sheoran et al., 2009; Tsadilas et al., 2018). As 
shown in Figure 3, extremely high concentrations of Ni, Cu, 
Mn, Cd, Zn and Pb (much higher than their threshold val-
ues) are required in order to achieve a gross value of $500 
ha−1 (assuming that the biomass yield can reach 10 t ha−1), 
which is impossible in practical applications. In comparison, 
the best candidates for phytomining approaches are precious 
metals such as Pb, Au, Pt and Ag. However, this does not 
mean that hyperaccumulators of other metals are not useful 
in environmental applications. Indeed, they have been widely 
used for remediation purposes (section 5.1).

4.2 | Soil washing

Soil washing can drastically reduce contaminant concentra-
tions and return the soil to below the threshold of regula-
tory environmental standards. Typically, the soil has to be 
screened first to remove the less contaminated coarse par-
ticles. The remaining fine material needs to be mixed with 
a washing solution to extract the toxic metals (Hou,  2020; 
US EPA, 2017b). This process is metal- specific, and an ideal 
washing solution should be capable of elevating the mobility 
of metals while maintaining the soil physicochemical prop-
erties (for reuse purposes). Therefore, soil washing can be 
regarded as a resource recovery strategy (to reuse the soil).

The selection of a proper extractant is the key to the suc-
cess of soil washing. Water, acids, bases, solvents, chelating 
agents and surfactants can be used in the washing process 
(Ferraro et  al.,  2016; Liu et  al.,  2020a; US EPA, 2017b). 
However, conventional washing solutions may be detrimen-
tal to the environment. For instance, the remaining EDTA in 

F I G U R E  4  Environmental, economic 
and social benefits of nature- based 
remediation approaches 

Environmental benefits

.Preserve biodiversity

.Low life-cycle footprint

.Improve air quality

.Reduce contaminant
 migration risks

.Phytoremediation

.Bioremediation

.Constructed wetland

.Green material based S/S

Social benefits

.Improve aesthetics

.Education

.Benifit public health

Economic benefits

.Low expenditure

.Flood control

.Renewable energy
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the soil after chelant- assisted washing is hard to decompose, 
which will be harmful to soil organisms (Duo et al., 2019; 
Epelde et al., 2008). Besides, EDTA in the remediated soil 
may migrate to groundwater or surface water, resulting in 
water pollution (this chemical is regarded as a major con-
taminant in water bodies) (EEA, 1996; WHO, 2011). Strong 
acids, such as HCl or H2SO4, result in the acidification of 
the soil, making the soil unsuitable for agricultural reuse pur-
poses (Ash et al., 2016). Addition of surfactants can aid in the 
remediation of metal and organic pollutant co- contaminated 
soils, but may have adverse effects on soil microbes (Singh 
& Cameotra,  2013). To minimize the impact on soil prop-
erties, many attempts have been made to seek ‘greener’ 
washing solutions. Natural organic substances (e.g. humic 
substances) (Kulikowska et  al.,  2015; Meng et  al.,  2017), 
biodegradable chelants (e.g. imminodisuccinic acid, meth-
ylglycinediacetic acid, citric acid and poly- γ- glutamic acid) 
(Begum et al., 2012; Guo et al., 2018), plant- derived washing 
agents (Cao et al., 2017a, 2017b) and biosurfactants (Singh 
& Cameotra, 2013) have emerged as novel extractants in the 
soil washing process. To date, the applicability of these novel 
extractants has only been tested in the laboratory. Negative 
impacts of the washing solutions on the environment (soil, 
groundwater, plants and organisms) can be expected when 
applying in situ and should be minimized. For this purpose, 
more pilot- scale studies should be conducted, and sustain-
ability assessment tools should be adopted to further assess 
the primary, secondary and tertiary impacts of these novel 
approaches (section 7).

5 |  NATURE- BASED SOLUTIONS

Nature- based solutions (NBS) are defined as “solutions 
that are inspired and supported by nature, which are 

cost- effective, simultaneously provide environmental, 
social and economic benefits and help build resilience” 
(European Commission, 2015). In the context of soil reme-
diation, NBS are those techniques that aim at working with 
nature rather than against it, including phytoremediation 
(to work with plants), bioremediation (microorganisms) 
and constructed wetland (the whole wetland ecosystem). 
In addition, immobilization using natural or waste- derived 
green materials (e.g. natural minerals and biochar) can 
also provide environmental, social and economic benefits 
as compared with conventional Portland cement- based 
Solidification/Stabilization (O'Connor et  al.,  2018a; Shen 
et al., 2019b; Wang et al., 2020b). The environmental ben-
efits of NBS (Figure 4) align well with the aims of metal 
remediation approaches. Apart from removing the toxic 
metals or mitigating the risks of metal migration (e.g. re-
move metals using phytoextraction or reduce the metal 
migration using phytostabilization), a nature- based re-
mediation method should also preserve biodiversity and 
improve air quality (e.g. plants used for NBS remediates 
the land while simultaneously purifying the air) (Seddon 
et  al.,  2019; Song et  al.,  2019b). In addition, a nature- 
based remediation approach promotes human well- being 
through improving aesthetics and bringing in health ben-
efits (Colléony & Shwartz, 2019; Dick et  al.,  2019). The 
aesthetic value of nature- based remediation approaches 
(Figure 5) will not only promote social acceptance, but also 
improve people's psychological states through providing 
spaces for public recreation. A relatively low cost, utiliza-
tion of renewable energy (i.e. solar energy) and the ability 
to control non- point pollution (e.g. constructed wetland) 
also ensure economic viability (Faivre et al., 2017; Maes 
& Jacobs,  2017). The following subsections discuss four 
types of nature- based remediation approaches and explain 
how nature ‘works’ with us in soil remediation.

F I G U R E  5  The aesthetic values of nature- based remediation approaches. (a) Combining phytoextraction processes with public recreation. 
A raised path limits the access to the phytoextraction area. Reproduced with permission from Wilschut et al., (2013). Copyright 2013 Elsevier. 
(b) A flower- and- butterfly shaped constructed wetland on the tourist island of Koh Phi Phi, Thailand. Reproduced with permission from Brix 
et al., (2011). Copyright 2011 Elsevier

Phytoextraction island Phytoextraction
barge with mixed

species
Raised path

Fully accessible clean
island (background)with mixed species

(a) (b)
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5.1 | Phytoremediation and 
phytomanagement

Phytoremediation uses plants to extract (phytoextrac-
tion), immobilize (phytostabilization), or volatize (phy-
tovolatilization) toxic metals (Hou et al., 2020; O'Connor 
et al., 2019; Wang et al., 2020d). Compared with phytomin-
ing which aims to recover valuable elements (i.e. the min-
ing process using plants) (section 4.1), phytoremediation 
focuses more on the contaminant removal or immobiliza-
tion performances of plants (i.e. the remediation process). 
Metal- tolerant plant species (also known as metallophytes) 
are considered to be ideal candidates for phytoremediation. 
Based on their physicochemical strategy as a response to 
high soil metal concentrations, metallophytes can be di-
vided into three types, namely accumulators, indicators 
and excluders (Burges et al., 2018; Lago- Vila et al., 2019; 
Lam et al., 2018; Shi et al., 2016). Accumulators tend to 
uptake and translocate toxic metals in aboveground parts 
(for phytoextraction), indicators regulate the bioaccumu-
lation of metals so that internal concentrations (in plant 
tissues) reflect external concentrations (in soil), while ex-
cluders restrict the root uptake and translocation of toxic 
metals, resulting in a phytostabilization effect.

Three main strategies have been applied for metal phy-
toremediation (Figure 6). Phytoextraction is the most widely 
adopted approach that uses the metal uptake ability of ac-
cumulators to transfer metals from the soil to plant tissues. 
Phytovolatilization of toxic elements from plant tissues 
to the atmosphere may occur if the metal accumulated is 
highly volatile (e.g. Hg) (Awa & Hadibarata, 2020; Nagata 
et al., 2010). Phytostabilization is also widely used to reduce 

metal mobility within the rhizosphere. This can be achieved 
either through metal precipitation, complexation or physical 
adsorption induced by plant itself, or through the immobiliza-
tion effects caused by stabilization agents (such as industrial 
waste, biochar and minerals). In the latter case, plants play a 
secondary role in assisting soil immobilization agents. For 
detailed discussions on the remediation mechanisms, plant 
selection strategies and influencing factors, we refer read-
ers to Anjum et al., (2012), Ashraf et al., (2019) and Wang 
et al., (2020d).

Although phytoremediation has been extensively ex-
plored in pot, greenhouse and field studies, the commer-
cialization of this nature- based remediation approach has 
not taken off yet. Phytoremediation has been applied only 
once amongst 188 US Superfund remediation projects 
between 2012 and 2014 (US EPA, 2017b). One issue is 
that highly contaminated sites typically require hundreds 
or thousands of years for plants to extract toxic metals 
to meet the regulatory levels (Burges et  al.,  2020; Cheng 
et al., 2015). After harvesting, the proper handling of con-
taminated biomass is also a tough challenge (Michelon 
et  al.,  2019; Vocciante et  al.,  2019). For phytostabilized 
sites, long- term monitoring is needed to assess the risks as-
sociated with metal leaching, since toxic metals are not re-
moved (Table 3) (Epelde et al., 2014; Houben et al., 2013; 
Labidi et al., 2017).

To reach the aim of providing economic, social and envi-
ronmental benefits simultaneously, a novel concept of ‘phy-
tomanagement’ or ‘phytoattenuation’ has emerged (Figure 6). 
Compared with conventional phytoremediation approaches, 
sustainable risk- based land use is regarded as the first objec-
tive in a phytomanagement process, while metal remediation 

F I G U R E  6  Phytoremediation and 
phytomanagement of heavy metals in 
soil. Modified with permission from 
Burges et al., (2018). Copyright 2018 
Taylor & Francis. Additional information 
obtained from (Fässler et al., 2010; Mench 
et al., 2018; Song et al., 2019a; Wang 
et al., 2020d) 

Phytoremediation

Long remediation duartion
Handling of harvested plants

Phytoextraction

Phytoremediation
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is a secondary aim (Burges et al., 2018; Meers et al., 2010). 
Profitable crops, rather than hyperaccumulators, are grown 
in contaminated land, which can be used for various pur-
poses such as bio- energy production, animal feeding and soil 
fertility improvement after harvesting (Burges et  al.,  2018; 
Fässler et  al.,  2010; Zhu et  al.,  2016). Phytomanagement 
provides much wider site benefits, including the generation 
of renewable energy, greenhouse gas mitigation, water flow 
management and landscape reservation (Table 3, Figure 6). 
As a combination of gentle remediation options with prof-
itable site uses, phytomanagement offers an opportunity to 
achieve risk mitigation, land restoration and economic gain 
simultaneously.

5.2 | Microbial- based bioremediation

Unlike organic contaminants, heavy metals cannot be de-
graded. Microbial- based bioremediation relies on the sta-
bilization, bioaccumulation or detoxification of these toxic 
elements. Microbial- induced stabilization involves the gen-
eration of oxides or carbonates for surface complexation or 
co- precipitation. For instance, Mn(II) oxidizing bacteria 
(e.g. Providencia sp.) has the ability to generate biogenic 
manganese oxides (BioMnOx), which are promising stabi-
lizing agents with high binding affinity towards toxic met-
als (Li et al., 2020). Ureolytic bacteria could induce calcite 
precipitation, favouring metal co- precipitation with CaCO3 
(e.g. PbCO3, CdCO3 and CuCO3) (Kang et  al.,  2016). 
Bioaccumulation in organisms can be achieved through the 
direct uptake of toxic metals. Soil animals, such as earth-
worms, are ideal candidates for this process (Boughattas 
et  al.,  2019). However, the long- term stability of micro-
bial immobilization processes should be further assessed. 
Considering the fact that the stabilizing agents are gener-
ated during microbial metabolism, environmental factors 
may greatly affect the stabilization performance, indicat-
ing poor resilience to changes (section 2.2). How to deal 
with the organisms with high metal concentrations remains 
a tough problem, because improper handling of contami-
nated biomass may increase the secondary impact (section 
2.2).

Microbial- based detoxification seems to be a more fea-
sible method for the green remediation of Hg, As and Cr. 
It involves the oxidation or reduction of toxic metal(loid)s, 
thus decreasing their toxicity. Microbial reduction of Hg(II) 
to Hg(0) can be achieved using bacteria with mer operon 
(Mahbub et al., 2016; Wang et al., 2020c). In brief, Hg(II) 
enters the cytoplasm with the help of transporter proteins 
encoded by merP and merT genes. After that, the expres-
sion product of merA gene, mercuric reductase enzyme, will 
reduce Hg(II) to less toxic, highly volatile Hg(0) (Naguib 
et al., 2018; Petrus et al., 2015; Wang et al., 2020c). Owing 

to the high volatility of elemental Hg, it will diffuse passively 
out of the cell and volatize from soil to the air. However, Hg 
in the atmosphere can be transported globally, and further 
returned to the soil via wet or dry deposition (UNEP, 2018; 
Wang et al., 2020c). Detoxification of As can be accomplished 
through the microbial oxidation of As(III) to less toxic As(V) 
(Yang et al., 2017b). In oxygen- depleted flooded paddy soils, 
this can also be achieved through anaerobic oxidation (using 
nitrate as electron acceptor) (Zhang et al., 2017). The relative 
abundances of genera Acidovorax and Azoarcus increased, 
and the abundance of As(III) oxidase genes was enhanced 
during this process (Zhang et al., 2017). Cr(VI) is a potent 
carcinogen, teratogen and mutagen with toxicity and mu-
tagenicity over 100 times higher than that of Cr(III) (Saha 
et al., 2011; Shelnutt et al., 2007). A wide variety of Cr reduc-
ing bacteria, including Bacillus, Aeromonas, Pseudomonas 
and Enterobacter have the potential for Cr(VI) contaminated 
soil remediation (Dogan et al., 2011; Tan et al., 2020).

Although microbial- based bioremediation of organic con-
taminants provides a balance between cost and effectiveness 
while keeping the site function (Hou et al., 2020), this nature- 
based remediation technique may not be green when applied 
to heavy metals (Table 3). During this process, metals can-
not be removed from the contaminated soil, indicating the 
need for long- term management including proper monitor-
ing. Compared with green material- based S/S (section 5.4), 
microbial- induced stabilization is much more sensitive to 
changes. Moreover, microbial detoxification involves much 
uncertainty, since the reversible ‘detoxification’ reaction 
may lead to ‘toxification’ when the environment changes. 
For instance, an increase in Eh may lead to the suppression 
of Hg(II) reduction process (Beckers et  al.,  2019a, 2019b; 
Frohne et al., 2012), making the microbial volatilization of 
Hg impossible (Chen et al., 2018; Nascimento & Chart one- 
Souza, 2003). Low resilience to changes may be the greatest 
obstacle of this nature- based remediation approach (Table 3).

One plausible role of microorganisms, however, is to 
assist in the phytoremediation process. Instead of working 
alone, a combination of microorganisms and plants can at-
tain promising remediation performances. Plant- growth pro-
moting bacteria (PGPB) can either act as a biocontrol agent 
towards plant pathogens in an indirect way or improve plant 
growth directly by moderating phytohormone levels (e.g. 
cytokinins, auxins and gibberellins) and increasing the bio-
availability of nutrients (e.g. solubilize phosphorous and 
nitrogen fixation) (Kong & Glick,  2017). The promoting 
mechanisms of PGPB in phytoremediation processes include 
the increase of biomass, improvement of metal tolerance, and 
alterations to metal accumulation in plants (to decrease or 
increase the bioaccumulation through changes in metal bio-
availability) (Alka et al., 2020; Antoniadis et al., 2017; Kong 
& Glick, 2017; Wang et al., 2020d). PGPBs can therefore as-
sist in both phytoextraction (Kong et al., 2019; Konkolewska 
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et  al.,  2020) and phytostabilization (Fatnassi et al., 2016; 
Honeker et al., 2019; Saran et al., 2020). With microbial as-
sistance, metal extraction or stabilization efficiencies can be 
enhanced substantially. For instance, the PGPB Burkholderia 
phytofirmans inoculation enhanced the Brassica juncea phy-
toextraction efficiency of Zn, Cd and Pb by 37%, 21% and 
10%, respectively (Konkolewska et al., 2020). Sunflower in-
oculated with Bacillus proteolyticus accumulated 40% less 
Cd and 20% less Pb in aboveground tissues, suggesting en-
hanced phytostabilization induced by PGPBs (Radziemska 
et al., 2020; Saran et al., 2020).

5.3 | Constructed wetland

Although a constructed wetland is typically designed for 
wastewater treatment, it is suggested that this artificial system 
may also be applied for land reclamation purposes. Several 
mechanisms are involved in metal retention/removal in a con-
structed wetland, including sorption, bioaccumulation, pre-
cipitation, biotransformation and sedimentation (Marchand 
et al., 2010). Sorption is a major mechanism dominating the 
environmental behaviours of metals in a constructed wetland. 
Both short- term retention and long- term immobilization can 
be achieved through various types of sorption mechanisms, 
including physisorption and chemisorption (Hu et al., 2020; 
Tran et al., 2017; Walaszek et al., 2018b). Macrophytes (i.e. 
aquatic plants) play a vital role in metal bioaccumulation, but 
only a few of them are hyperaccumulators (e.g. Ni hyperac-
cumulator Limnobium laevigatum and Cd hyperaccumulator 
Potamogeton pectinatus) (Arán et al., 2017; Lu et al., 2018), 
indicating that the uptake of metals may be secondary to 
other metal retention/removal mechanisms. In wetland eco-
systems, both iron oxides and carbonates could co- precipitate 
with other metals (i.e. Cu, Zn, Ni, As, Cd and Pb) (Du Laing 
et al., 2009; Marchand et al., 2010; Sochacki et  al., 2014). 
Mechanisms involved in biotransformation and detoxifica-
tion of metals in wetlands are similar to those of microbial- 
based bioremediation. Microorganism- mediated oxidation or 
reduction will greatly affect the biogeochemical processes of 
heavy metals in constructed wetlands. Sedimentation occurs 
when macrophytes decrease water flow rates. In this sense, a 
studied wetland was like a stagnant pond in which high con-
centrations of suspended matter favour the formation of flocs, 
reducing metal mobility through coagulation and sedimenta-
tion (Tao & Haynes, 2016; Walaszek et al., 2018a). A con-
structed wetland provides a number of environmental, social 
and economic benefits, including flood control, biodiversity 
preservation, low life- cycle carbon footprint and improve-
ment of aesthetics. However, as a water treatment technol-
ogy, constructed wetland is rarely used for soil remediation 
with no practical applications reported to date. Besides, metal 
removal in the constructed wetland may take several years 

(Marchand et al., 2010; Song et al., 2019a), and the uncer-
tainties such as the death of macrophytes may hinder the 
metal remediation efficiency (García- Mercadoa et al., 2017).

5.4 | Stabilization using green materials

Originating in the late 1950  s, Solidification/Stabilization 
(S/S) is an old remediation technology with new vital-
ity (Shen et  al.,  2019b). In China, the remediation market 
has reached 2.9 billion US dollars in 2018, with S/S being 
adopted by nearly half of the remediation projects (48.5%) 
(Shen et al., 2019b). A shift from labile forms (e.g. exchange-
able and acid soluble) to stable forms (e.g. bound to organic 
matter, residual) of the metal geochemical fractions is the 
major mechanism involved in S/S; this can be achieved 
through surface complexation, precipitation, physical ad-
sorption, ion exchange or electrostatic interactions (Hou 
et al., 2020) (Figure S1). Portland cement (PC) is the most 
widely applied S/S agent in metal immobilization. However, 
its production is associated with a high carbon footprint, ac-
counting for 8% of the global CO2 emission (Andrew, 2019). 
With the increasing awareness of global climate change, de-
veloping novel S/S agents with low environmental impact is 
necessary. Many attempts have been made to seek for low- 
carbon supplementary cementitious materials, including pul-
verized fly ash (Wang et al., 2019b), silica fumes (Goodarzi 
& Zandi, 2016), ground granulated blast- furnace slag (Wang 
et  al.,  2018a), incinerated sludge ash (Su & Shih,  2017), 
calcium carbide residue (Darikandeh,  2018) and reactive 
magnesium oxide cement (Wang et al., 2018b). However, a 
cement- like stabilization agent hinders the sustainable reme-
diation of agricultural soils, since the increased mechanical 
strength after S/S treatment may be harmful to plant growth 
and yields. In addition, the decrease in soil biodiversity might 
be detrimental to the soil health and the agroecosystem (US 
EPA, 2015).

In the context of NBS, biological waste- derived stabilizing 
agents may be a better choice having a higher ‘net environ-
mental benefit’ (Table 3). Apart from diminishing the above-
mentioned environmental impacts of cement- like agents, 
addition of biological waste- derived materials (e.g. biochar 
and compost) could also promote soil fertility and plant 
growth. However, simply using green immobilization agents 
is not equivalent to being ‘green and sustainable’. According 
to the general principles of GSR (Figure 2), several sustain-
ability concerns must be addressed (Figure S2). For instance, 
utilization of some agents, such as metal- rich sewage sludge 
and compost, may increase the environmental risks of metal 
leaching. In addition, a sustainable remediation approach 
should look beyond the contemporary time horizon (section 
2.2). For nature- based metal immobilization processes, long- 
term stability should be assessed. Various environmental 
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T A B L E  3  A critical assessment of how “green” the "remediation strategies are"

Strategy Target metal Environmental considerations
Environmental 
greenness Economic considerations

Economic 
greenness Social considerations

Social 
greenness Limitations References

Resource recovery approaches

Phytomining Ni, Tl, Co, Ag, Au. Compared with opencast mining 
operations, phytomining offers a 
metal recovery method with low 
impact to the environment.

The plant cover prevents metal cross- 
media migration (i.e. through wind 
or percolation to groundwater)

*** Highly sensitive to the metal price— 
only metals with high values, such 
as Pb, Au, Pt and Ag, are suitable 
for phytomining.

* High social acceptance. Improve 
aesthetics while creating place for 
leisure.

*** The handling of metal- rich biomass may 
cause secondary pollution.

(Brooks et al., 1998; Novo 
et al., 2017; Sheoran 
et al., 2009)

Soil washing All types of heavy 
metals.

Remove heavy metals thoroughly 
and rapidly from the soil.

Extractants, such as strong acids 
and chelating agents, may cause 
contamination.

** Moderate cost— around $187 per 
tonne.

** High social acceptance as a 
traditional remediation technology.

** High disturbance to the environment.
A high humic content in soil adds 
difficulty to soil washing.

Not suitable for fine particles with a size 
distribution < 0.063 mm.

(FRTR, 2020b; US EPA 1996)

Nature- based solutions

Phytoremediation Metals that can be 
extracted, volatized 
(e.g. Hg), or 
stabilized by plants.

Improve soil health and air quality 
via the function of plants.

*** Reported cost of phytoremediation 
ranges from $15 to $2,322 per cubic 
metre, highly site- specific.

** High social acceptance. Improve 
aesthetics while creating place for 
leisure.

*** The handling of contaminate biomass may 
result in secondary contamination.

Phytovolatilization results in air pollution.
Phytostabilization reveals poor long- term 
effectiveness.

Long remediation duration hinders the 
practical applications.

(FRTR, 2020a; 
GWRTAC, 1997; US EPA, 
2001; Wan et al., 2016)

Phytomanagement Metals that can 
be extracted or 
stabilized by plants.

Remove heavy metals slowly while 
preventing their cross- media 
migration.

*** Profitable crops can be used for 
animal feeding, energy production 
or other purposes to realize 
sustainable use and management of 
contaminated soils.

The cost ranges from $0.4 to $26 per 
cubic metre.

** Easy to be acknowledged due to the 
restoration and reuse of degraded 
barren lands.

A relatively new concept as 
compared with phytoremediation.

** Long duration of phytomanagement 
has hindered its practical application. 
Remediation practitioners tend to 
select more aggressive remediation 
technologies rather than gentle 
remediation options.

Low resilience to environmental changes.

(Burges et al., 2018; Meers 
et al., 2010; Zine et al., 2020)

Microbial- based 
bioremediation

Hg, As and Cr. Low disturbance to soil.
Cause air pollution.

** Hardly applicable for heavy metals. 
Only a few proof- of- concept 
investigations have been made, with 
no practical applications.

* Low social acceptance due to 
secondary contamination.

* Low resilience to environmental changes. (Dogan et al., 2011; Naguib 
et al., 2018; Zhang 
et al., 2017)

Constructed wetland All types of heavy 
metals.

Improve soil health and air quality 
via the function of plants.

Decrease the flooding risk.

*** Rarely used for soil remediation.
The construction cost reaches around 
$10,000 per acre.

* High social acceptance. Improve 
aesthetics while creating place for 
leisure.

** Long remediation duration, low 
remediation efficiency.

(Tyndall & Bowman, 2016; US 
EPA, 1995; Vymazal, 2011)

Green S/S All types of heavy 
metals.

Improve soil health with low 
disturbance.

*** Highly dependent on the soil 
amendment used. Natural minerals 
and biochar application render low 
cost.

*** High social acceptance for biochar, 
mineral and iron- based S/S.

*** The long- term effectiveness should be 
monitored.

(Komárek et al., 2013; Wang 
et al., 2020g; Xu et al., 2017)

Energy- efficient strategies

Low- temperature 
thermal desorption

Hg The soils treated at a relatively low 
temperature can be reused for 
agricultural purposes.

Reduce energy input by ~ 35% 
compared to traditional high- 
temperature thermal desorption.

** Reduce marginal cost from $57 to 
$38 following citric acid- facilitated 
thermal desorption.

** Raise public concerns of possible 
Hg air pollution due to the release 
of this metal from soil.

* Concerns of air Hg pollution. (Hou et al., 2016; Ma 
et al., 2015)

Bio- electrokinetic 
remediation

All types of heavy 
metals.

Low environmental impact as metals 
can be removed from the soil but 
properly sequestered.

*** Commercialization has not taken off. * A new technology that needs time 
to be accepted by the public.

* This system is sensitive to changes, 
since microorganism plays vital roles in 
electric field generation.

(Chen et al., 2015; Habibul 
et al., 2016b; Yang 
& Shen, 2019; Zhang 
et al., 2019)

Note: The greenness scores indicate that certain remediation strategies ***well, **moderately or *poorly align with the principles of GSR.
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T A B L E  3  A critical assessment of how “green” the "remediation strategies are"

Strategy Target metal Environmental considerations
Environmental 
greenness Economic considerations

Economic 
greenness Social considerations

Social 
greenness Limitations References

Resource recovery approaches

Phytomining Ni, Tl, Co, Ag, Au. Compared with opencast mining 
operations, phytomining offers a 
metal recovery method with low 
impact to the environment.

The plant cover prevents metal cross- 
media migration (i.e. through wind 
or percolation to groundwater)

*** Highly sensitive to the metal price— 
only metals with high values, such 
as Pb, Au, Pt and Ag, are suitable 
for phytomining.

* High social acceptance. Improve 
aesthetics while creating place for 
leisure.

*** The handling of metal- rich biomass may 
cause secondary pollution.

(Brooks et al., 1998; Novo 
et al., 2017; Sheoran 
et al., 2009)

Soil washing All types of heavy 
metals.

Remove heavy metals thoroughly 
and rapidly from the soil.

Extractants, such as strong acids 
and chelating agents, may cause 
contamination.

** Moderate cost— around $187 per 
tonne.

** High social acceptance as a 
traditional remediation technology.

** High disturbance to the environment.
A high humic content in soil adds 
difficulty to soil washing.

Not suitable for fine particles with a size 
distribution < 0.063 mm.

(FRTR, 2020b; US EPA 1996)

Nature- based solutions

Phytoremediation Metals that can be 
extracted, volatized 
(e.g. Hg), or 
stabilized by plants.

Improve soil health and air quality 
via the function of plants.

*** Reported cost of phytoremediation 
ranges from $15 to $2,322 per cubic 
metre, highly site- specific.

** High social acceptance. Improve 
aesthetics while creating place for 
leisure.

*** The handling of contaminate biomass may 
result in secondary contamination.

Phytovolatilization results in air pollution.
Phytostabilization reveals poor long- term 
effectiveness.

Long remediation duration hinders the 
practical applications.

(FRTR, 2020a; 
GWRTAC, 1997; US EPA, 
2001; Wan et al., 2016)

Phytomanagement Metals that can 
be extracted or 
stabilized by plants.

Remove heavy metals slowly while 
preventing their cross- media 
migration.

*** Profitable crops can be used for 
animal feeding, energy production 
or other purposes to realize 
sustainable use and management of 
contaminated soils.

The cost ranges from $0.4 to $26 per 
cubic metre.

** Easy to be acknowledged due to the 
restoration and reuse of degraded 
barren lands.

A relatively new concept as 
compared with phytoremediation.

** Long duration of phytomanagement 
has hindered its practical application. 
Remediation practitioners tend to 
select more aggressive remediation 
technologies rather than gentle 
remediation options.

Low resilience to environmental changes.

(Burges et al., 2018; Meers 
et al., 2010; Zine et al., 2020)

Microbial- based 
bioremediation

Hg, As and Cr. Low disturbance to soil.
Cause air pollution.

** Hardly applicable for heavy metals. 
Only a few proof- of- concept 
investigations have been made, with 
no practical applications.

* Low social acceptance due to 
secondary contamination.

* Low resilience to environmental changes. (Dogan et al., 2011; Naguib 
et al., 2018; Zhang 
et al., 2017)

Constructed wetland All types of heavy 
metals.

Improve soil health and air quality 
via the function of plants.

Decrease the flooding risk.

*** Rarely used for soil remediation.
The construction cost reaches around 
$10,000 per acre.

* High social acceptance. Improve 
aesthetics while creating place for 
leisure.

** Long remediation duration, low 
remediation efficiency.

(Tyndall & Bowman, 2016; US 
EPA, 1995; Vymazal, 2011)

Green S/S All types of heavy 
metals.

Improve soil health with low 
disturbance.

*** Highly dependent on the soil 
amendment used. Natural minerals 
and biochar application render low 
cost.

*** High social acceptance for biochar, 
mineral and iron- based S/S.

*** The long- term effectiveness should be 
monitored.

(Komárek et al., 2013; Wang 
et al., 2020g; Xu et al., 2017)

Energy- efficient strategies

Low- temperature 
thermal desorption

Hg The soils treated at a relatively low 
temperature can be reused for 
agricultural purposes.

Reduce energy input by ~ 35% 
compared to traditional high- 
temperature thermal desorption.

** Reduce marginal cost from $57 to 
$38 following citric acid- facilitated 
thermal desorption.

** Raise public concerns of possible 
Hg air pollution due to the release 
of this metal from soil.

* Concerns of air Hg pollution. (Hou et al., 2016; Ma 
et al., 2015)

Bio- electrokinetic 
remediation

All types of heavy 
metals.

Low environmental impact as metals 
can be removed from the soil but 
properly sequestered.

*** Commercialization has not taken off. * A new technology that needs time 
to be accepted by the public.

* This system is sensitive to changes, 
since microorganism plays vital roles in 
electric field generation.

(Chen et al., 2015; Habibul 
et al., 2016b; Yang 
& Shen, 2019; Zhang 
et al., 2019)

Note: The greenness scores indicate that certain remediation strategies ***well, **moderately or *poorly align with the principles of GSR.
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stresses, including freeze- thaw cycles, wetting- drying cycles, 
microbial metabolism, UV irradiation and plant growth may 
affect the stabilization performances in the long term (Figure 
S2, Figure S3) (Shen et  al.,  2019a; Wang et  al.,  2020e, 
2020f). A diminished immobilization reliability results in the 
release and migration of metals. More long- term field studies 
are definitely needed to better examine the effectiveness of 
‘green’ material- based S/S approaches.

6 |  ENERGY- EFFICIENT 
STRATEGIES

6.1 | Low- temperature thermal desorption

Considering its high volatility, thermal desorption has 
proven to be effective for Hg contaminated soil remediation. 
However, the high temperature (i.e. >600°C) required in this 
process indicate relatively high costs (i.e. 480 USD t−1) (He 
et al., 2015; Wang et al., 2020c) and a high carbon footprint 
(Hou et  al.,  2016). Furthermore, the substantial changes in 
physicochemical properties of the treated soil render it im-
possible for agricultural reuse purposes (Hou et  al.,  2016). 
Therefore, low- temperature thermal desorption approaches 
are required to minimize both primary and secondary im-
pacts, and maximize the ‘net environmental benefit’ (Hou 
& Al- Tab baa, 2014). The addition of chemical agents such 
as citric acid (Ma et al., 2015) and FeCl3 (Ma et al., 2014) 
could successfully reduce the heating temperature to 400°C 
while maintaining Hg removal efficiency. The enhancement 
in Hg removal at low temperatures may be either due to the 
acidic environment provided by citric acid, or the formation 
of volatile Hg species (i.e. HgCl2 and Hg2Cl2). Microwave- 
induced thermal desorption is another effective means for Hg 
removal. Cao et al., (2018) observed that a high Hg removal 
efficiency (i.e. 87%) could be reached after microwave ir-
radiation (400 W for 40 min) with granule activated carbon 
(GAC) as the receptor of microwave (the soil was heated to 
350°C). It was observed that the exterior temperature was 
much lower than the interior temperature for a certain soil 
particle. In this way, off gas could migrate from the soil 
much more easily (compared to conventional desorption ap-
proaches) due to diminished heat transfer resistance.

However, a much longer time is required in low- 
temperature thermal desorption processes to reach the same 
removal rate of Hg. Utilization of chemical agents or GAC 
may also threaten the sustainability over the whole life 
cycle of the remediation process. Therefore, it is necessary 
to investigate the overall impact of low- temperature thermal 
desorption processes. Hou et  al.,  (2016) conducted a life- 
cycle assessment of a thermal desorption treatment of an 
agricultural soil and reported that citric acid- facilitated low- 
temperature thermal desorption could effectively reduce the 

life- cycle greenhouse gas emissions from 357 kg CO2- eq to 
264 kg CO2- eq due to the reduction in electricity usage. In 
addition, the soil subjected to low- temperature thermal de-
sorption could be immediately reused on- site for agricultural 
purposes. However, the feasibility of this method has only 
been confirmed at the bench scale. More studies should be 
undertaken at the field scale to get deeper and better insights 
and to further assess the feasibility of this energy- efficient 
strategy.

6.2 | Bio- electrokinetic remediation

Electrokinetic remediation is an effective means to mobilize 
contaminants using an external electric field, thus removing 
toxic metals from soil (López Vizcaíno et al., 2018; US EPA, 
2017b). However, the relatively high energy consumption 
has hindered its practical applications. In order to overcome 
this obstacle, renewable energy should be used to generate 
the electric field. In recent years, microbial fuel cells (MFCs) 
have emerged as novel bio- electrochemical systems for sus-
tainable wastewater treatment and soil remediation (Aarthy 
et  al.,  2019; Fang & Achal,  2019). In an MFC, electricity 
is generated by the microbial metabolism of organic matter 
under anaerobic conditions. This results in the release of elec-
trons in the anode, which will flow to the cathode through an 
external circuit. The protons and electrons will produce water 
with electron acceptor (i.e. oxygen) in the cathode. A typical 
reaction mechanism is provided below (Eq. 6– 7):

The key to electricity generation in this system is the mi-
crobial oxidation process in the anode. Several studies have 
examined the anode microbial community structure (Table 2). 
Compared with phytoremediation and S/S with a relatively 
long remediation or monitoring duration, this technique of-
fers a quicker way to remove metals thoroughly from soil (i.e. 
the remediation duration ranges from 9 days to 10 months) 
(Table 2). A wide variety of phyla, such as Proteobacteria, 
Actinobacteria and Bacteroidetes, can contribute to this pro-
cess. To enhance the microbial activity in the anode, inor-
ganic nutrients (e.g. Ca2+, Mg2+, K+, PO4

3− and NH4
+) can 

be added in the anode chamber (Chen et al., 2015; Habibul 
et  al.,  2016a; Wang et  al.,  2016a). Sometimes, external or-
ganic carbon sources can also be added in various forms, such 
as straw (Song et al., 2018a) and leaves (Zhang et al., 2019).

Although MFC is still in its infancy, this kind of bio- 
electrochemical system has derived into distinct forms (Figure 

(6)
Anodic reaction: CH3COO−

+ 2H2O
microorganisms

→ 2CO2 + 7H+
+ 8e−

(7)Cathodic reaction: O2 + 4H+
+ 4e−

→ 2H2O



   | 953WANG et Al.

S4). A typical three- chamber MFC can be applied either hor-
izontally (Figure S4a) or vertically (Figure S4c). In this sys-
tem, positively charged metals (e.g. Cu, Zn, Cd and Pb) will 
migrate to the cathode, while negatively charged metal(loid)
s (e.g. Cr(VI) and As(III)) will migrate towards the anode. In 
a plant, MFC (P- MFC, Figure S4b), rhizodeposits, root exu-
dates and other organic matter generated through photosynthe-
sis can act as carbon sources for the anodic reactions. In this 
sense, plants can enhance the generation of electricity, but do 
not dominate this process. Another example is the adsorption- 
MFC system (A- MFC, Figure S4d). In this system, after the 
migration of contaminants towards the cathode or anode, the 
adsorbent in the vicinity of electrodes will adsorb metal cat-
ions or anions effectively. For instance, Zhang et al., (2019) 
designed an A- MFC for soil Cr(VI) removal. Fallen leaves 
were adopted as the natural biosorbent and the anode organic 
carbon source. Sorption tests confirmed that this sorbent has 
high affinity towards Cr(VI) (adsorption capacity 14 mg g−1), 
and the removal efficiency of Cr(VI) in soil reached 40%.

The migration of heavy metals is highly dependent on 
their geochemical fractions. Compared with less- labile forms 
(i.e. residual, bound to organic matter), labile forms (i.e. ex-
changeable and acid soluble) migrate more easily under the 
external electric field (Chen et al., 2015; Wang et al., 2020a). 
Thus, a high portion of labile fractions may result in a promis-
ing remediation efficiency. In order to achieve this goal, aux-
iliary reagents, such as citric acid, acetic acid or hydrochloric 
acid can be adopted to mobilize the metals through soil pH 
reduction (Zhang et al., 2020a). Utilization of MFCs in soil 
remediation is a novel technology. However, application in 
the field seems less successful so far, most probably due the 
soil heterogeneity and the complex interactions of various 
environmental factors. Therefore, more efforts are needed to 
examine the feasibility of this technique in field studies. Bio- 
electrokinetic remediation is a new technology that requires 
time to be accepted by the public. Current studies are mainly 
proof- of- concept investigations of this technology (Tables 2, 
3). Feasibility of practical applications should be assessed via 
field demonstrations.

7 |  SUSTAINABILITY CONCERNS, 
CHALLENGES AND FUTURE 
DIRECTIONS

A critical summary of how ‘green’ these aforementioned re-
mediation strategies are have been provided in Table 3. It is 
suggested that overall phytoremediation and green S/S are the 
‘greenest’, while microbial degradation, bio- electrokinetic 
remediation and soil washing may have more significant 
environmental, economic and social limitations diminishing 
the overall sustainability. However, remediation practitioners 
should bear in mind that adoption of green strategies is not 

equivalent to ‘green and sustainable remediation’, since ‘sus-
tainability’ is very subjective, and highly site- specific. To as-
sess whether a remediation strategy can achieve the maximum 
environmental, social and economic benefits, sustainability 
assessment (SA) should be conducted. Sustainability assess-
ment of a remediation approach depends on the selection of 
a wide range of environmental, social and economic consid-
erations amongst various stakeholders (Bardos et al., 2016). 
Various SA tools can be adopted to examine the sustainabil-
ity of a heavy metal remediation approach. Life- cycle as-
sessment (LCA), a quantitative method standardized by the 
International Organization for Standardization (ISO, 2006), 
is generally considered to be the most integrated sustaina-
bility assessment tool. LCA will provide fresh insights into 
the green remediation processes and assist in wise decision- 
making through combination with other useful tools, such as 
health risk assessment (Hou et al., 2017) and multi- criteria 
analysis (Song et al., 2018b). To aid in the selection of green 
remediation strategies for certain contaminated sites, more 
attempts should be made to further evaluate the overall sus-
tainability of ‘green’ technologies in the future.

Green remediation approaches, including the utilization 
of green materials, resource recovery strategies, nature- based 
solutions and energy- efficient strategies, have received much 
attention with view to the remediation of soils contaminated 
with heavy metals. However, several challenges exist in this 
field, which may hinder the overall sustainability:

Firstly, in plant- based remediation technologies, the 
metal- rich plant tissues collected after harvesting may 
become a contaminant source if not properly disposed. 
Phytostabilization is only effective within the rhizosphere, 
making it impossible for the remediation of deep soils. In ad-
dition, phytovolatilization of Hg result in air pollution, and 
the volatized Hg (mostly in the form of elemental mercury) 
in the atmosphere may return to the ecosystems through both 
dry and wet deposition.

Secondly, green remediation materials, such as biochar 
synthesized from the contaminated biomass (e.g. plants used 
in phytoextraction) and metal- containing industrial waste- 
derived materials, may result in metal solubilization and 
mobilization. Although green remediation materials have 
proven effective for soil metal immobilization by a number 
of studies, their long- term stability has not been fully investi-
gated. Due to various natural forces such as freeze- thaw ero-
sion, wetting- drying cycles, UV irradiation, plant growth and 
groundwater flow, the stabilized metals may be remobilized, 
causing severe risks on the longer term.

Moreover, with view to microbial- based remediation ap-
proaches, the low resilience of microbial- based strategies 
hinders the sustainability. Microorganisms are sensitive to 
changes. For instance, in bioremediation or bio- electrokinetic 
remediation approaches, slight changes in temperature, redox 
potential, moisture, nutrients and organic matter may induce 
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a significant shift in the metabolism pathways of microorgan-
isms, leading to the failure of microbial- based detoxification 
and electrokinetic removal processes.

In addition, the long remediation duration hinders the 
adoption of green remediation technologies due to decreased 
overall sustainability. Although plant- based and microbial- 
based remediation technologies appear to increase the envi-
ronmental sustainability, remediation strategies with shorter 
time frames are often preferred, in order to allow a rapid 
return on the investment to assure economic sustainability. 
Therefore, from an applied point of view, a balance should 
be made between the environmental and economic benefits.

Considering that a single type of green remediation strat-
egy may have significant limitations, it is suggested that fu-
ture studies should integrate ‘green’ approaches to produce 
more effective remediation strategies. For instance, green 
stabilization materials, such as biochar and minerals, or a 
mixture of both, can act as both immobilizing agents and 
soil fertilizers, and assist in phytostabilization through en-
hancing metal immobilization and promoting root growth. 
Novel plant- based chelating agents can not only be adopted 
in soil washing, but also aid in phytomining, phytoextraction, 
low- temperature thermal desorption and bio- electrokinetic 
remediation by increasing the metal mobility. Carbon- rich 
remediation materials (i.e. biochar) may even act as a car-
bon source and enhance the activities of microorganisms in 
microbial- based remediation and bio- electrokinetic remedi-
ation approaches. The combination of green strategies will 
reveal a ‘synergistic effect’, thus promoting the metal reme-
diation efficiencies.

8 |  CONCLUSIONS

Soil contamination by heavy metals has raised much con-
cern owing to the potentially toxic effects on human beings 
and ecosystems. With the emergence and development of 
the GSR movement, green remediation strategies have been 
adopted for metal removal, stabilization or detoxification, 
including resource recovery strategies such as phytomining 
and soil washing, nature- based remediation methods such as 
phytoremediation, microbial oxidation/reduction and con-
structed wetland, and energy- efficient strategies including 
low- temperature thermal desorption and bio- electrokinetic re-
moval. In those technologies, plants and microorganisms play 
vital roles as does the adoption of green amendments, such 
as biological and industrial waste- derived materials, natural 
minerals, oxides and green- synthesized nanomaterials, which 
increases the environmental, social and economic benefits. 
Various green remediation strategies, such as phytoremedia-
tion and soil washing, have been already widely adopted in 
commercial applications, while others such as biochar- based 
stabilization, citric acid- facilitated low- temperature thermal 

desorption and bio- electrokinetic remediation have only been 
investigated on a laboratory scale. However, in both cases, 
future attempts should be made to further test the practical 
applicability of these green remediation strategies.
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