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Abstract

Appointment scheduling assigns start times in a session or consultation block to a set of tasks that
share a common resource.  For a generic repeated appointment scheduling problem, we study the
trade-off between waiting for an appointment and waiting at the appointed time. Assuming that be-
ing scheduled later during a session implies that one has to wait longer for service (on average), it is
often beneficial to choose a consultation block further away. We study this trade-off both when the pa-
tients have no information on how many patients are already scheduled in future consultation blocks
and when they can observe the future block schedules. By some numerical examples, we find that in
both cases the rational choice considerably changes between consecutive appointment blocks, patients
favouring later blocks when the next appointment block starts in the near future. We also compare
the rational choice with the socially optimal schedule and find that socially optimal scheduling can
significantly reduce the waiting cost.

Keywords: Appointment scheduling; Game theory; Wardrop equilibrium.

1 Introduction
Many primary care practices are struggling tomaintain timely access tomedical care. Patients often need
to schedule routine appointments many months in advance due to overfilled appointment books [27]
or experience long delays in the waiting room on the day of their appointment [13]. In response to
these delays, the so-called open-access (OA) policy was introduced as a more patient-centred method
[23]. By offering same-day appointments to patients, OA scheduling promotes timely access to care and
often improves the clinic’s operational efficiency since no-show rates likely decrease when the time till
the appointment becomes shorter [25]. Clinics no longer have to use strategies such as appointment
overbooking which mitigate the negative effects of no-shows but in turn increase the in-clinic waiting
time of patients [28].

Despite these clear benefits, empirical evidence suggests however that implementing OA scheduling
does not always lead to higher patient satisfaction levels [22, 29, 30]. Some patients favour scheduling
an appointment at a convenient time over a same-day appointment and taking such preferences into
account is an important feature of a good appointment system. Recently, Liu et al. [19] conducted
four discrete choice experiments to better understand how patients value ‘operational’ attributes such
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as appointment delay and flexibility in the primary care set. They found that the average utility loss
of a 3-day delay is comparable with 30 minutes of physical waiting in the clinic or alternatively, with
giving patients more choice. Patients thus take a variety of factors into account when scheduling an
appointment.

In this paper, we study the overall consequences of providing more flexibility to patients regarding
their appointment time. It is easy to imagine that giving patients more freedom to choose results in a
suboptimal allocation. In particular, we consider a setting that operates under appointment scheduling.
During the day, patients call in to schedule an appointment in one of the future consultation blocks. We
assume that patients make a rational choice by comparing two costs. First, there is a cost proportional
to the appointment delay. This is the time between making the appointment and the start of the chosen
consultation block. This cost is also called the indirect waiting time or access time [37]. Secondly, there
is a cost proportional to the number of available appointment slots in the consultation block, which we
will refer to as the appointment flexibility. When more appointment slots have been booked in a consultation
block, there are less desirable visit times left for a patient to choose from. Hence, there indeed is a trade-
off: by choosing a later block, one experiences a larger appointment delay but one can be scheduled at
a more convenient time within the consultation block.

1.1 Contribution
This paper provides a framework for studying appointment scheduling in a game theoretical framework
where patients rationally choose an appointment time in one of the future appointment blocks. We
consider two different settings: an unobservable game setting where patients do not know how many
patients already have been scheduled in the future consultation blocks and an observable game setting,
where patients do have full information on the future consultation blocks. For both settings, we study
the time-dependent Wardop equilibrium and compare the cost of this rational Wardrop strategy with
the cost of the socially optimal allocation which minimises the total cost of all patients in a consultation
block.

1.2 Related work
Although the literature on appointment scheduling is vast, only a few papers explicitly take into ac-
count patient choice behaviour. As Gupta and Denton [11] indicate, most of the existing works focus
solely on the in-clinic waiting times to measure patient satisfaction. Exceptions include the contribu-
tions [7,12,33,35]. These studies consider the effect of patient-choice on a clinic capacity management
problem. The objective is to offer appointment slots in such a way that the revenue is maximised, given
that patients have preferences for certain slots. The trade-off between choosing the appointment on two
time scales (day vs. time) has also been considered in other works. Patrick et al. [26] study the problem of
dynamically allocating available capacity to incoming demand in a cost-effectivemanner whilemaintain-
ing appointment delay targets. Luo et al. [20] developed a queueing model for an appointment-based
service system that consists of two queues in tandem: an appointment queue to model the appointment
delay and a service queue to model the in-clinic waiting time. In Zacharias and Armony [36], an analyt-
ical model is proposed to solve the joint problem of appointment scheduling and determining the panel
size.

The appointment game at hand also somewhat relates to sequencing games [4]. A sequencing game
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is a cooperative game in which the players aim at finding the optimal order in which they are served,
assuming they have all arrived at the start of the game. In Curiel et al. [4], the players have a fixed
service time and each incur a cost linear in their queueing delay. In case of identical service times,
fairness properties of splitting the cooperation gains according to the Shapley value are discussed by
Maniquet et al. [21], while for example Chun et al. [2] study the fairness of more general rules for
allocating money to the players. In the ‘concert’ game of Jain et al. [16], players have independent and
identically distributed service times and can choose their own arrival time distribution so as to be served
the soonest and with minimal waiting time. The equilibrium arrival profile and Price of Anarchy (PoA)
are obtained in the fluid limit for the number of players, both in case of identical players and for the
multi-class case where players have different costs. Some authors have studied appointment problems
apart from sequencing games. Chun et al. [3] for example use concepts from cooperative game theory
to divide the travelling cost of a salesman among his appointments.

In contrast to sequencing games where a finite number of players form a queue, queueing games
consider optimal strategies for infinite populations of customers arriving to a queueing system in steady-
state [14]. In the seminal model of Naor [24], the customers receive a reward for joining an M/M/1

queue but incur a loss proportional to their queueing delay. Their possible strategies are then to join the
queue or not. This is extended byWang and Zhang [34] to a queue with server breakdowns and delayed
repair. Haviv and Roughgarden [15] obtain bounds on the PoA in an exponential multiserver system
where the customers’ strategies are to choose one of the differently-rated servers without observing the
queue lengths. Not only customers are players in queueing games. Instead of games between customers,
the queueing game can also be played between customers and the service provider, such as on a market
between sellers and buyers [6, 31]. Finally, the time-dependent Wardrop equilibrium at hand is also
studied for some queueing systems. In [8, 9] a network of processor sharing queues is studied in the
context of a rush-hour traffic problem in the fluid limit regime.

1.3 Outline of the paper
The remainder of the paper is organised as follows. The mean waiting times of the consecutive patients
in a consultation block are studied in the next section. Given these mean waiting times, section 3 intro-
duces the unobservable appointment game and its solution. In section 4, we then compare the rational
solution with the socially optimal solution by some numerical examples. In addition, section 5 studies
an alternative appointment game where patients can observe the number of patients that have already
been scheduled in the different future appointment blocks. Finally, we summarise our results, discuss
some extensions and draw conclusions in section 6.

2 Mathematical model
We consider a sequence of equally spaced consultation blocks in time, let T denote the time between the
start of consecutive blocks. In other words, the schedule is assumed to be cyclic [17]. Patients call in
accordance with a Poisson process with fixed rate λ to schedule an appointment in one of the P future
consultation blocks. We hereby assume that patients always choose the appointment block thatminimises
the combined cost of appointment delay and flexibility. Furthermore, we initially assume that patients
cannot observe how many patients are already scheduled in any of the future consultation blocks and
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thus first choose their consultation block, e.g. Monday afternoon or Tuesday morning, before they are
assigned to an appointment time during that block. In section 5, the converse case where calling patients
observe the appointment blocks is considered.

The cost of the appointment flexibility can incorporate various factors such as desirable visit times
and expected waiting times, as long as its expectation only depends on the number of already scheduled
patients and is increasing with an increasing number of occupied slots. To ease the exposition how-
ever, we will make the assumption that the cost of appointment flexibility only consists of the expected
waiting times at the appointment time. We further assume that patients are scheduled at equidistant
points in time with distance ∆ and that patient service times constitute a sequence of independent and
identically distributed random variables. These assumptions guarantee that the expected waiting time
of the patients within each consultation block increases with the position of the patient in the block. The
cost function is thus strictly increasing and patients will always choose the earliest available appointment
time within each consultation block.

2.1 Waiting time analysis
We consider a generic consultation block. Patients arrive at equidistant points in time and are served in
order of arrival. Without loss of generality, we assume that the first patient’s appointment is at time 0.
The kth patient is then scheduled at time (k− 1)∆, where ∆ denotes the time between the appointment
times of consecutive patients. The service times of the consecutive patients constitute a sequence of
independent and identically distributed random variables. Let Sk denote the service time of the kth
patient, and let s(t) = P[Sk ≤ t] and s̄ denote its distribution function and mean value, respectively.

We now calculate the mean waiting times for the consecutive patients; let Wk denote the waiting
time of the kth patient, and let wk(t) = P[Wk ≤ t] and w̄k be its distribution function and expected
value, respectively. We then have W1 = 0 and the following Lindley equation,

Wk+1 = (Wk + Sk − ∆)+ .

We can then express the distribution of the k + 1st waiting time in terms of the distribution of the kth
waiting time as follows,

wk+1(t) = P[(Wk + Sk − ∆)+ ≤ t]

=

∫∞
0

P[(Wk + u− ∆)+ ≤ t]ds(u)

=

∫t+∆

0

wk(t+ ∆− u)ds(u) ,

with w1(t) = 1 for t ≥ 0, and zero elsewhere. The mean value of the waiting time of the k+ 1st patient
equals,

w̄k+1 =

∫∞
0

(1−wk+1(t))dt ,
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Figure 1: Mean patient waiting time for service times with mean µ = 20, and standard deviation σ as
indicated.

or, equivalently,

w̄k+1 = E[(Wk + Sk − ∆)+]

= E[Wk + Sk − ∆] + E[(Wk + Sk − ∆)1{Wk+Sk−∆<0}]

= w̄k + s̄− ∆−

∫∆
0

∫∆−u

0

(u+ v− ∆)ds(v)dwk(u)

= w̄k + s̄− ∆+

∫∆
0

du

∫u
0

wk(u− v)ds(v) .

Here 1{·} is the indicator function which evaluates to 1 if its argument is true and to 0 if this is not the
case. Note that the latter expressions are more convenient for numerically calculating the mean waiting
times, as one only needs to determine the waiting time distribution wk(t) of the preceding patient for
t ≤ ∆.

Remark 1. One can easily avoid dealing with the integral expressions for the calculation of the mean
waiting times by discretising the patient service times. Let δ = ∆/N for some N ∈ N. Now consider
random variables S̃n = ⌊Sn/δ⌋δ and Ŝn = ⌈Sn/δ⌉δ taking values in {nδ, n ∈ N}, such that S̃n ≤
Sn ≤ Ŝn. By Lindley’s recursion, the waiting times are increasing functions of the patient service times.
Hence if one replaces the distribution of Sn by the distribution of S̃n (for Ŝn) in the calculations above,
one obtains a lower (an upper) bound for the mean waiting time. Moreover, one only needs to calculate
the probability mass function of the patient waiting times for a finite number of discrete values, and
the integrals simplify to finite sums. See [5] for details on the discretised algorithm and its numerical
complexity.

In practice, it is not uncommon to choose the slot length equal to the mean service time, see for
example [1]. This choice is illustrated in Figure 1 which depicts the mean waiting times for the con-
secutive patients, assuming that the service times are gamma distributed random variables. The mean
service time and slot length equal µ = 20, while different values of the standard deviation σ of the service
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σ a b abs. error rel. error
5 [37.63, 4.34, 1.24] [0.015, 0.171, 0.901] 0.077 0.35%
10 [75.56, 8.66, 2.47] [0.015, 0.169, 0.878] 0.147 0.39%
20 [154.86, 17.48, 4.74] [0.014, 0.158, 0.806] 0.208 0.40%
50 [367.30, 35.34, 5.54] [0.015, 0.164, 0.729] 1.01 0.43%

Table 1: Coefficients and accuracy of the 3-term approximation of the waiting times

times are assumed as depicted. It is readily seen that the mean waiting times of the consecutive patients
form an increasing sequence. This is in line with queueing theory: one knows that for s̄ < ∆ and for
finite service time variance, the mean waiting times of the consecutive patients constitute an increasing
sequence, converging to a finite limiting value. In contrast, for s̄ ≥ ∆, the mean waiting times constitute
an increasing unbounded sequence. In addition, an increase of the standard deviation σ leads to longer
waiting times.

For the remainder, it is convenient to be able to express w̄n explicitly in terms of n. To this end, we
introduce the following representation

ŵn
.
=

M∑
m=1

(am − am exp(−bm(n− 1))) , (1)

for some constant M, and where a = [a1, . . . , aM] and b = [b1, . . . , bM] are known vectors. It will
become evident later that this exact form greatly simplifies the cost calculations in the game below.
Moreover, some experimentation — we consider the mean waiting times of Figure 1, for the different
σ — shows that this alternative characterisation hardly introduces errors. In table 1, we list the vectors
a and b that minimise the Euclidean distance between [w̄n]

N
n=1 and [ŵn]

N
n=1 for N = 50 patients,

assuming M = 3 terms in the approximation. We relied on the basin-hopping algorithm to find the
optimal parameters [32]. The reported absolute and relative errors are defined as sup1≤n≤N |w̄n − ŵn|

and sup1<n≤N |1− ŵn/w̄n|, respectively.

Remark 2. In fact, the representation (1) allows for arbitrarily small absolute errors for the firstN patients,
by including more terms in the representation. To this end, consider a continuous function ϕ(x) such
that ϕ(n) = wn+1 for n ∈ {0, 1, . . . ,N−1}. From Theorem 1 of [10], this function can be approximated
arbitrarily well in the interval [0,N−1] by a sum of exponential functions. In particular, for every ϵ > 0,
there exist M, am and bm such that∣∣∣∣∣ϕ(x) −

M∑
m=1

am exp(−bnx)

∣∣∣∣∣ < ϵ ,

for x ∈ [0,N− 1]. We therefore have∣∣∣∣∣wn −

M∑
m=1

am exp(−bn(n− 1))

∣∣∣∣∣ < ϵ .
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Moreover, as w0 = 0, we have

|wn − ŵn| =

∣∣∣∣∣wn −w0 −

M∑
m=1

am exp(−bn(n− 1)) +

M∑
m=1

am

∣∣∣∣∣
≤

∣∣∣∣∣wn −

M∑
m=1

am exp(−bn(n− 1))

∣∣∣∣∣+
∣∣∣∣∣w0 −

M∑
m=1

am

∣∣∣∣∣ ≤ 2ϵ .

As ϵ can be chosen freely, the approximation error can be made arbitrarily small.

3 Appointment game
We now use the waiting time calculations of the preceding section to find the optimal scheduling policy.
We here assume that new appointments are made in accordance with a Poisson process with rate λ in
any of the first P future appointment blocks. We refer to P as the scheduling horizon.

Recall that T denotes the time between consecutive appointment blocks. It suffices to consider the
arrival process in an interval of length T , prior to an appointment block. Let λi(t), t ∈ (0, T ] denote the
arrival rate of patients that choose the ith future consultation block. We obviously have

P∑
i=1

λi(t) = λ , (2)

as patients will always make an appointment. Clearly, assuming that the λi(t)’s are fixed, the arrival
stream to a single consultation block (say, starting at t = 0) is a non-homogeneous Poisson process with
rate,

α(t) = λi(t+ iT) for t ∈ (−iT,−(i− 1)T ] and i ∈ {1, 2, . . . , P} ,

and α(t) = 0 for t < −PT . Hence, at time t prior to the consultation block at time 0, the number of
patients that have joined this block is Poisson distributed with mean,

β(t) =

∫t
−PT

α(u)du , (3)

for −PT < t ≤ 0. In other words, the chance that n patients have joined the consultation block prior to
time t is,

γn(t) =
β(t)n

n!
e−β(t) ,

for −PT < t ≤ 0.
We are now ready to express the total cost of joining this consultation block at time t prior to the

block. First there is the cost of having a future appointment:

C1(t) = −c1t (4)

for some constant c1 > 0 where −t is the time till the consultation block at time 0. Secondly, there
is the cost of waiting during the appointment. At time t, there are already n patients scheduled with
probability γn(t). Hence we have,

C2(t) =

∞∑
n=0

γn(t)w̄n+1 , (5)
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where w̄n is the mean waiting time of the nth patient in the schedule, as calculated in the preceding
section. Replacing w̄n by its approximation ŵn, allows to further simplify the expression above,

C2(t) =

∞∑
n=0

β(t)n

n!
e−β(t)

M∑
m=1

(am − am exp(−bmn))

=

M∑
m=1

am

(
1− exp

(
−β(t)

(
1− e−bm

)))
. (6)

Now the simplification by the proposed approximation is clear. Indeed, by the approximation there is
no need to calculate (and truncate) the infinite sum in (5).

For the formulation of the game equilibrium, it is convenient to split up the total cost function C(t) =

C1(t) + C2(t) in intervals:
ϕi(t) = C(t− iT) , (7)

for t ∈ (0, T ] and i ∈ {1, 2, . . . , P}. Clearly ϕi(t) depends on α(t) and therefore on λi(t). To find
a rational schedule, patients should choose between the best options only, and never choose inferior
options. This means that there exists a function f(t) such that for i ∈ {1, 2, . . . , P},

ϕi(t) = f(t) for λi(t) > 0 ;

ϕi(t) ≥ f(t) for λi(t) = 0 . (8)

The first equation corresponds to the notion that for all blocks where patients join with a positive proba-
bility, the cost should be equal. The second equation says that one cannot reduce the cost by scheduling
to another consultation block. The notion of equilibrium above is similar to that of a Wardrop equi-
librium, but explicitly adds time-dependence. One however cannot study this type of equilibrium at a
single time-point as past decisions affect the cost at each point in time.

The formulation (8) of the equilibrium above, does not immediately indicate how the equilibrium
can be found. To find the equilibrium in practice, we rely on the following iterative approach. For L
sufficient large, we consider the set of points L = {ℓT/L : ℓ = 1, . . . , L} ⊂ (0, T ]. We initialise the rates
λi(t) = λ/P, for i ∈ {1, 2, . . . , P} and t ∈ L, and then update the values according to the following
iterative procedure.

1. Calculate the average cost for t ∈ L,

ν(t) =
1

P

P∑
i=1

ϕi(t)

2. For all i ∈ {1, 2, . . . , P} and t ∈ L, update the rates according to,

λ̃i(t)← λi(t) exp(−θ(ϕi(t) − ν(t))) .

Hence, the rate to appointment blocks with a higher than average cost is decreased, while the rate
to appointment blocks with a lower than average cost is increased.

3. For all i ∈ {1, 2, . . . , P} and t ∈ L, normalise the rates,

λ̂i(t)← λ
λ̃i(t)∑P

k=1 λ̃k(t)
.

This step ensures that the sum of the rates to the different blocks is equal to λ.
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4. If supt∈L |λi(t) − λ̂i(t)| > ϵ, set λi(t) ← λ̂i(t) and go back to step 1. If not, return the solution
λ̂i(t).

The algorithm depends on 2 parameters: θ and ϵ. The value of θ determines how fast the rate is
adapted in accordance to the cost difference. Convergence can speed up by increasing this value, but
the algorithm may not converge at all if this value is too large. The value of ϵ determines when we are
sufficiently close to convergence. In the algorithm, equations (4), (6) and (7) are used to calculate ϕi(t)

for each t ∈ L. The function β(t) in (6) is approximated by the following sum,

β(t) ≈ T

L

t/T−1∑
ℓ=−PL

α(ℓT/L)

which only requires one to evaluate λi(t) for t ∈ L.
To illustrate our approach, Figure 2 shows the outcome of the game for different values of the stan-

dard deviation σ of the service times. The slot length within an appointment block is ∆ = 20, and the
mean service time is µ = 20 as well. The time between appointment blocks is T = 1 (this is e.g. natural if
T is expressed in days), and the arrival rate is λ = 20, such that on average λT = 20 patients are served in
an appointment block. Moreover, the patients can make appointments in one out of P = 5 future blocks.
The cost c1 = 14 is chosen such that for σ ∈ {5, 10, 20}, the limit P does not influence the outcome of the
game, while it does for σ = 50. The figures depict the arrival rate α(t) to the block at time 0, and the
corresponding costs C1(t), C2(t) and C(t).

Foremost, it is easily verified from the numerical results that the solution indeed satisfies the con-
straints (8). These constraints also explain the specific shape of the α(t) curves. For a certain value t,
the cost C1(t) becomes too large and patients are not sent to the block at time 0 anymore. However,
this implies that more patients are sent to this block at times t + T , t + 2T , etc. Similarly, the chance to
select a block may either increase or decrease between two consultation blocks, as an increase for one
block implies a decrease for another.

We now compare the curves for different σ. As can be seen from Figure 1, larger σ-values translate
into larger mean waiting times, hence it is more beneficial to be scheduled at the start of the appointment
block. This also means that it is more beneficial to choose an appointment block further in the future.
This is indeed observed. For σ = 5, most patients choose the next block. Only if the next appointment
block is about to start, some patients opt for the second block as already many patients will have been
scheduled in the first. For σ = 10, patient mostly choose for the first two blocks, and only some choose
for the third block, again when the next block is near. Similar observations hold for σ = 20. However,
for σ = 50 the limit on the number of future appointment blocks P = 5 comes into play. Now the cost of
waiting at the appointment is so high, that it is beneficial to schedule to the last possible block, in order
to reduce the waiting time at the appointment.

4 Rational vs. social optimum
In the section above, patients could freely choose. It may however be more beneficial if there is a central
control. We now compare the rational choice of the preceding section with the socially optimal choice.
For a given α(t) (or equivalently, for given λi(t)), the total cost of all patients in a session equals,

C = −

∫0
−PT

α(t)c1tdt+

∞∑
n=1

β(0)n

n!
e−β(0)

n∑
k=1

w̄k , (9)
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(a) σ = 5 (b) σ = 10

(c) σ = 20 (d) σ = 50

Figure 2: Arrival rate α(t) and corresponding costs for different values of the service time standard
deviation σ as indicated.
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Figure 3: Price of Anarchy vs. the arrival rate λ (a) and the scheduling horizon P (b).

with β(0) =
∫0
−PT

α(t)dt = λT . Evaluating this expression for the solution α(t) of the game gives the
rational cost Crat.

As the second term in (9) does not depend on α(t), the socially optimal cost can be determined by
minimising the first term over the set of admissible α(t). This is the set of non-negative functions that
adhere the constraints (2). As the cost grows with −t, one immediately finds that making appointments
in the first block is socially optimal. The corresponding cost equals,

Csoc = c1λ
T2

2
+

∞∑
n=0

(λT)n

n!
e−λT

n∑
k=1

w̄k .

Ameasure of inefficiency of individual decision making is the Price of Anarchy [18] which is the ratio
of the cost at the game equilibrium to the optimal social cost, PoA = Crat/Csoc. The Price of Anarchy
(PoA) is depicted in figures 3(a) and 3(b) as a function of the arrival rate λ and the scheduling horizon
P, respectively. We assume µ = ∆ = 20 as before, and again consider different σ as indicated. For
Figure 3(a) , we have P = 5, while for Figure 3(b), we have λ = 20. Both increasing λ and P has a
negative effect on the Price of Anarchy, the effect being more pronounced for high σ. For small λ, both
the rational and social optimum always schedule to the first available appointment block, such that the
PoA is 1. When the rate increases further, individual patients have an incentive to schedule to blocks
further way, and the PoA increases. From Figure 3(b), the PoA is 1 for P = 1 as all patients then have to
make appointments in the first block. Once P increases, individuals have an incentive to make schedules
in later appointment blocks and the PoA again increases. There is one notable exception though. For
increasing λ, the PoA for σ = 50 first increases and then decreases again. In this particular case, the
waiting times w̄k are considerable and the scheduling horizon P = 5 comes into play (see also fig. 2(d)).
The scheduling horizon ensures that the cost C1 does not increase any further, while the waiting time
cost C2 does increase as there are more patients in every session, leading to a decrease of the PoA.
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5 Observable appointment game
In contrast to the preceding sections, we now assume that patients can observe the number of patients
in the different blocks upon arrival. Therefore, they can select the block which induces the least cost.
In the remainder, to simplify notation, we assume that the kth block starts at time kT , for k ∈ N. As in
the preceding sections, a patient can select any of the P future blocks. We use the following notation to
describe the evolution of the appointments: A(t) denotes the number of arrivals up to time t and Nk(t)

denotes the number of patients assigned to block k at time t.
For an arrival at time t, with kT ≤ t < (k+ 1)T , the cost to schedule to the ℓth future block k+ ℓ is,

Ĉℓ(t) = c1((k+ ℓ)T − t) + w̄Nk+ℓ(t)+1

where Nk+ℓ(t) can be expressed in terms of Nk+ℓ(kT) as follows,

Nk+ℓ(t) = Nk+ℓ(kT) +

∫t
kT

1{argminh Ĉℓ(t)=ℓ}dA(t) .

The second term counts the number of arrivals in (kT, t] which choose block k + ℓ. These expressions
in particular show that the sequence

{(Nk(kT), . . . , Nk+P−1(kT)), k ∈ N}

constitutes a discrete-timeMarkov process. As each appointment block can hold any number of patients,
the state space of the Markov process is NP. One can argue that in practice there is an upper bound K

on the number of patients that can be assigned to the same block. However, even with this assumption,
the size of the state space (K+1)P is still prohibitively large to allow for its numerical computation in rea-
sonable time. Not only is the size of the state space very large, even for moderate P, the transition matrix
is typically not sparse, and calculating the transition probabilities also requires considerable numerical
effort. Therefore, we rely on simulation to assess the observable appointment scheduling game.

To simulate the appointment system, we calculate the state of the appointment blocks as seen by
consecutive patients. In particular, the simulation calculates a sequence {(tk, nk), k = 1, . . . , K} where
tk denotes the waiting time till the appointment block of the kth patient, and nk denotes the position of
the kth patient in its appointment block. The simulation logic is summarised as follows.

1. Initialise:

(a) Initialise the number of patients in the P future appointment blocks: Ni ← 0 for i = 1, . . . , P;
Ni is the number of patients in the ith future appointment block as seen by patients.

(b) Initialise time: t← 0 denotes the time since the last appointment block;

(c) k← 1 tracks the number of patients that have been scheduled

2. Draw an exponentially distributed inter-arrival time a and calculate the next arrival instant: t←
t+ a;

3. While t > T :

(a) shift the appointment blocks Ni → Ni+1 for i = 1, . . . , P − 1 and set NP = 0

(b) t← t− T
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4. Select the appointment block with minimal cost b← argmini≤P c1(iT − t) + w̄Ni+1;

5. Add a patient to appointment block b: Nb → Nb + 1;

6. Store the time till the selected block, tk ← bT − t, and the position of the patient in the selected
block nk ← Nb;

7. Set k← k+ 1

8. If k < K return to 2.

Having obtained the sequence (tk, nk) by simulation, we now calculate the performance measures.
Recall that for t ∈ [−PT, 0], α(t) denotes the fraction of patients that choose the appointment block at
time 0 if they arrive at time t. For the observable game, we can approximate α(t) by,

α(t) ≈ αϵ(t) =
1

ϵ

∫t+ϵ

t

α(t)dt

and the corresponding cost by,

C2(t) ≈ Cϵ
2(t) =

∫t+ϵ

t
C2(t)dt∫t+ϵ

t
α(t)dt

.

The former approximations replace the fraction of patients at time t that opt for the appointment at time
0 (and the corresponding cost) by the average fraction over a small interval after t, and the corresponding
cost averaged over this interval. As the sequence {(tk, nk), k = 1, . . . , K} is asymptotically stationary
ergodic, we can approximate αϵ(t) and Cϵ

2(t) by,

αϵ(t) ≈ 1

ϵK

K∑
k=1

1{−t<tk≤−t+ϵ}

and,

Cϵ
2(t) ≈

∑K
k=1 1{−t<tk≤−t+ϵ}(c tk + w̄nk

)∑K
k=1 1{−t<tk≤−t+ϵ}

.

To illustrate our approach, Figure 4 shows the outcome of the game for different values of the stan-
dard deviation σ of the service times. We retain the parameters of the unobservable game. That is,
the slot length within an appointment block is ∆ = 20, and the mean service time is µ = 20 as well,
while T = 1. We only depict the costs C1(t), C2(t) and C(t) in the range where α(t) is sufficiently large.
Outside that range, there are but a few observations of the cost, and it is not possible to accurately assess
the cost by simulation.

For the interval [−1, 0], the chance to select the block at time 0 decreases with time. The closer to
0, the more likely it is that there are already several patients scheduled, hence it is beneficial to select a
later block. For σ = 20 and σ = 50 (Figs. 4(c) and 4(d)), the same behaviour is observed for the interval
[−2,−1], and can be explained by similar arguments. Finally, for t < −1 in Figs. 4(a) and 4(b) and for
t < −2 in Figs. 4(c) and 4(d), we observe an increase. As for the unobservable game, this can again be
explained by the constraints (8). I.e., as the arrival rate is constant, a decrease in [−2, 0] or [−1, 0], must
be compensated by an increase in another interval.
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(a) σ = 5 (b) σ = 10

(c) σ = 20 (d) σ = 50

Figure 4: Arrival rate α(t) and corresponding costs for different values of the service time standard
deviation σ as indicated.
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Figure 5: Upper (gray) and lower (black) bounds for the Price of Anarchy vs. the arrival rate λ (a) and
the scheduling horizon P (b).

A comparison the unobservable and observable games, shows that the outcomes of the games are
comparable. While there are a distinct points in time where the patient strategies change for the un-
observable game, this is not the case for the observable game. In the latter game, the patients possess
additional knowledge, leading to a more refined choice.

Finally Figure 5(a) and 5(b) study the Price of Anarchy for the observable game. Given the sequence
(tk, nk), we can directly calculate the expected cost of patient k. Averaging over all patients yields the
average cost per patient, and multiplying with the average number λT of patients per session yields the
average cost per session. Calculating the socially optimal strategy is however not trivial. The socially
optimal strategy is the strategy which assigns patients to blocks based on the available information such
that the cost per session (or per patient) is minimal. This is a non-trivial control problem. We can
however easily retrieve an upper and lower bound for the cost in the socially optimal strategy. Noting
that any particular strategy is an upper bound, the cost of assigning to the first block provides an obvious
upper bound. For a lower bound, we note that the minimal waiting cost within a session is attained when
each session has the same deterministic number of patients. As the mean number of patients per session
equals the mean number of arrivals between sessions λT , we find the following lower bound,

CLB
soc = c1λ

T2

2
+

⌊λT⌋∑
k=1

w̄k .

The first term corresponds to the cost of waiting till the next session, and the second term is the total
waiting time within a session with ⌊λT⌋ patients.

The lower and upper bounds of the socially optimal cost translate into upper and lower bounds for
the PoA. Both bounds are depicted in Figures 5(a) and 5(b) which study the influence of λ and P on
the Price of Anarchy, respectively. From the figures, we immediately observe that the bounds are fairly
close for λ > 10, which corresponds to sessions with 10 patients on average. Moreover, the PoA for the
observable and unobservable game is comparable, and therefore the discussion of the effect of λ and P

on the PoA is identical to the observable setting.
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6 Conclusions
We have studied appointment scheduling when the order of the appointments within an appointment
block is first-come-first-served. As during an appointment block, it is beneficial to be scheduled early, the
patients have an incentive not to choose the first appointment block. Accounting for the waiting time till
the appointment block as well, this leads to the interesting trade-off between waiting till the appointment
block and waiting at the appointment. To study this trade-off, we have used game-theoretic concepts to
study individually optimal decision making and compare with the socially optimal schedule. We have
studied both the case where patients do and do not know how many patients are already scheduled in
the future appointment blocks.

The methodology developed in this paper can be easily extended to include more realistic features
of appointment scheduling problems. Foremost, while the cost at the appointed time now only includes
the waiting cost, a more general cost function can be used and the patients do not have to be seen in
order of arrival. For example, in the unobservable game, some later slots may be generally preferred
over earlier slots (for example slots after working hours) and patients can be assigned to these slots first.
The simulation methodology for the observable case is even easier to extend. For example, patients can
have preferred slots and the assignment of a slot can be based on a combination of the cost or utility of
these preferences and the expected waiting times.

Secondly, the assumptions on the arrivals and the placement of the appointment blocks can be re-
laxed. There is no need to have equidistantly spaced consultation blocks. One can e.g. consider cycles
of a week with unevenly spaced consultation blocks. Moreover, within such a (weekly) cycle, there is no
need to have time-homogeneous Poisson arrivals; the arrival rate can e.g. fluctuate over the days of the
week.

Finally, our approach can support the design of specific appointment systems that e.g. aim for evenly
spreading the load over the different appointment blocks, or that aim at minimising the appointment
delay to reduce the number of no-shows per appointment block. Our game-theoretic findings can then
be part of a larger optimisation problem with one of the aforementioned objectives. By predicting the
behaviour of rational patients, the optimisation problem can include the reaction of the patients on
the particular design, which in turn allows for a more accurate assessment of the performance of the
appointment system.
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