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Abstract  

The purpose of this paper is to enhance current practices in business-to-business (B2B) customer churn 

prediction modelling. Following the recent trend from accuracy-based to profit-driven evaluation business-

to-customer churn prediction, we present a novel expected maximum profit measure for B2B customer 

churn (EMPB), which is used to demonstrate how current practices are suboptimal due to large 

discrepancies in customer value. To directly incorporate the heterogeneity of customer values and profit 

concerns of the company, we propose an instance-dependent profit maximizing classifier based on gradient 

boosting, named B2Boost. The main innovation of B2Boost is the fact that it considers these differences 

and incorporates them into the model construction by maximizing the objective function in terms of the 

EMPB. The results indicate that the expected maximal profit gains made in our analyses are substantial. 

This study arguments towards both deploying models based on customer-specific profitability differences, 

as well as evaluating based on our instance-dependent EMPB measure. 
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1. Introduction 

Within the field of customer relationship management (CRM), it is known that attracting new 

customers is much more expensive than retaining existing customers (Reinartz & Kumar, 2003). As a result, 

both academics and practitioners have heavily researched customer churn prediction (CCP). CCP models 

focus on identifying the customers that are most likely to defer within a given time period (Burez & Van 

den Poel, 2007). Based on these CCP models, firms can then focus on pro-actively targeting those 

customers that are most likely to churn and convince them to retain their relationship with the company. 

Since it is utterly important that these predictions are as accurate as possible, researchers have heavily 

focused on improving the performance of CCP models (Verbraken, Verbeke, & Baesens, 2012).  

Traditionally, CCP research emphasizes having prediction algorithms that are as performant as 

possible with regard to discriminating between churners and non-churners. However, recent studies identify 

the fact that this should not be the end goal of a retention campaign (Höppner et al., 2020). The final goal 

of a targeted marketing campaign should be to increase profit and this should also be reflected in the 

underlying algorithms (Verbeke et al., 2012). Therefore, several researchers have introduced algorithms 

that acknowledge the various costs and benefits associated to successful and unsuccessful identification of 

would-be churners (Stripling et al., 2018; Höppner et al., 2020; Maldonado, López & Vairetti, 2020). 

However, these algorithms all assume these costs and benefits to be fixed across all customers. While these 

assumptions hold in several popular industries which have advanced heavily with regard to CCP (e.g., 

telecommunication industry), they are not adapted to specificities of business-to-business (B2B) customer 

churn. In B2B markets, larger discrepancies exist between customer values (Jahromi et al., 2014). This puts 

serious strain on assumptions of fixed costs and benefits and more specifically on the assumption of a 

constant customer lifetime value. As a result, these profit-maximizing performance measures and 

algorithms are not applicable in the field of B2B CCP modelling. 

This is a missed opportunity since customer retention management is even more critical in a B2B 

environment. In B2B markets, there are fewer customers, but they make larger and more frequent purchases 

(Rauyruen & Miller, 2007). As a consequence, these customers are more valuable (Rauyruen & Miller, 

2007), and customer retention is considered central to developing business relationships (Eriksson & 
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Vaghult, 2000, Kalwani & Narayandas, 1995). Due to the large amounts of money that B2B customers 

typically spend, retention and the accompanying relationship development have been shown to be 

extremely financially rewarding for firms operating in a B2B environment (Kalwani & Narayandas, 1995). 

This further stresses the need for accurate profit-driven evaluation metrics and prediction models in this 

field. Hence, developing more performant CCP models will have an even larger impact on B2B firm profits 

than when compared to their B2C counterparts. 

A possible solution could lay in the use of customer churn uplift (CCU) models (Ascarza, 2018; 

Devriendt, Berrevoets & Verbeke, 2021), as used in the first customer-specific profit-driven 

implementation developed by Lemmens and Gupta (2020). However, a major downside of this method is 

the need for a randomized controlled trial, as otherwise the models cannot clearly separate the true effect 

of the retention campaign. Hence, only companies with a large customer base can conduct such 

experiments. Many companies, however, do not have such a large customer base. This is especially true for 

B2B companies, which typically have a small customer base of higher value customers (Rauyruen & Miller, 

2007) with large variations in customer value within one single customer base. It might be extremely 

wasteful to use a randomized treatment on high value customers, possibly losing many of them. On top of 

this, a large sample size in the randomized treatment (in order to have reliable estimates) would also leave 

a relatively small part of the customers in the deployment set. This would further aggravate the issue of 

randomized treatments on high value customers, as they are now a major part of the customer base. This 

entails that a profit-driven extension to the CCU B2B approach suggested by De Caigny et al. (2021) would 

not be suitable for all B2B firms, and that a profit-driven CCP alternative should exist next to it.  

To fill this gap in literature, this study aims to develop a B2B-deployable profit-maximizing CCP 

framework. To do so, we first propose the expected maximum profit measure for B2B customer churn 

(EMPB), which takes into account the heterogeneity of customer values that exist in B2B churn. The main 

difference between our EMPB and the CLV-variable Expected Maximum Profit measure for customer 

Churn (EMPC) (Óskarsdóttir, Baesens and Vanthienen, 2018) lies in the incentive cost, which is also 

dependent on customer value in B2B retention campaigns (Jahromi, Stakhovych & Ewing, 2014). After 

having developed the EMPB, we propose a novel profit-maximizing algorithm using gradient boosting, 

named B2Boost, which maximizes the objective function based on our EMPB rather than a function that 
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minimizes misclassifications (i.e., log-likelihood function). The stochastic EMPB is reformatted to its 

deterministic counterpart, which allows for a simple formulation of the gradient and Hessian, and fast 

computations. Using a real-life data set of a B2B retailer in fast-moving consumer goods (FMCG), we show 

how our approach improves the expected profit (EMPB) of retention campaigns on hold-out samples and 

that current practice in both B2B and B2C leads to suboptimal profits. 

The remainder of this study is organized as follows. The next section focuses on related work in 

customer churn. In Section 3, we introduce a profit-driven framework for B2B churn and develop the 

EMPB, followed by a discussion of our proposed B2Boost algorithm in Section 4. Section 5 describes our 

overall methodological set-up, while Section 6 summarizes the results of this methodology. The 

implications of our results to managers are outlined in Section 7. The study ends with a concluding remark 

in Section 8, showing its limitations as well as its contributions to current literature.  

2. Related Work 

2.1. Customer Attrition 

Customer attrition (or customer churn) is the situation where customers cease their relationship(s) 

towards a certain firm they are customer of. It is a complex phenomenon as the defection of customers can 

exist under many forms (Ascarza et al., 2018a). The most archetypical example is perhaps the complete 

defection of a customer, where the churner is defined as a customer which ceases any relationship with the 

selling firm. However, besides this traditional view, one could also model partial churn (Buckinx & Van 

den Poel, 2005), where a customer remains loyal towards the firm to a certain extent, but reduces the level 

of commitment. Such partial defection is even harder to observe in certain business settings. A typical 

distinction is the contractual versus non-contractual firm-customer relationship (Ascarza et al., 2018a). 

Defection is typically easier to detect when the customer has a contractual relationship towards the firm 

(Ascarza, Netzer & Hardie, 2018b), whereas the reduction in customer value has to be calculated to identify 

a churner in a non-contractual setting. This heavily hampers the identification of partial churners, as a 

reduction in customer value (e.g., yearly expenditure) can be a stochastic deviation. This is even further 

complicated in today’s consumer market, where certain services (e.g., freemium subscriptions) float 

somewhere between contractual and non-contractual settings (Ascarza et al., 2018a). The complexity of the 
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topic has spurred a vast research field with multiple research interests. We refer the interested reader to 

Ascarza et al. (2018a) for a complete overview on the various research fields. 

A subfield of literature which is increasingly gaining popularity are customer churn uplift (CCU) 

models (Ascarza, 2018; Devriendt, Berrevoets & Verbeke, 2021). In these methods, the net effect of 

treatment is modelled rather than the propensity to churn. For retention campaigns that are focused on 

generating revenue, CCU models measure the net incremental revenue due to the retention campaign 

(Devriendt, Moldovan, & Verbeke, 2018). To do so, practitioners first need to conduct a randomized trial 

which facilitates the estimation of the treatment effect (i.e., change in profitability). The initial model is 

deployed on the remaining part of the customers (i.e., those who did not participate in the randomized trial) 

and the most profitable ones are targeted. A major downside of this method is the need for a randomized 

controlled trial, as otherwise the models cannot clearly separate the true effect of the retention campaign. 

Hence, only companies with a large customer base can conduct such experiments. Many companies, 

however, do not have such a large customer base. This is especially true for B2B companies, which typically 

have a small customer base of higher value customers (Rauyruen & Miller, 2007). To the best our 

knowledge there is only one study which investigates CCU models in B2B churn. In their work, De Caigny 

et al. (2021) show how uplift modelling is feasible on a B2B dataset.  They conducted a randomized trial 

on a large sample of 6,432 B2B customers, of which 1,399 received treatment. The completely randomized 

treatment is also given to any customer, regardless of CLV. The authors demonstrate how accurate 

treatment effects can be estimated through the methodology, thereby demonstrating the superiority of the 

uplift logit leaf model which outperforms several other uplift models in their case study. While their work 

is an extremely valuable addition to B2B customer attrition literature, not all B2B customers bases have 

characteristics which are suited for this approach (i.e., size large enough and limited differences in per-

customer-profitability). For example in our case large discrepancies in customer value exist, and setting up 

such a randomized controlled experiment can potentially entail huge financial wastes. Hence, we believe 

the field could benefit from a CCP approach next to it, which is better suited for such customer bases.   

2.2. Customer Churn Prediction Models 

Our main focus is the subfield of customer churn prediction models (CCP). The problem of customer 

attrition has led to churn management’s inauguration, whose purpose is to minimize the losses caused by 
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leaving customers and to retain high-value customers, thereby maximizing profit (Verbraken et al., 2012). 

To do so, decision makers should have insights into the propensity of customers to cease their relationship 

with the company in a given time period. Churn prediction models are used to assign a churn propensity to 

each individual customer. This probability to churn is then used to target the group of customers most likely 

to churn with different tailored retention programs to convince them to stay with the company (Burez & 

Van den Poel, 2007). In order to deploy an effective customer retention program, the utilized models should 

be as accurate as possible (Coussement & Van den Poel, 2008), as it would be very wasteful to spend 

incentive budget on customers who will not churn (Tsai & Lu, 2009). Because of this, the main research 

field regarding CCP models is focused on improving the performance of these models (Ballings & Van den 

Poel, 2012; Vafeiadis et al., 2015).  For an elaborate overview on CCP literature, we refer the reader to 

Martens et al. (2011) and De Caigny et al. (2018). 

In recent years, researchers have identified that CCP models should not aim at maximizing predictive 

accuracy, rather they should focus on the most important business requirement: profit maximization. The 

end goal of a retention campaign should always be to enhance long term profit as high as possible (Verbeke 

et al., 2012). However, an automated CCP model would identify the customers who are most likely to leave, 

regardless of how this impacts firm profitability. This way, marketing actions can even have a negative 

effect on firm profitability (Lemmens & Gupta, 2020). This type of behaviour is clearly undesirable, yet it 

happens quite often due to misalignments between algorithmic and business objectives. 

This is caused by the incorrect evaluation of the algorithms. Ideally, the winning churn model is able 

to correctly detect would-be churners and take into account the business requirements. Historically, popular 

CCP performance measures do not explicitly take into account misclassification costs and expected 

profits. To overcome this issue, Verbraken et al. (2012) proposed the expected maximum profit measure 

for customer churn (EMPC), based on the framework of Neslin et al. (2006). This performance measure 

scores CCP algorithms with regard to the expected maximum profit a retention campaign based on those 

algorithms can create. Doing so, the authors demonstrate how model selection based on the EMPC leads to 

superior results in terms of profits compared to the traditional AUC.  One downside of the EMPC  is that it 

assumes all costs and benefits (i.e., customer value, incentive cost, and contact cost) to be fixed across all 

customers. This assumption is relaxed by Óskarsdóttir et al. (2018) who extend the metric by allowing 
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individual customer lifetime values (CLV), as the assumption of constant CLV is strongly violated in 

certain business situations. After developing a framework for profit-driven evaluation based on 

individualized values, the authors show that there are several discrepencies between their proposed metric 

and the original EMPC when selecting the best algorithm. 

However, these studies still use these profit-driven performance measures post-hoc as they simply 

evaluate algorithms that are designed to distinguish churners from non-churners, rather than detect would-

be churners who are most profitable. This spurred a new wave of research, where academics propose profit-

maximizing algorithms that incorporate the profit aspect directly into the model construction. Stripling et 

al. (2018) were the first to directly integrate the EMPC as a performance metric in the objective function 

of a logistic model structure. Their method, called ProfLogit, uses an evolutionary algorithm (EA) to 

estimate the regression coefficients which optimizes an EMPC-based fitness function rather than the 

binomial log-likelihood. Another algorithm, called ProfTree (Höppner et al., 2020), follows a similar 

approach but uses a tree-based structure. The main differences lays in the fact that the goal of the EA in 

ProfTree is to find the optimal split rules that correspond to a maximum on the EMPC landscape, which 

corresponds to generations of decision trees rather than generations of coefficients. Finally, Maldonado, 

López and Vairetti (2020) create profit-driven extensions of (minimum error) minimax probability 

machines. Their benchmark study demonstrates that their extensions outperform ProfTree and ProfLogit 

on average and that the profit-driven algorithms statistically outperform traditional cost-insensitive machine 

learning approaches such as logistic regression, support vector machines, and naïve Bayes.  

2.3. Customer Churn Prediction in Business-to-Business 

When looking at churn in the B2B context, the used CCP models lack differentiation from their B2C 

counterparts and rather implement insights from the B2C field directly to the B2B field. For instance, 

Gordini and Veglio (2017) compare which type of hyperparameter optimization would result in optimal 

model performance: AUC-based or accuracy-based. However, a very similar study was performed by 

Coussement and Van den Poel (2008) in a B2C context. These type of repeat studies hinder specific 

development for the B2B field, despite the clear distinctions between both fields (Rauyruen & Miller, 2007; 

Jahromi et al., 2014). Given how CCP modelling can yield high financial returns in the B2B field (Kalwani 

& Narayandas, 1995), the lack of profit-driven modelling is a missed opportunity. 
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To the best of our knowledge, there is only one study in B2B churn that incorporates profits. Jahromi 

et al. (2014) calculate the profit of B2B churn models according to the framework outlined by Neslin et al. 

(2006),  the same one as used in the EMPC. Nevertheless, the authors only did this after profit-insensitive 

model evaluation was performed, thus ignoring the profit in the actual model evaluation and selection. More 

recent studies, such as the one by Gordini and Veglio (2017), even leave out this postliminary profit 

analysis. Although the study investigates which performance measures are most-suited for parameter 

tuning, they ignore the EMPC which will eventually lead to sub-optimal model selection in terms of profits. 

This lack of focus on profitable campaigns is further aggravated by the specifities of the B2B 

industry, where each customer is unique and products are often even tailored per customer. The 

heterogeneity in the customer base is much higher, which is also reflected in the customer-specific incentive 

costs associated to retention campaigns (Jahromi et al., 2014). This high heterogeneity calls for a customer-

specific evaluation and training of models. A typical solution would lay in deploying the current EMPC 

solutions, with their derived algorithms, to B2B data and evaluate whether the outcome is similar to what 

is observed in the B2C field.  This would once again lead to an underdevelopment of B2B churn models 

and, therefore, the aim of this study is to implement a B2B-specific profit-driven framework, including the 

development of a customized performance measure and profit-maximizing classifier. 

One downside of the methodology behind current profit-driven algorithms is that it always assumes 

a fixed benefit-cost confusion matrix across all instances (customers). Maldonado, Domínguez, Olaya and 

Verbeke (2021) already identify this issue and suggest to create profit-driven metrics with different 

probability thresholds per customer segment, thereby acknowledging differences in customer value. 

Nevertheless, this methodology does not directly optimize for profit in the model construction, nor does it 

handle each customer individually. Instead, it requires modellers to predefine (the number of) customer 

segments. This while instance-dependent cost sensitive learning has already proven to work in related fields 

such as fraud detection (Höppner et al., 2021). Therefore, we argue that a customer-specific optimization 

is better suited to the heterogeneous B2B customer base and is key to our proposed implementation. Only 

one previous study (Lemmens & Gupta, 2020) used such a customer-specific profit-driven approach. The 

study, however, followed a CCU paradigm which is often not adequate for B2B applications. 
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As is demonstrated in our related work section, we observe that current instance-independent 

methodologies would yield suboptimal profits. Surprisingly, no prior study has (1) created a profit-driven 

B2B churn evaluation metric, and (2) used such a metric in the training phase of a B2B-specific algorithm, 

while this could heavily influence profitability of retention campaings. Therefore, we suggest a new version 

of the EMPC measure, the expected maximum profit measure for B2B customer churn (EMPB), which is 

altered to the specificities of the industry. The measure is used as the basis for a novel profit-maximizing 

algorithm using gradient boosting, named B2Boost, which optimizes the gradient and Hessian of the 

deterministic version of our self-defined stochastic measure. The following sections elaborate on the theory 

and reasoning behind our newly proposed measure and algorithm. 

3. EMPB: A profit-driven evaluation measure for B2B 

churn 

Verbraken et al. (2012) elaborate on how churn campaign profitability is driven by implicit costs and 

benefits associated to incorrectly and correctly identifying churners. The benefits associated to correctly 

identifying a non-churner (𝑏0 ) as well as the costs corresponding to misclassifying an actual churner as a 

non-churner (𝑐1 ) both correspond to 0, as no action is undertaken for these customers. However, contacted 

customers will result in an associated benefit (𝑏1 ) if classified correctly, and in an associated cost (𝑐0 ) if 

classified incorrectly. A false positive will accept the offered incentive 𝑑, while also inducing the contact 

cost 𝑓. A true positive, on the other hand, is not certain to accept the offer, as he or she may still decide to 

leave the firm. This acceptance (with probability of acceptance 𝛾) decides whether the benefits associated 

with the customer’s retention are retrieved (i.e., the customer’s value CLV). Note how the incentive cost is 

also only activated for accepted offers, while the contact cost is lost anyhow. The number of elements in 

each quadrant of Table 1 then defines the overall profit of the campaign. 

Table 1: Benefit-cost confusion matrix according to Verbraken et al. (2012) 

 
 𝒚 = 𝟎        𝒚 = 𝟏 

�̂� = 𝟎   𝑏0 = 0  𝑐1 = 0   
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�̂� = 𝟏         𝑐0 = 𝑑 + 𝑓   𝑏1 =  𝛾(𝐶𝐿𝑉 − 𝑑) − 𝑓 

 

The elements in each quadrant are determined by the accuracy of the deployed algorithm. An 

algorithm gives each instance (customer) 𝑖 a score 𝑠𝑖, if this score is higher than a threshold 𝑡, the instance 

is assumed to be a churner and a non-churner otherwise. The optimal threshold T  strongly influences the 

monetary outcome of the campaign, as more contacts directly translate to more costs and more income. 

Companies optimize t (often implicitly through the contact rate η) based upon the acceptance rate 𝛾 

(percentage of contacted customers who accept the offer). This resulted in profit generated by classifier C 

(𝑃𝑐) being defined by Eq. (1), with 𝜋0 and 𝜋1 the prior probabilities of classes 0 and 1 and 𝐹0(𝑡) and 𝐹1(𝑡) 

the cumulative distribution functions of the scores for those classes. Note how 𝜋0𝐹0(𝑡) corresponds to the 

fraction of true positives and 𝜋1𝐹1(𝑡) the fraction of false positives.  

𝑃𝑐(𝑡; 𝛾, 𝐶𝐿𝑉, 𝑑, 𝑓) = (𝛾(𝐶𝐿𝑉 − 𝑑) − 𝑓)𝜋0𝐹0(𝑡) − (𝑑 + 𝑓)𝜋1𝐹1(𝑡)       (1)  

Verbraken et al. (2012) assumes that this acceptance rate is uncertain and assumes that 𝛾 follows a 

beta distribution 𝑢𝛼,𝛽 with parameters α and β. This results in an EMPC measure which is defined by 

Equation (2). Note how the optimal threshold 𝑇 is defined by the stochastic 𝛾 given in equation (3). 

𝐸𝑀𝑃𝐶 = ∫ 𝑃𝑐(𝑇(𝛾), 𝛾, 𝐶𝐿𝑉, 𝑑, 𝑓)𝑢𝛼,𝛽
𝛾

(𝛾)𝑑𝛾      (2) 

𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥∀ 𝑡{𝑃𝑐(𝑡;  𝛾, 𝐶𝐿𝑉, 𝑑, 𝑓)}    (3) 

Using the optimal threshold T, Verbraken et al. (2012) also determined the expected profit maximizing 

fraction for customer churn ( �̅�𝑒𝑚𝑝𝑐), which specifies the percentage of the customer base to target in a 

retention campaign. The authors assume CLV, d and f to be fixed and equal for all customers, making the 

EMPC per customer fixed as well. This assumption is relaxed by Óskarsdóttir et al. (2018) who adapt the 

metric by allowing customer-specific values for CLV, as the assumption of constant CLV is strongly 

violated in certain situations, resulting in an instance-dependent benefit-cost confusion matrix, with the 

main distinction being situated in 𝑏1𝑖 , which is now calculated with the customer-specific 𝐶𝐿𝑉𝑖: 

𝛾(𝐶𝐿𝑉𝑖 − 𝑑) − 𝑓. This causes their EMPC per customer to become variant as well. (Eq. (4)).   

𝐸𝑀𝑃𝐶𝑖 =  ∫ 𝑃𝑐(𝑇(𝛾), 𝛾, 𝐶𝐿𝑉𝑖, 𝑑, 𝑓)𝑢𝛼,𝛽
𝛾

(𝛾)𝑑𝛾    (4) 
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Jahromi et al. (2014) elaborate on the specificities of B2B churn campaigns: B2B customers are 

characterized by big differences in customer lifetime value (CLV), which results in strongly varying 

incentive costs in churn campaigns as well (𝑑𝑖 =  𝛿 ∗ 𝐶𝐿𝑉𝑖). The variability in CLV makes the CLV-

variable EMPC by Óskarsdóttir et al. (2018) highly suitable for B2B practice. However, the main issue is 

the fact that, in business-to-business practice, the incentive cost 𝑑 is not fixed but dependent upon CLV 

(Jahromi et al., 2014). For instance, in contractual settings, it is common to offer a discount at contract 

renewal time (Lemmens & Gupta, 2020). This dependence on CLV makes the incentive rate 𝛿 rather than 

the overall incentive cost 𝑑 one of the parameters in Table 2, resulting in Eq. (5), where we summate each 

customer 𝑖’s individual 𝐸𝑀𝑃𝐵𝑖. Note that the estimation of incentive cost using fixed incentive rate is a 

proximation of reality. While some clients may deviate from the projected incentive cost, the estimate is 

closer to reality than a fixed incentive cost across all customers, especially in situations with extreme 

heterogeneity in customer values. The metric, while designed for B2B campaigns, can also be applied to 

various B2C settings, where efforts made in campaigns can drastically reduce future customer lifetime 

value beyond the immediately offered incentive costs (Ascarza et al., 2018a).  

Table 2: Instance-dependent benefit-cost confusion matrix for B2B churn 

 
 𝒚 = 𝟎        𝒚 = 𝟏 

�̂� = 𝟎   𝑏0𝑖 = 0  𝑐1𝑖 = 0   

�̂� = 𝟏        𝑐0𝑖 = 𝛿𝐶𝐿𝑉𝑖 +  𝑓        𝑏1𝑖 = 𝛾(1 −  𝛿)𝐶𝐿𝑉𝑖 −  𝑓 

 

𝐸𝑀𝑃𝐵 =  ∑ 𝐸𝑀𝑃𝐵𝑖
𝑖

= ∑ ∫ 𝑃𝑐(𝑇(𝛾), 𝛾, 𝐶𝐿𝑉𝑖, 𝛿, 𝑓)𝑢𝛼,𝛽
𝛾

(𝛾)𝑑𝛾
𝑖

     (5) 

Rather than taking the individual EMP value per customer and treat this vector as a whole, as is done 

in Óskarsdóttir et al. (2018), we use the same thresholding on the overall customer population. Hence 

another advantage of our framework is that we can determine the profit maximizing contact rate �̅� as used 

in Verbraken et al. (2012), by adding the fraction of true positives true positives (𝜋0𝐹0(𝑇))  to the fraction 

of false positives (𝜋1𝐹1(𝑇)) at the optimal threshold T. This provides the optimal fraction of customers to 

target in a B2B retention campaign ( �̅�𝑒𝑚𝑝𝑏) and reflects the deployment of the algorithm in a more realistic 

way. This results in an EMPB measure which can be directly interpreted as the total expected maximal 
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numeric profit to be obtained from the campaign. We also use the total profitability rather than the average 

profitability (as opposed to Verbraken et al. (2012)) as we believe the average value to be non-sensical in 

situations with extremely varying CLV values. 

4. B2Boost: A profit-driven classifier for B2B churn 

The basic idea behind our methodology is to adapt the traditional loss function (i.e., log likelihood) 

into a loss function that approximates our EMPB function. This requires both (1) a reformulation of the 

EMPB‘s profit function 𝑃𝑐(𝑠𝑖) as a cost function 𝐶(𝑠𝑖), with 𝑠𝑖 = 𝐷(𝒙𝒊), with 𝐷 the classifier which 

transforms the input features 𝒙𝒊 into a score 𝑠𝑖 for each instance 𝑖, and (2) an algorithmic implementation 

which allows for flexible adjustments of the objective function. We use the deterministic formulation, in 

which 𝛾 is a scalar, for this loss function, while the stochastic formulation 𝛾 =  ∫ 𝑢𝛼,𝛽𝛾
𝑑𝛾, is used for 

model evaluation on EMPB. The reason we use the deterministic 𝛾, is the fact that this facilitates the 

differentiation as displayed beneath. On top of this, a stochastic 𝛾 would slow down convergence. The 

selected deterministic 𝛾 should reflect a value on which the stochastic 𝛾 has a high probability density. For 

more information, we refer to Section 5.4. Experimental Set-Up. 

Gradient boosting iteratively trains weak learners in the partial residuals of the models and adds these 

weak learners to the ensemble such that a certain loss function is minimized (Friedman, 2001). One popular 

choice for these weak learners are decision trees given their instability, flexibility and speed. Whereas, in 

theory, gradient boosting can work with any loss function, most implementations use an accuracy measure, 

such as the binomial log likelihood. The XGBoost framework is easily extendible and allows for customized 

loss functions. Furthermore, XGBoost is a highly efficient, scalable, and performant implementation of 

Friedman’s gradient boosting. The key difference lies in the addition of a regularization term to control for 

overfitting and the use of the first and second order derivative to minimize the loss function (Chen and 

Guestrin, 2016). As a result the XGBoost algorithm is more performant and 10 times faster than the 

traditional gradient boosting implementations and the go-to algorithm for data scientists in machine 

learning competitions.  
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Gradient boosting algorithms learn to predict the error terms and iteratively adjust these towards the 

optimum. Computationally this means that it optimizes the loss function based on the gradient. Instead of 

only using first order derivates (𝑔(𝑠𝑖)) of the loss function, XGBoost also uses second order derivatives 

(ℎ(𝑠𝑖)) to reach the optimum. When recalculating the EMPB towards its cost equivalent 𝐶(𝑠𝑖), this implies 

that we also need to compute its first and second order derivatives 𝑔(𝑠𝑖) and ℎ(𝑠𝑖). The XGBoost logic will 

iterate towards the classifier which minimizes 
1

𝑁
∑ 𝐶(𝑠𝑖)𝑖 , with 𝒔𝒊 = 𝐷(𝒙𝒊) = 𝑃(𝑦 = 1|𝒙𝒊) being the 

predicted probabilities by the algorithm. Note how the algorithm will minimize the (deterministic) averaged 

1

𝑁
∑ 𝐶𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝑠𝑖)𝑖 , while our EMPB measure reports the (stochastic) summated opposite: 

∑ (−𝐶𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐(𝑠𝑖))𝑖 . As we are interested in the probability of the event (churn) occurring, 𝑠𝑖 represents 

the score after the use of the logistic activation function.  

To calculate 𝐶𝑖(𝑠𝑖), we need to regard all benefits in Table 2 as negative costs, which results in the 

instance-dependent cost confusion matrix as depicted in Table 3. This cost matrix can be updated to the 

cost function depicted in (6). Do note that the left part of the equation (𝑦𝑖[𝑠𝑖𝐶𝑖(1|1) + (1 − 𝑠𝑖)𝐶𝑖(0|1)]) 

equals the cost occurred when the actual value is 1 (churn), while the right part ((1 − 𝑦𝑖)[(𝑠𝑖𝐶𝑖(1|0) +

(1 − 𝑠𝑖) 𝐶𝑖(0|0))]) occurs when the actual value is 0 (no churn). The score si outputted by the learner then 

decides which cost occurs based upon the variable decision threshold t. For the left hand side (y
i
 = 1) this 

means a cost of Ci(1|1) if si = 1 and Ci(0|1) if si = 0 (1 − si = 1). If we then insert the values from Table 

3 into the general equation Eq. (6), we get Eq. (7), which is the instance-specific cost function according to 

the EMPB measure. The algorithm thus updates 𝐷(. ) , which determines 𝑠𝑖, which determines which cost 

is occurred, in order to minimize  
1

𝑁
∑ 𝐶(𝑠𝑖)𝑖 . 

Table 3: Instance-dependent cost confusion matrix 

 
𝒚 = 𝟎        𝒚 = 𝟏 

�̂� = 𝟎       𝐶𝑖(0|0) = 0  𝐶𝑖(0|1) = 0   

�̂� = 𝟏       𝐶𝑖(1|0) =  𝛿𝐶𝐿𝑉𝑖 +  𝑓 𝐶𝑖(1|1) = 𝑓 −  𝛾(1 −  𝛿)𝐶𝐿𝑉𝑖 
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𝐶(𝑠𝑖) =  𝑦𝑖[𝑠𝑖𝐶𝑖(1|1) + (1 − 𝑠𝑖)𝐶𝑖(0|1)] + (1 − 𝑦𝑖)[(𝑠𝑖𝐶𝑖(1|0) + (1 − 𝑠𝑖) 𝐶𝑖(0|0))]    (6)    

𝐶(𝑠𝑖) =  𝑦𝑖[𝑠𝑖(𝑓 −  𝛾(1 −  𝛿)𝐶𝐿𝑉𝑖)] + (1 − 𝑦𝑖)[𝑠𝑖(𝛿𝐶𝐿𝑉𝑖 +  𝑓)]    (7) 

The update of 𝐷(. ) is determined by the cost function’s gradient and hessian, as second order 

approximation defines the loss function used at each iteration in XGBoost (Chen & Guestrin, 2016). Eq. 

(8) determines the minimized loss structured 𝐿𝑜𝑠𝑠𝑡 in the t-th iteration, with Ω(𝑓𝑡) the regularization term. 

This thus signifies that 𝑔𝑖 and ℎ𝑖 determine the update rule and should be formulated. 

𝐿𝑜𝑠𝑠𝑡 =  ∑ [𝑔𝑖𝐷𝑡(𝑥𝑖)𝑁
𝑖=1 +  

1

2
 ℎ𝑖𝐷𝑡²(𝑥𝑖)] + Ω(𝐷𝑡)        (8) 

Note that the functions 𝑔𝑖 and ℎ𝑖 are the derivatives compared to the previous iteration’s predictions 

�̂�𝑖(𝑡 − 1): 𝑔𝑖 =  𝜕�̂�(𝑡−1)𝑙𝑜𝑠𝑠 (𝑦𝑖 , �̂�𝑖
(𝑡 − 1)) & ℎ𝑖 =  𝜕²�̂�(𝑡−1)𝑙𝑜𝑠𝑠 (𝑦𝑖 , �̂�𝑖

(𝑡 − 1)) (Chen & Guestrin, 

2016). We update the predicted scores 𝜇𝑖  before logistic activation. These values are manipulated (updated) 

and outputted by the learner, after which the logistic function scales them between 0 and 1 to get 𝑠𝑖 =

 
1

1+𝑒−𝜇𝑖
 . As the logistic function 𝑠𝑖’s derivative is: 

𝜕𝑠𝑖

𝜕𝜇𝑖
= 𝑠𝑖(1 − 𝑠𝑖), we can formulate 𝑔(𝑠𝑖) as Eq. (9). A 

further differentiation leads to the second order derivative ℎ(𝑠𝑖) as 
𝜕²𝑠𝑖

𝜕𝜇𝑖²
  =  𝑠𝑖(1 − 𝑠𝑖)(1 − 2𝑠𝑖). When we 

compare Eq. (9) with Eq. (13), we see the similarities between both functions, resulting in Eq. (14). 

Equations (12) and (14) then define our XGBoost extension, which will be called B2Boost for the remainder 

of this study.  

         
𝜕𝐶(𝑠𝑖)

𝜕𝜇𝑖
 =  𝑔(𝑠𝑖) =  𝑠𝑖(1 − 𝑠𝑖)[𝑦𝑖(𝐶𝑖(1|1)- 𝐶𝑖(0|1))+(1- 𝑦𝑖)(𝐶𝑖(1|0)- 𝐶𝑖(0|0))]     (9) 

𝑔(𝑠𝑖) =  𝑠𝑖(1 − 𝑠𝑖)[𝑦𝑖(𝑓 − 𝛾 ∗ (1 −  𝛿) ∗ 𝐶𝐿𝑉𝑖)+(1- 𝑦𝑖)(𝑓 + 𝛿 ∗ 𝐶𝐿𝑉𝑖)]   (10) 

𝑔(𝑠𝑖) =  𝑠𝑖(1 − 𝑠𝑖) [𝑓𝑦𝑖 − 𝛾(1 − 𝛿)𝐶𝐿𝑉𝑖𝑦𝑖 + 𝑓 + 𝛿𝐶𝐿𝑉𝑖 − 𝑓𝑦𝑖 + 𝛿𝐶𝐿𝑉𝑖𝑦𝑖]    (11) 

𝑔(𝑠𝑖) =  𝑠𝑖(1 − 𝑠𝑖) [𝑓 + 𝛿𝐶𝐿𝑉𝑖 + 𝑦𝑖((−𝛾 + 𝛾𝛿 + 𝛿)𝐶𝐿𝑉𝑖)]    (12) 

 

𝜕𝑔(𝑠𝑖)

𝜕𝜇𝑖
=  ℎ(𝑠𝑖) =  𝑠𝑖(1 − 𝑠𝑖)(1 − 2𝑠𝑖)[𝑦𝑖(𝐶𝑖(1|1)- 𝐶𝑖(0|1))+(1- 𝑦𝑖)(𝐶𝑖(1|0)- 𝐶𝑖(0|0))]  (13) 

ℎ(𝑠𝑖) =  (1 − 2𝑠𝑖)𝑔(𝑠𝑖)   (14) 
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5. Methodology 

5.1. Data 

Data is obtained from a large North American B2B beverage retailer. Besides transactional data, we 

also have general customer information, equipment and interaction data from November 15, 2012 to June 

13, 2015. The independent period, in which our predictors are created, ranges from November 15, 2012 to 

June 12, 2014. The dependent period, which is used to create our churn variable, ranges from June 13, 2014 

to June 13, 2015. We define a churner as a customer who made zero purchases during the dependent period. 

Only customers who made a purchase during the independent period are considered (i.e., customers that 

made a purchase during the independent period). In total, we have 41,739 observations of which 1,573 

(3.77%) are churners, while 40,166 (96.23%) customers were still active during the dependent period. This 

distribution is a clear case of class imbalance. Nevertheless, since we adapt the cost function of our boosting 

model, we actually perform a cost-sensitive learning approach and, therefore, do not decide to use any 

resampling approach on the profit-driven learners (Baesens, Van Vlasselaer, Verbeke, 2015, p. 200). A 

similar imbalance exists in the distribution of customer values. While the vast majority (41,321; 99.00%) 

has a value below $100,000, we also observe a limited (418; 1.00%) customer segment with extremely high 

values ranging between $100,000 and $10,000,000. Within the above-$100,000-segment, we observe large 

discrepancies, with the majority situated in the range $100,000-$1,000,000, but with some extremely 

valuable customers with CLVs above $5,000,000. Traditional retention campaigns neglect the special 

attention these high value customers deserve compared to the overall sample of customers, which is the 

main motivation for developing the EMPB.  

5.2. Variables 

Table 4 provides an overview of the predictors used in the baseline model. This list includes 

customer-specific and transactional information, as previously deployed in B2B CCP studies (e.g., Gordini 

& Veglio (2017)). Traditional churn predictors, such as recency, frequency, monetary value, and length of 

relationship are included. Because differences in purchased products may also create differences in 

churn behaviour (Larivière & Van den Poel, 2004), monetary variables regarding various product 

categories are added as well. These transactional features are supplemented with a number of firm 
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demographics and buyer-supplier interactions as these may be indicative of customer value. For instance, 

we include company size through the number of employees, as larger firms may have a reduced strategic 

decision speed (Baum & Wally, 2003), possibly resulting in postponed reaction to dissatisfaction. Higher 

spending ratios could also be indicative of both induced firm loyalty as well as larger dependence (e.g., 

being their only supplier). Credit score is included to identify possible involuntary churners. Some firms 

do not wish to stop the buyer-supplier relationship but are obliged due to financial distress. A similar pattern 

is observed with B2C relationships (financial churn; Burez & Van den Poel, 2008). Other features are about 

unanticipated buyer-supplier interactions (e.g., call to after-sales services) as these may be indicative of an 

undesired event. The supplier’s handling of these possible issues was included as well. When no interaction 

occurred, some of these variables are infeasible to compute. In such situations, we use K-Nearest Neighbour 

Imputation to estimate these values (Troyanskaya et al., 2001). The full set of used variables is listed in 

Table 4 and their correlations are visualized in Figure 1. 

Table 4: Used variables 

Variable Description 

Frequency Number of transactions during independent period  

Recency Time (in days) since last purchase before start dependent period 

Monetary Value Total spending in dollars during independent period 

Purchase Quantity Total spending in product units during independent period 

Length of relationship Time (in days) since first registration 

MV energy Monetary value purchased from product category energy drinks 

MV lemonade Monetary value purchased from product category lemonade 

MV S&F Monetary value purchased from two famous brand lines 

MV water Monetary value purchased from product category water 

MV diet Monetary value purchased from diet products 

MV main Monetary value purchased from main brand line 

MV other Monetary value purchased from other product lines 

Employee size Number of employees at buyer firm 

Spending ratio Ratio between expenditure at supplier and annual revenue 

Credit Score Credit score of buyer firm 

Interaction Binary variable indicating whether or not a customer did start at least one interaction during the 

observed independent period 

Interaction recency Time (in days) since last interaction before start dependent period 
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Interaction frequency Number of interactions during independent period 

% First call Percentage of issues which was resolved upon initial call 

Solve time Average time (in days) to solve issue 

Deadline difference Average time (in days) the issue was handled before or after the due date 

 
Figure 1: Correlation Heatmap Independent Features 

5.3. Algorithms 

We compare our proposed B2Boost method against several algorithms that are often deployed in 

both B2C and B2B churn prediction and yield good performance. First of all, we compare against the 

default implementation of XGBoost (Chen & Guestrin, 2016), which uses the binomial log likelihood as 

loss function. By comparing the performance of this algorithm with our model, we can perform a fair 

evaluation of how optimizing the MPB-based gradient enhances expected profit. Besides the base 

implementation, we also add an implementation which is based upon the EMPC measure as outlined by 

Verbraken et al. (2012), called VerbrakenBoost from now on. Typically, cost-sensitive weighting in 

gradient boosting is done with the parameter α (Wang, Deng & Wang, 2020), which represents the cost 

ratio between the false positives and the false negatives. A reformulation of the cost matrix proposed by 

Verbraken et al. (2012) suggests to approximate this value with the ratio 
  𝛾(𝐶𝐿𝑉−𝑑)+𝑑 

𝛾(𝐶𝐿𝑉−𝑑)−𝑓
, with CLV set equal 
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to the average CLV in the training sample and 𝑑 set equal to 5% of this average CLV. For all three XGBoost 

models we tune the number of boosting rounds, which determines how many iterations are used to 

determine optimal tree structure. Learning rate is also optimized as this determines improvement step size, 

as well as the cost-complexity parameter γ.  

Another important type of algorithm to include is a profit-driven classification algorithm as this 

allows to determine the added value of this CLV-specific method compared to CLV-invariant models. We 

selected ProfLogit (Stripling et al., 2018) as its implementation is publicly available while its performance 

is not significantly different from other profit-driven classifiers on a number of datasets (Maldonado, López 

& Vairetti, 2020). We follow Stripling et al.’s (2018) suggestion and employ a dense search grid for λ. 

However, we search at lower values than the authors suggested as initial testing revealed that the genetic 

algorithm set all coefficients equal to zero at higher values of λ. The genetic algorithm is allowed to search 

for a sufficient number of generations (1000), as long as the best-so-far solution improved during the last 

100 generations. Mutation rate is set relatively high (0.50) to ensure an adequate search of the solution 

space. As the underlying algorithm does not support individualized CLVs and incentive costs, we set these 

values (CLV and d) equal to the average value in the training set, as was done for the VerbrakenBoost 

implementation. 

Besides ProfLogit, we also add ProfTree as a profit-driven classifier (Höppner et al., 2020). ProfTree 

uses an evolutionary algorithm to find the optimal tree structure. Again, the parameter λ is extremely 

important to that regard as it influences the profit-complexity trade-off. Our examined grid only includes 

values below 0.50, as the algorithm is demonstrated to underperform for high values (Höppner et al., 2020). 

Finally, we also add two popular algorithms that are capable of delivering excellent discriminatory 

power. First, we add random forest (Breiman, 2001). The algorithm’s robustness and predictive 

performance makes it one of the most popular algorithms in CCP (e.g. Burez & Van den Poel, 

2007; Burez & Van den Poel, 2009). Second, LASSO regression (Tibshirani, 1996) is also included, as this 

could shed light on the added value of the instance-independent learning method of ProfLogit in our setting. 

The models and their candidate settings are summarized in Table 5. All cost-insensitive learners (i.e., 
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XGBoost, Random Forest, and LASSO) are trained after random over-sampling (up until 50/50 ratio) of 

the minority class is performed on the training samples. 

Table 5: Candidate Parameter Values 

Algorithm Parameter Candidate settings 

B2Boost  # Boosting rounds 

Learning rate 

γ 

{2, 5, 10, 20, 50, 100, 200, 500} 

{0.001, 0.01, 0.1, 0.2, 0.5} 

{0.5, 1, 1.5, 2} 

VerbrakenBoost # Boosting rounds 

Learning rate 

γ 

{2, 5, 10, 20, 50, 100, 200, 500} 

{0.001, 0.01, 0.1, 0.2, 0.5} 

{0.5, 1, 1.5, 2} 

XGBoost # Boosting rounds 

Learning rate 

γ 

{2, 5, 10, 20, 50, 100, 200, 500} 

{0.001, 0.01, 0.1, 0.2, 0.5} 

{0.5, 1, 1.5, 2} 

ProfLogit λ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 

0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} 

ProfTree λ {0.01, 0.05, 0.1, 0.2, 0.5} 

Random Forest # Trees 

# Features considered (mtry) 

{2, 5, 10, 20, 50, 100, 200, 500} 

{2, 4, 6, 8} 

LASSO λ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 

0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} 

 

5.4. Experimental Set-Up 

To ensure the robustness of our results, we employ five times two-fold cross-validation (5×2cv) 

(Dietterich, 1998). First, 5×2cv randomly splits the data into two equally large folds. Next, each fold is used 

once as a training and once as a test set. This procedure is iterated five times, which enables us to have ten 

different performance measures (samples) per algorithm (Demšar 2006). Partitions are made such that the 

distribution of churners/non-churners and low/high value customers ($100,000 cut-off) is even across folds. 

A single train-validation split is used to optimize the hyperparameters as is common in predictive modelling 

studies (Schetgen, Bogaert & Van den Poel, 2021). Hence, the validation set is first used for hyperparameter 

tuning and the combined training and validation set is eventually used for fitting the final model. 

Performance is measured through our self-defined EMPB measure, both for hold-out evaluation as well as 
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hyperparameter estimation. During parameter tuning, we noticed that for some fold-algorithm combinations 

it was not possible for the algorithms to estimate a positive EMPB on the validation set. Therefore, EMPC-

based parameter optimization is performed in such cases, as parameter tuning would be infeasible in these 

cases otherwise.  

The B2Boost algorithm and EMPB have several parameters which need to be set. The contact cost d 

was neglected in Jahromi et al. (2014) and set equal to $10 in Verbraken et al. (2012). However, in our B2B 

setting this type of retention campaign is organized by high level account managers compared to CRM 

employees in B2C firms. United States account managers are reported to earn $62,717 per year1. With a 40 

hour work week, spread across 52 weeks, this results in an hourly wage of around $30. If we assume the 

interaction with the customer to last for half an hour, we can assume a contact cost of $15, which seems 

reasonable given the higher pay grade of account managers and the $10 figure used by Verbraken et al. 

(2012). Following Jahromi et al. (2014), we use 0.05 as our incentive cost related to the CLV (𝛿). With 

regard to the acceptance rate (γ), both studies (Verbraken et al., 2012; Jahromi et al.; 2014) suggest a value 

around 0.3. However, Jahromi et al. (2014) assumes this value to be deterministic, while Verbraken et al. 

(2012) argue that it is not realistic to set such an unpredictable parameter to a certain value. This is why the 

authors suggest to use the β distribution, with α = 6 and β = 14, leading to γ ranging between 0.1 and 0.5. 

This β distribution is also used for the calculation of the stochastic EMPB measure on which the algorithms 

are evaluated, while we use the intermediate 0.3 value as the value for γ when using the value in the 

deterministic B2Boost implementation. With regards to the CLV, we follow Jahromi et al. (2014) and set 

CLV equal to the purchases made during the last year of the independent period. While this estimate is 

prone to be an underestimation of overall CLV, we expect this to be a good indication of the value, also for 

missed profit due to churners, enabling an evaluation of the overall method. 

We also report the profit-maximizing fraction of customer to target based on the EMPB ( �̅�𝑒𝑚𝑝𝑏) and 

EMPC ( �̅�𝑒𝑚𝑝𝑐). For each algorithm-fold combination, we also compute the AUC and EMPC as defined 

by Verbraken et al. (2012) on the hold-out test sample, to compare how the algorithms perform with regard 

to cost-insensitive binary predictive performance and with regard to profit-driven measures that do not 

                                                      
1 https://www.indeed.com/career/account-manager/salaries 
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account for the individualized values of customers. The EMPC measure is calculated with the settings 

which are deemed appropriate for a B2B use case. Specifically, we set these values (CLV and d) equal to 

the average value in the test set, similar to the learning approaches used for the EMPC-driven cost-sensitive 

learners (e.g., VerbrakenBoost), while the contact cost is set equal to the one used for EMPB evaluation 

(i.e., $15). The optimal contact rate according to the EMPC measure is reported as well. Contrary to the 

traditional implementation (𝐸𝑀𝑃𝐶𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙), we do not average the EMPC measure across customers, but 

rather report the overall profitability (𝑁𝑡𝑒𝑠𝑡 ∗ 𝐸𝑀𝑃𝐶𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙) to make its outcome more directly 

comparable to the EMPB measure, which also reports the overall profitability. 

The functions to implement the EMPB, B2Boost, and VerbrakenBoost are all coded in Python and 

are made publicly available via https://github.com/bram-janssens/B2Boost.    

6. Results  

6.1. Classifier Comparison 

Table 6 summarizes the results for the seven algorithms across all ten folds. Average values across 

the folds are reported, with the standard deviation reported in brackets. The best performer per performance 

measure is indicated in bold. The results clearly indicate how difficult it is for CCP models to create an 

actual profit under high heterogeneity (i.e., extreme variation in CLV and incentive cost linked to CLV). 

While most algorithms are capable of scoring competitive values on AUC (i.e., ranging around 0.80), we 

observe that this does not translate to profitable retention campaigns (as measured through EMPB). The 

enormous costs associated with incorrect estimations of the behaviour of high value customers eradicate all 

gains made on lower value actual would-be churners. Algorithms that do not take this into account during 

the training phase will only coincidently generate an actual profit (i.e., false positives are coincidently low 

value customers), while our algorithm acknowledges the fact that high value customers should be regarded 

differently, given the high impact decisions on customer interaction have. Therefore, B2Boost is the only 

algorithm to create a substantial profit. By contacting only a small portion of customers (i.e., 0.55% across 

folds), the algorithm is able to detect a sufficient amount of high value would-be churners.  

Interestingly, we observe two out of three EMPC-based learners to score competitively on the EMPC 

measure (i.e., VerbrakenBoost, and ProfLogit), with ProfLogit having the best performance on EMPC from 

https://github.com/bram-janssens/B2Boost
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all classifiers. ProfTree, however, scores remarkable low with the lowest EMPC score of all classifiers. An 

explanation may lay in the underlying decision tree structure, which may be overly simplistic for the task 

at hand. This is also reflected in the extremely low score on the AUC metric. Nonetheless, distinction based 

on EMPC is relatively limited, with all classifiers having similar scores. The large average value (induced 

by the high value customers) which is used as basis for the EMPC measure tends to overvalue customers, 

which makes the uncertainty surrounding their potential churn behaviour diminish compared to the 

extremely large financial reward by contacting them if they would churn. This is also reflected in the 

extremely large contact rates.  

Table 6: Average performance of algorithms 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC              �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $68,455.86 

(± $106,331.13) 

0.0055 

(± 0.0060) 

 $8,760,645.39 

(± $188,712.88)  

0.9885 

(± 0.0113) 

0.7538 

(± 0.0893) 

VerbrakenBoost $1,133.43 

(± $3,584.24) 

0.0005 

(± 0.0016) 

 $8,790,515.66 

(± $190,655.48)   

0.9840 

(± 0.0176) 

0.8240 

(± 0.0142) 

XGBoost  $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

 $8,791,320.55  

(± $192,307.13)   

0.9905 

(± 0.0069) 

0.7758 

(± 0.0049) 

ProfLogit $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

 $8,792,495.90 

(± $192,755.30)    

0.9905 

(± 0.0044) 

0.7723 

(± 0.0152) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

 $8,756,075.92  

(± $337,855.30)    

0.9945 

(± 0.0016) 

0.6690 

(± 0.0099) 

Random Forest $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

 $8,791,711.79 

(± $187,287.89)    

0.9785 

(± 0.0293) 

0.8040 

(± 0.0675) 

LASSO $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

 $8,791,619.54  

(± $195,072.71)    

0.9845 

(± 0.0055) 

0.7811 

(± 0.0059) 

 

Besides B2Boost, only VerbrakenBoost was able to create a positive result. A similar observation 

can be made when looking at the hyperparameter optimization. B2Boost optimizes on EMPB in each unique 

fold (i.e., 10 EMPB-based hyperparameter optimizations), while other algorithms do this much more 

occasionally. Only VerbrakenBoost does this in 50% of folds (i.e., 5 EMPB-based hyperparameter 

optimizations), while all other classifiers have maximally one EMPB-based optimization (i.e., XGBoost 

and random forest; other learners have no EMPB-based hyperparameter optimizations).  
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Other algorithms focus on instances they predict to be certain to churn, but do not acknowledge the 

differences in value and associated costs and benefits, resulting in unprofitable campaigns (i.e., optimal 

EMPB contact rate equal to zero). Overall, the results clearly indicate that our algorithm is capable of 

deriving much more profitable campaigns in B2B settings than traditional CCP models. Traditional 

methods, including recent algorithm-based enhancements, seem unsuited for the specificities of B2B 

retention campaigns. 

The results in Table 6 also highlight how currently used measures lead to incorrect decision making. 

When applying the EMPC measure with the default values, as could often be the case for firms operating 

without decent estimates of their customer values or benefit and incentive costs, one would assume all 

algorithms to effectively generate a profit. Managers would then deploy the preferred algorithm and are 

actually expected to lose money doing so, as the ideal contact rate is zero, which means that higher values 

lead to negative EMPB values. Depending on the used metric, either VerbrakenBoost or ProfLogit would 

be identified as most performant in our case, while in reality these would be suboptimal decision options. 

6.2. Classifier Interpretation 

We established the fact that our algorithm is capable of learning value-based differences between 

customers and how these affect retention campaigns. However, future practitioners also need to know which 

information is vital to build such models. Therefore, we will compare the variable importances of the profit-

based algorithm with those of the default XGBoost implementation. Several methodologies exist to do so. 

However, many of them have the underlying issue that they have no theoretical foundation. An exception 

is SHAP (SHapley Additive exPlanations; Lundberg & Lee, 2017). SHAP combines strengths of Shapley 

values (Shapley, 1953) and LIME (Ribeiro, Singh & Guestrin, 2016) by creating Shapley values of the 

conditional expectation function of the original model. The theoretical foundation is gained from the usage 

of Shapley values, which are based on game theory, with features acting as players to influence the outcome 

(i.e., the deviation from the average predicted value). The importance is then defined as the average 

contribution to this deviation when a feature is included in the ‘coalition’. Variable importances are 

calculated by aggregating the (absolute) SHAP values across all observations.  

Figure 2 displays the SHAP feature importances for the B2Boost algorithm, and the default XGBoost 

implementation. The traditional transactional RFM variables are the most important ones, both for the 
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B2Boost implantation and the XGBoost implementation. It seems that while the B2Boost algorithm learns 

something slightly deviant to what traditional churn models learn (i.e., which customers to prioritize rather 

than which customers are most probable to churn), it values similar input features as traditional churn 

models. Interesting to note is the larger emphasis on monetary value in B2Boost, which seems logical given 

the fact that more profitable customers should be targeted. A somewhat surprising feature is deadline 

difference. The feature is much more important in the B2Boost implementation than in the XGBoost 

counterpart. Interestingly, one could regard the time the issue was handled before or after the due date, as 

an outcome of the effort being put in by the selling firm. Firms are likely to put more effort into important 

customers, making deadline difference an indicator of relative customer importance based on the selling 

firms’ own behaviour. Interaction recency is the only interaction-based variable to play a significant role 

in both classifiers. This could indicate that only recent interactions (e.g., complaints) are indicative of churn 

behaviour, signifying a forgive-and-forget mentality over more long-ago issues in B2B relationships. 
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Figure 2: Feature Importances as defined by average SHAP value. Clear larger importance Monetary Value in B2Boost. 

Of special interest are the variables MV diet and MV main. The MV main variable corresponds to the 

monetary value purchased of the main brand line, which seems indicative to the overall commitment to the 

firm. This while the MV diet variable is the monetary value purchased of the diet (reduced sugar) products. 

These can be seen as more ‘specialty’ products. It seems reasonable to assume that firms who also purchase 

these products have a wider product offering of our partner to their own customers, which induces their 

switching costs. Nevertheless, caution is in place, as the MV diet and MV main variables are relatively 

highly correlated (ρ = 0.79). Nonetheless, the fact that both variables are given a relatively high SHAP-

based feature importance in both the B2Boost and XGBoost implementation, does indicate that both 

features have important predictive power despite the correlation bias and that a combined uncorrelated 

feature (e.g., MV main + diet) would have an even higher feature importance. Since these variables are 

already ranked high on the importance ranking, the only change would be that they become even more 

important. Overall, future practitioners of the model are advised to deploy both traditional transactional 

variables as well as information on customer switching costs and indicators of customer importance.  

Table 7 displays the validated hyperparameter settings for each repartition. The parameter settings 

are remarkably dispersed. Combined with the B2Boost performance, which outperforms all the other 

classifiers with regard to EMPB, we can state that the algorithm seems relatively robust with regard to the 

selected parameter settings. Only the gamma parameter seems to be consistently set at 0.5. In general, 

practitioners are advised to use large enough grid searches. 

Table 7: Optimized Hyperparameter Settings 

 
Fold # Boosting 

rounds 

Learning rate γ 

 
1 100 0.01 0.5 

 
2 500 0.001 0.5 

 
3 

4 

500 0.2 0.5 

 
4 50 0.001 0.5 

 
5 5 0.5 0.5 

 
6 2 0.2 0.5 

 
7 2 0.1 0.5 

 
8 20 0.2 0.5 

 
9 200 0.01 1.5 

 
10 20 0.01 0.5 
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To gain further insight into the profit-driven classifications suggested by B2Boost compared to the 

traditional profit-insensitive suggestions, we compare the CLV distributions of the top 1% predicted 

probabilities of the random forest algorithm with top 1% suggestions of the B2Boost algorithm. These 

algorithms are selected as they are (1) the profit-unaware algorithm with the highest discriminatory power 

(random forest) and (2) the best classifier on the EMPB measure (B2Boost). The analysis is performed 

across two previously unseen folds to ensure robust outcomes. 

The results are visualized in Figure 3, which displays the cumulative distribution of CLVs in the 

suggested top percentile of both B2Boost (blue line) and random forest (orange line). The reader can 

observe that the random forest algorithm suggests mostly small value customers, as these are most 

dominantly present in the customer base. The B2Boost algorithm, on the other hand, acknowledges these 

unique customer values and, as a consequence, suggests higher valued customers to be contacted, resulting 

in the better EMPB values scored by the B2Boost model. 

 

Figure 3: Cumulative distribution CLVs top percentile B2Boost vs random forest 

6.3. Sensitivity Analysis 

Initially, we wanted to ensure whether our results are representative by using multiple benchmark 

datasets. However, popular datasets used in churn literature (e.g., the ones used in (Stripling et al., 2018) 

and (Maldonado, López & Vairetti, 2020)) do not feature such large discrepancies in customer lifetime 
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value. Therefore, we decided to change small details to our methodology to control whether all methods 

consistently resulted in the competitive performance of B2Boost. This offers the additional benefit of 

evaluating the robustness and importance of our assumptions. Specifically, we decided to change three 

specific implementations independently. First, the value of 𝛿 is adapted, as one could argue that 5% of CLV 

offered as incentive is too high, resulting in an over-valued cost associated to misclassification. Both a 

slightly more conservative view of 0.01 and an extremely low incentive rate of 0.00001, more closely 

aligned to the B2C values suggested in Verbraken et al. (2012) were tested. Second, we also re-evaluate 

the used CLV values. Their values in the main analysis are based on a one-year period, which can be too 

short to comprehend true customer value, which may result in undervalued customers, which also heavily 

influences the cost-benefit ratio. Therefore, we tested the outcomes for the situations where CLV values 

were multiplied by factors three and five, which would be more representative of three and five year periods 

with low discounting rates and stable expenditure patterns. Finally, we also alter the contact cost to the 

value of $10 as used in Verbraken et al. (2012). While this adaptation is smaller than the first and second 

adaptations, it also represents a return to the values as proposed in current EMPC literature, which is why 

we also control for how this assumption affects retention campaign profitability. In each implementation, 

we adapted these changes accordingly in all possible settings, both with regard to algorithm settings (i.e., 

profit-driven learners), as well as to the evaluation step (i.e., EMPC and EMPB). 
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Table 8: Average performance of algorithms with 𝛿 = 0.01 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC              �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $60,629.28  

(± $50,389.14) 

0.0045  

(± 0.0037) 

$9,164,010.42 

(± $203,297.56) 

0.9855  

(± 0.0233) 

0.7700  

(± 0.0177) 

VerbrakenBoost $22,711.3217  

(± $71,819.51) 

0.0005  

(± 0.0016) 

$9,166,766.57 

(± $203,042.54) 

0.9790  

(± 0.0371) 

0.8135  

(± 0.0212) 

XGBoost  $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,171,187.93 

(± $200,391.27) 

0.9905  

(± 0.0069) 

0.7758  

(± 0.0049) 

ProfLogit $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,172,265.47 

(± $201,087.39) 

0.9860  

(± 0.0094) 

0.7888  

(± 0.008) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,134,497.53 

(± 352,074.51) 

0.9945  

(± 0.0016) 

0.6690 

(± 0.0099) 

Random Forest $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,165,385.01  

(± $214,580.83) 

0.9855 

 (± 0.0128) 

0.7961  

(± 0.0754) 

LASSO $125.48  

(± $396.80) 

0.0005  

(± 0.0016) 

9,171,441.37  

(± $203,290.51) 

0.9845  

(± 0.0055) 

0.781  

(± 0.0059) 

 

Table 9: Average performance of algorithms with 𝛿 = 0.00001 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC              �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $389,440.95  

(± $90,953.78) 

0.0555  

(± 0.0306) 

$9,267,993.88 

(± $200,782.53) 

0.9715  

(± 0.0187) 

0.7154  

(± 0.0239) 

VerbrakenBoost $23,427.956  

(± $74,085.70) 

0.0005  

(± 0.0016) 

$9,252,492.66  

(± $225,180.43) 

0.9935  

(± 0.0024) 

0.8069  

(± 0.0234) 

XGBoost  $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,266,059.81 

(± $202,410.28) 

0.9905  

(± 0.0069) 

0.7758  

(± 0.0049) 

ProfLogit $13,893.76  

(± $25,711.08) 

0.0050  

(± 0.0111) 

$9,269,849.43 

(± $204,939.72) 

0.9690  

(± 0.0240) 

0.7346  

(± 0.0132) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$9,229,008.33 

(± $355,625.73) 

0.9945  

(± 0.0016) 

0.6690  

(± 0.0099) 

Random Forest $7,881.08  

(± $24,922.16) 

0.0035  

(± 0.0111) 

$9,247,765.69 

(± $216,936.20) 

0.9820  

(± 0.0247) 

0.7423  

(± 0.1095) 

LASSO $3,574.31  

(± 5,845.70) 

0.0020  

(± 0.0026) 

$9,266,301.87 

(± $205,342.90) 

0.9845  

(± 0.0055) 

0.7810  

(± 0.0059) 

 

Tables 8 and 9 display the effect of diminishing incentive rates. Interestingly, the same algorithms 

are identified as top performers per performance measure compared to the main analysis with  𝛿 = 0.05. 
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Reducing incentive rates results into more and more customers being identified or worthy of targeting, 

which is reflected in increased contact rates for both the EMPB and EMPC measure. The lower incentive 

rates also result into more and more classifiers being capable of creating profitable campaigns, as the cost 

of contacting a customer which would not churn in the first place becomes much less severe. B2Boost 

learns this by becoming more focused towards contacting many high value customers and their propensity 

becomes of comparatively lower importance. However, this does not yet translate to a better performance 

on the hold-out test set as EMPB performance actually drops for δ = 0.01 when compared to the application 

where 𝛿 = 0.05. The beneficial effect of this adaptive learning, however, becomes clear when looking at 

the more extreme case of 𝛿 = 0.00001. This extremely low incentive rate translates to a significant drop in 

AUC, becoming strongly outperformed by most learners. However, the focus on valuable customers, makes 

campaigns based on this algorithm much more profitable than campaigns based on other algorithms. 

Overall, lower incentive rates translate to more profitable campaigns. Note how the EMPC measure 

signifies a similar rise in profitability in absolute terms. As the metric, however, overestimates profitability 

by almost $9,000,000 when compared to the EMPB metric, is this rise much smaller when looking at it 

from a relative perspective.  
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Table 10: Average performance of algorithms with 𝐶𝐿𝑉x3 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC              �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $142,931.93  

(± $195,830.32) 

0.0210  

(± 0.0311) 

$26,792,474.51 

(± $619,501.48) 

0.9845  

(± 0.0215) 

0.7970  

(± 0.0229) 

VerbrakenBoost $239,897.80  

(± $262,626.82) 

0.0235  

(± 0.0257) 

$26,624,707.51 

(± $758,207.53) 

0.9910  

(± 0.0066) 

0.7969  

(± 0.0299) 

XGBoost  $41,232.35  

(± $78,139.54) 

0.0085  

(± 0.0145) 

$26,835,021.24 

(± $576,311.63) 

0.9905  

(± 0.0069) 

0.7758  

(± 0.0049) 

ProfLogit $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$26,845,420.62 

(± $579,222.60) 

0.9905  

(± 0.0055) 

0.7659  

(± 0.0147) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,756,075.92 

(± $337,855.39) 

0.9945  

(± 0.0016) 

0.6690  

(± 0.0099) 

Random Forest $22,208.33  

(± $46,502.52) 

0.0360  

(± 0.0583) 

$26,769,198.63 

(± $599,656.84) 

0.9940  

(± 0.0021) 

0.7250  

(± 0.0882) 

LASSO $39,586.8547  

(± 84,003.30) 

0.0010  

(± 0.0021) 

$26,833,156.43 

(± 585,423.07) 

0.9845  

(± 0.0055) 

0.7811  

(± 0.0059) 

 

Tables 10 and 11 indicate the average performance when customer values are adapted with a factor 

3 or 5, respectively. Higher valued customers also heavily influence retention campaigns, with all 

algorithms receiving positive EMPB scores when CLV values are five times their value of the main 

analysis. When customer values increase, we observe the algorithm which is best at distinguishing churners 

from non-churners (i.e., VerbrakenBoost) also to become the most profitable algorithm. This is caused by 

the lesser influence of costs compared to benefits. A similar observation can be made when inspecting how 

the B2Boost algorithm copes with these changed customer values. As all customers become more valuable, 

discriminatory power becomes more important. This causes the B2Boost algorithm to shift its focus towards 

more discriminatory power. As a result, we see increases in the algorithm’s performance as measured by 

AUC. Overall, when retention campaign costs become less important in relation to the campaign benefits, 

the B2Boost algorithm’s behaviour becomes more reminiscent of traditional discriminative algorithms. 

This also causes instance-insensitive algorithms (such as random forest in this case) to become competitive 

with the algorithm. 
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Table 11: Average performance of algorithms with 𝐶𝐿𝑉x5 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC           �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $433,400.21  

(± 439852.68) 

0.0500  

(± 0.0589) 

$44,771,208.95  

(± $964,779.88) 

0.9835  

(± 0.0204) 

0.7856  

(± 0.0574) 

VerbrakenBoost $939,427.40  

(± $659,471.53) 

0.0545  

(± 0.0472) 

$44,675,304.62 

(± $1,137,180.22) 

0.9905  

(± 0.0083) 

0.7974  

(± 0.0402) 

XGBoost  $273,001.15  

(± $273,847.56) 

0.0360  

(± 0.0314) 

$44,878,721.93  

(± $960,319.47) 

0.9905  

(± 0.0069) 

0.7758  

(± 0.0049) 

ProfLogit $11,917.447  

(± $14,954.221) 

0.0115  

(± 0.0147) 

$44,896,592.23  

(± $969,292.53) 

0.9885  

(± 0.0071) 

0.7544  

(± 0.0107) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,756,075.92  

(± $337,855.39) 

0.9945  

(± 0.0016) 

0.6690  

(± 0.0099) 

Random Forest $554,590.28  

(± $519,886.87) 

0.1325  

(± 0.0943) 

$44,821,480.85  

(± $968,813.39) 

0.9905  

(± 0.0080) 

0.7811  

(± 0.0542) 

LASSO $90,672.92  

(± $179,132.41) 

0.0085  

(± 0.0201) 

$44,874,807.71  

(± 975,900.98) 

0.9840  

(± 0.0066) 

0.7809  

(± 0.0060) 

 

The effect of a smaller contact cost of $10 is relatively small, with the conclusions from Table 12 

(i.e., results with f = $10) being not too deviant from the ones in Table 6 (i.e., results with f = $10). This is 

not surprising, given the relatively small deviation in contact cost and the relatively small importance of 

contact costs when compared to incentive costs and campaign benefits in the B2B industry.  
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Table 12: Average performance of algorithms with 𝑓 = $10 

 EMPB              �̅�𝑒𝑚𝑝𝑏 EMPC              �̅�𝑒𝑚𝑝𝑐 AUC 

B2Boost  $35,910.33  

(± $74,531.63) 

0.0040  

(± 0.0077) 

$8,765,532.91  

(± $206,720.83) 

0.9910  

(± 0.0070) 

0.7857  

(± 0.0345) 

VerbrakenBoost $8,706.85  

(± $19,174.86) 

0.0020  

(± 0.0035) 

$8,771,343.08  

(± $224,926.50) 

0.9920  

(± 0.0035) 

0.8147  

(± 0.0194) 

XGBoost  $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,795,251.05  

(± $192,305.57) 

0.9905  

(± 0.0069) 

0.7758  

(± 0.0049) 

ProfLogit $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,798,275.99  

(± $194,166.51) 

0.9875  

(± 0.0072) 

0.7634  

(± 0.0154) 

ProfTree $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,759,991.42  

(± $337,855.79) 

0.9945  

(± 0.0016) 

0.6690  

(± 0.0099) 

Random Forest $0.00 

(± $0.00) 

0.0000 

(± 0.0000) 

$8,785,024.30  

(± $202,389.34) 

0.9860  

(± 0.0137) 

0.7507  

(± 0.0884) 

LASSO $4,376.62  

(± $9,444.42) 

0.0010  

(± 0.0021) 

$8,795,549.54  

(± 195,072.54) 

0.9845  

(± 0.0055) 

0.7811  

(± 0.0059) 

 

An important aspect which has to be considered when dealing with point estimates such as the 

estimated CLV, is the fact that these estimates are uncertain and that, in reality, actual customer value might 

deviate from these estimates. To account for this uncertainty, we add some random noise around a multitude 

of the currently predicted CLV values to account for the uncertainty about our CLV estimates. Specifically, 

we include random noise to each unique CLV estimate in the final evaluation step. This noise was normally 

distributed with mean 0 and standard deviation equal to the mean value of the CLV estimates. This process 

is repeated 100 times, resulting in 100 unique CLV estimate vectors used for evaluation. B2Boost and 

random forest are evaluated using this method in a two-fold cross-validation (i.e., two unseen folds which 

were not included in main analysis), resulting in 200 unique EMPB evaluations per algorithm. Similar to 

the algorithm selection used for the analysis which is depicted in Figure 3, these algorithms are selected as 

they are (1) the profit-unaware algorithm with the highest discriminatory power (random forest) and (2) the 

best classifier on the EMPB measure (B2Boost). Hyperparameters were optimized using the same method 

as in the main analysis. 
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Figure 4: EMPB distributions of B2Boost vs. Random Forest 

Results are compared by visualizing the 200 unique EMPB scores per algorithm into a boxplot in 

Figure 4. We clearly observe that the EMPB values reached by the B2Boost algorithm are much more often 

positive than the EMPB values of the random forest implementation. While the random forest has 

‘accidental’ positive values (which may be quite high), the B2Boost algorithm reaches these values much 

more consistently, as this is the primary learning objective of the algorithm. 

7. Managerial Implications 

Our results indicate that firms which operate under specific conditions (i.e., relatively small customer 

base, highly variant customer values, and high incentive costs), may have extreme difficulties in 

establishing profitable retention campaigns in the B2B industry. The EMPB measure provides aid to 

managers who want to see which algorithms are most profitable in such situations, accounting for the 

deviations in customer values and associated deviant costs and benefits. 

We demonstrate how our algorithm is the only one capable of generating substantial profits across 

all different situations, which is why we strongly advise CCP modellers to incorporate this algorithm when 

creating CCP models. It should, however, be supplemented with other (ensemble) learners as we 

demonstrate how random forest is capable of outperforming B2Boost in some alterations. Overall, 

practitioners are advised to evaluate different models, including B2Boost, with regard to our EMPB 

measure, as this gives a more fair representation of campaign profitability. Traditional measures, such as 



 

34 

 

EMPC and AUC, are demonstrated to positively evaluate unprofitable campaigns, which is highly 

undesirable.  

Interestingly, the optimal campaign profit was each time created by a classifier which was not yet 

used in academic literature (i.e., VerbrakenBoost or B2Boost). This signifies that currently used algorithms 

are not yet developed to their true potential and that practitioners should always think about how to adapt 

certain algorithms (e.g., XGBoost) in order to have marketing campaigns which are as profitable as 

possible. 

The outcome of our methodology, however, strongly depends on the customer values and offered 

incentive rates. This heavily influences both model training and model evaluation. An incorrect estimation 

of these parameters would have resulted in the incorrect selection of either VerbrakenBoost or B2Boost in 

our case study, dependent on the true customer values. As this incorrect selection could lead to suboptimal 

profits, it is extremely important to have correct estimates of these customer values. Many firms currently 

still operate without a clear view on the individual customer values or ideally offered incentives, and should 

have accurate estimates of these values before starting to deploy retention campaigns, as these may be 

unprofitable otherwise. 

8. Conclusion and Future Research 

This study contributes to literature in several ways. First, we develop an B2B-specific profit-driven 

metric, called the EMPB. The measure’s framework is based on the framework of Óskarsdóttir et al. (2018), 

which is customized to the specifities of the business-to-business industry. This metric is capable of 

identifying issues with current practices in CCP modelling by incorporating the high variation in customer 

values associated to this industry. The main issue being the neglectence of these differences when deploying 

customer retention campaigns, by not incorporating the higher costs and benefits associated to correct and 

incorrect classifications associated to high value customers. This results into suboptimal profits or, as it the 

case for many tested situations, even unprofitable campaigns.  

To overcome this, we propose a novel profit-maximizing classifier, based on extreme gradient 

boosting, which uses the gradient of the self-defined CLV-varying EMPB rather than the default log-

likelihood loss function. Our results suggest that this B2Boost algorithm increases profits strongly. The 
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relationship establishes itself over multiple experimental configurations, with the B2Boost algorithm being 

the only algorithm competitive in all parameter configurations. Only when overall discriminatory power 

regains its status as most important determinant, we observe one traditional learner (i.e., the random forest 

algorithm) to become competitive with B2Boost in terms of campaign profitability, and one cost-sensitive 

learner adapted to the EMPC metric as outlined by Verbraken et al. (2012).  

The B2Boost algorithm consequently outperforms its base XGBoost variant with regard to EMPB 

performance. This means that incorporating EMPB in the objective function is a successful strategy for 

creating instance-sensitive churn models. Random forest, however, is successful in defeating B2Boost 

when customer values increase. It might be interesting to see how an adaptation to random forest, 

accounting for individual campaign benefits and costs in the objective function, may perform with regard 

to EMPB. If it would consequently outperform random forest, as B2Boost consequently outperforms 

XGBoost, this may result in an overall competitive CCP model. 

Another addition to literature, is the first implementation of a cost-sensitive boosting algorithm based 

on the EMPC metric as defined by Verbraken et al. (2012). The algorithm is the best performer with regard 

to AUC, and proves to be highly competitive in terms of EMPB when discriminatory power is of main 

importance. Profit-driven boosting algorithms show clear potential for more profitable marketing 

campaigns and are an interesting avenue for future research in the field of business analytics. 

To further establish our findings, further research is required. As we only have access to one dataset 

which showed such large variation, we solely test the profit-enhancing effect of our methodology onto one 

specific setting, thereby limiting its generalizability. However, results clearly indicate that our methodology 

can enhance retention campaign profitability, resulting in suboptimal campaigns when unaccounted for. 

Future research should deploy the algorithm on different datasets with large variation in customer values 

and see if current practices also lead to suboptimal outcomes there, as well as investigate how the degree 

of variation influences the magnitude of the profit gains the methodology creates. 

Central to our framework is the incentive rate δ, which is assumed fixed across all customers. 

However, it is quite feasible that some customers are offered incentives with δ = 0.05, while others accept 

smaller offers at δ = 0.01. While this would still signify a value-dependent incentive, the incentive rate 

would vary per customer. This would alter our framework to work with individualized δ𝑖′𝑠, rather than a 
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fixed δ. This would further increase the individualized focus of the derived metrics and learners, and could 

theoretically further enhance campaign profitability. We did not test the potential impact of such 

alternations to the EMPB framework in this study, as the estimation of such desired incentive rates is 

difficult, with the need for a more uplift-based approach. Nevertheless, we believe that such alterations to 

the framework could prove interesting towards future research.  

Despite its limitations, we feel confident that this study contributes to current literature, as the results 

are promising and would lead to possibly large gains in business-to-business industries, where data-driven 

retention management may not have an as established reputation as in other industries (e.g., 

telecommunication industry), despite its gains above common managerial heuristics being clearly 

established (Jahromi et al., 2014). 
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