
Noname manuscript No.
(will be inserted by the editor)

Optimizing rest times and differences in games played: an
iterative two-phase approach

David Van Bulck · Dries Goossens

Received: date / Accepted: date

Abstract A considerable number of sports competi-

tions cope with limited availability of teams and sports

infrastructure by organizing their timetable around a

season that comprises many more time slots than games

per team. However, in such timetables the rest period

between teams’ consecutive games can vary consider-

ably and the difference in the number of games played

at any point in the season can become large. In this

paper, we propose an iterative two-phase approach to

construct relaxed round-robin timetables that are less

prone to these fairness issues. In particular, the first

phase determines the game-off-day pattern (GOP) set

which regulates when teams play (home or away) or

have an off day (also called bye). Subsequently, the

second phase constructs a compatible timetable which

specifies the opponents and the home advantage of the
games. If no compatible timetable exists, we generate

one or more logic-based Benders cuts that rule out the

infeasible GOP set in future iterations. We test the two-

This version of the article has been accepted for publica-
tion after peer review but is not the Version of Record
and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is avail-
able online at: http: // dx. doi. org/ 10. 1007/ s10951-

021-00717-3 . Use of this Accepted Version is sub-
ject to the publishers Accepted Manuscript terms
of use https: // www. springernature. com/ gp/ open-

research/ policies/ accepted-manuscript-terms .

D. Van Bulck
Ghent University, Faculty of Economics and Business Admin-
istration
E-mail: david.vanbulck@ugent.be

D. Goossens
Ghent University, Faculty of Economics and Business Admin-
istration
FlandersMake@UGent - core lab CVAMO, Ghent, Belgium
E-mail: dries.goossens@ugent.be

phase approach on a problem where feasibility of the

timetable and the objective value is mainly determined

by when teams play games, and show that our approach

excels when the number of additional time slots is mod-

erate.

Keywords Time-relaxed round-robin sports schedul-

ing · First-break-then-schedule · Game-off-day pattern

set feasibility · Logic-based Benders decomposition ·
Hybrid integer/constraint programming

1 Introduction

In a round-robin sports tournament each team meets

every other team a fixed number of times. Due to their

omnipresence in real-life, round-robin tournaments are
intensively studied in the timetabling literature (for an

overview, see e.g., Van Bulck et al. (2020) and Durán

(2020)). Most contributions in the literature focus on

so-called compact variants where the number of time

slots to schedule all games is minimal. If the number of

teams is even, this means that each team plays exactly

one game per time slot. However, in several professional

(e.g., the NBA (Bean and Birge, 1980) or NHL (Costa,

1994)) and in most non-professional round-robin tour-

naments (see e.g., Schönberger et al. (2004) and Knust

(2010) for table tennis, or Van Bulck et al. (2019) for

indoor football) the season comprises more time slots

than strictly needed to schedule all games which makes

that teams regularly have an off day (also called bye)

during which they do not play any game. These so-

called relaxed tournaments offer more flexibility to han-

dle limited availability of teams and venues.

Two important downsides of relaxed timetables are

that the rest period between teams’ consecutive games

can vary considerably and that the difference in the



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

number of games played per team at any point in the

season can become large. These issues have been stud-

ied before in the literature. Schönberger et al. (2004),

Knust (2010), and Van Bulck et al. (2019) consider

player and venue availability constraints and try to bal-

ance the rest time of teams over the season so as to

avoid congested periods that potentially result in in-

juries. Van Bulck and Goossens (2020a) propose two

heuristics (an adaptive large neighborhood search and a

memetic algorithm) to deal with fairness issues related

to rest time and differences in games played. For the

former, they introduce a measure they coined the aggre-

gated rest time penalty, which penalizes the occurrence

of matches involving the same team, with few rest days

in between. Goossens et al. (2020) discuss how to eq-

uitably split the unfair aspects over the teams. Instead

of balancing the absolute rest time of teams over the

season, Atan and Çavdaroǧlu (2018) and Çavdaroǧlu

and Atan (2020) consider the difference in rest time

of opposing teams. In summary, because the construc-

tion of relaxed sports timetables with availability con-

straints is a challenging and NP-hard problem (see

Van Bulck and Goossens (2020a)), the literature focuses

on (meta)heuristics that often exploit the competition

structure of the problem at hand. However, existing al-

gorithms are hard to generalize and do not provide any

bound on the optimal objective value. Moreover, previ-

ous contributions mostly focus on relaxed competitions

with many more time slots than games per team, while

the case with slightly more time slots has only sporad-

ically been investigated (e.g., Durán et al. (2019)).

In compact scheduling, there are numerous exam-

ples that show the wide applicability of the so-called

first-break-then-schedule approach which first determines

when teams play home and away (i.e., home-away pat-

terns or HAPs) after which it determines the opponents

(see Nemhauser and Trick (1998)). In combination with

backtracking, the first-break-then-schedule approach is

exact (see Rasmussen and Trick (2007), Rasmussen (2008)).

As far as we are aware, the only decomposition ap-

proach for relaxed scheduling is by Durán et al. (2019)

who propose to first determine the sequence in which

each team plays every other team, after which the spe-

cific time slot of each game is assigned. In this paper,

we propose an alternative decomposition scheme to pro-

duce relaxed timetables that avoid short rest times and

large differences between the number of games played

by each team. Since rest times and differences in games

played are fully determined once the game days of each

team are fixed, this paper proceeds as follows. In a first

phase, we use integer programming to determine the

time slots on which teams play their games (i.e., game-

off-day patterns or GOPs, see Section 3) thereby opti-

mizing rest times and controlling for the maximal dif-

ference in games played. In a second phase, we use con-

straint programming to construct a compatible timetable

which specifies the opponents and the home advantage

of the games. We pay particular attention on how to

use logic-based Benders decomposition to backtrack be-

tween the two phases and avoid infeasible GOP sets in

subsequent iterations.

The remainder of this paper is as follows. In Sec-

tion 2, we give a formal description of the problem fol-

lowed by a state-of-the-art integrated integer program-

ming formulation. Section 3 proposes the two-phase ap-

proach, and Section 4 presents computational results.

Conclusions follow in Section 5.

2 Problem description and integer

programming formulation

A competition has a set of teams T with |T | = n and a

set of time slots S containing all time slots of the season.

In a double round-robin tournament (2RR) each team

in T plays twice against every other team (once at home

and once away). A 2RR is compact if |S| = 2(n−1) and

n even or |S| = 2n and n odd, and is relaxed otherwise.

In the remainder of this paper, we focus on relaxed

2RRs.

As most relaxed competitions studied in the litera-

ture consider venue and team availability constraints,

we assume that each team i ∈ T provides a team avail-

ability set Ai ⊆ S during which team i can play and a

venue availability set Hi ⊆ Ai during which i can ad-

ditionally host its game. Non-professional teams may

for example use the team availability set to block in-

convenient time slots such as Christmas and New Year

while they may use the venue availability set to avoid

playing home during time slots on which they do not

have access to venues (e.g., Schönberger et al. (2004),

Van Bulck et al. (2019)). On the other hand, profes-

sional teams may use the availability constraints to

model constraints arising from police, international tour-

naments, or stadium availability (e.g., Costa (1994),

Durán et al. (2019)). To avoid timetable congestion, it

is usually also required that no team plays more than

twice within σ consecutive time slots (e.g., Schönberger

et al. (2004), Van Bulck et al. (2019)). Furthermore,

we consider two measures that increase the quality and

fairness of the timetables. First, to ensure more accu-

rate tournament rankings and reduce the opportunities

for match fixing, we limit the games played difference

index of a timetable which is ‘the minimum integer ρ

such that at any point in the timetable, the difference

between the number of games played by any two teams

2



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

is at most ρ (Suksompong, 2016)’. Second, to avoid in-

juries and reduce the impact of not being fully rested,

we minimize the aggregated rest time penalty (ARTP)

that ‘penalizes the timetable with a positive value of

pr ≥ pr+1 each time a team has only r < τ time

slots between two consecutive games (Van Bulck and

Goossens, 2020a)’. The parameter τ reflects the num-

ber of days after which we assume a team has fully

recovered from its previous game.

In summary, the problem is to minimize the ARTP

while assigning each game (i, j) of the double round-

robin tournament, with home team i ∈ T and away

team j ∈ T \ {i}, to a time slot s ∈ S such that each

team plays at most once per time slot and:

(C1) the team availability Ai is respected for all teams

(i.e., no game (i, j) or (j, i) is planned on a time

slot s /∈ Ai),
(C2) the venue availability Hi is respected for the

home teams (i.e., no game (i, j) is planned on

a time slot s /∈ Hi),

(C3) the games played difference index is at most ρ,

and

(C4) each team plays at most two games per σ con-

secutive time slots.

The problem without the objective function and

Constraints (C3) and (C4) (i.e., ρ = 2(n − 2) and

σ = 2) is known in the literature as ‘RAC-2RR’, and is

proven to be NP-complete by Van Bulck and Goossens

(2020a).

Equations (1)-(14) present an integer programming

(IP) formulation for the problem just described. This

formulation is based on Van Bulck and Goossens (2020a)

and can be considered as current state-of-the-art. Our

main decision variable is xi,j,s, which is 1 if team i ∈ T
plays a home game against team j ∈ T \ {i} on time

slot s ∈ S, and 0 otherwise. Variable qi,s represents the

number of games played by team i up to and including

time slot s ∈ S, and variable yi,s,t is 1 if team i plays a

game on time slot s, followed by its next game on time

slot t, for each s, t ∈ Ai such that s < t 6 τ + s, and 0

otherwise.

minimize
∑
i∈T

∑
s,t∈Ai:
s<t≤s+τ

pt−s−1yi,s,t (1)

∑
s∈Hi∩Aj

xi,j,s = 1 ∀i, j ∈ T : i 6= j (2)

∑
j∈T\{i}

(xi,j,s + xj,i,s) 6 1 ∀i ∈ T,∀ s ∈ S (3)

qi,1 =
∑

j∈T\{i}

(xi,j,1 + xj,i,1) ∀i ∈ T (4)

qi,s = qi,s−1 +
∑

j∈T\{i}

(xi,j,s + xj,i,s)
∀i ∈ T,

s ∈ S \ {1} (5)

qi,s − qj,s 6 ρ
∀i, j ∈ T : i 6= j,

∀s ∈ Ai
(6)

∑
j∈T\{i}

s+σ−1∑
p=s

(xi,j,p + xj,i,p) 6 2
∀i ∈ T,∀ s ∈ S :
s+ σ − 1 ≤ |S| (7)

∑
j∈T\{i}

(
xi,j,s + xj,i,s + xi,j,t

+xj,i,t −
∑t−1
k=s+1(xi,j,k + xj,i,k)

)
−1 6 yi,s,t

∀i ∈ T, s, t ∈ Ai :
s < t 6 τ + s

(8)

∑
j∈T\{i}

(xi,j,s + xj,i,s) > yi,s,t
∀i ∈ T, s, t ∈ Ai :

s < t 6 τ + s
(9)

∑
j∈T\{i}

(xi,j,t + xj,i,t) > yi,s,t
∀i ∈ T, s, t ∈ Ai :

s < t 6 τ + s
(10)

1−
∑

j∈T\{i}

(xi,j,k + xj,i,k) > yi,s,t
∀i ∈ T, s, k, t ∈ Ai :
s < k < t 6 τ + s

(11)

xi,j,s = 0
∀i, j ∈ T : i 6= j,

s /∈ Hi ∩Aj
(12)

xi,j,s ∈ {0, 1}
∀i, j ∈ T : i 6= j,

s ∈ Hi ∩Aj
(13)

yi,s,t ∈ {0, 1}
∀i ∈ T, s, t ∈ Ai :

s < t 6 τ + s
(14)

qi,s ∈ N
∀i, j ∈ T : i 6= j,

s ∈ Hi ∩Aj
(15)

Objective function (1) minimizes the sum of rest

time penalties (ARTP). The first set of constraints en-

sures that each team plays exactly one home game

against every other team, while respecting the team

and venue availability constraints (C1) and (C2). The

next set of constraints enforces that a team plays at

most one game per time slot. Constraints (4) and (5)

recursively model the number of games a team played

up to and including time slot s ∈ S, and Constraints

(6) limit the maximal difference in games played (C3).

The next set of constraints ensures that a team plays

at most two games per σ consecutive time slots (C4).

Constraints (8)-(11) regulate the value of the yi,s,t vari-

ables by considering the number of time slots between

two consecutive games of the same team. It follows from

(C4) that the games are consecutive if team i plays on

time slot s and t and |t − s| < σ in which case we

can strengthen the formulation by dropping the nega-

tive summation term of (8). Moreover, under the as-

sumption that all penalties pr are positive, Constraints

(9)-(11) are redundant. Constraints (12) reduce the

number of variables in the system; when implementing

this formulation, these variables need not be created.

Constraints (13) to (15) are the binary constraints on

the x and y-variables, and the integrality constraints on

the qi,s variables. Note that the integrality of qi,s fol-

lows from (4), (5), and (13), and that the integrality of

yi,s,t follows from the objective function and constraints

(8) and (13). Nevertheless, we keep the binary and in-

tegrality constraints for these variables in our model

3



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

since this may enable the generation of additional cuts

(e.g., Gomory or 0/1 mixed-integer cuts), but, give the

highest branching priority to the xi,j,s variables, and

the lowest priority to all the remaining variables.

3 A two-phase approach

A relaxed sports timetable can be seen as a combina-

tion of a game-off-day pattern set and a compatible

timetable. First, the game-off-day pattern of a team

(GOP) defines for each time slot whether a team plays

a game (‘G’) or has an off day (‘O’). Second, the com-

patible timetable specifies the opponent a team faces in

every time slot in which it plays a game and whether

this game is at home or away. An assignment of one

GOP to each team is known as a GOP set, and is said

to be feasible if there exists a compatible timetable (see

Table 1). Clearly, not every GOP set is feasible: for in-

stance, for every pair of teams there must be at least

two time slots on which these teams have a ‘G’ in their

pattern.

Motivated by the following two observations with re-

gard to feasibility and optimality, an attractive alterna-

tive to the IP model from Section 2 is to first construct

the game-off-day patterns and then find a compatible

timetable.

Observation 1 Once the GOP set is known, it is known

whether its compatible timetables respect Constraints

(C1), (C3), and (C4).

Observation 2 Once the GOP set is known, the ARTP

of its compatible timetables is known.

The remainder of this section explains how to con-

struct a GOP set (Section 3.1), construct a compatible

timetable (Section 3.2), and backtrack by generating

logic-based Benders cuts when no compatible timetable

exists (Section 3.3). Implementation details follow in

Section 3.4. Figure 1 provides an overview of the struc-

ture of the two-phase approach we propose.

3.1 Generating GOP sets

In the first-break-then-schedule approach, typically all

feasible home-away patterns are first enumerated, after

which a pattern set is constructed by assigning exactly

one different pattern to each team. However, the same

approach cannot be used in relaxed scheduling as the

same GOP can be assigned to more than one team and

the large number of possible GOPs makes it impracti-

cal to enumerate all GOPs first. Indeed, since each team

plays 2(n − 1) games in a double round-robin tourna-

ment, there are
( |S|

2(n−1)

)
different GOPs. When there

are 8 teams, this means there is only 1 GOP for a com-

pact 2RR, 15 GOPs when there is one off day per team,

and already 40.116.600 GOPs when there are 14 off days

per team (i.e., one off day for each game). The con-

struction of a GOP set may be simple enough, though,

such that we can use IP model (16)-(27) to generate a

GOP set that minimizes the ARTP of its compatible

timetables. In this formulation, our main decision vari-

able is gi,s which is 1 if team i ∈ T has a ‘G’ on time

slot s ∈ S, and 0 otherwise. Furthermore, the auxiliary

variable yi,s,t is 1 if team i ∈ T plays a game on time

slot s ∈ S followed by its next game on time slot t ∈ S,

s < t ≤ s + τ , and 0 otherwise. Finally, the auxiliary

variable us ensures that an even number of teams have

a ‘G’ on time slot s ∈ S.

gop set generation model

minimize
∑
i∈T

∑
s,t∈Ai:
s<t≤s+τ

pt−s−1yi,s,t (16)

∑
s∈Ai

gi,s = 2(n− 1) ∀i ∈ T (17)

∑
s∈Hi

gi,s > n− 1 ∀i ∈ T (18)

∑
p∈Ai:

s≤p≤s+σ−1

gi,p 6 2 ∀i ∈ T, s ∈ Ai (19)

∑
p∈Ai:
p6s

gi,p −
∑
p∈Aj :
p6s

gj,p 6 ρ ∀i, j ∈ T : i 6= j,∀s ∈ Ai (20)

∑
i∈T :s∈Ai

gi,s = 2us ∀s ∈ S (21)

∑
i∈T :s∈Hi

gi,s >
∑

i∈T :s∈Ai\Hi

gi,s ∀s ∈ S (22)

∑
s∈Hi∩Aj gi,s ≥ 1∑
s∈Hi∩Aj gj,s ≥ 1∑
s∈Ai∩Aj gi,s ≥ 2

∀i, j ∈ T : i 6= j (23)

gi,s + gi,t −
t−1∑
k=s+1

gi,k − 1 ≤ yi,s,t
∀i ∈ T, s, t ∈ Ai :

s < t 6 τ + s
(24)

gi,s ∈ {0, 1} ∀i ∈ T, s ∈ Ai (25)

yi,s,t ∈ {0, 1}
∀i ∈ T, s, t ∈ Ai :

s < t 6 τ + s
(26)

us ∈ N ∀s ∈ S (27)

Objective function (16) models the ARTP of the

timetable by enforcing a penalty each time a team plays

two games within τ time slots. By definition, each GOP

contains 2(n−1) ‘G’s on time slots during which a team

is available (Constraints (17)). Moreover, to be able to

schedule all home games, a GOP must contain at least

(n−1) ‘G’s on time slots during which a team’s venue is

4



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

Table 1 Illustration of a GOP set (left) and two compatible timetables (middle, right) for four teams playing a single round-
robin during four time slots.

T/S 1 2 3 4

1 G G O G
2 G G O G
3 O G G G
4 O G G G

S 1 2 3 4

(1,2) (2,4) (3,4) (1,4)
(3,1) (2,3)

S 1 2 3 4

(1,2) (4,1) (3,4) (2,4)
(2,3) (1,3)

Infeasible
or optimal

solution found

Generate
GOP set

Generate
compatible
timetable

Game possibilities
& Isolated slots

Row & Column
feasibility

No GOP
set exists

GOP set found

Infeasible:
find cutBacktracking

Feasible: better
solution found

Fig. 1 General structure of the two-phase approach. The generation of GOP sets is discussed in Section 3.1, the construction
of a compatible timetable in Section 3.2, and the generation of infeasibility cuts in Section 3.3.

available (Constraints (18)). Subsequently, Constraints

(19) and (20) respectively model that no GOP contains

more than two ‘G’s in any sequence of σ time slots, and

that the maximal difference in games played is at most

ρ. Constraints (21) enforce that the sum of ‘G’s is even

on each time slot, a necessary condition since each game

involves two teams. Since each game involves one home

team and one away team, Constraints (22) enforce that

the total number of teams that can play home and have

a ‘G’ on time slot s ∈ S must be larger than or equal to

the number of teams that have a ‘G’ and can only play
away on s. A necessary condition to be able to schedule

game (i, j) is that team i and team j each have at least

one ‘G’ during time slots on which i can play home and

the players of j are available. In addition, to be able to

schedule game (i, j) and (j, i) simultaneously, it is nec-

essary that team i and team j each have at least two

‘G’s during time slots on which the players of team i

and j are simultaneously available (Constraints (23)).

Constraints (24) regulate the value of the yi,s,t vari-

ables. When t − s is smaller than σ, we note that the

negative summation term in Constraints (24) can be

dropped. Finally, Constraints (25) to (27) are respec-

tively the binary constraints on the gi,s variables, the

binary constraints on the yi,s,t variables, and the in-

tegrality constraints on the us variables. Observe that

it follows from Constraints (25) and the objective func-

tion that Constraints (26) could in principle be relaxed.

For reasons discussed before, we do not relax these con-

straints but give the highest branching priority to the

xi,j,s and us variables, and the lowest priority to all the

remaining variables.

3.2 Generating a compatible timetable

Once a GOP set is found, we need to check whether it

is feasible. This problem is known as the GOP-set feasi-

bility problem and is NP-complete (see Van Bulck and

Goossens (2020b)). We use constraint programming for-

mulation (28)-(29) to construct a compatible timetable

or to prove that no such timetable exists. In this formu-

lation, variable xi,j has domain Hi ∩ Aj and gives the

time slot assigned to game (i, j), and parameter g′i,s is

1 if team i ∈ T has a ‘G’ on time slot s ∈ S in the GOP

set found by model (16)-(27) and is 0 otherwise.

Timetable generation model

xi,j 6= s
∀i, j ∈ T : i 6= j,∀s ∈ Hi∩
Aj : g′i,s 6= 1 ∨ g′j,s 6= 1

(28)

all-different(xi,j ∀j ∈ T \ {i} ∪
xj,i ∀j ∈ T \ {i})

∀i ∈ T (29)

Constraints (28) enforces the given GOP set by fur-

ther reducing the domain of the xi,j variables to the

time slots during which both of the teams have a ‘G’ in

their pattern. Next, Constraints (29) make use of the

global all-different predicate to enforce that no team

plays more than one game per time slot.

5



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

3.3 Backtracking by adding logic-based Benders cuts

In case a GOP set turns out to be infeasible, we sep-

arate logic-based Benders cuts that rule out this and

hopefully many other infeasible GOP sets in future it-

erations. In contrast to traditional Benders cuts that

exploit information from the linear programming dual,

logic-based Benders cuts are derived from an inference

dual, i.e., a condition that when satisfied implies that

the master problem is infeasible or suboptimal (Hooker

and Ottosson, 2003). We consider four different fami-

lies of cuts (Sections 3.3.1 to 3.3.4).

3.3.1 Game possibilities

Denote with cG(T ′, s) the number of ‘G’s in the GOPs

of a subset of m teams T ′ ⊆ T on time slot s ∈ S. The

number of games between teams in T ′ on s is at most

b cG(T ′,s)
2 c. Hence, Condition 1 is a necessary condition

for the feasibility of a GOP set that involves O(2n)

constraints.

Condition 1 (Bao (2009))
∑
s∈S

⌊
cG(T ′,s)

2

⌋
> m(m−

1) for each T ′ ⊆ T .

Instead of explicitly checking Condition 1 for each

subset of teams, we formulate an IP model to find a

minimal subset of teams for which Condition 1 is vio-

lated or to prove that no such subset exists. The for-

mulation of this IP is based on Rasmussen and Trick

(2007), with the main difference that it checks the fea-

sibility of a GOP set instead of an HAP set and that it

requires to be solved only once instead of once for each

cardinality of T ′. Parameters g′i,s define the given GOP

set, and parameter UBgp gives an upper bound on the

cardinality of the subsets to be checked and therefore

controls for the expected computation time. Variable

zm, 2 6 m 6 UBgp, determines whether the cardinality

of the subset is m (zm = 1) or not (zm = 0), αi deter-

mines whether team i is in the subset (αi = 1) or not

(αi = 0), and variable βs calculates an upper bound on

the total number of games the teams in the subset can

play on time slot s ∈ S.

minimize
∑
i∈T

αi (30)

∑
i∈T

αi =

UBgp∑
m=2

mzm (31)

UBgp∑
m=2

zm = 1 (32)

βs >
( ∑
i∈T

g′i,sαi − 1
)
/2 ∀s ∈ S (33)

∑
s∈S βs 6 m(m− 1)− 1+

UBgp(UBgp − 1)(1− zm)
∀m ∈ N : 2 6 m 6 UBgp (34)

αi ∈ {0, 1}
zm ∈ {0, 1}
βs ∈ N

∀i ∈ T
∀m ∈ N : 2 6 m 6 UBgp

∀s ∈ S
(35)

The objective function minimizes the total num-

ber of teams chosen such that infeasibility of the GOP

set can be traced back to as few patterns as possible,

and Constraints (31)-(32) model the value of zm. Con-

straints (33) calculate the upper bound on the total

number of games between teams in the subset on time

slot s, and Constraints (34) ensure that Condition 1 is

violated. Finally, Constraints (35) are the binary and

integrality constraints.

If a violating set of teams T ′ defined by the αi’s is

found, |T ′| = m, a logic-based Benders cut of type (36)

is added to the GOP set generation model. Intuitively,

this constraint forbids any GOP set in which the teams

in T ′ play according to the GOPs currently assigned.∑
i∈T ′

∑
s∈S:g′i,s=1

gi,s ≤ m(2(n− 1))− 1 (36)

When T ′ = T , this constraint is known in the litera-

ture as a no-good constraint (Rahmaniani et al., 2017).

3.3.2 Isolated slots

Define with ST ′ ⊆ S the subset of time slots on which at

least two teams in T ′ ⊆ T , |T ′| = m, have a game and

all teams not in T ′ have an off day, i.e.,
∑
i∈T ′ g

′
i,s > 2

and
∑
i∈T\T ′ g

′
i,s = 0 for all s ∈ ST ′ . We refer to the

subset of time slots ST ′ as isolated slots for the subset

of teams T ′.

Condition 2 For each subset of teams T ′ ⊆ T , the

sum of G’s during isolated slots is smaller than twice the

total number of mutual games in T ′, i.e.,
∑
i∈T ′

∑
s∈ST ′

g′i,s
6 2m(m− 1).

Condition 2 is a necessary condition since teams

in T ′ can only play against other teams in T ′ during

isolated slots, and the total number of games between

teams in T ′ is limited by m(m− 1).

6



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

Instead of explicitly checking each subset, we formu-

late an IP model to find a minimal subset of teams for

which Condition 2 is violated, or which proves that no

such subset exists. In this formulation, parameter UBis

denotes the maximal subset to be checked. Variable γs,

s ∈ S, denotes the number of ‘G’s if s is an isolated slot

for the subset of teams defined by αi, and variable zm
determines whether the cardinality of the subset is m

(zm = 1) or not (zm = 0).

minimize
∑
i∈T

αi (37)

∑
i∈T

αi =

UBis∑
m=2

mzm (38)

UBis∑
m=2

zm = 1 (39)

γs 6 αi
∑
j∈T

g′j,s ∀s ∈ S, i ∈ T : g′i,s = 1 (40)

∑
s∈S γs > 2m(m− 1) + 1

−
(
2UBis(UBis − 1) + 1

)
(1− zm)

∀m ∈ N :
2 6 m 6 UBis

(41)

αi ∈ {0, 1}
zm ∈ {0, 1}
γs ≥ 0

∀i ∈ T
∀m ∈ N : 2 6 m 6 UBis

∀s ∈ S
(42)

γs ≤
∑
j∈T

g′j,s ∀s ∈ S (43)

The objective function minimizes the total number

of teams in the subset, while Constraints (38) and (39)

model the zm variables. If all teams that have a ‘G’ on

time slot s ∈ S are in the subset, s is an isolated slot

and Constraints (40) counts the total number of ‘G’s.

Constraints (41) ensure that Condition 2 is violated,

and Constraints (42) are the binary and non-negativity

constraints. Finally, Constraints (43) eliminate the γs
variables related to time slots on which no team plays

a game.
If a violating set of teams T ′ defined by the αi’s is

found, the following logic-based Benders cut is added
to the GOP set generation model.∑
i∈T ′

∑
s∈ST ′

gi,s 6 2m(m−1)+2n(n−1)
∑

i∈T\T ′

∑
s∈ST ′

gi,s (44)

Intuitively, Constraint (44) forbids the violation of

Condition 2 by either limiting the total number of ‘G’s

during time slots in ST ′ or by requiring that at least

one team not in T ′ has a ‘G’ during one of the time

slots in ST ′ .

3.3.3 Row feasibility checks

For a given GOP set, the following condition essentially

checks feasibility for a subset of rows (i.e., teams, see

also Rasmussen and Trick (2007)).

Condition 3 For each subset of teams T ′ ⊆ T , an as-

signment of the mutual games between teams in T ′ to

time slots in S exists in which the opposing teams have

a ‘G’ in their pattern and the venue of the home team

is available.

By the definition of a feasible GOP set, Condition 3

is a necessary condition for all T ′ ⊆ T and a sufficient

condition if T ′ = T . In order to check Condition 3 for

each subset of teams with cardinality UBrow or lower,

we use the constraint programming formulation (28)-

(29) but define variables xi,j only for i, j ∈ T ′, i 6= j. In

case a violating subset of teams T ′ is found, we add a

cut of type (36) to the GOP set generation model.

3.3.4 Column feasibility checks

Instead of checking the rows of a GOP set, we may

also check feasibility for a subset of columns (i.e., time

slots).

Condition 4 For each subset of time slots S′ ⊆ S, an
assignment of games to time slots in S′ exists such that

for each s ∈ S′ team i ∈ T plays exactly one game (i, j)

or (j, i) if g′i,s = 1 and s ∈ Hi, exactly one game (j, i)

if g′i,s = 1 and s ∈ Ai \Hi, and no game if g′i,s = 0.

By the definition of a feasible GOP set, Condition 4

is a necessary condition for all S′ ⊆ S and a sufficient

condition if S′ = S. Given a set of time slots S′, we

use CP formulation (45)-(51) to check Condition 4. In

this formulation variable oi,s has domain {−n,−n +

1, . . . ,−2,−1, 1, 2, . . . , n − 1, n} and its absolute value

gives the opponent of team i ∈ T on time slot s ∈ S

whenever i’s pattern has a ‘G’ on time slot s. If the
sign of oi,s is positive, then i plays a home game against

team oi,s whereas it plays away against team −oi,s if

the sign is negative.

oi,s 6= i ∧ oi,s 6= −i ∀i ∈ T, s ∈ S′ : g′i,s = 1 (45)

oi,s < 0 ∀i ∈ T, s ∈ Ai \Hi : g′i,s = 1 (46)

oi,s 6= j ∧ oi,s 6= −j
∀i ∈ T, s ∈ S′ : g′i,s = 1,
∀j ∈ T \ {i} : g′j,s = 0

(47)

oi,s 6= −j
∀i ∈ T, s ∈ S′ : g′i,s = 1,
∀j ∈ T \ {i} : s /∈ Hj

(48)

all-different(oi,s ∀s ∈ S′ : g′i,s = 1) ∀i ∈ T (49)

all-different(oi,s ∀i ∈ T : g′i,s = 1) ∀s ∈ S′ (50)

oi,s = j ⇒ oj,s = −i ∀i ∈ T, s ∈ Hi : g′i,s = 1,
∀j ∈ T \ {i} : g′j,s = 1

(51)

Constraints (45) to (48) reduce the domain of the

decision variables by respectively stating that team i ∈
T cannot play against itself, i cannot play home when

its venue is not available, i cannot play against j when

7



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

j does not have a ‘G’ in its pattern, and i cannot

play away against j when j’s venue is not available.

Constraints (49) state that a team plays at most once

against every other opponent with the same home-away

status. Next, Constraints (50) enforce a one factor be-

tween all teams that play on s; these constraints are

in principle redundant but can strengthen the formu-

lation considerably (see Trick (2003)). Finally, Con-

straints (51) link the opponent variables.

When drawing a (relatively small) number of time

slots at random, initial experiments revealed that Con-

dition 4 is only sporadically violated. Moreover, in a

relaxed timetable the total number of slot subsets may

quickly become intractable. Instead, we therefore enu-

merate all subsets of teams T ′ with cardinality UBcol

or lower and set S′ equal to the subset of all time slots

during which the majority of the teams that have a ‘G’

are in T ′. This way, there are fewer subsets to be enu-

merated and the subsets are more likely to trigger a

violation of Constraints (49).
Whenever an infeasible subset of columns S′ is found,

we add a constraint of type (52) to the GOP set gener-
ation model.∑
s∈S′

∑
i∈T :g′

i,s
=1

gi,s+
∑
s∈S′

∑
i∈T :g′

i,s
=0

(1−gi,s) ≤ n|S′|−1 (52)

3.4 Implementation

The outline of the algorithm is as follows (see also Fig-

ure 1). In the first iteration, we use the model from Sec-

tion 3.1 to generate a GOP set or prove that none exists
in which case the problem instance is obviously infeasi-

ble. For a given GOP set, we then use the model from

Section 3.2 to construct a compatible timetable or prove

that the GOP set is infeasible. In the latter case, we try

to separate one or more logic-based Benders cuts that

forbid this and hopefully many other infeasible GOPs

as well. To this purpose, we start by separating both

the game possibility and the isolated slots cuts; we set

UBGP = UBIS = 6 as we believe that for larger val-

ues the cut would be weak as too many teams or time

slots would be involved. The outcome is either one or

two violated cuts in which case we continue the search

for a new GOP set, or no violated cut in which case

we try to separate both the row and column cuts. We

thereby set UBrow = UBcol = 3 since the enumerative

nature of these constraints makes checking larger val-

ues impractical. Again, the result is either one or two

violated cuts in which case we continue the search for a

new GOP set, or no violated cut in which case we add

a cut of type (36) for T ′ = T .

In the classical (logic-based) Benders decomposition

framework, the master problem is solved to optimality

and a new branch-and-bound tree is built at each it-

eration. This approach, however, likely revisits candi-

date solutions that have been visited in previous trees

and does not fully exploit the re-optimization tools im-

plemented in modern IP solvers (Rahmaniani et al.,

2017). An alternative approach, known as branch-and-

Benders-cut and followed in this paper, is therefore to

build a single search tree and use (lazy-constraint) call-

backs to generate logic-based Benders cuts for all inte-

ger solutions encountered inside the tree (Rahmaniani

et al., 2017). If the GOP set generation model extended

with all generated cuts is infeasible, then the last found

solution is thus optimal or in case no solution was found

the problem instance is proven infeasible.

4 Computational results

This section describes a benchmark of problem instances

(Section 4.1), experimentally evaluates the performance

of the iterative two-phase approach (Section 4.2), and

provides more insights into the cut generation process

of the two-phase approach (Section 4.3).

4.1 Problem instances

We use the generator from Van Bulck and Goossens

(2020a) to create a benchmark of 32 double round-robin

problem instances. A problem instance in this set is of

type (n, o, h, a) if it contains n teams and 2(n− 1) + o

time slots (i.e., each team has o off days), and for each

team i ∈ T it holds that |Hi| = (n− 1)+h and |S \
Ai| = a. We consider n in the set {8, 12, 16, 20}, o in

{(n−1), 2(n−1), 3(n−1), 4(n−1), 5(n−1), 6(n−1), 7(n−
1), 8(n−1)}, set h = bo/2c and a = bo/4c, and assume

that a team is fully rested after five time slots (i.e., τ =

5, see e.g., Scoppa (2015) for football). Furthermore,

we set pr = 2τ−r−1 for all r < τ , and require that the

games-played difference index is not larger than 2 (i.e.,

ρ = 2). If the total number of time slots is at least twice

the minimal number needed we require that no team

plays more than 2 games within 3 consecutive time slots

(i.e., σ = 3); we set σ = 2 otherwise. While these

parameters are chosen somewhat arbitrarily (based on

a real-life application in indoor football, see Van Bulck

et al. (2019)), no significant differences were observed

when slightly deviating from these parameters during

preliminary testing.

8



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

4.2 Performance analysis

All IP formulations are solved with ilog cplex version

12.10, and the CP formulations are solved with ilog

cplex cp optimizer 12.10. The monolithic IP formu-

lation (1)-(15) and the GOP set generation model were

both granted 5 cores and 3600 seconds of computation

time. To allow for parallel optimization, the separation

models from Section 3.3 were granted one core with a

time limit of 600 seconds. No time limit was imposed on

the timetable generation model (also granted one core).

All models were run on a CentOS 7.9 GNU/Linux based

system with an Intel Gold 6240 processor, running at

2.6 GHz and provided with 16 GB of RAM.

In order to benchmark our two-phase approach against

state-of-the-art, we also implemented the Adaptive Large

Neighborhood Search (ALNS) heuristic as proposed by

Van Bulck and Goossens (2020a). This heuristic was

originally designed for relaxed competitions with many

more time slots than games per team, and essentially

performs a sequence of optimize-and-fix operations. In

particular, the ALNS heuristic repeatedly selects a sub-

set of free xi,j,s variables related to a subset of teams

(team destructor) or time slots (time destructor), fixes

all other xi,j,s variables at their value in the current

solution, and re-optimizes all free xi,j,s variables using

an IP solver (Gurobi version 9.1). An initial solution

is generated by disregarding the optimization criteria

and solving the corresponding feasibility problem with

the IP solver. The ALNS method was granted the same

computation time and was run on the same hardware

as all other methods.

Table 2 presents the computational results for each

of the algorithms. The first four columns provide the

aforementioned features of the problem instances. Next,

the table gives the best found solution (‘Best’) and

lower bound (‘LB’), as well as the total time used by

the monolithic IP formulation from Section 2 and the

iterative two-phase approach from Section 3. If the two-

phase approach ran for less than an hour, either the

best solution found is optimal (i.e., the lower bound

equals the best found solution) or the algorithm ran

out-of-memory (i.e., the lower bound is less than the

best found solution). Finally, the table shows the best

solution found by the ALNS approach. The results show

that the two-phase approach is clearly the best choice

when the number of off days is no more than twice the

number of games per team: not only does the two-phase

approach find all best found solutions for the instances

with o ≤ 4(n−1), it is also able to prove optimality for

eight out of these sixteen problem instances. Compared

to the monolithic IP formulation which finds an opti-

mal solution for only five problem instances, optimality

is also proven considerably faster (e.g., a factor of 60 for

the instance with n = 12 and o = 11). However, when

the number of off days per team becomes larger, the

two-phase approach struggles to find high-quality feasi-

ble GOP sets and the ALNS method may become a bet-

ter choice (although unable to provide lower bounds).

4.3 Insights into cut generation

Table 3 provides more insights into the backtracking

and cut generation of the two-phase approach for the

problem instances with 12 and 16 teams. Columns 5

and 6 respectively show the total number of feasible and

infeasible GOP sets found. As can be expected, more

GOPs turn out to be be infeasible when the number

of off days increases: the ‘G’s become more sparsely

distributed over the time slots and hence there is less

flexibility to schedule games between opponents as more

and more games become implicitly fixed.

The next column of Table 3 gives (i) the total num-

ber of game possibility and (ii) isolated slot cuts added

to the first phase, (iii) the total number of times we

tried to separate these cuts, and (iv) the total time

in seconds the separation process took over all trials.

When the number of off days is small, most GOPs are

feasible and consequently not many violated cuts are

found. However, when the number of off days increases

more violated cuts are separated and this within a mod-

est amount of time: less than half a minute to check

more than 200 GOPs in the problem instance with

n = 12 and o = 88. The observation that fewer cuts

were found for the instances with 16 teams could per-

haps be explained by that fact that a team’s pattern

contains more ‘G’s when the number of teams increases.

Hence, there are more time slots on which teams can

possibly play against each other and on each time slot

there are also more teams against which a team can

play.

When infeasibility of the problem instance could not

be traced back to game possibility and isolated slot

cuts, the two-phase approach separates row and col-

umn infeasibility cuts. The penultimate column of Ta-

ble 3 gives (i) the total number of row and (ii) column

infeasibility cuts added to the first phase, (iii) the to-

tal number of times we tried to separate these cuts,

and (iv) the total time in seconds the separation pro-

cess took over all trials. For a considerable number of

infeasible GOPs, infeasibility could be traced back to

no more than three rows (i.e., teams) or columns (i.e.,

time slots). Although row and column infeasibility cuts

are more general than game possibility and isolated slot

cuts, they are more expensive to calculate.

9



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

IP Two-phase ALNS

n o h a Best LB Time Best LB Time Best

8 7 3 1 1216 1216 5 1216 1216 3 1216

14 7 3 824 824 22 824 824 5 828

21 10 5 596 596 613 596 596 471 610

28 14 7 405 405 1140 405 405 1028 411

35 17 8 305 281 3600 361 277 2809 294

42 21 10 246 0 3600 535 172 2185 200

49 24 12 187 1 3600 / 0 1360 154

56 28 14 116 0 3600 789 0 940 88

12 11 5 2 2996 2996 362 2996 2996 6 3036

22 11 5 2036 2030 3600 2032 2032 42 2184

33 16 8 1522 1458 3600 1462 1462 1461 1610

44 22 11 1121 993 3600 1119 935 3600 1190

55 27 13 956 664 3600 1177 521 3600 884

66 33 16 759 0 3600 1231 0 3469 654

77 38 19 612 0 3600 1448 0 3600 438

88 44 22 380 0 3600 1179 0 3600 297

16 15 7 3 5652 5620 3600 5620 5620 42 5842

30 15 7 4522 3784 3600 3800 3728 3600 4163

45 22 11 2909 2714 3600 2780 2525 2520 3279

60 30 15 4727 1814 3600 2127 1007 3600 2575

75 37 18 4682 0 3600 2517 146 3600 2006

90 45 22 1535 0 3600 2108 0 3600 1556

105 52 26 4735 0 3600 3353 0 3600 1436

120 60 30 4547 0 3600 4361 0 3600 908

20 19 9 4 9228 8844 3600 8856 8773 3600 9579

38 19 9 7308 6015 3600 6216 5826 3600 6764

57 28 14 7382 4100 3600 4627 2727 3600 5476

76 38 19 7333 1100 3600 3780 342 3600 4710

95 47 23 / 0 3600 7610 0 3600 3974

114 57 28 / 0 3600 7340 0 3600 3259

133 66 33 / 0 3600 5314 0 3600 3215

152 76 38 / 0 3600 7271 0 3600 3587

Table 2 Computational results for the three algorithms. The first four columns respectively refer to the number of teams (n),
the number of off days per team (o), the average venue availability (h), and the average team unavailability (a). Symbol ‘/’
means that no solution was found within the given computation time.

Finally, the last column of Table 3 gives (i) the to-

tal number of infeasible GOPs for which we could not

trace back the source of infeasibility in which case we

add a cut of type (36) for T ′ = T , (ii) the total num-

ber of GOPs found, and (iii) the total time taken by

the CP model over all trials to construct a compatible

timetable or prove that none exists. The results show

that only for a few GOPs we could not find a violated

cut. Moreover, the low overall computation time for the

CP formulation shows that CP is an excellent method

to construct a compatible timetable or to identify an

infeasible GOP set as such.

5 Conclusion

It is common in sports timetabling to break down the

timetabling process into different subproblems. Perhaps

the most popular approach is first-break-then-schedule

where the first subproblem is to determine the home-

away pattern (HAP) set which defines when teams must

play at home or play away. Observing that existing two-

phase approaches focus on compact timetables where

the number of time slots is the minimally needed, this

paper investigates how to use a two-phase approach

when there are more time slots than games per team.

In particular, this paper proposes to first use integer

programming to determine the game-off-day pattern

(GOP) set defining when teams play (home or away)

or have an off day, after which it constructs a compat-

10



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

GOPs Game + Isolated Row + Column CP

n o h a Feas. Inf. Ga. Isol. No. s. Row Col. No. s. Ga. No. s.

12 11 5 2 9 0 0 0 0 0 0 0 0 0 0 9 0

22 11 5 18 15 0 1 15 1 0 0 14 23 14 33 1

33 16 8 24 361 0 2 361 37 19 106 359 823 238 385 12

44 22 11 56 480 23 73 480 62 76 281 389 652 104 536 14

55 27 13 15 279 17 54 279 34 41 186 213 310 26 294 9

66 33 16 15 234 4 104 234 31 13 122 129 179 7 249 8

77 38 19 7 230 22 84 230 26 17 117 136 199 19 237 8

88 44 22 5 216 8 128 216 25 14 80 87 124 7 221 9

16 15 7 3 19 0 0 0 0 0 0 0 0 0 0 19 15

30 15 7 44 2 0 0 2 0 1 0 2 4 1 46 89

45 22 11 30 3 0 0 3 0 0 0 3 13 3 33 80

60 30 15 32 44 0 0 44 9 1 3 44 263 40 76 232

75 37 18 18 60 6 0 60 15 12 19 54 314 24 78 25

90 45 22 14 37 0 10 37 7 1 24 27 100 3 51 10

105 52 26 15 24 8 5 24 4 3 8 13 56 4 39 10

120 60 30 4 9 7 3 9 2 0 0 0 0 0 13 4

Table 3 Detailed information on backtracking.

ible timetable with constraint programming. To avoid

infeasible GOPs in future iterations, we use logic-based

Benders decomposition. This paper is therefore also an

interesting application of how to combine integer pro-

gramming techniques that excel in solving optimization

problems with constraint programming techniques that

excel in solving feasibility problems. It turns out that

the construction of GOP sets is simple enough so that

there is no need to explicitly enumerate all patterns

first. This avoids a combinatorial explosion by only im-

plicitly enumerating all patterns, and allows to check

feasibility of GOP sets both on the level of rows (rep-

resenting patterns of teams) and columns (representing

the teams that play on a particular time slot).

We use our approach to generate a number of re-

laxed double round-robin timetables with availability

constraints, and where fairness issues mainly determined

by whether or not a team plays are prominent. In par-

ticular, we minimize the sum of rest time penalties while

controlling for the maximal difference in games played.

Computational results show that the approach outper-

forms existing approaches when the total number of

off days is no more than twice the number of games per

team. Our approach also has the advantage of being eas-

ily extensible towards several other real-life constraints.

For instance, it would be trivial to adapt the models to

impose a limit on the maximal number of off days in a

row. However, in case of fairness issues that mainly de-

pend on the opponent sequence (e.g., travel distance),

we expect other decomposition approaches to be more

effective.

Acknowledgements David Van Bulck is a postdoctoral re-
search fellow funded by the Research Foundation Flanders
(FWO) [1258021N].

References

Atan T, Çavdaroǧlu B (2018) Minimization of rest mis-

matches in round robin tournaments. Comput Oper

Res 99:78 – 89

Bao R (2009) Time relaxed round robin tournament

and the NBA scheduling problem. PhD thesis, Cleve-

land State University

Bean JC, Birge JR (1980) Reducing travelling costs and

player fatigue in the National Basketball Association.

Interfaces 10:98–102

Çavdaroǧlu B, Atan T (2020) Determining matchdays

in sports league schedules to minimize rest differ-

ences. Oper Res Lett 48:209 – 216

Costa D (1994) An evolutionary tabu search algorithm

and the NHL scheduling problem. Infor 33:161–178

Durán G (2020) Sports scheduling and other topics in

sports analytics: a survey with special reference to

Latin America. TOP pp 1–31

Durán G, Durán S, Marenco J, Mascialino F, Rey PA

(2019) Scheduling Argentina’s professional basketball

leagues: A variation on the travelling tournament

problem. Eur J Oper Res 275:1126 – 1138

Goossens D, Yi X, Van Bulck D (2020) Fairness trade-

offs in sports timetabling. In: Ley C, Dominicy Y

(eds) Science meets Sports: when statistics are more

than numbers, Cambridge Publishing Scholars

11



This is the peer-reviewed author-version of https: // doi. org/ 10. 1007/ s10951-021-00717-3 , published in Journal of
Scheduling.

Hooker JN, Ottosson G (2003) Logic-based benders de-

composition. Math Program 96:33–60

Knust S (2010) Scheduling non-professional table-

tennis leagues. Eur J Oper Res 200:358–367

Nemhauser GL, Trick MA (1998) Scheduling a major

college basketball conference. Oper Res 46:1–8

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017)

The benders decomposition algorithm: A literature

review. European Journal of Operational Research

259:801 – 817

Rasmussen RV (2008) Scheduling a triple round robin

tournament for the best Danish soccer league. Eur J

Oper Res 185:795 – 810

Rasmussen RV, Trick MA (2007) A benders approach

for the constrained minimum break problem. Eur J

Oper Res 177:198 – 213

Schönberger J, Mattfeld DC, Kopfer H (2004) Memetic

algorithm timetabling for non-commercial sport

leagues. Eur J Oper Res 153:102–116

Scoppa V (2015) Fatigue and team performance in

soccer: Evidence from the FIFA World Cup and

the UEFA European Championship. J Sport Econ

16:482–507

Suksompong W (2016) Scheduling asynchronous round-

robin tournaments. Oper Res Lett 44:96–100

Trick MA (2003) Integer and constraint programming

approaches for round-robin tournament scheduling.

In: Burke E, De Causmaecker P (eds) Practice and

Theory of Automated Timetabling IV, Springer,

Berlin, pp 63–77

Van Bulck D, Goossens D (2020a) Handling fairness

issues in time-relaxed tournaments with availability

constraints. Comput Oper Res 115:104856

Van Bulck D, Goossens D (2020b) On the complexity

of pattern feasibility problems in time-relaxed sports

timetabling. Operations Research Letters 48:452 –

459

Van Bulck D, Goossens DR, Spieksma FCR (2019)

Scheduling a non-professional indoor football league:

a tabu search based approach. Ann Oper Res

275:715–730

Van Bulck D, Goossens D, Schönberger J, Guajardo M

(2020) RobinX: A three-field classification and uni-

fied data format for round-robin sports timetabling.

Eur J Oper Res 280:568 – 580

12


