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ABSTRACT
Mathematical models of chemical reaction networks are typically nonlinear ordinary differential equa-
tions that represent the dynamical behavior of the species participating in the corresponding reactions.
For the purpose of precise mathematical modelling of chemical reaction networks, useful techniques for
estimating their parameters from experimental data are necessary. In this manuscript, we propose a new
parameter estimation method for enzymatic chemical reaction networks from time-series experimental
data of reaction rates. The main idea is based on retrieving time-series data of the species’ concentra-
tions from the available experimental data of reaction rates by making use of parametric Bézier curves.
The least squares method is applied to these retrieved data in order to determine the best-fitting val-
ues of the parameters in the corresponding mathematical model. Subsequently, we demonstrate the
applicability of our parameter estimation method on three examples of enzymatic chemical reaction
networks including a model of ryanodine receptor adaptation and a model of protein kinase cascades.
We also address the issue of identifiability of chemical reaction network models from reaction rates.

KEYWORDS
Systems biology, Bottom-up modelling approach, System identification, Bézier curves, Least squares
method.

1. Introduction

One of the most natural problems in systems biology is the parameter estimation problem of chem-
ical reaction networks (CRNs) using observed data available from biological experiments. Typically,
a mathematical model of a CRN contains a system of ordinary differential equations (ODEs) that
describes the dynamics of the concentrations of its constituent species. The aforementioned dynamics
strictly depend on the parameters involved in the corresponding mathematical model. These parame-
ters are most of the time partially or even fully unknown and are often estimated from experimental
data. Usually, the available experimental data for estimating the parameters are time-series, i.e., the
data are collected at discrete time instants.

The bottom-up approach (see e.g. Edwards & Thiele, 2013; Mock, Chiblak, & Herold-Mende, 2014)
is a modelling procedure widely used in a variety of research fields including systems biology. This
approach uses the available experimental data to retrieve a complete mathematical model of a system.
The bottom-up modelling approach in systems biology consists of four major steps. The first step is
draft reconstruction, which is based on collecting time-series data from biological experiments. The
second step is the manual curation of the collected data by, for example, inserting missing values and
eliminating irrelevant data. In the third step, the knowledge about biological interactions occurring in
the CRN is translated into a mathematical formulation. In the final step, the parameters involved in
this mathematical formulation are numerically estimated from experimental time-series data leading
to a complete mathematical model.

The last step of the bottom-up approach, i.e., the parameter estimation, can be carried out by vari-
ous methods, and the choice of the most suitable technique usually depends on the type of the observed
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time-series data available from experiments. Numerous parameter estimation techniques from time-
series observed data of the species’ concentrations are available in the literature. In case all the species’
concentrations can be measured in an experimental setup, a common approach for identifying the pa-
rameters of the corresponding mathematical model is the least squares method (see e.g. Himmelblau
& Riggs, 2012; Ljung, 1999). This optimization technique minimizes the sum of squared residuals, i.e.,
the sum of the squared differences between the observed experimental concentration values and the
corresponding model-predicted values. A very efficient identification technique for non-linear mathe-
matical models of CRNs is the quasi-linearization procedure described in Donnelly and Quon (1970),
which is a second-order iterative procedure that considers the non-linear initial value problem (IVP)
as the limit of a sequence of linear IVPs. For a comprehensive review of available techniques we refer
to Crampin, Schnell, and McSharry (2004); Loskot, Atitey, and Mihaylova (2019); Ross, Schreiber,
and Vlad (2005). Some of the well-known approaches for genome-scale bio-CRNs, such as maximum
likelihood estimation, finite differences, etc., have been addressed in Fröhlich, Kaltenbacher, Theis,
and Hasenauer (2017).

As we have already discussed above, various mathematical techniques have addressed the parameter
estimation problem for CRNs from time-series observed data of the species’ concentrations. However,
in most of the cases not all concentrations can be measured experimentally. This data incompleteness
makes the parameter estimation problem more challenging, mathematically as well as computationally.
In reality, the output of a biological experiment is generally a combination of partial measurements
corresponding to the species’ concentrations and reaction rates, meaning that only some of the con-
centrations and some of the reaction rates can be measured in an experimental setup. The parameter
estimation problem for CRNs from this kind of experimental data is an important subject that has
not yet been considered.

There are various methods of measuring reaction rates known in the literature, such as the classical
metabolic flux analysis without tracer experiments (Antoniewicz, 2015), flux balance analysis (Orth,
Thiele, & Palsson, 2010), an electrochemical method proposed in Hodges and Chatelier (2002), a
computational method called maximum metabolic flexibility (Megchelenbrink, Rossell, Huynen, Note-
baart, & Marchiori, 2015), and a number of constraint-based reconstruction and analysis methods
(Heirendt et al., 2019). However, most of these methods are indirect and they require a few key as-
sumptions (e.g., the intracellular and the extracellular metabolite fluxes of a cell balance each other)
and model simplifications (e.g., removal of futile metabolic cycles). The state-of-the-art method for
precisely measuring reaction rates in biological systems is the 13C-metabolic flux analysis (13C-MFA),
see for example Antoniewicz (2018); Guo, Sheng, and Feng (2016); Long and Antoniewicz (2019);
Sauer (2006); Wiechert (2001). It consists of six major steps. The first step is the identification of
optimal isotopic tracers that provide suitable resolution of fluxes. In the second step, isotopic labeling
measurements are collected when isotopic steady state is reached. In the third step, both isotopic
labeling and external rates are measured from the data collected from tracer experiments. It can be
done by, for example, gas chromatography-mass spectrometry (Sparkman, Penton, & Kitson, 2011),
which is the most widely used technique. The fourth step is metabolic model construction, which
can be performed by using information from different databases. In the fifth step, minimization of the
differences between the observed and simulated measurements results in the measurement of fluxes. Fi-
nally, a statistical analysis is performed to validate the measurements and determine the corresponding
confidence intervals.

In this manuscript, we consider the parameter estimation problem for CRNs with non-autocatalytic
reactions from observed experimental time-series data of the reaction rates corresponding to the CRN.
To the best of our knowledge, there exists no general solution to this problem in the literature. We are
mainly interested in CRNs governed by enzyme kinetic rate laws, which are the governing laws of most
real-life bio-CRNs. We assume that certain measurements of the reaction rates are available at discrete
time instants, which are not necessarily equidistant. Given the structure of the considered CRN, we
first derive a new system of ODEs with dependent variables being the corresponding reaction rates. We
use Bézier curves to approximate the vector of species’ concentrations in the newly obtained system
of ODEs. This approximation combined with the available experimental time-series data of reaction
rates allows us to retrieve time-series data of the vector of species’ concentrations. These data are then
used to estimate the system parameters. Because of its simplicity and computational feasibility, we
apply the least squares method to determine the best-fitting parameter values. The entire procedure
has been automated and the corresponding Matlab library is provided as supplementary material.
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Before parameter estimation is carried out, it is important to understand whether the parameters are
identifiable given a certain type of output, i.e., there is a unique parameter vector corresponding to the
given output. The uniqueness of the parameter vector depends on the structure of the mathematical
model of the considered CRN and the type of the given output. We consider the identifiability of
mathematical models of enzymatic CRNs given linear combinations of reaction rates as output.

We demonstrate our parameter estimation procedure for three examples of CRNs, which includes
two real-life examples retrieved from the BioModels database (Malik-Sheriff et al., 2020), namely a
model of ryanodine receptor adaptation (Keizer & Levine, 1996) and a model of protein kinase cascades
(Markevich, Hoek, & Kholodenko, 2004) and an artificial example of a CRN that is identifiable given
the reaction rates as output. For each of these examples, we show how to estimate the parameters
contained in the corresponding mathematical model from time-series experimental data of overall
outgoing reaction rates in the forward direction.

2. Preliminaries

In this section, we give a compact description of the mathematical techniques that are necessary for
our parameter estimation method. We first explain a framework for deriving a system of ODEs that
describes the dynamics of the concentrations of constituent species of a given CRN. Finally, we recall
the Bézier curve defined by a given set of control points, which can be used to effectively approximate
any continuous function.

2.1. Notations and useful identities

We commence by introducing the notations that are used throughout the manuscript. For any
vector v ∈ Rm, vi denotes its i

th element, i.e., v = [vi]
m
i=1. Denote by Γv = diag(v) the m×m diagonal

matrix, whose diagonal entries are the elements of the vector v. Mij denotes the entry of the matrix
M corresponding to the ith row and the jth column. Denote by Im the m×m identity matrix. Define
the vector-valued function Exp : Rm → Rm

+ as [xi]
m
i=1 7→ [exi ]mi=1, and the vector-valued function

Ln : Rm
+ → Rm as [xi]

m
i=1 7→ [ln(xi)]

m
i=1. For a vector-valued differentiable function f : Rm × Rn → Rp

given as (x, y) 7→ f(x, y), denote the p × m partial Jacobian matrix Jx(f) with respect to its first

variable x with Jx(f) =

[
∂fi
∂xj

]
ij

. Similarly, denote the partial Jacobian matrix of f with respect to

its second variable y with Jy(f) =

[
∂fi
∂yj

]
ij

.

We continue with two straightforward identities that will be used to prove the main proposition of
this manuscript.

Lemma 2.1. Let x, y ∈ Rm be two vector valued functions of a single variable t. We then have the
following identities:

(1) Ln (Γxy) = Ln(x) + Ln(y), (2)
d

dt
Ln(x) = Γ−1

x

dx

dt
.

Proof. Simplification of the left-hand side of the first identity leads to:

Ln (Γxy) = Ln



x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xm



y1
y2
...
ym


 = Ln



x1y1
x2y2
...

xmym


 = Ln(x) + Ln(y).
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For the second identity we have:

d

dt
Ln(x) =



d

dt
ln(x1)

d

dt
ln(x2)

...
d

dt
ln(xm)


=



1

x1

dx1
dt

1

x2

dx2
dt
...

1

xm

dxm
dt


=



1

x1
0 · · · 0

0
1

x2
· · · 0

...
...

. . .
...

0 0 · · · 1

xm


dx

dt
= Γ−1

x

dx

dt
.

Hence, the lemma is proved.

2.2. Mathematical models of chemical reaction networks

We describe how to obtain the stoichiometric representation of the balance laws corresponding to
a given CRN. Assume that s chemical species Xi, i = 1, . . . , s, are participating in r unidirectional
reactions Rj , j = 1, . . . , r. The left-hand and the right-hand sides of the reaction Rj are called its
substrate and product complexes, respectively. The relation between the species and the reactions is
given by an s× r stoichiometric matrix S defined as follows. Let αij and βij be the number of moles
of species Xi in the substrate and the product complexes of the reaction Rj , respectively. The entries
of the stoichiometric matrix are then defined as Sij = βij − αij .

Example 2.1. In order to clearly illustrate the modelling procedure we demonstrate it for the following
example of a CRN.

R1,2 : 3X1 +X2 −⇀↽− 2X3, R3 : X3 +X4 −→ X5. (1)

There are five chemical species participating in three unidirectional reactions. Note that the second
reaction can be considered as the reverse reaction of the first one. Also note that in our modelling
procedure, we split each reversible reaction into two unidirectional reactions. Therefore, the 5 × 3
stoichiometric matrix of the CRN (1) is:

S =


−3 3 0
−1 1 0
2 −2 −1
0 0 −1
0 0 1

 .

Let x ∈ Rs
+ be the vector of concentrations of the species participating in the CRN. Denote by

ν ∈ Rr the vector of reaction rates, which is a function of x and depends on the governing laws of the
CRN. The basic structure describing the dynamics of the species’ concentration vector is given by the
stoichiometric representation of the balance laws as:

dx

dt
= Sν. (2)

Example 2.1 (Continued). The ODEs corresponding to the CRN (1) can then be written as:

dx1
dt

= −3ν1 + 3ν2,

dx2
dt

= −ν1 + ν2,

dx3
dt

= 2ν1 − 2ν2 − ν3,

dx4
dt

= −ν3,

dx5
dt

= ν3.

4



2.3. Enzyme kinetics rate laws

Any CRN can be uniquely described by the ODE (2), independent of its governing laws. We are inter-
ested in CRNs that are governed by an enzyme kinetics rate law (EKRL). As explained in Gasparyan,
Van Messem, and Rao (2018, 2020); Rao, van der Schaft, van Eunen, Bakker, and Jayawardhana
(2014), according to this rate law, the reaction rate of the jth reaction, j = 1, . . . , r, is given in the
following form:

νj = kjgj(x,K)

s∏
i=1

x
αij

i , (3)

where kj is the rate constant of the jth reaction, K ∈ Rq
+ is the vector of Michaelis constants of the

species, gj : Rs
+ × Rq

+ → R+ is a rational function of its arguments, and αij is the number of moles

of the species Xi in the substrate of the jth reaction. In this case, there are two different types of
parameters, namely the rate constants k ∈ Rr

+ of the reactions and the Michaelis constants K ∈ Rq
+

of the species.

Example 2.1 (Continued). For the CRN given in (1), a possibility of reaction rates is:

ν1 =
k1x

3
1x2

1 + x1

K1
+ x2

K2

, ν2 =
k2x

2
3

1 + x1

K1
+ x2

K2

, ν3 =
k3x3x4

1 + x3

K3
+ x4

K4

.

In this case, the vector of reaction rates can be written in the form (3) by denoting the rational terms
in the expressions of the reaction rates as:

g1(x,K) =
1

1 + x1

K1
+ x2

K2

, g2(x,K) =
1

1 + x1

K1
+ x2

K2

, g3(x,K) =
1

1 + x3

K3
+ x4

K4

.

Note that, if the considered CRN (governed by EKRL) involves competitive, uncompetitive and non-
competitive modifiers, the corresponding reaction rates can still be written in the form (3). This is
because the terms involving the concentrations of modifiers appear in the rational terms corresponding
to the reaction rates. In the supplementary material, we provide a detailed explanation of some well
known EKRLs that can be written in the form (3).

A special case of an EKRL is the mass action kinetics rate law (MAKRL), which assumes that the
rate of a reaction is proportional to the concentrations of the species participating in its substrate.
In other words, if some of the reactions are governed by MAKRL, their reaction rates can be written
in the form (3) with corresponding rational functions being identically equal to one. In this case, the
only parameters contained in the corresponding mathematical model are the rate constants.

Example 2.1 (Continued). If all the reactions of the CRN given in (1) are governed by MAKRL,
according to this law the corresponding reaction rates are given by:

ν1 = k1x
3
1x2, ν2 = k2x

2
3, ν3 = k3x3x4.

Next, we obtain an expression for the vector of reaction rates ν ∈ Rr using equation (3) in terms of
matrix multiplication. We consider CRNs with non-autocatalytic reactions meaning that the substrate
and the product complexes of the same reaction do not share a common species. Define the s × r
substrate composition matrix ∆ of the CRN as follows:

∆ij =

{
−Sij , if Sij ≤ 0

0, otherwise
. (4)

For Γk = diag(k) ∈ Rr×r and Γg = diag(g) ∈ Rr×r, define the substrate expression function φ : Rs →
Rr as x 7→ Exp(∆⊤Ln(x)). Then observe that

ν = ΓkΓgφ(x). (5)
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In this case, the ODEs given in (2) can be rewritten as (see Gasparyan et al., 2020; Rao et al., 2014):

dx

dt
= SΓkΓgExp

(
∆⊤Ln(x)

)
.

Note that, if the considered CRN is governed by MAKRL, then Γg ≡ Ir.

Example 2.1 (Continued). With reference to the CRN (1), the vector of reaction rates can be written
in the form (5), with the substrate composition matrix ∆ ∈ R5×3 and the complex expression function
φ : R5 → R3 given by:

∆ =


3 0 0
1 0 0
0 2 1
0 0 1
0 0 0

 , φ(x) =

x31x2x23
x3x4

 .

2.4. Bézier curves

A Bézier curve (Bézier & Sioussiou, 1983; Prautzsch, Boehm, & Paluszny, 2002) is a parametric
curve defined by a set of given control points. It plays a crucial role in a number of research fields,
such as computer graphics, user interface design, animation, and vector graphics (see e.g. Bézier,
1986; Farin, 1993). A Bézier curve is described as a linear combination of Bernstein basis polynomials
(Bernšteın, 1912) as follows. For a positive integer N , let F = {Fm|m = 0, . . . , N} be a set of given
distinct (control) points. The Bézier curve defined by these points is uniquely expressed as:

β(t|F ) =
N∑

m=0

bN,m(t)Fm, 0 ≤ t ≤ 1,

where bN,m(t) =
(
N
m

)
tm(1 − t)N−m, m = 0, . . . , N , are the Bernstein basis polynomials of degree N .

Note that the first and the last control points F0 and FN are the endpoints of the Bézier curve, i.e.,
β(0|F ) = F0 and β(1|F ) = FN . However, the curve generally does not pass through the intermediate
points Fm, m = 1, . . . , N − 1.

In mathematics, Bézier curves are used to uniformly approximate any continuous function. As
explained in Berry and Patterson (1997), the control points are uniquely defined for every Bézier
curve.

Note that the domain of a Bézier curve is restricted to [0, 1]. Since in our case the dependent variable
t represents time, we need to re-define the curve over the interval [0, T ], with T > 0. We therefore
define the contracted Bézier curve β̄(t|F ) by a set of control points F over the interval [0, T ] as:

β̄(t|F ) = β

(
t

T

∣∣∣∣F) , 0 ≤ t ≤ T, (6)

Similar to the regular Bézier curve, the first and the last control points F0 and FN correspond to
the endpoints of the contracted Bézier curve, i.e., β̄(0|F ) = F0 and β̄(T |F ) = FN . An example of a
contracted Bézier curve defined by a set of seven given control points over a pre-specified interval is
included in the supplementary material. Note that simplification of the right-hand side of (6) leads
to:

β̄(t|F ) = 1

TN

N∑
m=0

bN,m(t)Fm, 0 ≤ t ≤ T,

with coefficient polynomials being defined as bN,m(t) =
(
N
m

)
tm(T − t)N−m, m = 0, . . . , N .
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3. Automated parameter estimation procedure

In this section, we describe the main contribution of this manuscript, i.e., a novel method for estimat-
ing the parameters contained in the mathematical model (2) from observed time-series experimental
data of reaction rates.

3.1. Problem statement: available experimental data

Typically, biological experiments provide measurements of species’ concentrations or reaction rates.
In this manuscript, we assume that in an experimental setup reaction rates are measured. Suppose
that the output of a biological experiment is of the form:

y = Hν, (7)

where H ∈ Rl×r is a constant matrix. In general, H can have any arbitrary structure. However, for
our parameter estimation method we assume that in an experimental setup overall rates of reversible
reactions (in a certain direction) and the rates of irreversible reactions are measured. Thus, the matrix
H has the following structure:

• each row of H corresponding to an irreversible reaction has only one non-zero element, which is
equal to one and is placed in the position corresponding to the particular reaction;

• each row corresponding to a reversible reaction has exactly two non-zero elements, which are
one and negative one and are placed in the positions corresponding to their particular reactions.

For example, with reference to the CRN (1) we have:

H =

[
1 −1 0
0 0 1

]
.

Further assume that we have n different sets of time-series data of y collected from biological exper-

iments on the same CRN. For i = 1, . . . , l; j = 1, . . . , n and m = 0, . . . , Nj let y
(j)
i,m be the observed

value of the ith output at time instant t
(j)
m corresponding to the jth set of data. For compactness we

consider the following observed experimental time-series data sets:

Λ(j) =
{(
t(j)m , y

(j)
i,m

)
| i = 1, . . . , l, m = 0, . . . , Nj

}
, j = 1, . . . , n. (8)

We aim to identify the best-fitting parameters corresponding to the mathematical model (2) of the con-
sidered CRN from observed time-series data collected from experiments. Recall that if the considered
CRN is governed by an EKRL which is not MAKRL, then there are two types of parameters contained
in the corresponding mathematical model, namely the rate constants k ∈ Rr

+ and the Michaelis con-
stants K ∈ Rq

+. However, if the governing law of the given CRN is MAKRL, then the only parameters
of the corresponding mathematical model are the rate constants. We therefore consider the param-
eter estimation procedure for each governing law separately. For each of these cases, we develop an
automated process which uses the inputs provided by the user to determine the best-fitting parameter
values in a fully automated manner.

3.1.0.1. Inputs: The list of inputs required for our parameter estimation procedure is:

• the s× r stoichiometric matrix S of the considered CRN, where s and r are the number of the
species and the reactions, respectively;

• the vector-valued function g : Rs
+ × Rq

+ 7→ Rr
+, which is the vector of the rational terms in the

expressions of the reaction rates;
• the observed time-series experimental data Λ(j), j = 1, . . . , n, of reaction rates given in (8).

3.1.0.2. Output: The output of our automated parameter estimation method are the best-fitting
parameter values corresponding to the experimental time-series’ observed data (8).
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3.2. New mathematical formulation

We now present an intermediate result that is crucial in our parameter estimation method: we show
how to derive an IVP with reaction rates as dependent variables.

Proposition 3.1. Suppose that a chemical reaction network is governed by an enzyme kinetic rate law,
i.e., the corresponding mathematical model is given by (2) with the vector of unidirectional reaction
rates (5). Then the vector of unidirectional reaction rates satisfies the following initial value problem:

dν

dt
= ΓνΓ

−1
g Jx(g)Sν + Γν∆

⊤Γ−1
x Sν

ν(0) = ν0
, (9)

where ν0 ∈ Rr
+ is the vector of initial unidirectional reaction rates.

Proof. We first find a formula for the derivative of g : Rs × Rq → Rr with respect to t:

dg(x,K)

dt
=

[
dgi(x,K)

dt

]r
i=1

=

 s∑
j=1

∂gi(x,K)

∂xj

dxj
dt

r

i=1

= Jx(g)
dx

dt
= Jx(g)Sν,

where we used equation (2). Now applying the logarithmic operator to (5) and using the first identity
of Lemma 2.1, we get:

Ln(ν) = Ln(k) + Ln(g(x,K)) + ∆⊤Ln(x).

Subsequently, we differentiate both sides with respect to t and apply the second identity of Lemma
2.1:

Γ−1
ν

dν

dt
= Γ−1

g Jx(g)Sν +∆⊤Γ−1
x

dx

dt
.

Using (2) leads to:

dν

dt
= ΓνΓ

−1
g Jx(g)Sν + Γν∆

⊤Γ−1
x Sν,

which completes the proof.

One of the main advantages of the IVP (9) is that it does not explicitly depend on the rate constants
k ∈ Rr

+. Therefore, the only parameters involved in it are the Michaelis constants K ∈ Rq
+ of the

species. This is because the Michaelis constants appear in the vector g ∈ Rr of the rational terms in
the expressions of the reaction rates.

Corollary 3.1. Suppose that a chemical reaction network is governed by mass action kinetic rate law,
i.e., the corresponding mathematical model is given by (2) where the vector of unidirectional reaction
rates is given by (5) with Γg ≡ Ir. Then the vector of unidirectional reaction rates satisfies the following
initial value problem: 

dν

dt
= Γν∆

⊤Γ−1
x Sν

ν(0) = ν0
, (10)

where ν0 ∈ Rr
+ is the vector of initial unidirectional reaction rates.
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3.3. Parameter estimation for mass action kinetics rate law

In this part of the manuscript, we consider the parameter estimation problem from time-series
experimental data sets (8) for CRNs governed by MAKRL.

For i = 1, . . . , s; j = 1, . . . , n and m = 0, . . . , Nj , let x
(j)
i,m ∈ R+ be the value of the ith concentration

xi ∈ R+ at time instant t
(j)
m corresponding to the jth experiment. Since these values are unknown we

treat them as parameters and the goal now becomes finding estimates for them from experimental
time-series data Λ(j). We define the following parameter matrix:

θ(j) :=


x
(j)
1,0 x

(j)
1,1 · · · x

(j)
1,Nj

x
(j)
2,0 x

(j)
2,1 · · · x

(j)
2,Nj

...
...

. . .
...

x
(j)
s,0 x

(j)
s,1 · · · x

(j)
s,Nj

 ∈ Rs×(Nj+1). (11)

Let θ
(j)
i , i = 1, . . . , s, denote the ith row of the matrix θ(j), which is the time-series (parametric) data of

the concentration of the ith species. Denote by γ
(j)
i the contracted Bézier curve defined by the control

points θ
(j)
i over the time-interval [0, t

(j)
Nj

], i.e., γ
(j)
i = β̄

(
t|θ(j)i

)
. We consider the vector γ(j) ∈ Rs of

the contracted Bézier curves corresponding to the species concentrations, i.e., γ(j) =
[
γ
(j)
i

]s
i=1

.

We use the aforementioned contracted Bézier curves to approximate the species’ concentrations in
the IVP (10) described in Corollary 3.1. More precisely, we consider the following IVP:

dν

dt
= Γν∆

⊤Γ−1
γ(j)Sν

ν(0) = ν
(j)
0

. (12)

Note that even though the vector ν
(j)
0 of initial unidirectional reaction rates is not provided, it still

can be assigned by solving the system of linear equations

Hν
(j)
0 = y

(j)
0 (13)

numerically for ν
(j)
0 . Also note that the solution to the above-mentioned system of linear equations

is not unique if H does not have full column rank. In this case, we show later with the help of some
examples that in general our procedure does not lead to a unique set of parameters, since there is an
infinite number of possible initial reaction rates satisfying (13).

The only parameters involved in the system are the parameter values of the species’ concentrations at
distinct time instants given in (11). For every j = 1, . . . , n, we estimate the values of these parameters,
such that the data set Λ(j) fits the IVP (12). The aforementioned estimation problem can be treated
in various ways. Because of its simplicity and computational feasibility, we use the well-known least
squares method in this manuscript. Denote by y

(
t, θ(j)

)
∈ Rl the model-predicted value of the output

(7) corresponding to the IVP (12), i.e., the output of the system (12) as a function of θ(j), where

t ∈
[
0, t

(j)
Nj

]
. Define the least squares objective function ε

(
θ(j)

)
as follows:

ε
(
θ(j)

)
=

l∑
i=1

Nj∑
m=1

(
yi

(
t(j)m , θ(j)

)
− y

(j)
i,m

)2
.

The mathematical problem now becomes finding the values of θ(j) for which ε
(
θ(j)

)
is minimal. In

other words, we consider the optimization problem:

min
θ(j)

ε
(
θ(j)

)
.
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Denote the solution to the above-mentioned optimization problem by θ̂(j) ∈ Rs×(Nj+1). Finally, we
determine the parameter values k ∈ Rr, for which our retrieved time-series data θ̂(j) fits the mathe-
matical model (2). In other words, we have a parameter estimation problem from time-series data of
species’ concentrations, for which we may again use the least squares method. First, for j = 1, . . . , n, we

consider the system of ODEs (2) with the vector of initial concentrations being x
(j)
0 =

[
x̂
(j)
i,0

]s
i=1

, which

is the first column of the retrieved data-matrix θ̂(j). For i = 1, . . . , s and m = 1, . . . , Nj , let x
(j)
i (t, k),

t ∈
[
0, t

(j)
Nj

]
, be the ith element of the solution-vector, as a function of k, of the aforementioned IVP

corresponding to the jth experiment. We define the least squares objective function as:

ρ(k) =

n∑
j=1

s∑
i=1

Nj∑
m=1

(
x
(j)
i

(
t(j)m , k

)
− x̂

(j)
i,m

)2
.

We obtain the best-fitting parameter values k̂ ∈ Rr
+ for which the least squares objective function ρ(k)

has a minimum value.

3.4. Parameter estimation for enzyme kinetics rate laws

We now consider the parameter estimation problem for CRNs governed by an EKRL, which is not
MAKRL. Similar to the case of MAKRL, we want to estimate the vector of species’ concentrations at
different time instants using the time-series observed data Λ(j), j = 1, . . . , n. In this case, we use the
contracted Bézier curves to approximate the species’ concentrations in the IVP (9). Recall that for a
CRN governed by EKRL the corresponding mathematical model (2) contains two different types of
parameters, namely, the rate constants of the reactions and the Michaelis constants.

One of the main differences with MAKRL is that the Michaelis constants are still involved in the IVP
(9) obtained after extracting the rate constants from the mathematical model (2). The approximation
of the vector of the species’ concentrations in (9) with corresponding contracted Bézier curves results
in the parameter setsK and θ, where the latter is defined as in (11). Hence, unlike the case of MAKRL,
here we consider a global constrained least squares problem. We find the values of K and θ(j) for which
the datasets Λ(j) fit the IVP (9), in the sense of least-squares, with the additional constraint being the
uniqueness of K, i.e., K(j) = K(j′) for every j, j′ ∈ {1, . . . , n}. Finally, using the obtained Michaelis
constants and the retrieved time series data of species’ concentrations we determine the best-fitting
values of rate constants k̂ ∈ Rr

+ for the system of ODEs (2).

4. On identifiability of mathematical models

Consider a mathematical model (2) of a CRN, which is not necessarily governed by EKRL. Recall
that the vector of reaction rates ν ∈ Rr strictly depends on the vector of species’ concentrations
x ∈ Rs

+ and the vector of parameters κ ∈ Rp
+. We begin with the definition of identifiability of systems

corresponding to a mathematical model of a CRN. With the help of simple examples we further
demonstrate the non-identifiability of such systems, if the output corresponds to the overall reaction
rates, in certain directions. In the last part of the section, we show that, under certain conditions, if a
system with the species’ concentrations as output is identifiable, so is the corresponding system with
linear combinations of reaction rates as output.

For any given κ ∈ Rp
+, let Yκ denote the set of admissible output-trajectories corresponding to the

system: 
dx

dt
= Sν

y = ψ(κ, x)
, (14)

where ψ : Rp
+ × Rs

+ → Rl is the measurement function. In the context of this manuscript the term
identifiability of the mathematical model refers to the structural identifiability of the parameters κ

10



involved in it, i.e., the possibility of the parameters κ to be determined uniquely given Yκ. We define
identifiability as follows:

Definition 4.1. The mathematical model (14) is identifiable, if for all κ1 ̸= κ2 ∈ Rp
+, we have

Yκ1
̸= Yκ2

. (15)

Note that the above-mentioned definition of the concept of an identifiable system correlates with
the one introduced in Bellman and Åström (1970). Different mathematical techniques have been used
to address the identifiability of nonlinear dynamical systems (see for example Bellman & Åström,
1970; Bernard & Bastin, 2005; Cobelli & DiStefano 3rd, 1980; Craciun & Pantea, 2008; Farina et al.,
2006; Miao, Xia, Perelson, & Wu, 2011; Stanhope, Rubin, & Swigon, 2014). These methods are also
applicable for mathematical models of CRNs. In this manuscript, we are interested in studying the
identifiability of the mathematical model (2) of a CRN given the overall outgoing reaction rates (in a
certain direction) as the output.

4.1. Non-identifiability of mathematical models corresponding to overall reaction rates

Let Xk denote the set of admissible concentration trajectories corresponding to the system:
dx

dt
= Sν

y = x
. (16)

There are various (non) identifiability results for the system (16) known in the literature. In this
manuscript, we assume that the output of the mathematical model (2) is a linear combination of
reaction rates. We therefore consider the identifiability of the system:

dx

dt
= Sν

y = Hν
, (17)

where H ∈ Rl×r is the measurement matrix. With the following simple examples of CRNs we show
that if there is a reversible reaction in the CRN for which only the overall reaction rate (in a certain
direction) can be measured, then the system (17) is not necessarily identifiable. We conjecture that,
in general, the system (17) is not identifiable if the matrix H does not have full column rank.

Example 4.1. Consider the following reversible reaction occurring among two distinct chemical
species X1 and X2:

X1
νf−⇀↽−
νr

X2,

where νf and νr are the rate functions of the forward and reverse reactions, respectively. For i = 1, 2,
let xi denote the concentration of Xi. Assume that the reactions are governed by MAKRL, i.e., the
corresponding rate functions are given by

νf = kfx1, νr = krx2, (18)

where kf and kr are the rate constants of the forward and reverse reactions, respectively. Further
assume that the output of the mathematical model (2) is the overall outgoing reaction rate in the
forward direction:

y = νf − νr = Hν, (19)

11



where H =
[
1 −1

]
and ν =

[
νf νr

]⊤
. In this case, the ODEs (2) can be written as:

dx1
dt

= −y, dx2
dt

= y. (20)

The goal of this example is to show that the system (17) is not identifiable, since the matrix H does
not have full column rank. For this purpose, first differentiate (19) with respect to t and then substitute
(18) and (20), which results in:

dy

dt
+ (kf + kr)y = 0. (21)

Clearly, the parameters kf and kr contained in (21) cannot be uniquely determined given the set of

admissible output-trajectories of (17), since for any two distinct vectors k(1) =
[
k
(1)
f k

(1)
r

]⊤
and

k(2) =
[
k
(2)
f k

(2)
r

]⊤
, such that

k
(1)
f + k(1)r = k

(2)
f + k(2)r ,

the corresponding solutions to (21) are identical, which also means that Yk(1) = Yk(2).

Example 4.2. Suppose that four distinct chemical species Xi, i = 1, . . . , 4, are participating in the
following reversible reaction:

X1 +X2
νf−⇀↽−
νr

X3 +X4,

where νf and νr are the rate functions of the forward and reverse reactions, respectively. For i =
1, . . . , 4, let xi denote the concentration of Xi. Assume that the reactions are governed by MAKRL,
i.e., the corresponding rate functions are given by

νf = kfx1x2, νr = krx3x4, (22)

where kf and kr are the rate constants of the forward and reverse reactions, respectively. Further assume
that, similar to the previous example, the output of the mathematical model (2) is the overall outgoing
reaction rate in the forward direction given in (19). In this case, the ODEs (2) can be written as:

dx1
dt

=
dx2
dt

= −y, dx3
dt

=
dx4
dt

= y. (23)

By differentiating (19) with respect to t and then substituting (22) and (23), we obtain:

1

y

dy

dt
= −kf(x1 + x2)− kr(x3 + x4). (24)

Differentiating (24) with respect to t and substituting (23) results in:

y
d2y

dt2
−
[
dy

dt

]2
− 2(kf − kr)y

3 = 0. (25)

Similar to the previous example, the parameters kf and kr contained in (25) cannot be uniquely
determined from the admissible set Yk of output-trajectories, since for any two distinct vectors

k(1) =
[
k
(1)
f k

(1)
r

]⊤
and k(2) =

[
k
(2)
f k

(2)
r

]⊤
, such that

k
(1)
f − k(1)r = k

(2)
f − k(2)r ,
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the corresponding solutions to (21) are identical, i.e., Yk(1) = Yk(2).

4.2. An equivalence result on identifiability

With the following theorem we show that, under certain conditions on the structure of the considered
CRN and the measurement matrix of the system (17), the identifiability of the system (16) is equivalent
to the identifiability of the system (17).

Theorem 4.1. With reference to the systems (16) and (17) the following two statements hold.

(1) Assume that H has full column rank. If the system (16) is identifiable, then the system (17) is
also identifiable.

(2) Assume that S has full column rank. If the system (16) is not identifiable, then the system (17)
is also not identifiable.

Proof. Some text here

(1) For any k ∈ Rp
+, let Vκ denote the set of admissible reaction rate trajectories of (2). With

reference to (17), assume that for any κ1, κ2 ∈ Rp
+, we have Yκ1

= Yκ2
. Since H has full column

rank, we obtain Vκ1
= Vκ2

. We therefore deduce from (2) that Xκ1
= Xκ2

. Since the system (16)
is identifiable, we obtain κ1 = κ2. We conclude that the system (17) is identifiable.

(2) For any k ∈ Rp
+, let X ′

κ denote the admissible set of trajectories of the derivative of concentrations
corresponding to (2). Suppose that the system (16) is not identifiable. Then there exist κ1 ̸=
κ2 ∈ Rp

+, such that Xκ1
= Xκ2

. This implies that X ′
κ1

= X ′
κ2
. Since S has full column rank, we

obtain from (2) that Vκ1
= Vκ2

. Therefore, the system (17) is not identifiable.

Note that in Theorem 4.1 we do not provide a general identifiability result for the system (17) that
directly follows from its structure. The main purpose of the aforementioned theorem is to be able
to infer about the identifiability of (17) from the identifiability of (16). Thus, in order to tackle the
problem of identifiability of the system (17), we can consider the identifiability of system (16), for
which, as mentioned earlier, there are many different results known in the literature (see for example
Bellman & Åström, 1970; Bernard & Bastin, 2005; Cobelli & DiStefano 3rd, 1980; Craciun & Pantea,
2008; Farina et al., 2006; Miao et al., 2011; Stanhope et al., 2014).

5. Application to examples

In this section, we apply our automatic parameter estimation algorithm to three examples of CRNs.
We first consider two real-life computational models of biological processes retrieved from the BioMod-
els database (Malik-Sheriff et al., 2020). Finally, we consider an artificial example of a CRN for which
the corresponding system (17) is identifiable. For each of these models we first generate data corre-
sponding to the reaction rates using the values of parameters provided in the corresponding reference.
Next, we perturb these generated data with a white Gaussian noise with zero mean and sufficiently
small standard deviation. We then apply our estimation technique to determine the best-fitting val-
ues of parameters in a fully automated manner. The corresponding Matlab library is provided as
supplementary material.

5.1. Ryanodine receptor adaptation

We consider a simple example of a realistic mass action CRN to illustrate the concepts described in
Section 3, namely a model of ryanodine receptor adaptation (RyRA) developed in Keizer and Levine
(1996). A schematic representation of the RyRA model is illustrated in the left-hand panel of Figure 1.
For a detailed explanation of the corresponding mathematical model we refer to Keizer and Levine
(1996). In spite of its simplicity, the model is good enough to demonstrate all the important elements
of our parameter estimation method.

There are four chemical species participating in three reversible mass action reactions. Recall that,
in our modelling procedure, we split each reversible reaction into two unidirectional reactions. The list
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Figure 1.: Schematic representation of the model of ryanodine receptor adaptation (left-hand panel) and the model of protein
kinase cascades (right-hand panel).

of the reversible reactions is given below.

R1,2 : X1
ν1−⇀↽−
ν2

X3, R3,4 : X1
ν3−⇀↽−
ν4

X2, R5,6 : X1
ν5−⇀↽−
ν6

X4,

where νj , j = 1, . . . , 6, is the rate function of the jth unidirectional reaction. For i = 1, . . . , 4, denote
by xi the concentration of the species Xi. Recall that since the reactions are governed by MAKRL,
we can use (3) to rewrite the reaction rates in the following form:

ν1 = k1x1, ν4 = k4x2,

ν2 = k2x3, ν5 = k5x1,

ν3 = k3x1, ν6 = k6x4.

We suppose that the outputs are the overall reaction rates described by the following matrix:

H =

−1 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 .
To show the applicability of our estimation method in the case when there are datasets of different
length, we generate two distinct datasets for y from the IVP (2) using the values of the parameters
ki, i = 1, . . . , 6, (see Table 1) provided in Keizer and Levine (1996). These datasets contain six and
nine different time instants, respectively. Note that the time intervals of interest have been chosen
to be of different length. Additionally, the obtained data have been perturbed with white Gaussian
noise of zero mean and standard deviation 0.02 and 0.005, respectively. These data are illustrated in
Figure 2 (highlighted in red). To demonstrate the applicability of our proposed method, we estimate
the parameters contained in the model of RyRA using these datasets.

According to our parameter estimation procedure, we first determine the IVP (10) of reaction rates.
The ODEs involved in the above-mentioned IVP corresponding to the RyRA model can be extended
as:

dν1
dt

= − ν1
x1

(ν1 − ν2 + ν3 − ν4 + ν5 − ν6),
dν4
dt

=
ν4
x2

(ν3 − ν4),

dν2
dt

=
ν2
x3

(ν1 − ν2),
dν5
dt

= − ν5
x1

(ν1 − ν2 + ν3 − ν4 + ν5 − ν6),

dν3
dt

= − ν3
x1

(ν1 − ν2 + ν3 − ν4 + ν5 − ν6),
dν6
dt

=
ν6
x4

(ν5 − ν6).

(26)

Note that the manual derivation of the ODEs (26) is not straightforward. However, the usage
of Matlab symbolic variables allows us to derive these ODEs in a fully automated manner. The
corresponding Matlab file is also included in the Matlab library provided as supplementary material.
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Figure 2.: Time-series data of reaction rates (in red) of the model of ryanodine receptor adaptation and the corresponding predicted
values of reaction rates (in blue) of the model with parameters estimated by our method.

In the case of the first experiment, the contracted Bézier curve corresponding to each species is
of degree five since we collect data at six different time instants. On the other hand, since there
are four species participating in the CRN, the corresponding vector of parametric contracted Bézier
curves is of length four. We therefore have 24 parameters contained in the system of ODEs (12).
Similarly, in the case of the second experiment, since we collect data at nine different time instants,
there are 36 parameters contained in the system of ODEs (12). For each of these experiments, the
application of the least squares method determines the best-fitting values of the control points of
Bézier curves, which are the values of the species’ concentrations (11) at different time instants. These
data are used to determine the best-fitting values of parameters (see Table 1). We calculate 95%
confidence intervals (see Table 1) for the estimated parameters using the Matlab package provided
in Hedengren (Retrieved July 12, 2021). This Matlab package is specifically developed to simulate a
differential equation model and optimize its parameters based on measurements. It also provides the
corresponding confidence intervals. The comparison of the time-series data of reaction rates and the
corresponding values obtained from (2) and (5) with estimated parameter values k̂ can be seen in
Figure 2.

Note from Table 1 that the estimated values of some of the parameters (e.g. k3 and k4) differ by a
large percentage from their corresponding values provided in Keizer and Levine (1996). However, the
mathematical model with the estimated values of parameters is a good fit (as can be seen in Figure 1)
for the generated time-series data of overall outgoing reaction rates. This means that the parameters
involved in the considered mathematical model of RyRA cannot be uniquely determined from the
output (7). We are of the opinion that the reason for this is the fact that the multiplication matrix H
does not have full column rank.

A popular technique that is often used during parameter estimation with small datasets is cross-
validation (CV, see Arlot & Celisse, 2010; Bergmeir & Beńıtez, 2012; Stone, 1974). The idea is to
avoid overfitting and obtain more accurate estimates for the parameters by splitting the dataset into
different folds and using each fold subsequently as a validation set while the other folds are used for
training the model (i.e., determining the optimal parameter values). In order to apply 5-fold CV, we
first generate a dataset containing 25 data points for y using the parameter values provided in Keizer
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Figure 3.: Time-series data of reaction rates (in red) of the model of ryanodine receptor adaptation and the corresponding predicted
values of reaction rates (in blue) of the model with parameters obtained by applying cross-validation to our parameter estimation
method.

and Levine (1996). We then randomly split the generated dataset into five subsets of five data points
each. Using CV, we obtain 5 estimates for each parameter, which we then average to produce a single
estimate of the parameters involved in the mathematical model of RyRA. The resulting estimates
are given in Table 1. Note that, unlike our main estimation procedure, the CV technique results in
estimates for the parameters k3 and k4 that are closer to their corresponding provided values. One of
the reasons behind this is the bigger size of the dataset used for CV. Figure 3 illustrates the comparison
of the dataset of 25 data points and the corresponding model predicted values using the estimated
values of parameters obtained by CV.

k1 k2 k3 k4 k5 k6
Provided
values

28.8000 984.1500 1093.5000 385.9000 1.7500 0.1000

Estimated
values

27.5623 997.4123 4.8534 1.7213 2.3802 0.1492

Confidence
intervals

[25.3574,31.7672] [993.2074,1001.6172] [0.6485,9.0583] [0.0000,5.9262] [0.0000,6.5851] [0.0000,4.3541]

CV
estimates

29.1995 1000.1721 1093.5171 385.9031 1.8514 0.1082

Table 1.: The values of the rate constants provided in Keizer and Levine (1996), the estimated values obtained using our method
with their corresponding confidence intervals, and the estimates obtained by applying cross validation to our estimation method.
The unit of each parameter is s−1.

5.2. Protein kinase cascades

Subsequently, we apply our parameter estimation method to a model of protein kinase cascades
(PKC), which is a model of a CRN governed by EKRL. The network is schematically represented in
the right-hand panel of Figure 1. The detailed explanation of the complete mathematical model of
PKC can be found in Markevich et al. (2004).

The reaction network consists of three chemical species participating in four unidirectional reactions
governed by Michaelis-Menten kinetics. These reactions are given below.

R1,2 : X1
ν1−⇀↽−
ν2

X2, R3,4 : X2
ν3−⇀↽−
ν4

X3,

where, for j = 1, . . . , 4, νj is the rate function of the jth unidirectional reaction. For j = 1, . . . , 4 and
i = 1, 2, 3, let kj denote the rate constant of the jth reaction and let xi denote the concentration of
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the ith species. The reaction rates are given in the form (3):

ν1 =
k1x1

1 +
x1
K1

+
x2
K2

, ν3 =
k3x2

1 +
x1
K1

+
x2
K2

,

ν2 =
k2x2

1 +
x1
K5

+
x2
K4

+
x3
K3

, ν4 =
k4x3

1 +
x1
K5

+
x2
K4

+
x3
K3

.

Assume that we have collected measurements of overall outgoing reaction rates in respective directions
specified by the following matrix:

H =

[
−1 1 0 0
0 0 −1 1

]
.

We generate data for y using the values of initial concentrations and parameters provided in Marke-
vich et al. (2004) (see Table 2). These generated data have been perturbed with Gaussian white noise
of zero mean and standard deviation 0.02.

In this case, the ODEs involved in the IVP (9) can be rewritten as:

dν1
dt

=
ν1 ν2
x1

− ν1
2

x1
− ν1 σ2(ν,K)

σ4(x,K)
,

dν2
dt

=
ν1 ν2
x2

− ν2
2

x2
− ν2 ν3

x2
+
ν2 ν4
x2

+
v2 σ1(ν,K)

σ3(x,K)
,

dν3
dt

=
v1 v3
x2

− v3
2

x2
− v2 v3

x2
+
v3 v4
x2

− v3 σ2(ν,K)

σ4(x,K)
,

dν4
dt

=
ν3 ν4
x3

− ν4
2

x3
+
ν4 σ1(ν,K)

σ3(x,K)
,

(27)

where σi, i = 1, . . . , 4, are given as:

σ1(ν,K) = K3K4 ν1 −K3K4 ν2 −K3K5 ν1 +K3K5 ν2

+ K3K5 ν3 −K3K5 ν4 −K4K5 ν3 +K4K5 ν4,

σ2(ν,K) = K1 ν1 −K1 ν2 −K2 ν1 −K1 ν3 +K2 ν2 +K1 ν4,

σ3(x,K) = K3K4K5 +K3K4 x1 +K3K5 x2 +K4K5 x3,

σ4(x,K) = K1K2 +K1 x2 +K2 x1.

Similar to the case of the model of RyRA, usage of Matlab symbolic variables allows us to derive
these ODEs in a fully automated manner. Since we generate data at six different time instants, the
contracted Bézier curve corresponding to each species is of degree five. On top of that, since there
are three species participating in the CRN, the corresponding vector of parametric contracted Bézier
curves is of length three. Adding the five Michaelis constants of the species, our system of ODEs (9)
contains 23 parameters. The application of the least squares method determines the best-fitting values
of the control points of the contracted Bézier curves (which are the values of species’ concentrations
(11) at six different time instants) and the Michaelis constants of the species (see Table 2). These
data of species concentrations’ and the values of the Michaelis constants are used to determine the
best-fitting values of parameters (see Table 2). Similar to the model of RyRA, we also provide the
95% confidence interval of each parameter as calculated by Matlab in Table 2. The comparison of the
generated data and the model-predicted values of reaction rates corresponding to the above-mentioned
best-fitting parameter values is illustrated in Figure 4.

Note that, similar to the case of RyRA, for some of the parameters (e.g. k3) there is a substantial
difference between the values provided in Markevich et al. (2004) and their corresponding estimated
values. We can therefore infer that the parameters contained in the system (17) are not identifiable

17



Figure 4.: Time-series data of reaction rates (in red) of the model of protein kinase cascades and the corresponding predicted
values of reaction rates (in blue) of the model with parameters estimated by our method.

from the output (7). As mentioned earlier, we are of the opinion that the reason behind the non-
identifiability of the parameters is the fact that the multiplication matrix H appearing in the output
does not have full column rank.

k1 k2 k3 k4 K1 K2 K3 K4 K5

Provided
values

0.0100 0.3333 1.5000 0.3820 50.000 500.000 22.000 18.000 78.000

Estimated
values

0.0101 0.3540 1.9148 0.4836 50.186 501.193 21.938 18.067 76.084

Confidence
intervals

[0.0000,7.1063] [0.0000,7.4502] [0.0000,9.0110] [0.0000,7.5798] [43.0898,57.2822] [494.0968,508.2892] [14.8418,29.0342] [10.9708,25.1632] [68.9878,83.1802]

Table 2.: The values of the rate constants and the Michaelis constants provided in Markevich et al. (2004), the estimated values
using our parameter estimation method and the corresponding confidence intervals. The units of rate constants and Michaelis
constants are s−1 and nM, respectively.

5.3. An example of an identifiable system

In this part of the manuscript, we consider an example of a CRN governed by MAKRL, for which the
corresponding system (17) is identifiable. Assume that 19 distinct chemical species Xi, i = 1, . . . , 19,
are participating in the following six irreversible reactions:

R1 : X1 +X2 −→ X3 +X4, R4 : X10 +X11 −→ X12 +X13,

R2 : X4 +X5 −→ X6 +X7, R5 : X13 +X14 −→ X15 +X16,

R3 : X7 +X8 −→ X9 +X10, R6 : X16 +X17 −→ X18 +X19.

(28)

Further assume that the reactions (28) are governed by MAKRL, i.e., the corresponding reaction rates
are given as:

ν1 = k1x1x2, ν4 = k4x10x11,

ν2 = k2x4x5, ν5 = k5x13x14,

ν3 = k3x7x8, ν6 = k6x16x17,

where, as earlier, ki, i = 1, . . . , 6, denotes the rate constant of the ith reaction and xi, i = 1, . . . , 19,
denotes the concentration of the ith species Xi. First note that the system (17) corresponding to this
example of CRN is identifiable, i.e., the rate constants ki, i = 1, . . . , 6, can be uniquely determined if
measurements of reaction rates νi, i = 1, . . . , 6, are available. The proof of the identifiablity is included
in the supplementary material. We generate time-series data of reaction rates of the six irreversible
reactions (28) using randomly chosen parameter values (see Table 3).
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In this case, the ODEs involved in the IVP (9) can be rewritten as:

dν1
dt

= −ν
2
1

x1
− ν21
x2
,

dν4
dt

=
ν3ν4
x10

− ν24
x10

− ν24
x11

,

dν2
dt

=
ν1ν2
x4

− ν22
x4

− ν22
x5
,

dν5
dt

=
ν4ν5
x13

− ν25
x13

− ν25
x14

,

dν3
dt

=
ν2ν3
x7

− ν23
x7

− ν23
x8
,

dν6
dt

=
ν5ν6
x16

− ν26
x16

− ν36
x17

.

(29)

Since there are 19 species participating in the CRN, the corresponding vector of parametric con-
tracted Bézier curves is of length 19. On the other hand, since our dataset corresponds to seven
distinct time instants, the system of ODEs contains 133 parameters. The application of the least
squares method determines the values of species’ concentrations (11) at seven different time instants.
These data of species concentrations’ are used to determine the best-fitting values of parameters (see
Table 3). The 95% confidence intervals as calculated by Matlab are included in Table 3. The com-
parison of the generated data and the model-predicted values of reaction rates corresponding to the
above-mentioned best-fitting parameter values is illustrated in Figure 5.

Note from Table 3 that the estimated values of the parameters are close to their corresponding
parameter values that we used to generate data for the reaction rates. The reason behind this is the
fact that the mathematical model (17) corresponding to the considered CRN is identifiable. This means
that the parameters involved in the considered mathematical model can be uniquely determined from
the output (7). Therefore, the mathematical model with the estimated values of parameters is a good
fit (as expressed in Figure 5) for the available time-series data of overall outgoing reaction rates.

Figure 5.: Time-series data of reaction rates (in red) of the model of the CRN illustrated in (28) and the corresponding predicted
values of reaction rates (in blue) of the model with parameters estimated using our method.
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k1 k2 k3 k4 k5 k6
Provided
values

34.1000 72.3000 59.5000 35.1000 61.8000 13.0000

Estimated
values

34.6805 72.9589 58.9197 35.6440 61.3884 13.4073

Confidence
intervals

[25.8329,43.5281] [64.1113,81.8065] [50.0721,67.7673] [26.7964,44.4916] [52.5408,70.2360] [4.5597,22.2549]

Table 3.: The values of the rate constants, their estimated values using our parameter estimation method, and the corresponding
confidence intervals.

6. Conclusion and discussion

In this manuscript, we presented a parameter estimation method for enzymatic CRNs from ob-
served time-series experimental data of reaction rates. We consider enzymatic CRNs, since it is known
that the reaction rates of a bio-CRN can be precisely determined in an experimental setup using
13C metabolic flux analysis. Currently, to the best of our knowledge there is no direct method for
estimating the parameters involved in a mathematical model from experimental time-series data of
reaction rates alone. We filled the gap by proposing an algorithmic approach for the above-mentioned
problem. The principle behind our method is to retrieve time-series data of species’ concentrations by
making use of parametric Bézier curves. We first used the specific behavior of an enzymatic CRN to
derive an IVP, independent of the rate constants, with the corresponding dependent variable being the
vector of reaction rates. We then used parametric Bézier curves to approximate the species’ concen-
trations in the newly obtained system. As a result, we converted the main problem to the parameter
estimation problem of a CRN from time-series data of species’ concentrations. There are a number of
techniques available in the literature to deal with such a parameter estimation problem. Because of
its simplicity and low computational intensity, we have used the least squares method to identify the
best-fitting values of the parameters involved in the mathematical model of a CRN. We implemented
an automated procedure for our parameter estimation method, creating a Matlab library that con-
tains all the necessary files related to it. It can be used to estimate the parameters from time-series’
experimental data of reaction rates in a fully automated manner. This Matlab library is provided
as supplementary material. Finally, we used the aforementioned Matlab library to successfully apply
our parameter estimation method on two real-life examples of CRNs retrieved from the Biomodels
database (Malik-Sheriff et al., 2020) and an artificial example for which the corresponding system
(17) is identifiable. For each of these models, we observe that our parameter estimation method is
able to derive a complete mathematical model that is able to make accurate predictions about the
dynamical behavior of the CRN. We have also calculated 95% confidence intervals for the estimated
parameters using the Matlab package Hedengren (Retrieved July 12, 2021). It is a useful tool that
is specially developed to simulate a mathematical model of ODEs, estimate the parameters involved
in it from experimental data, and also calculate corresponding confidence intervals. Note that, for
certain parameters, the confidence intervals are not symmetric. This is because of the fact that the
parameters cannot admit negative values, so the negative parts of the obtained intervals are excluded.
Also note that, in the case of our three demonstrative examples, the associated confidence intervals
for certain parameters seem to be large. The reasons behind this are the factors affecting the width
of the confidence interval (e.g., the size of the available experimental data). Larger experimental data
will tend to produce a better estimate of the parameters and a broader confidence interval. For our
parameter estimation method, other techniques could also be used in order to compute confidence
intervals of the estimated parameters. However which of these techniques is the best suited for our
method is a separate topic that can be regarded as future work.

An important tool in our parameter estimation method is the parametric Bézier curve that is used
to approximate the concentrations of the species participating in the considered CRN. An alternative
to the Bézier curve may be the B-spline, which is a generalization of the Bézier curve. A B-spline is a
spline function (a function defined piece-wise by polynomials) defined by its order and a pre-specified
set of given knots. As a matter of fact, a Bézier curve is a B-spline with no interior knots. For a detailed
description of B-splines we refer to Prautzsch et al. (2002). However, even though B-splines are more
powerful and flexible curves than Bézier curves, the theory behind such curves is more complicated.
Moreover, the application of B-splines is computationally more expensive. Another powerful technique
in approximating continuous curves is polynomial interpolation, which is the interpolation of a given
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dataset by the polynomial of lowest possible degree that passes through the points of the dataset. For
any given dataset there is a unique interpolating polynomial, known as the Lagrange interpolating
polynomial (Waring, 1779). Even though approximating the species’ concentrations with Lagrange
interpolating polynomials sounds logical, it has a serious shortcoming compared to Bézier curves. In
our case the considered datasets correspond to time-series data of species’ concentrations, which are
always non-negative. It is therefore assured that the Bézier curves are also non-negative. This is due to
the fact that any Bézier curve is contained in the convex hull of the corresponding Bézier polygon, which
is the polygon formed by connecting the control points with lines, starting at the first control point
and finishing with the last control point. In general, it is not assured that the Lagrange interpolating
polynomial corresponding to the available dataset will also be non-negative. As such, it is preferred
to use Bézier curves for approximating the species’ concentrations. In the supplementary material we
include the definition of Lagrange interpolating polynomials and also provide an example of a dataset
consisting of non-negative data points, for which the corresponding Lagrange interpolating polynomial
is negative over some time interval. The associated Matlab function is included in our Matlab library
that is provided as supplementary material.

We considered the structural identifiability of the parameters involved in the balance laws (2) of
a given CRN with the output being a linear combination of unidirectional reaction rates ν. In other
words, we examined the possibility to uniquely determine the parameters assuming that the output
was the admissible set of output-trajectories of the form y = Hν, for some constant matrix H. In
the case when H has full column rank we proved that, if the parameters involved in the balance laws
were structurally identifiable from the admissible set of concentration trajectories, then they were also
structurally identifiable from the admissible set of output-trajectories corresponding to y. On top of
that, we conjectured the impossibility of the parameters to be structurally identifiable in the case when
H is not of a full column rank. Note that in this manuscript we did not provide a general result on
this question. However, with the help of two simple examples we demonstrated that if the considered
CRN contained only reversible reactions and that if the output was the corresponding vector of overall
outgoing reaction rates (in a certain direction), then the aforementioned system was not necessarily
identifiable. As a future work, we intend to give an answer to the general problem of identifiability
described above.
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