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1 Introduction

Comparing objects and inducing a ranking of them on the basis of some

properties is a very common task:

• The human resource manager ranking several candidates on the basis

of criteria such as experience, education, references, etc.

• The environmental expert measuring concentrations of pollutants such

as lead, cadmium, zinc, ... in the herb layer of different regions in or-

der to find out which regions are most heavily polluted.

• The bond investor trying to pick out the most creditworthy businesses

using long-term debt ratings of several rating agencies.

In each example setting we have some objects (candidates, regions, busi-

nesses) and some properties (years of experience, concentration of lead in

the herb layer, long-term debt rating of agency a2, ...). For the properties

of each object, a value is obtained after careful measurement. Remark that

in reality an object is much more than just some set of properties with cor-

responding values. We will, however, confine ourselves to a small set of

measurable properties which we think of as relevant in our context.

Let us now take a closer look at the creditworthiness example and assume

our investor has five businesses (business b1 to b5) under consideration and

has access to the publications of three rating agencies (agency a1, a2 and
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a3). Of course, each rating agency has its own conventions and thus uses its

own rating scale:

• agency a1 issues the ratings Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1,

Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa1, Caa2, Caa3, Ca and *,

• agency a2 issues the ratings AAA, AA+, AA, AA-, A+, A, A-, BBB+,

BBB, BBB-, BB+, BB, BB-, B+, B, B-, CCC+, CCC, CCC-, CC and D,

• agency a3 issues the ratings AAA, AA+, AA, AA-, A+, A, A-, BBB+,

BBB, BBB-, BB+, BB, BB-, B+, B, B-, CCC, DDD, DD and D.

The ratings are, for each agency, listed in decreasing order, meaning the

triple-A ratings are the highest ratings (highest grade), while * or D are the

lowest ratings (default on debt).

Our investor consults the rating tables of each agency and summarizes her

findings in Table 1.1.

agency a1 agency a2 agency a3
business b1 Baa1 BBB+ B-

business b2 Baa2 BBB+ AA

business b3 Aaa AA+ A+

business b4 Aa1 AAA AAA

business b5 Aaa AAA AA-

Table 1.1: Ratings for each business.

We will assume that each rating agency uses its own model to decide upon a

rating, and that no mistakes have been made in the decision making process.

Looking at the table, it is clear that — on the basis of the information we

have at our disposal — the creditworthiness of business b5 (ratings Aaa, AAA

and AA-) is superior to that of business b1 (ratings Baa1, BBB+ and B-),

since each agency issued a better rating for business b5 than for business

b1. Less clear, however, is what can be concluded between business b5 and

business b2: agency a1 and a2 estimate business b5 more creditworthy than

business b2, but the opposite is true for agency a3.

A solution could be to decide that if two agencies (a1 and a2) agree, more

weight should be put on their decision than on the decision of agency a3. As

the previous sentence already suggests, this assumes that somehow weights
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are attributed to each agency — even if these weights might be equal. If

we have no a priori reason to believe that e.g. the model of agency a1 is

more faithful than the model of agency a2, or that the combination of the

model of agency a1 and a2 is more faithful than the model of agency a3,
there is no objective basis on which we can attribute such weights. Because

of this controversy, in what follows we will refrain from assigning weights to

properties of objects. We will say that we simply cannot compare business

b2 and business b5; they are incomparable. Informally, we can say that,

since not all objects (i.e. businesses) are comparable, the set of objects is a

partially ordered set or poset for short.

Theoretically, 5! or 120 different rankings of five businesses are possible.

When we take into account the known relations (i.e. expressions of the type

“the creditworthiness of business bi is superior to the creditworthiness of

business b j”), only 9 compatible rankings remain. Each of these rankings is

not in contradiction with the information we have in Table 1.1 and is thus

a valid ranking of the businesses. These remaining rankings, in increasing

order of creditworthiness, are shown in Table 1.2.

b1 < b2 < b3 < b4 < b5
b1 < b2 < b3 < b5 < b4
b1 < b2 < b4 < b3 < b5
b1 < b3 < b2 < b4 < b5
b1 < b3 < b2 < b5 < b4
b1 < b3 < b5 < b2 < b4
b2 < b1 < b4 < b3 < b5
b2 < b1 < b3 < b4 < b5
b2 < b1 < b3 < b5 < b4

Table 1.2: Rankings of the businesses compatible with the ratings in Ta-

ble 1.1.

In Chapter 3 of this work we will have a close look at how such a compatible

ranking can be generated uniformly at random, in the sense that each rank-

ing has exactly the same likelihood of being drawn. We will introduce an

algorithm that, for a limited number of elements, performs well in practice.

Furthermore, we will focus on approximative algorithms which generate

such rankings almost uniformly. It will turn out that the ability of sam-

pling uniformly at random allows for the generation of random synthetic



4 1 Introduction

monotone data sets, which is important for the training and comparison of

supervised ranking algorithms.

Let us return to our creditworthiness example. On the basis of the set of

all compatible rankings in Table 1.2 one could easily compute the fraction

of rankings where business b2 is put on the first position. This exercise

can be repeated for all businesses and positions such that all so-called rank

probabilities are obtained. If one insists on obtaining a single ranking of all

businesses a possible approach yielding such an objective ranking could be

to calculate the average position for each business. These average ranks can

then be used to obtain a single ranking. It should however be mentioned

that possible ties in the ranking can occur. Indeed, it is possible that two

or more businesses have an identical average rank. The rank probabilities

together with the average rank for each business is shown in Table 1.3.

bi\p 1 2 3 4 5 average

b1 2/3 1/3 0 0 0 4/3
b2 1/3 1/3 2/9 1/9 0 19/9
b3 0 1/3 4/9 2/9 0 26/9
b4 0 0 2/9 1/3 4/9 38/9
b5 0 0 1/9 1/3 5/9 40/9

Table 1.3: The fraction of rankings where business bi is ranked at position

p.

Recall that businesses b2 and b5 are incomparable. If we look at all possible

compatible rankings in Table 1.2, there are 8 rankings in which business b5
is ranked higher than business b2 and only 1 ranking where the opposite is

true. Although, on the basis of the ratings, business b5 is not ranked higher

than business b2, there seems to be a strong preference for ranking business

b5 above business b2. The fraction of rankings where business bi is ranked

higher than business b j for all businesses bi and b j shown in Table 1.4 are

the so-called mutual rank probabilities.

These (mutual) rank probabilities are treated in detail in Chapter 4. We

will explain how they can be computed and apply the algorithms on a real-

world application of herb layer pollution in Baden-Württemberg in Germany

to show their power.
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bi\b j b1 b2 b3 b4 b5
b1 0 1/3 0 0 0
b2 2/3 0 1/3 0 1/9
b3 1 2/3 0 2/9 0
b4 1 1 7/9 0 4/9
b5 1 8/9 1 5/9 0

Table 1.4: The fraction of rankings where business bi is ranked higher than

business b j.

We can say that, the closer the mutual rank probability is to 1, the stronger

is the preference, while the closer the mutual rank probability to 1/2, the

more indifference exists. As soon as the mutual rank probability that a busi-

ness bi is ranked higher than a business b j is strictly larger than 1/2, there

is some degree of preference of business bi over business b j. What seems

counterintuitive however is that, for a sufficiently large set of businesses,

the following statements for businesses bi, b j and bk can be valid at the same

time:

business bi is preferred to business b j
business b j is preferred to business bk
business bk is preferred to business bi

Such cycles are called linear extension majority cycles. This cyclic behav-

ior and closely related the transitivity of the mutual rank probabilities are

discussed in Chapter 5 and 6 of this work.





2 Foundations

2.1 A formal introduction to posets and ranking

In this section we will give a formal introduction to posets and ranking. We

will present the necessary definitions of the concepts that will appear in this

work and illustrate them on small examples.

Definition 2.1.1. A binary relation ≤P on a set P is called a(n) (partial)

order relation if it is

(i) reflexive: x ≤P x, ∀x ∈ P

(ii) antisymmetric x ≤P y and y ≤P x imply x =P y, ∀x, y ∈ P

(iii) transitive: x ≤P y and y ≤P z imply x ≤P z, ∀x, y, z ∈ P

⋄

If x ≤P y and x 6= y, we write x <P y. If neither x ≤P y nor y ≤P x, we say

that x and y are incomparable and write x ||P y. In case x ≤P y we can also

write y ≥P x.

Definition 2.1.2. A couple (P,≤P), where P is a set of objects and ≤P is an

order relation on P, is called a partially ordered set or poset for short. ⋄

If no distinction between order relations has to be made, the index P in ≤P



8 2 Foundations

will be omitted. Moreover, if the order relation is clear from the context, we

can simply denote the poset as P.

The size of a poset P, denoted by |P|, is defined as the number of elements in

the poset. A chain of a poset P is a subset of P in which every two elements

are comparable. Similarly, an antichain of a poset P is a subset of P in which

every two elements are incomparable. The height of a poset P is defined as

the size of the largest chain of P and is denoted by h(P). The width of a

poset P is defined as the size of the largest antichain of P and is denoted by

w(P).

Definition 2.1.3. A linear order relation ≤P is an order relation in which

every two elements are comparable (x ≤P y or y ≤P x). ⋄

A linear order relation is in literature sometimes also referred to as a com-

plete order or total order. Since a chain is a poset where every two elements

are comparable, the terms chain and linearly ordered set cover the same

concept.

Definition 2.1.4. A binary relation ≤P on a set P is called a weak order

relation on P if it is

(i) transitive: x ≤P y and y ≤P z imply x ≤P z, ∀x, y, z ∈ P

(ii) complete: x ≤P y or y ≤P x, ∀x, y ∈ P

(ii’) reflexive: x ≤P x, ∀x ∈ P

⋄

Remark that condition (ii’) automatically follows from condition (ii).

A weak order relation is sometimes also called a total preorder or a complete

preorder. Remark that, if a weak order relation ≤P is also antisymmetric,

i.e. x ≤P y and y ≤P x imply x =P y, ∀x, y ∈ P, it is a linear order relation.

Now let O be the set of objects to be ranked. We assume that each object

x ∈ O can be described by a tuple q(x) = (q1(x), q2(x), . . . , qm(x)) of val-

ues for each of the m properties, which is called an attribute vector, where

qi(x) ∈ Qi for each i ∈ {1, . . . ,m}. Without loss of generality, we can as-

sume that all attribute vectors are unique. Indeed, one can always choose a

single representing object from each subset of objects having equal attribute

vectors. Each set Qi is equipped with a linear order relation ≤i. This reflects
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the fact that qi can be considered as a true criterion: if qi(x) ≤i qi(y), then x
is as most as good as y with respect to criterion qi. We say that x is smaller

than or equal to y, denoted as x ≤O y if qi(x) ≤i qi(y) for all i ∈ {1, . . . ,m}.
The relation ≤O is an order relation; it is the restriction to O of the product

ordering on Q1 × . . .×Qm. The objects therefore form a poset (O,≤O).

Example 2.1. To illustrate the various concepts and algorithms, we will use

the creditworthiness example from the introduction as a running example.

However, from now on we will denote each business bi as ωi. We will call

our set of objects Ω, such that Ω = {ω1,ω2,ω3,ω4,ω5}. Furthermore,

instead of using the letter designations for the ratings, we will use ordinary

numbers, where 1 corresponds to the worst rating (default on debt), and the

highest number to the best rating. Each object ω ∈ Ω and its representation

q(ω) as a 3-tuple is given in Table 2.1.

ωi q(ωi)
ω1 (14, 14, 5)
ω2 (13, 14, 18)
ω3 (21, 20, 16)
ω4 (20, 21, 20)
ω5 (21, 21, 17)

Table 2.1: Example set Ω with their attribute vector representation.

Here each Qi ⊆ N and ≤i is the usual ordering. In our example set Ω, it

holds e.g. that ω1 ≤Ω ω5 and ω1 ||Ω ω2. The set Ω forms together with

the partial order relation ≤Ω the poset (Ω,≤Ω). The subset {ω1,ω3,ω5}
of Ω constitutes a chain, while the subset {ω1,ω2} constitutes an antichain

of (Ω,≤Ω). The width w(Ω) of (Ω,≤Ω) is 2, since one cannot find an

antichain with more than 2 elements, while the height h(Ω) of (Ω,≤Ω) is

3, since {ω1,ω3,ω5} is the longest chain in (Ω,≤Ω). •

From here on, we consider an arbitrary finite poset (P,≤P). For elements

x, y ∈ P we say that y covers x, denoted as x ≺P y, if x <P y and there exists

no z ∈ P such that x <P z <P y. In other words, x is smaller than y, and no

third element is situated in between x and y. An element x ∈ P that is not

covered, i.e. for which no y ∈ P exists such that x ≺P y, is called a maximal

element. An element x ∈ P that does not cover any element, i.e. for which

no y ∈ P exists such that y ≺P x, is called a minimal element. Note that

an element that is both minimal and maximal, is incomparable to all other
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elements and can therefore be regarded as an isolated element.

Example 2.2. In Ω, it holds that ω1 ≺Ω ω3, but not that ω1 ≺Ω ω5 since

ω1 <Ω ω3 <Ω ω5. The set of minimal elements of Ω is {ω1,ω2} and the

set of maximal elements is {ω4,ω5}. •
Definition 2.1.5. The binary relation ≺P, for which it holds that (x, y) ∈≺P

if and only if x <P y and there exists no z ∈ P such that x <P z <P y, is

called the covering relation of (P,≤P). ⋄
Definition 2.1.6. A directed graph G is an ordered pair (VG, EG), where VG

is a finite set of vertices and EG is a finite set of directed edges, i.e. ordered

pairs (x, y) where x, y ∈ V. A directed edge (x, y) ∈ EG is considered to be

directed from x ∈ VG to y ∈ VG, where y is called the head and x is called

the tail of the directed edge. ⋄

Graphs can be represented in several ways. Most commonly a directed graph

is depicted by drawing a point for each vertex, where two points are con-

nected with a line if the corresponding vertices form an edge. On each line,

an arrow indicates the direction of the edge.

Example 2.3. The directed graph G with VG = {v1, v2, v3, v4, v5} and

EG = {(v1, v2), (v1, v5), (v2, v3), (v3, v4), (v5, v2), (v5, v3)} is represented in

Figure 2.1. •

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

v5

v1 v2

v4 v3

Figure 2.1: A representation of the graph G.

A poset (P,≤P) can be conveniently represented by a directed graph CP,

called a Hasse diagram or covering graph, displaying the covering relation

≺P. The set of vertices VCP
is P, and the set of directed edges ECP

is {(x, y) ∈
P2 | x ≺P y}. In a Hasse diagram, the convention is made that directed

edges (x, y) ∈ ECP
are drawn upwards from x to y instead of indicating the

direction with an arrow.

The graph C̄P representing the transitive closure of the poset with a Hasse

diagram CP can be obtained by adding all edges induced by transitivity, i.e.
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it contains all edges (x, y) such that x <P y where x, y ∈ P. In this context,

the Hasse diagram CP represents the transitive reduction of the poset since

all edges induced by transitivity are omitted.

Example 2.4. The Hasse diagram CΩ of (Ω,≤Ω) is shown in Figure 2.2. •

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�ω4

ω2

ω3

ω1

ω5

Figure 2.2: The Hasse diagram CΩ of (Ω,≤Ω).

Definition 2.1.7. A directed walk in a graph G from v0 ∈ VG to vl ∈ VG

is a sequence of alternating vertices and edges (v0, e1, v1, e2, . . . , vl−1, el , vl),
such that for each edge ei from the sequence, vi is the head and vi−1 is the

tail, where i = 1, . . . , l. The number of edges l in the walk is called the

length of the walk. If in a directed walk from v0 ∈ VG to vl ∈ VG it holds

that v0 = vl, it is called a closed walk. ⋄
Definition 2.1.8. A directed path is a directed walk in which no repeating

vertices occur, except possibly the first and last vertex. A directed path

where the first and the last vertex are equal is called a directed cycle. ⋄

Since only directed graphs are considered in this work, for the sake of

brevity we will use the terms walk, path and cycle where we in fact mean

directed walk, directed path and directed cycle. Note that the length of a

path is defined as the number of edges in the path.

Remark that x <P y if and only if there is a path from x to y in the Hasse

diagram CP.

Definition 2.1.9. A directed weighted graph G is defined as a triplet com-

prising of a set VG of vertices, a set EG of edges and a weight function

wG : EG → R. To each edge e ∈ EG a weight wG(e) is attached. ⋄
Definition 2.1.10. A tree T is a directed graph in which any two vertices

x, y ∈ VT are connected by exactly one path if the directions of the edges

would be ignored. All edges are directed away from a specific vertex r ∈ VT,
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called the root of T, i.e. there is a unique path from r to each vertex v ∈ VT.

In a tree, a vertex is usually called a node. ⋄

Example 2.5. The tree T with VT = {v1, v2, v3, v4, v5} and ET = {(v1 , v2),
(v1, v5), (v2, v3), (v3, v4)} rooted in v1 is depicted in Figure 2.3. •
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�
�
�

�
�
�

�
�
�

�
�
�

v2v5

v3

v4

v1

Figure 2.3: A representation of the tree T with root v1.

Remark that since v1 is the root of T, the directions of the edges are fixed.

Therefore, if the root vertex is clear from the context, it is not necessary to

indicate edge directions. The tree T is called a spanning tree of the graph G,

since T is a tree for which VT = VG and ET ⊆ EG.

Definition 2.1.11. An ordering (x1, x2, ..., xn) of the elements of a poset

(P,≤P) which is consistent with the partial order≤P, that is, such that xi ≤P

x j implies i ≤ j, is called a linear extension of P. ⋄

More generally, a poset (Q,≤Q) is called an extension of (P,≤P) if Q = P
and if x ≤P y implies that x ≤Q y. A linear extension is an extension

in which every two elements are comparable. Each linear extension of P
corresponds to a possible ranking of the elements of P which respects the

order relation ≤P. Both concepts are essentially the same; in this work we

will use the term linear extension from a formal and algorithmic point of

view, and use the term ranking from an application point of view. Let us

denote the set of all linear extensions of a poset P as E(P). We denote the

number of linear extensions, i.e. the cardinality of E(P), as e(P).

Example 2.6. In Table 2.2 the set E(Ω) of the 9 linear extensions of our

example poset Ω is shown. According to the Hasse diagram of Figure 2.2,

these are all rankings in which w3 does not appear before w1, w5 does not

appear before w3 and w4 does not appear before w1 and w2. Remark that
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these linear extensions are the compatible rankings in Table 1.2 in the intro-

duction of this work. •

(ω1,ω2,ω3,ω4,ω5) (ω1,ω3,ω5,ω2,ω4)
(ω1,ω2,ω3,ω5,ω4) (ω2,ω1,ω4,ω3,ω5)
(ω1,ω2,ω4,ω3,ω5) (ω2,ω1,ω3,ω4,ω5)
(ω1,ω3,ω2,ω4,ω5) (ω2,ω1,ω3,ω5,ω4)
(ω1,ω3,ω2,ω5,ω4)

Table 2.2: All linear extensions of (Ω,≤Ω).

In literature, several subclasses of posets are defined. In this work we

will consider two such subclasses, namely interval orders and series-parallel

posets.

Definition 2.1.12. A poset (P,≤P) is an interval order [56] if there is no

subset {x1, x2, x3, x4} ⊆ P with x1 <P x3 and x2 <P x4 being the only

comparabilities. ⋄

It can be shown that a poset (P,≤P) is an interval order if and only if there

exists a bijection from P to a set of real intervals mapping each xi ∈ P to an

interval [li , ri] such that for any xi, x j ∈ P we have xi <P x j when ri <R l j.

Definition 2.1.13. A poset (P,≤P) is a linear sum if there exist disjoint non-

empty subsets P1 and P2 of P such that P = P1 ∪ P2, and x <P y if x, y ∈ P1
and x <P1 y, or x, y ∈ P2 and x <P2 y, or x ∈ P1 and y ∈ P2. ⋄

Definition 2.1.14. A poset (P,≤P) is a disjoint sum if there exist disjoint

non-empty subsets P1 and P2 of P such that P = P1 ∪ P2, and x <P y if

either x, y ∈ P1 and x <P1 y or x, y ∈ P2 and x <P2 y. ⋄

Definition 2.1.15. A poset (P,≤P) is called series-parallel if there is no sub-

set {x1, x2, x3, x4} ⊆ P for which x1 <P x3, x1 <P x4 and x2 < x4 are the

only comparabilities. ⋄

It can be shown that a poset (P,≤P) is series-parallel if it can be recursively

constructed by applying the operations of linear and disjoint sum, starting

with a single element.
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Example 2.7. The poset (Ω,≤Ω), whose Hasse diagram is shown in Fig-

ure 2.2, is not an interval order since the only comparabilities in the subset

{ω2,ω3,ω4,ω5} ⊆ Ω are ω3 <Ω ω5 and ω2 <Ω ω4, neither is it a series-

parallel poset since the subset {ω1,ω2,ω3,ω4} ⊆ Ω has exclusively the

comparabilities ω1 <Ω ω3, ω1 <Ω ω4 and ω2 <Ω ω4. •

We refer the interested reader for a more extensive overview of poset theory

to [32].

2.2 The lattice of ideals representation of a poset

It will turn out in the remainder of this work that the so-called lattice of ide-

als representation of a poset is playing a key role in many of the algorithms

presented. In this section this lattice of ideals representation is introduced.

Definition 2.2.1. A downset or ideal of a poset (P,≤P) is a subset D ⊆ P
such that x ∈ D, y ∈ P and y ≤P x imply y ∈ D. Dually, an upset or filter of

a poset (P,≤P) is a subset U ⊆ P such that x ∈ U, y ∈ P and x ≤P y imply

y ∈ U. ⋄

Note that both ideals and filters are order-convex, in the sense that if x ≤P y
belong to a given ideal or filter, then so does any z such that x ≤P z ≤P y.

The ideal of P consisting of all elements smaller than or equal to x ∈ P is

denoted as ↓x; the filter of P consisting of all elements greater than or equal

to x ∈ P is denoted as ↑ x. Let us denote the set of all ideals of a poset

(P,≤P) as I(P) and its cardinality as i(P).

Example 2.8. In (Ω,≤Ω), the subsets {ω1,ω2,ω3} and {ω1,ω2,ω4} are

both ideals, while {ω1,ω3,ω4} is not an ideal since ω2 ≤Ω ω4 and as

such, ω2 should also reside in the ideal. The set of ideals I(Ω) is given in

Table 2.3. •

If for every x, y ∈ P the greatest lower bound x ∧ y (read “x meet y”) and

the smallest upper bound x ∨ y (read “x join y”) exist, a poset (P,≤P) is

called a lattice. An element x ∈ P in a lattice is called meet irreducible if x
is not maximal in P and x = a ∧ b implies x = a or x = b for any a, b ∈ P.

Dually, an element x ∈ P is called join irreducible if x is not minimal in P
and x = a ∨ b implies x = a or x = b for any a, b ∈ P. In other words, an
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∅ {ω1,ω2,ω4}
{ω1} {ω1,ω3,ω5}
{ω2} {ω1,ω2,ω3,ω4}
{ω1,ω2} {ω1,ω2,ω3,ω5}
{ω1,ω3} {ω1,ω2,ω3,ω4,ω5}
{ω1,ω2,ω3}

Table 2.3: All ideals of (Ω,≤Ω).

element is meet irreducible if it is covered by at most one other element and

is join irreducible if it covers at most one other element. A distributive lattice

is a lattice that satisfies distributivity: x ∧ (y ∨ z) = (x∧ y) ∨ (x ∧ z).

If we consider the set of ideals I(P) and equip it with the set inclusion

⊆, which is a partial order relation, a new poset (I(P),⊆) is obtained.

Moreover, it is more than a poset: it is a distributive lattice. Distributive lat-

tices exhibit several interesting properties. The interested reader is referred

to [32] for an extensive overview on (distributive) lattices. The distributive

lattice (I(P),⊆) is called the lattice of ideals of (P,≤P). Note that the lattice

of ideals plays an important role in formal concept analysis [63].

Example 2.9. The Hasse diagram LΩ of (I(Ω),⊆) is shown in Figure 2.4.

•

The lattice of ideals (I(P),⊆) is an alternative representation of the poset

(P,≤P). From the poset (P,≤P) the lattice of ideals (I(P),⊆) can be con-

structed, neither is it difficult to reconstruct (P,≤P) from (I(P),⊆). In

Section 2.3 it will be shown how the lattice of ideals of a poset can be con-

structed efficiently.

Note that the Hasse diagram of the lattice of ideals can be considered as

a directed graph LP with a unique minimal element, called the source and

denoted as v⊥, and a unique maximal element, called the sink and denoted

as v⊤. We will denote by I f the VLP
→ I(P) function that maps a vertex

v ∈ VLP
to the corresponding ideal in (I(P),⊆).

Remark 2.2.2. An important property of the Hasse diagram LP of the lattice

of ideals (I(P),⊆) should be noted: there exists a one-to-one correspon-

dence between the linear extensions of a poset (P,≤P) and the maximum-

length paths from v⊥ to v⊤ in LP [2, 10]. First, we note that each edge in
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{ω1} {ω2}

{ω1, ω2, ω3, ω5}

{ω1, ω2}

∅

{ω1, ω2, ω3, ω4, ω5}

{ω1, ω2, ω3, ω4}

{ω1, ω3}

{ω1, ω3, ω5} {ω1, ω2, ω4}{ω1, ω2, ω3}

Figure 2.4: The Hasse diagram LΩ of (I(Ω),⊆).

LP connecting a vertex v1 for which I f (v1) = I1 ∈ I(P) and a vertex v2 for

which I f (v2) = I2 ∈ I(P), with I1 ⊂ I2, can be labeled with the unique

element of I2 \ I1. If we follow a path from v⊥ to v⊤ in LP, the order in

which each label is encountered induces a linear extension of (P,≤P). This

one-to-one correspondence will be used extensively in the remainder of this

work and is formalized in Lemma 2.2.3.

Lemma 2.2.3 (Bonnet and Pouzet [10]). Let (P,≤P) be a poset, then the set

of linear extensions (L,≤L) of P is in one-to-one correspondence with the set of

maximum-length paths of the Hasse diagram LP of (I(P),⊆). More precisely,

if (L,≤L) is a linear extension of P, then the Hasse diagram LL of (I(L),⊆) is

a maximum-length path of LP. On the other hand, for each maximum-length

path corresponding to a chain (C,⊆) of (I(P),⊆), there exists a unique linear

extension (L,≤L) of (P,≤P) such that (C,⊆) = (I(L),⊆).

Example 2.10. The highlighted path of LΩ in Figure 2.5 corresponds to the

linear extension (ω1,ω3,ω2,ω5,ω4). Note that the edges are labeled as

described in Remark 2.2.2. •
Definition 2.2.4. Two graphs G1 and G2 are called isomorphic if there exists

a bijection φ : VG1
→ VG2

such that for all v1, v2 ∈ VG1
it holds that (v1, v2)
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Figure 2.5: The Hasse diagram LΩ of (I(Ω),⊆) with labeled edges and a

highlighted maximum-length path.

is an edge in G1 if and only if (φ(v1),φ(v2)) is an edge in G2. ⋄

Finally, it is important to mention that for any finite distributive lattice the

subset of join- (or meet-)irreducible elements is a poset such that the Hasse

diagram of its lattice of ideals is isomorphic to the Hasse diagram of the

distributive lattice [9].

Example 2.11. The poset of join- (or meet-)irreducible elements of LΩ

in Figure 2.4 is the poset (Ω,≤Ω) depicted in Figure 2.2. The other way

around, LΩ is the Hasse diagram of the lattice of ideals of

(Ω,≤Ω). •

2.3 Constructing the lattice of ideals

2.3.1 A naive construction approach

We start with a naive but intuitive algorithm to build the Hasse diagram

LP of the lattice of ideals of a given poset (P,≤P), before providing a more
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complex, yet more efficient one. The algorithm gradually constructs the

lattice of ideals, layer per layer, from the empty ideal ∅ to the maximum

ideal P.

We start with an empty graph (V, E), where V is the set of vertices and

E ⊆ V2 the set of edges and start with an empty list L = ∅ of sets. Initially,

V only contains the vertex v∅ corresponding to the empty ideal. For each

minimal element x ∈ P, we add {x} to L, add a vertex v{x} (corresponding

to the ideal {x}) to V and add an edge (v∅, v{x}) to E. Next, we perform the

following steps until L = ∅. We remove the first set I ∈ L. For each minimal

element x ∈ P \ I we do the following: if the ideal I ′ = I ∪ {x} is not in L,

then we add I ′ to the end of L and add vI′ (corresponding to the ideal I ′) to

V, and add (vI , vI′ ) to E; if I ′ ∈ L, we just add (vI , vI′) to E.

At the end of this algorithm, the graph (V, E) is the Hasse diagram LP of the

lattice of ideals of (P,≤P). While this algorithm is easy to follow, it is not

very efficient. Especially the repeated computation of the minimal elements

of a subposet of P, and the check whether I ′ ∈ L is time-consuming.

2.3.2 The approach of Habib et al. based on the tree of ideals

A more efficient approach [70] uses a so-called tree of ideals [71] as an

intermediate representation to construct the lattice of ideals. A tree of ideals

TP of a poset (P,≤P) is a spanning tree of the Hasse diagram LP of the

lattice of ideals (I(P),⊆) that is rooted in v⊤. Since TP is a spanning tree,

it contains all vertices of LP and has a unique path from the root v⊤ of TP to

each other vertex in LP.

Assuming that the labeling of the edges of LP described in Remark 2.2.2

is available, starting from the Hasse diagram LP a tree of ideals can be

obtained as follows. Initially, an arbitrary linear extension σ of the poset

(P,≤P) is chosen. Once this choice has been made, the tree of ideals repre-

sentation is uniquely determined by the set of all paths of LP starting from

v⊤ whose labeling, i.e. edge labels ordered according to their occurrence in

each path, respects the reverse order of σ .

Example 2.12. The tree of ideals TΩ of (Ω,≤Ω) corresponding to the initial

linear extension (ω1,ω2,ω3,ω4,ω5) is shown in Figure 2.6. Remark that
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in each path from the root to a vertex the reverse order of the chosen linear

extension is respected. Moreover, there is exactly one path where each of

the elements of Ω is present. •
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Figure 2.6: The tree of ideals representation TΩ of LΩ corresponding to the

initial linear extension (ω1,ω2,ω3,ω4,ω5).

Without loss of generality, in the following we will assume that for a poset

(P,≤P) its set of elements is given by P = {1, 2, . . . , n} and that σ =
(1, 2, . . . , n) is a linear extension of (P,≤P). We will furthermore define

BP(i) = { j ∈ P | j ||P i ∧ j <N i}, where N is the natural ordering of

integers, or B(i) for short if the poset is clear from the context. The set of

predecessors of an element i ∈ P will be denoted as Pred(i) = { j | j <P i}
and the set of successors of i as Succ(i) = { j | i <P j}. We will furthermore

define the set of immediate predecessors ImPred(i) = { j | j ≺P i} and the

set of immediate successors ImSucc(i) = { j | i ≺P j}.

2.3.2.1 Constructing the tree of ideals

Let us denote the tree of ideals of (P,≤P) fixed by the linear extension σ

as TP. In this subsection, the algorithm of Habib et al. to incrementally

construct the tree of ideals TP from (P,≤P) is presented. We assume that
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each element i ∈ P is added in the order of appearance in σ and denote by

P + {i} the poset obtained from P by adding an element i.

For each vertex v in TP where v 6= v⊤ we define:

• Parent(v): the vertex immediately before v in the unique path in the

tree from v⊤ to v;

• Label(v): the label attached to the vertex v.

Let us associate with each vertex v ∈ VTP corresponding to an ideal I ∈
I(P), i.e. I = I f (v), where v 6= v⊤, a label defined by Label(v) = minσ(P \
I). In other words, we look at the minimal elements of P \ I and take the

minimal element in the linear extension σ as a label for I.

Example 2.13. Remark that the labels attached to each vertex are precisely

the labels attached to the incoming edges in TΩ depicted in Figure 2.6. In

this way, all vertices get labels except the root vertex of TΩ. •

For each vertex v in TP we furthermore define:

• Child(v): the list of children of v in TP, i.e. the vertices vi ∈ TP such

that (v, vi) ∈ ETP, sorted in decreasing order of their labels.

We recursively construct the tree of ideals TP+{i} from TP. Since the ideals

I f (v), for v ∈ VTP, do not contain i, the remaining ideals that should be

generated are the ideals containing i and thus ↓i. If I is an ideal for which

↓i ⊆ I then I can be partitioned into the disjoint union of ↓i and the set I\↓i
of remaining elements such that I is an ideal of P + {i} if and only if I\↓i is

an ideal of B(i). The remaining ideals to be generated are thus the ideals of

B(i). From the above argument, it can easily be seen that the tree of ideals

corresponding to B(i) is isomorphic to a subtree of TP rooted at v⊤. Indeed,

each ideal J of B(i) corresponds to another ideal J ∪ Pred(i) of P.

In order to connect the tree of ideals corresponding to B(i) and the tree of

ideals TP, a glueing operation 1
i is defined.

Definition 2.3.1. The glueing operation T 1
i T′ of two trees T and T′ is

defined as follows:

• connect the root of T as the first child of the root of T′ (as to guarantee

that children are sorted according to the inverse order of σ)
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• label the root r of T as i, i.e. Label(r) = i

⋄

It holds that TP+{i} = TP 1
i TB(i) where i is a maximal element of P + {i}.

Therefore, to construct TP one should copy and glue subtrees recursively,

starting with one vertex corresponding to the empty ideal ∅.

Algorithm 2.1 implements this idea. In line 4 of the function Left the left-

most subtree r containing all ideals that do not include i is created. In

lines 6-8 this left tree r and the right tree root (containing the ideals in-

cluding i) are glued together as described in Definition 2.3.1. Procedure

Right constructs the remainder of the tree where all ideals contain i. In or-

der to know whether we have an ideal J ∪ Pred(i), where J is an ideal of

B(i), we check in line 1 that there is no s ∈ VTP on the path from v⊤ to

the vertex v corresponding to this ideal, such that Label(s) ∈ ImPred(i).
Indeed, if such a vertex s ∈ VTP would exist, the ideal would not contain

Label(s) ∈ ImPred(i), and thus not contain Pred(i).

Theorem 2.3.2 (Habib et al. [70]). Algorithm 2.1 constructs a tree of ideals

TP = (VTP , ETP) from the poset (P,≤P) in time O(∆(P) · |VTP |), where ∆(P)
is defined as maxx∈P |ImPred(x)|.

2.3.2.2 Constructing the lattice of ideals from the tree of ideals

Let TP be a tree of ideals of (P,≤P) and v ∈ VTP . In order to represent

the Hasse diagram LP of the lattice of ideals of (P,≤P), we extend the data

structure representing the tree of ideals by defining:

• ImPred(v): all vertices v′ ∈ VTP for which (v′ , v) ∈ ELP
.

It can be shown that ImPred(v) equals the union of the set Child(v) and

the set

{Child(v′ , k) | v′ ∈ ImPred(Parent(v)) and Label(v′) > k}
where Child(v′, k) denotes the child of v′ labeled with k and k = Label(v).

This observation leads to Algorithm 2.2, where the Hasse diagram LP of the

lattice of ideals of (P,≤P) is constructed on the basis of a tree of ideals TP.
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Algorithm 2.1 Constructing a tree of ideals TP of a poset (P,≤P)

1: compute a linear extension of (P,≤P): σ ← (1, 2, . . . ,n)
2: return Left(n)

function Left(Integer i)

1: create a new vertex root
2: if i = 0 then

3: return root
4: r← Left(i− 1)
5: Right(i, r, root)
6: Parent(r)← root
7: add r as the left child of root
8: Label(r)← i
9: return root

procedure Right(Integer i, Vertex r, Vertex root)

1: for each child s of r such that Label(s) 6∈ ImPred(i) do

2: create a copy t of s
3: Parent(t)← root
4: add t as the left child of root
5: Label(t)← Label(s)
6: Right(i, s, t)
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In line 3 the vertices v ∈ VTP are sorted according to their label Label(v)
and lines 4-5 iterate over the vertices v ∈ VTP in decreasing order of their

label. In this way, it is guaranteed that Label(v′) > k = Label(v) on lines 7-

11. In line 14 the vertex v is deleted from the list of children of its parent,

as to guarantee that children with greater labels are deleted before children

with smaller labels. Therefore, in line 9, vertex v∗ with Label(v∗) = k will

be the first child of v′.

Algorithm 2.2 Construction of the Hasse diagram LP of the lattice of ideals

of (P,≤P) based on a tree of ideals TP
procedure BuildLattice(Ideal tree TP)

1: ImPred(v⊤)← Child(v⊤)
2: for each k ∈ {1, 2, . . . , n} do

3: compute the list Ek = {v ∈ TP | Label(v) = k}
4: for k = n, n− 1, . . . , 1 do

5: for each v ∈ Ek do

6: ImPred(v)← ∅
7: v′ ← first element in ImPred(Parent(v))
8: while v′ 6= v do

9: v∗ ← first child of v′

10: ImPred(v)← ImPred(v) ∪ {v∗}
11: v′ ← next element in ImPred(Parent(v))
12: ImPred(v)← ImPred(v) ∪ Child(v)
13: for each v ∈ Ek do

14: delete v from the list of children of its parent

Theorem 2.3.3 (Habib et al. [70]). Algorithm 2.2 constructs from a tree of

ideals TP of a poset (P,≤P) the Hasse diagram LP of the lattice of ideals in

time O(|VLP
|+ |ELP

|).
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3.1 Introduction

3.1.1 Supervised learning

Machine learning is a field concerned with the analysis and development of

algorithms that aim to learn from data by combining aspects from artificial

intelligence, data mining and statistics. The focus in machine learning is

on a predictive analysis of the data, meaning that a model capable of learn-

ing trends from the data is built. Over time, the predictive power of the

algorithms is expected to increase as more training data is provided. This

approach can be useful in a large number of applications, some of which

are:

• Weather forecasting: predicting several parameters such as pressure,

temperature, rainfall.

• Speech and handwriting recognition: transforming human speech and

handwriting into plain text.

• Fraud detection: warning when potentially fraudulent money trans-

fers are executed.

• Bioinformatics: localizing genes in DNA sequences corresponding to
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some characteristics.

• Game playing: making a good move in a chess play against a human.

• Spam filtering: classifying unsolicited e-mails in a separate folder of a

mailbox.

In all of the examples, the aim is to represent the available data in a statisti-

cal way such that the resulting model gives satisfactory predictions. Depend-

ing on the structure of the incoming data, one subdivides machine learning

in two categories: supervised and unsupervised learning.

In supervised learning, the incoming data contains feedback information for

which we already know the desired output. Referring to the examples of

machine learning given above, this feedback information could be:

• Weather forecasting: the complete weather survey of the last 30 years.

• Speech and handwriting recognition: several fragments of different

people’s speech and handwriting together with the plain text transla-

tion.

• Fraud detection: a list of known fraudulent transfers in the last 10

years.

• Bioinformatics: a list of genes detected in previous research.

• Game playing: a database of the sequences of moves in several chess

games.

• Spam filtering: a huge amount of known unsolicited and legitimate

e-mails with their classification.

In unsupervised learning there is no such kind of feedback information. A

model must therefore be built solely on the basis of data without the desired

output.

3.1.2 Monotone classification

In a classification problem, to each element of a set of objects a label must

be assigned [91, 120].

Let us denote the set of labels as L, and the set of objects, represented by
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their attribute vectors q(x) = (q1(x), q2(x), . . . , qm(x)), where qi(x) ∈ Qi

for each i ∈ {1, . . . ,m}, as O. Each set Qi is equipped with a linear order

relation ≤i reflecting the fact that qi can be considered as a true criterion.

Only the case is considered where the labels l ∈ L are quality judgements.

Therefore we will insist that the set L is equipped with a linear order rela-

tion.

Definition 3.1.1. A classification rule on O is defined as a mapping d : O→
L, where O is the set of objects and L the set of labels. ⋄
Definition 3.1.2. A classification rule d : O → L is called monotone if

x < y⇒ d(x) ≤L d(y) for all x, y ∈ O. ⋄

In the above multi-criteria context, where attributes are criteria and labels

represent quality judgements, the classification rule d : O → L is required

to be monotone. This kind of classification is referred to as monotone classi-

fication or ordered sorting.

Remark 3.1.3. Without this monotonicity constraint a situation could occur

in which for two objects x, y ∈ O it holds that x <O y but d(x) >L d(y).
Consider two candidates A and B for a job. Candidate A performs better

than candidate B on all criteria, but nevertheless is assigned a label which is

strictly worse than the label assigned to candidate B. This would be at least

considered unfair, and it shows that it is natural to add the monotonicity

constraint in this multi-criteria context.

Remark 3.1.4. Ranking is a specific case of monotone classification: one

where the set of labels is a set {1, 2, . . . , n} with n = |O| and the label

assigned to an object corresponds to the position of the object in the ranking.

Supervised learning algorithms that generate such monotone classification

rules are often referred to as monotone classification algorithms, ranking al-

gorithms or ordered sorting algorithms (see e.g. [3, 4, 5, 6, 27, 86, 87, 88]).

3.1.3 Training monotone classification algorithms

In order to properly train a monotone classification algorithm, a set of learn-

ing examples must be provided.

Definition 3.1.5. Learning examples are couples (p,α) ∈ O × L consisting

of an attribute vector p ∈ O and a label α ∈ L. ⋄
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Learning examples can be obtained from a data set. However, real-world

data sets (see e.g. [117]) are often pervaded with some degree of noise (see

e.g. [27, 86]):

• doubt: (p,α) ∈ O× L and (p,β) ∈ O× L, with α 6= β,

• reversed preference: (p,α) ∈ O× L and (q,β) ∈ O× L, with p <O q
and α >L β.

Especially the latter is difficult to quantify or remove (see e.g. [30, 103,

104]). Such data sets are not suitable for initial testing of newly designed

classification algorithms on their capacity of modelling monotone relation-

ships. Moreover, several monotone classification algorithms do not accept

data sets containing the types of noise mentioned. Hence, both for testing

and comparison purposes, there is a need for randomly generated synthetic

data sets that are noise-free. Data sets that are free of the types of noise

mentioned are called monotone data sets.

3.2 Generating rankings uniformly at random

In the artificial case where there are as many labels to be assigned as objects,

i.e. the mapping of objects to labels is bijective, a dataset consists, next to

a poset of objects and a set of labels, of a monotone mapping defined by

a linear extension of (O,≤O). Indeed, a linear extension is a ranking of

the elements of O that respects the underlying order ≤O, and therefore

characterizes a monotone mapping from O to L.

In this section we will therefore address the problem of generating rankings

uniformly at random. In solving this specific case, the foundations for gen-

erating monotone data sets are laid. Besides, the ability of generating one

or more rankings uniformly at random is of importance in itself.

3.2.1 Sampling by enumeration

The most straightforward approach to sample objects, which in our case are

rankings, uniformly at random is to enumerate all objects and to select a
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subset of objects in a uniform way. In this subsection we will therefore focus

on the problem of enumerating such rankings as well as on obtaining the

number of such rankings.

3.2.1.1 Enumerating all rankings

The problem of efficiently generating all linear extensions has been studied

in the papers of Knuth and Szwarcfiter [80], Varol and Rotem [116] and

Kalvin and Varol [77]. Note that they use the term topological sort instead

of linear extension. Of these algorithms, the algorithm of Varol and Rotem

is surprisingly simple and fast in practice.

Let (P,≤P) be a poset with n elements. Without loss of generality, we can as-

sume that for a poset (P,≤P) its set of elements is given by P = {1, 2, . . . , n}
and that (1, 2, . . . , n) is a linear extension of (P,≤P). Suppose a list Ln−1 of

all extensions of P \ {n} is available. Now the list Ln of all extensions of

(P,≤P) can be obtained in the following way.

Let π = (π1, π2, . . . , πn−1) ∈ Ln−1, and k the maximum index for which

πk ≺P n. Assume furthermore that there is an element π0 less than all other

elements in the poset. Since π j ||P n for all j > k, the permutations

(π1, . . . , πk, πk+1, . . . , π j, n, π j+1, . . . , πn−1)

where j varies from n to k, form a list of all extensions of (P,≤P) where the

elements of P \ {n} occur in the order of π . When j = k, the original per-

mutation π can be restored by rotating the elements of (n, πk+1, . . . , πn−1)
to the left such that we obtain (πk+1, . . . , πn−1, n). Subsequently the next

extension in Ln−1 is taken. This process continues until all extensions in

Ln−1 have been used. At this point, all linear extensions of (P,≤P) will have

been generated.

This algorithm is listed in Algorithm 3.1. Initially π = (1, 2, . . . , n), and the

procedure is invoked as VR(1). The running time of the algorithm depends

on the linear extension that is chosen to initialize the algorithm. In some

cases, when a ‘good’ choice for the initial linear extension has been made,

the algorithm needs only O(e(P)) time to enumerate all linear extensions,

while examples can be easily constructed where it needs O(n · e(P)) time.
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Algorithm 3.1 The Varol-Rotem algorithm for generating all linear exten-

sions of a poset (P,≤P)

procedure VR(Integer k)

1: if k > n then

2: print π

3: else

4: VR(k + 1)

5: i← k
6: while πi−1 ||P πi do

7: swap the elements πi−1 and πi

8: VR(k + 1)

9: i← i− 1
10: rotate left (πi, πi+1, . . . , πk)

More recently, Pruesse and Ruskey presented an algorithm [102] that always

generates all linear extensions in O(e(P)) time. On average, this algorithm

only requires constant processing time for each linear extension, and are

optimal up to a constant factor; such an algorithm is said to generate a lin-

ear extension in constant amortized time. Moreover, so-called loopless algo-

rithms, which require even in the worst case only a constant processing time

per linear extension, have been developed by Canfield and Williamson [26]

and by Ono and Nakano [95].

Remark 3.2.1. A lot of research has been done in listing linear extensions

in such a way that successive extensions only differ in a small, prescribed

way. Such listings are called Gray codes. This problem of generating linear

extensions by (adjacent) transpositions has been formalized by Ruskey in

[105], and since then deepened [100, 106, 107, 112, 119].

Remark 3.2.2. In some cases one is interested in generating linear extensions

with a minimal number of jumps [8, 90, 114]. The jump number of a linear

extension of (P,≤P) is defined as the number of times that two consecutive

elements in that linear extension are incomparable in (P,≤P).

3.2.1.2 Counting all rankings

Determining the number of linear extensions e(P) of a given poset P is

known to be a hard problem. In 1991, Brightwell and Winkler [16] have
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shown it to be a #P-complete problem, thereby settling a long-standing open

problem in order theory. The #P-complete complexity class denotes a class

of counting problems similar to the NP-class for decision problems. It is

generally believed that there exists no polynomial-time algorithm for solv-

ing #P-complete problems. Counting the number of linear extensions of a

partially ordered set is therefore possibly not considerably easier than the

enumeration of its linear extensions.

Recently, an algorithm for calculating e(P) was suggested by Peczarski [97],

which is, not surprisingly, not polynomial in the number of elements of the

poset. The main idea of the algorithm of Peczarski consists of recursively

applying the following Theorem 3.2.4.

Definition 3.2.3 (Peczarski [97]). Let (P,≤P) be a poset, D ⊆ P, a, b ∈ P
and d ∈ D. The pair (A, B) is called an admissible partition of D with respect

to the element d when the following conditions are satisfied:

• A ∪ B = D \{d} and A ∩ B = ∅
• a <P d ⇒ a ∈ A, ∀ a ∈ D \{d}
• d <P b ⇒ b ∈ B, ∀ b ∈ D \{d}
• b 6<P a , ∀ a ∈ A, b ∈ B ⋄

Theorem 3.2.4 (Peczarski [97]). Let (P,≤P) be a poset.

1. If A, B ⊆ P, A ∩ B = ∅ and a ||P b for any a ∈ A and b ∈ B, then

e(A ∪ B) = e(A) · e(B) ·
(|A|+ |B|
|A|

)

= e(A) · e(B) ·
(|A|+ |B|
|B|

)

.

2. If D ⊆ P and d ∈ D, then

e(D) = ∑
A,B

e(A) · e(B)

where the sum is taken over all admissible partitions of D with respect to

d, and where the convention is made that e(∅) = 1.

First, a poset (P,≤P) is partitioned into connected subposets, i.e. posets that

are a subset of (P,≤P) and have a connected Hasse diagram. The number
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of linear extensions of the subposets can be computed independently and

afterwards combined using the first part of Theorem 3.2.4. For each con-

nected subposet, the second part of the theorem is used to obtain a set of

simpler subproblems. Care is taken that an element d is chosen such that

the number of admissible partitions is the smallest possible. It turns out that

by subdividing the problem in this way the number of comparable elements

in each subposet is maximal, substantially reducing the computation time.

x5x3x1

x4x2

B

A = /0

A = ∅, e(A) = 1
B = {x1, x2, x4, x5}, e(B) = 6

x5x3x1

x4x2

A

B

A = {x1, x5}, e(A) = 2
B = {x2, x4}, e(B) = 2

x5x3x1

x4x2

B

A

A = {x5}, e(A) = 1
B = {x1, x2, x4}, e(B) = 3

x5x3x1

x4x2

A

B

A = {x1}, e(A) = 1
B = {x2, x4, x5}, e(B) = 3

Figure 3.1: An example poset (X,≤X) with its admissible partitions when

choosing d = x3.

Example 3.1. In Figure 3.1 an example poset (X,≤X) with X =
{x1, x2, x3, x4, x5} is partitioned in its admissible partitions when choosing

d = x3. Applying the second part of Theorem 3.2.4 allows us to recursively

compute the number of linear extensions of (X,≤X), such that we obtain

e(X) = 1 · 6 + 2 · 2 + 1 · 3 + 1 · 3 = 16.

•
Remark 3.2.5. Algorithms to approximate e(P) of a given poset P have been

introduced in literature as well. Ewacha et al. [55] approximate e(P) by
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determining successive lower and upper bounds for e(P) by counting so-

called critical suborders. Moreover, Markov Chain Monte Carlo methods

allow one to sample uniformly from the set of linear extensions of a poset.

Such a method will be discussed in Paragraph 3.2.3.2. The ability to sample

(almost) uniformly from this set implies that good approximations for e(P)
can be obtained.

Remark 3.2.6. Brightwell et al. [15] have found an asymptotic formula for

the average number of linear extensions of an n-element poset, which is

given in Theorem 3.2.7. Note the exponential nature in n of the asymptotic

expressions.

Theorem 3.2.7 (Brightwell et al. [15]). Asymptotically, the average number

An of linear extensions of an n-element poset is given by

An =
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χ2 ·φ2

25/4 ·φ1

·
(

n!

2

)2

· n · 2−n/2 · (1 +O (

C−n
))

≃ 5.041445 . . . ·
(

n!

2

)2

· 2−n/2 if n even

χ2 ·φ2

25/4 ·φ1

(

(n− 1)!

2

) (

(n + 1)!

2

)

· n · 2−n/2 · (1 +O (

C−n
))

≃ 5.041419 . . . ·
(

(n− 1)!

2

)

·
(

(n + 1)!

2

)

· n · 2−n/2 if n odd

where

φ1 =
+∞

∑
j=−∞

2−( j+1/2)2 =

√

n

ln 2
·
[

1 + 2 ·
+∞

∑
n=1

(−1)n · exp
(−π2

ln 2
· n2

)

]

= 2.1289312 . . .

φ2 =
+∞

∑
j=−∞

2− j2 =

√

n

ln 2
·
[

1 + 2 ·
+∞

∑
n=1

exp

(−π2

ln 2
· n2

)

]

= 2.1289368 . . .

χ =
+∞

∑
m=0

p(m) · 2−m =
+∞

∏
i=1

1

1− 2−i
= 3.4627466 . . .
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3.2.2 Using the lattice of ideals representation

In this section we will present our algorithm to generate uniformly at ran-

dom one or more rankings of the elements of a poset [43]. The algorithm

is based on the lattice of ideals representation of the poset and does not

require enumerating all possible rankings. It consists of two independent

parts. The first part builds up a data structure allowing for the fast gener-

ation of random rankings of the elements, i.e. linear extensions of a poset

(P,≤P), producing the number of linear extensions of (P,≤P) as a side-

result. The second part consists of the generation of a random linear exten-

sion itself.

3.2.2.1 Building the data structure

Since we want to be able to generate multiple random extensions without

major additional cost, we would like to have a data structure at our disposal

allowing for the quick selection of successive elements in the linear exten-

sion. The Hasse diagram LP of the lattice of ideals of (P,≤P) is an adequate

choice for this, since we know from Lemma 2.2.3 that a linear extension cor-

responds to a path from the source v⊥ to the sink v⊤. In Subsection 2.3.2 an

efficient algorithm developed by Habib et al. [71] to construct LP by using

an intermediate tree of ideals TP is presented. We will extend their data

structure representing LP, and store for each vertex v ∈ VLP
the following

data:

• LEF(v), the number of linear extensions of the filter P \ I f (v) of P
where I f (v) yields the ideal corresponding to vertex v;

• Visited(v), a boolean flag indicating whether vertex v has already

been visited by the algorithm.

Algorithm 3.2 invokes the procedure Assign with the source v⊥ of LP as

argument, corresponding to the filter P \ I f (v⊥) = P. After recursion, the

variable e in line 3 contains the number of linear extensions of (P,≤P). Also,

to each vertex v ∈ VLP
is associated the number of linear extensions of the

complementary filter P \ I f (v). Note that dynamic programming is used in

order to avoid repeated computation of LEF(v) for vertices v ∈ VLP
.
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Algorithm 3.2 Extending the Hasse diagram LP of the lattice of ideals of a

poset (P,≤P) with counting information

1: initialize an array Visited setting its components to false

2: build the Hasse diagram LP of the lattice of ideals of (P,≤P)
3: e← Assign(v⊥)

procedure Assign(Vertex v)

1: Visited(v)←true

2: e← 0
3: for each vertex v′ ∈ ImSucc(v) do

4: if v′ = v⊤ then

5: e← 1
6: else

7: if not Visited(v′) then

8: e← e + Assign(v′)
9: else

10: e← e + LEF(v′)
11: LEF(v)← e
12: return e

Example 3.2. In Figure 3.2 the Hasse diagram LΩ of the lattice of ideals

of our example poset (Ω,≤Ω) is shown with the counting information ob-

tained by applying Algorithm 3.2. •

Since every edge in LP is visited exactly once in the recursive algorithm, it

is clear that the time complexity is linear in the size of the lattice of ideals,

therefore not adding to the asymptotic time complexity of the construction

algorithm of Habib et al. [70] in Theorems 2.3.2 and 2.3.3.

3.2.2.2 Generating a ranking uniformly at random

As stated in Lemma 2.2.3, a linear extension corresponds to a path in LP

from v⊥, corresponding to the empty ideal, to v⊤, corresponding to the

maximum ideal P. Therefore, the problem of generating a linear extension

uniformly at random is reduced to the problem of sampling uniformly a

maximum-length path in LP. Let us assume that part of the random path in

LP has been generated up to a vertex vk−1 ∈ VLP
, and that at this point in
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Figure 3.2: The Hasse diagram LΩ of the lattice of ideals of (Ω,≤Ω) with for

each vertex v ∈ VLΩ
the number of linear extensions of the filter Ω \ I f (v)

obtained from the application of Algorithm 3.2.

the path for vertex vk−1 a successor vertex vk from {vi1 , vi2 , . . . , vip} ⊆ VLP

can be chosen. As already mentioned, the data structure constructed in the

previous section contains the number of linear extensions in the comple-

mentary filter P \ I f (vk). From this observation it immediately follows that

the probability that should be assigned to a certain choice vk ∈ VLP
, equals

LEF(I f (vk))/LEF(I f (vk−1)).

Since all ratios LEF(I f (vi))/LEF(I f (vi−1)), for i = 2, . . . , |P|, have to be

calculated for every element in the poset (P,≤P), the time complexity for

generating a linear extension of (P,≤P) using the data structure from Al-

gorithm 3.2 equals O(|P| · w(P)). The problem is now reduced to uniform

sampling in a set of p alternatives with given probabilities. The pseudocode

of this algorithm is shown in Algorithm 3.3.

Note that the function randLong in line 6 of Algorithm 3.3 returns a random

number between zero and the largest number representable. The notation

σ + I f (v
′) \ I f (v) in line 10 means that the linear extension is extended

with a maximal element I f (v
′) \ I f (v), and the symbol () in line 1 denotes

an empty extension. Remark that the linear extension that is generated
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uniformly at random is gradually built up in σ and then returned.

Example 3.3. In Figure 3.3 the Hasse diagram LΩ of the lattice of ideals

of (Ω,≤Ω) is shown where part of the path has been generated with Algo-

rithm 3.3. After the elements ω1 and ω2 are chosen, a probability of 2/3 is

attributed to the choice of ω3 as third element, while a probability of 1/3 is

attributed to choosing ω4. •

Special care should be taken in an implementation of the assignment al-

gorithm. Since the number of linear extensions of a poset can be huge,

a slightly modified version that only saves approximate values for LEF(v)
where v ∈ VLP

could be suggested. Instead of saving integer values, a trans-

formation into real values could be introduced when a certain threshold

is exceeded. Only the exponent and some digits of the mantissa are then

saved. Since the numbers of extensions added up in general have the same

order of magnitude, the approximation error will be negligible. Remark that

in this case only an approximate result for the number of linear extensions

will be obtained and that a slight bias on the distribution will be induced.

However, since in the context of the random generation of linear extensions

we are interested in ratios, for the above mentioned reason, we can ignore

this in practice.

Algorithm 3.3 Generating one linear extension of a poset (P,≤P) on the

basis of the data structure generated by Algorithm 3.2

1: σ ← ()
2: v← v⊥
3: while ImSucc(v) 6= ∅ do

4: t← LEF(v)
5: c← 0
6: r← 1 + randLong() mod t
7: for each v′ ∈ ImSucc(v) do

8: c← c + LEF(v′)
9: if r ≤ c then

10: σ ← σ + I f (v
′) \ I f (v)

11: v← v′

12: break for

13: return σ
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Figure 3.3: The Hasse diagram LΩ where part of the path has already been

generated.

3.2.2.3 A note on the time complexity

For an arbitrary poset, the number of ideals i(P) is in general much lower

than the number of linear extensions e(P). Table 3.1 gives some evidence

for this statement. We have generated 1 000 posets of different size n by

choosing each time uniformly at random n points (x1, x2) out of a two-

dimensional grid of size 20 by 20, equipped with the usual product ordering.

In the table the average number of linear extensions and the average num-

ber of ideals is shown for each n. Note that when choosing random points

from a higher dimensional space, the difference between the numbers of

linear extensions and ideals is even expected to grow.

It should be noted that i(P) is still exponential in the size of the poset.

Indeed, consider the extreme case of an antichain poset where the number

of ideals is 2n for an antichain consisting of n elements. However, this is still

clearly better than its number of linear extensions, which equals n!.

Fast algorithms enumerating all ideals of a poset are known. However, the

problem of finding an algorithm generating all ideals in constant amortized

time is still an open question. The fastest currently known algorithm enu-
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merating all ideals of a poset is due to Squire [111] and generates all ideals

in O(log n) amortized time. For certain subclasses of posets, such as series-

parallel posets or forest posets, better algorithms are available [81, 101].

Similar to counting all linear extensions, counting all ideals of a poset is

shown to be #P-complete [53]. The problem of determining i(P) even re-

sides in the subclass #RHΠ1 of #P, which can be considered as being the

hardest subclass of #P to approximate.

n e(P) i(P)
5 12 11

10 2.31 103 51
15 1.34 106 158
20 2.23 109 403
25 4.28 1012 933
30 8.52 1015 2023
35 3.39 1019 3808

Table 3.1: The average number of ideals compared to the average number

of linear extensions for 1 000 generated posets with n elements.

3.2.3 Approximate sampling

3.2.3.1 The approach of Lerche and Sørensen

The approach of Lerche and Sørensen [83] consists in selecting a random

pair of incomparable elements in the poset and imposing a random order on

these elements. This procedure is repeated until no incomparable elements

are left. Their algorithm generates a single linear extension in polynomial

time in the number of elements of the poset. However, it does not guarantee

that every extension is generated with equal probability and neither does it

guarantee that the probabilities are close to being equal.
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3.2.3.2 A Markov chain Monte Carlo method

Markov chain Monte Carlo methods (often abbreviated as MCMC methods)

provide an algorithm for the following general computational task. Let X
be a very large but finite set of combinatorial structures, and let π be a

probability distribution on X . Now sample an element of X at random,

according to the distribution π . This is precisely the kind of task we want to

solve: the set of structures X is the set of linear extensions E(P) of a poset

(P,≤P) and the probability distribution π is the uniform distribution.

Markov chain Monte Carlo methods have been used for many years and

in several application areas like combinatorial optimization and computa-

tional physics. Frequently, these algorithms are heuristic in nature. How-

ever, recently analytical tools have been developed allowing some of these

algorithms to have precise performance guarantees.

Different approaches [25, 52, 89] based on the Markov chain Monte Carlo

method are capable of sampling almost uniformly from E(P) of a given

poset (P,≤P) with some given accuracy. In this section, we will describe

an algorithm with a so-called rapidly mixing Markov chain developed by

Bubley and Dyer [25].

Without loss of generality, we assume that P = {1, 2, . . . , n}. Let us denote

as σ(i, j) the transposition operator on complete orders, such that if Y =
σ(i, j)X, for

X = (a1, a2, . . . , ai−1, ai, ai+1, . . . , a j−1, a j, a j+1, . . . , an),

we have that

Y = (a1, a2, . . . , ai−1, a j, ai+1, . . . , a j−1, ai, a j+1, . . . , an),

where ai ∈ P for all i ∈ {1, 2, . . . , n}. Note that ak < al for all ak, al ∈ P if ak
is ranked before al in the list. For a given concave probability distribution f
on {1, 2, . . . , n− 1}, define a Markov chain M f on E(P) as follows. If the

current state is Xt ∈ E(P) at a given time t ≥ 0, then the next state Xt+1 is

determined by the following experiment:

1: choose p ∈ {1, 2, . . . , n− 1} according to the distribution f
2: choose c ∈ {0, 1} uniformly at random

3: if c = 0 or σ(p, p + 1)Xt 6∈ E(P) then
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4: Xt+1 ← Xt

5: else

6: Xt+1 ← σ(p, p + 1)Xt

It is easily seen that M f is ergodic, i.e. each state is reachable from an ar-

bitrary state (but not necessarily in one move) with a non-zero probability.

Moreover,M f has a uniform stationary distribution since it is a symmetric

chain: the probability of moving from state Xt to Xt+1 is identical to the

probability of moving from state Xt+1 to Xt. These are sufficient conditions

for the probability distribution on E(P) to converge towards the uniform

distribution if t→∞.

A theoretical bound for the running time necessary to obtain some precision

measure ǫ defined in Definition 3.2.9 is given in Theorem 3.2.11.

Definition 3.2.8. The total variation distance dTV over a space X is defined

as a function dTV : (P,Q) → 1
2 ∑x∈X |P(x)− Q(x)| for two probability dis-

tributions P and Q. ⋄
Definition 3.2.9. The precision ǫ of a Markov chainM is defined as an up-

per bound for the total variation distance dTV between the observed proba-

bility distribution and the stationary distribution. ⋄
Definition 3.2.10. The mixing time τ(ǫ) of a Markov chainM is the simula-

tion time, i.e. the number of chain transitions, required to obtain a precision

of ǫ. A chain M is said to be rapidly mixing if τ(ǫ) = O(poly(log(N/ǫ)),
with N the number of states. ⋄

Remark that in our case, the number of states N is exponential in the num-

ber of elements n in (P,≤P). Therefore, a chain is rapidly mixing if we need

to simulate the chain only for a number of steps that is polynomial in n in

order to get a good sample from E(P).

Theorem 3.2.11 (Bubley and Dyer [25]). When f is defined as f : i →
i(n− i)/K where K = (n3 − n)/6,M f has a mixing time of O(n3 log nǫ−1),
where ǫ is the precision ofM f .

As a last remark we should note that recently an algorithm based on the

Markov chain Monte Carlo method has been developed by Huber [73] that

generates perfectly uniformly distributed linear extensions. This algorithm

uses non-Markovian coupling combined with a modified form of coupling
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from the past, and has an expected running time of O(n3 log n). We should

remark that, although the running time concentrates strongly around the

expected running time, it still has a probabilistic nature. Moreover, the

same procedure has to be repeated for each linear extension that needs to

be generated.

3.3 Generating monotone data sets

Recall that a monotone data set consists of a poset of objects (O,≤O), a set

of labels L that is linearly ordered, and a monotone classification d : O→ L.

A poset of objects (O,≤O) can be obtained by sampling n elements from

Rk equipped with the natural product ordering. The marginal distribution

imposed on Rk can be chosen a priori. A set L of unique labels has to be

chosen a priori as well.

Now we are left with the problem of generating a monotone classification

d : O→ L. The specific case where as many labels as objects are present

has been covered in Section 3.2. Indeed, in this case a random monotone

classification can be obtained by sampling uniformly at random a linear ex-

tension of (O,≤O). In the general case where |O| ≥ |L|, when there are

more objects than labels, the generation of a random assignment of labels

to objects corresponds to the random generation of a weak order extension.

Informally, a weak order extension (P,≤W) of a poset (P,≤P) can be re-

garded as a linear order on the equivalence classes (hereafter called classes

for short) of a partition of (P,≤P) not contradicting the underlying order.

Objects residing in the same class will then be assigned the same label. To

reduce the complexity of the problem, we can a priori fix the cardinality of

each of the equivalence classes, i.e. we can specify the number of objects

that will map to each label beforehand. In this section, we will adopt this

type of restriction and therefore tackle the problem of the random genera-

tion of weak order extensions of a given poset with given class cardinalities.

When generating a monotone data set, these class cardinalities can be fixed

according to any distribution chosen.

Definition 3.3.1. A weak order extension (P,≤W) of a poset (P,≤P) is an

extension of (P,≤P) for which ≤W is a weak order. ⋄

Clearly, any weak order extension (P,≤W) of a poset (P,≤P) induces a par-
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tition on P. Two elements x and y belong to the same class if and only if

x ≤W y and y ≤W x. Moreover, if they belong to different classes, then

either x ≤W y or y ≤W x. Since a linear order on the classes is defined,

we can list the class cardinalities in that order as (c1, c2, . . . , ck), where k de-

notes the number of classes. Remark that if k = n the problem of generating

a random weak order extension is equivalent to generating a random linear

extension, which is described in the Section 3.2.

More formally, a weak order extension (P,≤W) of (P,≤P) with non-zero

class cardinalities (c1, c2, ..., ck) can be characterized as a partition

(S1, S2, ..., Sk) of P for which it holds that

(∀ i ∈ {1, 2, ..., k})(|Si | = ci) ,

(∀ i ∈ {1, ..., k})(∀ x, y ∈ Si)(x =W y)

and

(∀ i, j ∈ {1, ..., k})(∀ x ∈ Si)(∀ y ∈ S j)(i < j⇒ x <W y) ,

where x =W y is equivalent with x ≤W y ∧ y ≤W x.

Remark 3.3.2. Remark that in the literature there is no real consensus on the

definition of a weak order extension. Sometimes, it is preferred to regard a

weak order extension (P,≤W) still as a partition of P with a linear order on

the classes, but with x and y belonging to the same class if neither x ≤W y
nor y ≤W x. The latter definition is not conform to the concept of an exten-

sion, but in some contexts it seems preferable to maintain the property of

antisymmetry of the partial order ≤P at the expense of loosing its property

of completeness (see [7]).

3.3.1 Known algorithms

An algorithm suggested by Lievens [85] generates a random weak order ex-

tension by traversing the Hasse diagram LP of the lattice of ideals of (P,≤P)
from the source v⊥ to the sink v⊤ in a pseudo-random way. When for an

edge e ∈ ELP
on the path a successor edge e′ has to be selected all possible

successor edges e′ ∈ ImSucc(e) are found and assigned equal probabilities.

As a consequence, the whole Hasse diagram LP need not be constructed. By

using this simple greedy strategy, a linear extension of (P,≤P) is obtained.

This linear extension is subsequently converted into a weak order extension

by partitioning according to the class cardinalities (c1, c2, . . . , ck).
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Figure 3.4: An example poset (Σ,≤Σ).

(d, e, g) (c, e, g)

(a, b, d)

(g, h)

(c, e, f)

(a, b, d)

(f, h)

(a, b, c)

(g, h)

(d, e, f)

(a, b, c)

(f, h)

Figure 3.5: The weak order extensions of (Σ,≤Σ) with class cardinalities

(3, 3, 2).

Potharst et al. [99] suggest the following procedure. First, the transitive

closure C̄′P of the Hasse diagram CP ∪ {xD} of (P,≤P) is computed, where

xD is a dummy element such that xD > x for all x ∈ P. A list of not

necessarily unique labels (c1, c2, . . . , cn) to be assigned is sorted such that

c1 ≤ c2 ≤ . . . ≤ cn, where n is the number of elements in P. At this

point the graph C̄′P is interpreted as a flow network and each of the labels

c1, c2, . . . , cn is allowed to travel downward through the network from the

vertex corresponding to the dummy element xD in a random way. When a

label comes to the end of its path, the label is attached to the last vertex on

the path. This vertex is subsequently removed and the next label is allowed

to travel through the new graph. This procedure is repeated until each

vertex of the original graph has a label attached to it.

Example 3.4. In Table 3.2 the probability of each weak order extension

outcome with both algorithms is shown, where the algorithm is applied

to a new example poset (Σ,≤Σ) shown in Figure 3.4. The poset (Σ,≤Σ)



3.3 Generating monotone data sets 45

has four weak order extensions with class cardinalities (3, 3, 2) shown in

Figure 3.5. From Table 3.2, it is immediately clear that both distributions are

highly biased, even in this simple case where the poset is quite symmetrical.

For example, with the algorithm described in [85], the second weak order

extension listed will have a probability of being generated that is almost four

times the probability of generating the third or fourth weak order extension.

With the algorithm described in [99], the bias is even larger in this example.

Table 3.2: The generation probability of each weak order extension of the

poset (Σ,≤Σ) with class cardinalities (3, 3, 2) with the algorithms in [85]

and [99].

Weak order extension Probability with [85] Probability with [99]

(a, b, c) (d, e, f ) (g, h) 28% 33.5%
(a, b, c) (d, e, g) ( f , h) 47% 50.5%
(a, b, d) (c, e, f ) (g, h) 12.5% 8%
(a, b, d) (c, e, g) ( f , h) 12.5% 8%

•

3.3.2 Using the lattice of ideals representation

Consider for a given poset (P,≤P) on the one hand all linear extensions of

(P,≤P), and on the other hand all weak order extensions of (P,≤P) with

given class cardinalities (c1, c2, ..., ck). Let us use the same class cardinalities

to partition any linear extension such that the first c1 elements in the linear

order belong to the first class, the next c2 elements to the second class, etc.

In this way, we associate with each linear extension exactly one weak order

extension. Note, however, that different linear extensions can map to the

same weak order extension. Clearly, as it is our aim to generate weak order

extensions uniformly at random [39], we would like to identify any weak

order extension by means of a unique linear extension.

Example 3.5. For the example poset (Ω,≤Ω) in Figure 2.2 the linear exten-

sions are shown in Figure 3.6 and the weak order extensions corresponding

with the class cardinalities (2, 2, 1) are shown in Figure 3.7. For example,

the four leftmost linear extensions in Figure 3.6 are all mapped to the left-

most weak order extension of Figure 3.7. Indeed, the four different linear

extensions that are mapped to the same weak order extension differ only in

the order of the elements residing in one and the same class. Remark that
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Figure 3.6: All linear extensions of (Ω,≤Ω).

we have described the weak order extension according to the leftmost linear

extension in Figure 3.6, i.e. the linear order where ωi < ω j if and only if

i < j for all i, j ∈ {1, 2 . . . , n}. •

3.3.2.1 Standardization of weak order extensions

We will introduce some lemmata that support a method to standardize weak

order extensions, and will help to derive a recipe for assigning to each weak

order extension a unique linear extension.

Lemma 3.3.3. If (P,≤L) is a linear extension of (P,≤P) and S ⊆ P, then

(S,≤L) is a linear extension of (S,≤P).

The problem of generating random weak order extensions with given class

cardinalities can be reduced to the random sampling from a subset of linear

extensions that uniquely characterize the weak order extensions. To come

up with a unique representation of a weak order extension, we first select

any of the linear extensions of P which we denote from here onwards as

(P,≤L). Given a weak order extension (P,≤W) of (P,≤P), each class is

labeled by its elements written in the order prescribed by ≤L.

Example 3.6. This labeling for (Ω,≤Ω) is illustrated in Figure 3.8 for the

third weak order extension from the left in Figure 3.7 and with the lexico-

graphic order fixed by the leftmost linear extension in Figure 3.6. •
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Figure 3.7: All weak order extensions of (Ω,≤Ω) with class cardinalities

(2, 2, 1).
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Figure 3.8: Weak order extension of (Ω,≤Ω) with class cardinalities (2, 2, 1)
standardized by the leftmost linear extension in Figure 3.6.
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More formally, given a fixed linear extension (P,≤L) of (P,≤P), we associate

with each weak order extension (P,≤W) a linear extension (P,≤LW) such

that (∀ x, y ∈ P)(x =W y ⇒ (x ≤LW y⇔ x ≤L y)).

Lemma 3.3.4. With the notations introduced above, for each choice of ≤L it

holds that to each weak order extension (P,≤W) of (P,≤P) there corresponds

a unique linear order ≤LW on P.

Proof : Given a fixed linear extension (P,≤L) of P and any weak order

extension (P,≤W), let us consider the equivalence classes Si induced by

≤W. According to Lemma 3.3.3 the restriction of ≤L to Si is a linear order

on Si, and this for all i ∈ {1, 2, ..., k}. These linear orders are concatenated

into a linear order ≤LW on P in agreement with the weak order ≤W. The

ordering of the classes Si being unique in ≤W implies that the constructed

linear order ≤LW is unique too.

Corollary 3.3.1. On the basis of Lemmata 2.2.3 and 3.3.4, the problem of

generating weak order extensions with given class cardinalities uniformly at

random is reduced to the problem of sampling uniformly at random from the

set of maximum-length paths of the Hasse diagram LP of the lattice of ideals

of (P,≤P) for which it holds for every pair of subsequent edges that if their

corresponding elements, say p and q, reside in the same class then necessarily

p ≤L q. In other words, all elements residing in a single class should be ordered

according to a chosen linear extension (P,≤L) of (P,≤P). ⋄

3.3.2.2 Building the data structure

By taking the Hasse diagram LP of the lattice of ideals of (P,≤P) as the

basic data structure, Corollary 3.3.1 now puts us in the position to design

an appropriate algorithm for generating random weak order extensions with

prescribed class cardinalities. Hence, we will assume that the Hasse diagram

LP of the lattice of ideals of (P,≤P) is at our disposal (see Section 2.3) and

use an approach similar to the one in Subsection 3.2.2.

The algorithm in Subsection 3.2.2 for generating a random linear extension

essentially consists of two phases: a first phase in which the vertices of LP

are assigned an integer number, and a second phase in which a random

path in the lattice is generated based on these vertex numbers. Recall that,
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according to Lemma 2.2.3, a linear extension corresponds to a path in LP

from v⊥ to v⊤. A vertex number counts the number of paths in the lattice

from that particular vertex to v⊤, and therefore the generation of a random

path uniformly from the pool of all possible paths is straightforward once

the vertex numbers are available. For the present problem, we will follow

the same line of thought and again construct a two-phase algorithm. In

the first phase integer numbers will be assigned, this time, however, not to

the vertices but to the edges of the lattice. The numbering of the edges

proceeds by taking into account the constraints expressed in Corollary 3.3.1

which restricts the pool of all possible paths to the subset of those paths

only that are in a one-to-one relationship to the weak order extensions of

the poset. The second phase of our algorithm, on the other hand, closely

resembles the one in our linear extension generating algorithm.

According to the condition mentioned in Corollary 3.3.1 it will be neces-

sary to know whether two elements of (P,≤P) corresponding to subsequent

edges in a path of the lattice of ideals will belong to the same class of the

weak order extension that is associated to that path. Hence, we introduce

an array Class of length n where the value at index h indicates the label that

should be assigned to an edge in LP at height h, where the height is defined

as the path length, i.e. the number of edges, from v⊥ to the given edge. In

fact, as it is convenient to use class labels 1, 2, . . . , k, the array Class is the

concatenation of c1 times 1, c2 times 2, etc., where (c1, c2, . . . , ck) has the

same meaning as in the previous section. Furthermore, we will denote the

element associated to an edge e as Label(e).

We will store for each edge e ∈ ELP
the following data:

• Paths(e), the number of valid paths from the edge e to v⊤;

• Visited(e), a boolean flag indicating whether edge e has already been

visited by the algorithm;

• Label(e), the label of the edge e, i.e. the element of (P,≤P) corre-

sponding to the edge e.

The first phase of the weak order extension generating algorithm takes care

of assigning the numbers to all the edges of the lattice of ideals and is listed

in Algorithm 3.4. Remark that we assume that for each edge e ∈ ELP
, a list

ImSucc(e) of all successor edges in LP is at our disposal.
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Algorithm 3.4 Extending the Hasse diagram LP of the lattice of ideals of a

poset (P,≤P) with counting information and returning the number of weak

order extensions
1: initialize an array Visited setting its components to false

2: n← 0
3: for each e′ ∈ ImSucc(e⊥) do

4: n← n + Assign(e′ , 0)
5: return n

function Assign(Edge e, Integer h)

1: Visited(e)← true

2: m← 0
3: for each e′ ∈ ImSucc(e) do

4: if ImSucc(e′) = ∅ then

5: Paths(e′)← 1
6: if Class(h) 6= Class(h + 1) or Label(e) ≤L Label(e′) then

7: m← m + 1
8: else

9: if not Visited(e′) then

10: if Class(h) 6= Class(h + 1) or Label(e) ≤L Label(e′) then

11: m← m + Assign(e′ , h + 1)
12: else

13: Assign(e′, h + 1)
14: else

15: if Class(h) 6= Class(h + 1) or Label(e) ≤L Label(e′) then

16: m← m + Paths(e′)
17: Paths(e)← m
18: return m
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{a, b, c}
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{a, b, c, d} {a, b, c, e}
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{a, b, c, d, e, f, g, h}

{a, b, c, d, e, f}

{a, b, c, d, e}

Figure 3.9: The Hasse diagram LΣ of the lattice of ideals of (Σ,≤Σ) extended

with the counting information obtained by Algorithm 3.4.

Let us define a dummy edge e⊥ between a dummy vertex v0 and v⊥ where

v⊥ = Parent(v0). Furthermore define

Paths(e⊥) = ∑
e∈ImSucc(e⊥)

Paths(e).

After running Algorithm 3.4, the total number of weak order extensions with

the given class cardinality distribution is returned. Moreover, to every edge

e ∈ ELP
the number of different paths in the lattice of ideals from e to v⊤

satisfying the condition of Corollary 3.3.1 is available as Paths(e).

Example 3.7. Let us illustrate the numbering procedure on the example

poset (Σ,≤Σ) shown in Figure 3.4. All of its weak order extensions that are

consistent with the class cardinalities (3, 3, 2) and consistent with ≤L, the

lexicographic order, are depicted in Figure 3.5. Algorithm 3.4 establishes

the numbering of LΣ as shown on Figure 3.9. Dotted lines indicate the

boundaries between classes. •
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3.3.2.3 Generating a data set uniformly at random

The numbering procedure from the previous section will now substantially

reduce the effort required to sample uniformly at random from the weak

order extensions with given class cardinalities, actually reducing the prob-

lem to uniform sampling at random from a set of alternatives with given

probabilities. Indeed, the random generation of a weak order is equivalent

to the edgewise generation of a path from v⊥ to v⊤ in the Hasse diagram

LT of the lattice of ideals of (P,≤P) in the following way. Hypothesize the

path is built up till height j and the last edge selected is e. For any possi-

ble successor edge e′ it should either hold that Class( j) 6= Class( j + 1) or

Label(e) ≤L Label(e′). Edge e′ is now selected with probability equal to

the ratio between the numbers attached to e′ and e. This is made explicit

in Algorithm 3.5 listed hereafter. The algorithm generates a random weak

order extension with prescribed class cardinalities.

Algorithm 3.5 Generating one weak order extension of a poset (P,≤P) on

the basis of the data structure generated by Algorithm 3.4

1: σ ← ()
2: e← e⊥
3: h← 1
4: while ImSucc(e) 6= ∅ do

5: t← Paths(e)
6: c← 0
7: r← 1 + randLong() mod t
8: for each e′ ∈ ImSucc(e) do

9: if Class(h) 6= Class(h + 1) or Label(e) ≤L Label(e′) then

10: c← c + Paths(e′)
11: if r ≤ c then

12: σ ← σ + Label(e′)
13: e← e′

14: h ← h + 1
15: break for

16: return σ

Example 3.8. In Figure 3.10 the situation is shown in which only part of

a random path has been generated so far. It is clear that, once arrived in

the ideal {a, b, c}, only one next edge, i.e. the edge leading to {a, b, c, d},
can be chosen. Indeed, a probability 0 will be attributed to the edge leading



3.3 Generating monotone data sets 53

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

{a, b, c, d}

{a, b, c, d, e}

{a, b, c, d, e, f}

{a, b, c, d, e, f, g, h}

{a, b, c, d, e, f, g}

{a, b, c, d, e, g}

{a, b, c, e, g}

{a, b, c, e}

{a, b, c}

{a}

{∅}

2

2

0

0

0

12

11

1 1

1

{a, b}

Figure 3.10: The extended Hasse diagram LΣ of the lattice of ideals of

(Σ,≤Σ) where only part of the path has been generated.

to {a, b, c, e} while a probability 1 will be attributed to the edge leading to

{a, b, c, d}. •

By careful observation, it is immediately clear that the time complexity of

the Algorithm 3.4 is O(w2(P) · i(P)). The algorithm visits every edge in

LP once, and for each edge it visits each of its successors. Since the num-

ber of edges is O(w(P) · i(P)) and the number of successors is bounded

by O(w(P)), the stated complexity follows. It should again be noted that

i(P) could be exponential in the size of the poset, as explained in Para-

graph 3.2.2.3.

Finally, we also want to point out the difference in time complexity between

the present algorithm generating weak order extensions and the algorithm

generating linear extensions established in Subsection 3.2.2. Using the

present algorithm to generate a first random linear extension would require

O(w2(P) · i(P)) time, while using Algorithm 3.2 only requiresO(w(P) · i(P))
time, i.e. a factor w(P) less. The reason for this difference in time complexity

lies in the difference of the numbering procedures. In general, when con-

sidering weak order extensions, not all successor edges of an edge in LP are
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acceptable as successors in the path. Moreover, two edges having the same

set of successors in the lattice do not necessarily accept the same edges as

successors. These facts force to number edges. Specializing to the particular

case of linear extensions, all edges in LP having the same successors accept

all of these as successors in a linear order. This constant behavior allows to

synthesize the information of successor edges into a single node number.

3.3.3 Approximate sampling

Since the time complexity of Algorithm 3.4 remains exponential in the num-

ber of elements of the object poset (O,≤O), as argued in the previous

section, this approach becomes infeasible for large posets, in particular

for posets with a high number of incomparable elements. Therefore, an

approximative approach is justified [41]. A lot of research has already

been done on the almost uniform generation of linear extensions, and so-

called rapidly mixing Markov Chain Monte Carlo methods have been de-

veloped [25, 52, 89]. Such an algorithm is discussed in Paragraph 3.2.3.2.

However, to our knowledge, no algorithms have yet been suggested that al-

low for the almost uniform generation of weak order extensions with given

class cardinalities (c1, c2, . . . , ck).

Remark 3.3.5. Since, as described in the previous section, any weak order

extension can be characterized by means of a unique linear extension once

an initial linear order on the elements is fixed, one could suggest to use one

of the algorithms to (almost) uniformly generate a linear extension. Each

time a linear extension is generated that does not correspond to the canon-

ical representation of a weak order extension, it is skipped and a next one

is generated. Although with this approach we are guaranteed of generat-

ing weak order extensions (almost) uniformly, when the number of weak

order extensions is very small compared to the number of linear extensions

(which, in practice, often is the case) this approach is clearly infeasible.

3.3.3.1 The algorithm

Define g(l) = ∑l
i=1 ci for l ≤ k, let E(P) as usually denote the set of lin-

ear extensions of (P,≤P) and let n be the cardinality of P. Furthermore,

for a linear extension π let πi denote the element at position i. First, we
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generate an arbitrary linear extension σ ∈ E(P). Initially, set X0 = σ .

Now we define a Markov Chain M f on E(P) as follows. Starting from a

state Xt ∈ E(P), the next state Xt+1 is determined by the following experi-

ment:

1: π ← Xt

2: partition the linear extension π in subsets S1, . . . , Sk such that

π1, . . . , πg(1) ∈ S1 and πg(i−1)+1, . . . , πg(i) ∈ Si for all i = 2, . . . , k
3: choose p ∈ {1, ..., k− 1} and r ∈ {0, 1} uniformly at random

4: if r = 0 then

5: Xt+1 ← Xt

6: else

7: choose πx ∈ Sp and πy ∈ Sp+1 uniformly at random

8: move πx from Sp to Sp+1, and move πy from Sp+1 to Sp

9: sort the elements of both Sp and Sp+1 in π according to σ

10: if π 6∈ E(P) then

11: Xt+1 ← Xt

12: else

13: Xt+1 ← π

In order to show that M f has a limiting stationary distribution it suffices

to prove that M f is ergodic. We will show next that each state is reach-

able from an arbitrary state (not necessarily in one move) with a non-zero

probability. Note that, as self-transitions are possible, the chainM f is then

guaranteed to be aperiodic.

Theorem 3.3.6. The chainM f is ergodic.

Proof : It is generally known that in the special case when ci = 1 for all

i ∈ {1, ..., k}, i.e. when precisely the linear extensions of (P,≤P) are gener-

ated, M f is an ergodic Markov chain [25]. In a directed graph, where we

represent all states, i.e. all linear extensions, as vertices and all transitions

as directed edges, this is equivalent to requiring a directed path between

any two vertices. By no longer requiring the class cardinalities to be 1, and

by sorting the elements of both Sp and Sp+1 in π according to the initially

chosen linear extension σ in each step, it is possible that groups of linear

extensions are aggregated into a single weak order extension. In our di-

rected graph representation, this means that groups of vertices might be

substituted by a new vertex. Since in each step, πx ∈ Sp and πy ∈ Sp+1 are

chosen uniformly at random, the directed edges between two new vertices
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will be the union of the edges between vertices of the corresponding groups.

Clearly, since the union of the edges is taken, a directed path between any

two vertices remains present, proving the ergodicity ofM f .

Finally, it is easy to see that M f is a symmetric chain, since πx ∈ Sp and

πy ∈ Sp+1 are chosen uniformly in each step and the cardinalities of Sp and

Sp+1 remain unchanged. Therefore, the limiting stationary distribution of

M f is the uniform distribution.

Remark 3.3.7. The random selection of p in line 3 of the sampling algorithm

is done uniformly. Theoretically, other distributions that attach a non-zero

probability to each choice of p are possible as they do not compromise con-

vergence towards uniform sampling of the set of weak order extensions.

However, it is obvious that the rate of convergence can be influenced by this

choice. In the extreme case where the number of classes equals n, it has

been shown [25] that a well-chosen concave probability distribution func-

tion can improve theoretical upper bounds on what is called the mixing time

of the Markov chain, which is a measure for the rate of convergence. As a

heuristic, one could use such a probability distribution function. However,

most probably due to the limited size of the posets we can consider in order

to be still able to compute the number of weak order extensions exactly, we

could not observe any clear improvement in performance.

3.3.3.2 Experiments

In this section some experiments are presented in order to illustrate the

performance of the sampling algorithm in practice, and more precisely, to

get an idea of the number of chain transitions inM f necessary to obtain an

acceptable precision. First, we draw 15 attribute vectors (n = 15) uniformly

at random from L1× L2× L3× L4, where Li = {1, . . . , 10} for i ∈ {1, . . . , 4}.
For the set of labels {1, 2, 3}, three different distributions are chosen: (a)

(5, 5, 5), (b) (4, 7, 4) and (c) (3, 5, 7). Next, for each of the label distributions

the exact number of weak order extensions is computed (see Table 3.3)

with the algorithm using the lattice of ideals representation described in

Subsection 3.3.2. Note that the number of elements n has been chosen such

that this remains feasible.
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(a) (b) (c)

label distribution (5, 5, 5) (4, 7, 4) (3, 5, 7)
weak order extensions 2.497 1.392 994

Table 3.3: The exact number of weak order extensions for label distributions

(a), (b) and (c).

Experiment 1 In the first experiment the sampling algorithm is used to

draw s samples from the set of weak order extensions with t chain transi-

tions for each sample, for different values of s and t. First, we verify that

all weak order extensions are generated a sufficient number of times (> 5).

For this reason the results with s = 103n are omitted. Second, we applied

a χ2-test for each parameter combination to quantify the uniformity of the

sampling. For each of the three label distributions (a), (b) and (c) this

experiment is repeated 10 times, and the average p-values are shown in

Tables 3.4–3.6. As can be seen from these tables, in this example an accept-

able result is obtained when at least n2 chain transitions are used for each

weak order extension. Note that no significant differences for the three label

distributions can be observed in this experiment.

s\t n n2 n3 n4

104n 0, 00024 0, 58112 0, 57797 0, 56399
105n 0, 00001 0, 64788 0, 34950 0, 57956

Table 3.4: The p-value for each test on the uniform distribution with t chain

transitions and s samples with label distribution (a).

s\t n n2 n3 n4

104n 0, 00006 0, 51077 0, 67181 0, 68937
105n 0, 00010 0, 64519 0, 52575 0, 50538

Table 3.5: The p-value for each test on the uniform distribution with t chain

transitions and s samples with label distribution (b).

Experiment 2 Let us denote by Prob(x < y) the probability that the label

assigned to x is lower than the label assigned to y in a random weak order
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s\t n n2 n3 n4

104n 0, 00006 0, 27871 0, 74072 0, 63859
105n 0, 00006 0, 47579 0, 58410 0, 49931

Table 3.6: The p-value for each test on the uniform distribution with t chain

transitions and s samples with label distribution (c).

extension. Analogously, we write Prob(x = y) for the probability that the

same label is assigned to both x and y. We define the A2 → [0, 1] relation

Q by Q(x, y) = Prob(x < y) + 1
2Prob(x = y). It is a reciprocal relation as

it holds that Q(x, y) + Q(y, x) = 1 [38, 48, 49]. Reciprocal relations will

be covered in more depth in Chapter 5. In the case of linear extensions,

the relation Q represents the mutual rank probabilities [43], which are dis-

cussed in the next chapter in Section 4.3. Using our sampling algorithm, we

approximate Q(x, y), denoted as Q̂(x, y), by sampling (almost) uniformly

from the set of weak order extensions. We use

δ(Q, Q̂) =
1

n2 ∑
(x,y)∈A2

|Q(x, y)− Q̂(x, y)|

as a measure for the approximation error. In Table 3.7 the approximation er-

ror δ(Q, Q̂) is shown for label distribution (a). Clearly, the more transitions

and the more weak order extensions generated, the better the approxima-

tion is.

s\t n n2 n3 n4

103n 0, 00378 0, 00140 0, 00138 0, 00127
104n 0, 00096 0, 00055 0, 00035 0, 00033
105n 0, 00020 0, 00010 0, 00017 0, 00011

Table 3.7: The approximation error δ(Q, Q̂) for t chain transitions and s
samples.



4 Ranking the elements

of a poset

4.1 Introduction

As we discussed in the informal introduction in Chapter 1 of this work, in

many applications one would like to compare different objects and induce

a ranking of them on the basis of some common criteria. Objects could be,

for example, geographic regions or chemicals, criteria could be the degree

of cadmium pollution of a region or the melting point of a chemical. In each

case, an object will have some score for each criterion. One could, for exam-

ple, consider the quantification of the pollution of each geographical region

on the basis of different chemicals. Some region x might be characterized

by a higher pollution of lead than another region y. At the same time, how-

ever, it might be the case that the same region x has a lower pollution of

cadmium than region y. In this situation, according to these two criteria, it

is impossible to compare region x to region y as long as no common scale

among the criteria is fixed. Precisely the problem of finding such a common

scale among the criteria of concern is surrounded with controversy. Instead

of insisting on the construction of such a common scale, and thus the com-

parability of each object, one could instead opt to allow for incomparability

between two objects. This observation is a motivation for using the theory

of partially ordered sets for ranking objects in a multicriteria setting.

Partially ordered sets and their visualization by Hasse diagrams can be of
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great help for a “data-driven” evaluation. One can find answers to questions

such as: (i) what is the position of any object of interest; (ii) what is the rela-

tion of that object to the other ones (in terms of comparabilities or incompa-

rabilities); (iii) why does one find an incomparability (see e.g. the concept

of antagonistic indicators [109, 110]). However, if a decision is to be made,

for example which region needs most urgently an improvement with respect

to its pollution status, then the incomparabilities are often considered as an

obstacle in finding such a priority list. Conventional approaches of Decision

Support Tools like MAUT [108] or PROMETHEE [11], which can be consid-

ered as attempts to find a common scale (as mentioned above), are based on

additional knowledge in modeling the preferences, for example by weights.

An alternative approach consists of linearizing the partially ordered set,

which requires the selection of a linear extension. Indeed, typically the

decision maker who wants to rank the elements of a poset needs to select a

single linear extension out of a manifold of linear extensions. Algorithms for

generating a linear extension uniformly at random have been discussed ex-

tensively in the previous chapter. The choice of the decision maker should,

however, not be made arbitrarily. If, for example, a particular element has

a low rank in most of the linear extensions, linear extensions in which that

element occasionally appears at a higher rank should be discarded from

the option list. The question thus arises which linear extension to select,

if this makes sense at all. A popular approach [22] is to consider the lin-

ear extension with possible ties, i.e. the weak order extension, obtained by

ranking the objects on the basis of their average ranks. These average ranks

are based on the set of all linear extensions. However, as already pointed

out in the previous chapter, straightforward counting or enumeration of all

linear extensions becomes computationally intractable for partially ordered

sets containing 15 objects or more. In Section 4.2 we present algorithms

for computing these (average) rank probabilities, exactly as well as approx-

imately, that aim to overcome this problem.

Instead of insisting on obtaining a ranking of all objects, in some cases know-

ing a probability that an object x is ranked higher than an object y can be

sufficient or even preferable. The mutual rank probability of two elements

x and y is used as an objective quantification for such a probability, since

it expresses the probability that x is ranked higher than y in a linear exten-

sion sampled uniformly at random. A probability higher than 1/2 suggests

that it would be preferable to rank object x before object y. The higher this

probability, the stronger the degree of preference of x over y. Algorithms
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for deriving these mutual rank probabilities are described in Section 4.3.

We finally conclude this chapter with a real-world application of herb layer

pollution in Baden-Württemberg in Germany to illustrate the application of

the algorithms introduced in this chapter in order to rank partially ordered

sets of objects.

4.2 Rank probabilities

Definition 4.2.1. The rank probability Prob(rank(x) = i) of an element x of

a poset (P,≤P), with 1 ≤ i ≤ n where n is the cardinality of P, is defined as

the probability that a linear extension (P,≤L) of (P,≤P) sampled uniformly

at random from E(P) has x >L y for exactly i− 1 elements y ∈ P \{x} and

x <L y for all other elements y ∈ P \{x}. ⋄

Stated differently, the rank probability Prob(rank(x) = i) is the fraction of

linear extensions in which element x ∈ P has rank i. Note that we say that

an element has rank i in a linear extension if i− 1 elements are smaller in

that linear extension.

Definition 4.2.2. The average rank ρ(x) of an element x ∈ P is defined as

the expected value of the rank of x, i.e.

ρ(x) =
n

∑
i=1

i · Prob(rank(x) = i).

⋄

Since E(P) is the set of all rankings compatible with the underlying poset

(P,≤P), the average rank of an element gives a clear indication of how low

or how high the element on average is ranked in all linear extensions. All

rankings considered equally probable, for a decision maker a low average

rank points to an increased probability that the element should receive a low

rank, while a high average rank gives evidence the element should receive a

high rank. Therefore, in some sense the average rank reflects a consensus.

Example 4.1. In Table 4.1 the rank probabilities Prob(rank(x) = i) and

average ranks ρ(x) of the elements x ∈ Ω of the example poset (Ω,≤Ω)
from Figure 2.2 are shown. One can e.g. deduce that in 5 out of 9 cases,
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element ω5 receives rank 5, while it is never ranked on position 1 or 2.

Remark furthermore that the average ranks of element ω4 and ω5 are close

to each other, indicating that they behave quite similarly according to this

measure, in contrast to e.g. the much wider gap between the elements ω1

and ω5. •

x\i 1 2 3 4 5 ρ

ω1 2/3 1/3 0 0 0 4/3 ≈ 1, 333
ω2 1/3 1/3 2/9 1/9 0 19/9 ≈ 2, 111
ω3 0 1/3 4/9 2/9 0 26/9 ≈ 2, 889
ω4 0 0 2/9 1/3 4/9 38/9 ≈ 4, 222
ω5 0 0 1/9 1/3 5/9 40/9 ≈ 4, 444

Table 4.1: The rank probabilities Prob(rank(x) = i) and average ranks ρ(x)
of the elements x of (Ω,≤Ω).

Note that it is possible for two or more elements of a poset to have an iden-

tical average rank. Moreover, the order in which two comparable elements

occur in a poset is preserved in the average ranks of the elements. There-

fore, if the elements are ranked according to their average rank, one obtains

a linear order on equivalence classes induced by equal average ranks, and

thus a weak order extension of the poset.

Example 4.2. In Example 4.1 the average ranks ρ(x) of all x ∈ Ω are unique

and induce a linear extension of (Ω,≤Ω), i.e. (ω1,ω2,ω3,ω4,ω5). •

4.2.1 Exact computation

First we describe how the exact distribution of the rank probabilities of a

poset (P,≤P) can be obtained [43]. A straightforward approach simply gen-

erates each linear extension of (P,≤P) and counts for each element x ∈ P
the number of linear extensions in which x has rank i ∈ {1, ..., n}. As a next

step these numbers are divided by the total number of linear extensions

in order to obtain probabilities. The average rank ρ(x) of each element

x ∈ P is then easily computed. For an overview of algorithms enumerating

all linear extensions, we refer to Paragraph 3.2.1.1. An advantage of this

approach clearly is its simplicity and minimal use of memory; its total mem-

ory requirement is only O(n2). A huge drawback, however, is the fact that
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all linear extensions need to be generated. As already described in Para-

graph 3.2.2.3, for larger posets this approach becomes quickly infeasible

due to the exponential behavior of the number of linear extensions.

We observe that counting the number of linear extensions of a poset (P,≤P)
with a specific element x ∈ P on position i amounts to the problem of

counting the number of paths in the Hasse diagram LP of the lattice of

ideals of (P,≤P) containing the edges labelled x at height i, a problem that

is easily solved by careful counting. The rank probability Prob(rank(x) = i)
then equals the fraction of the total number of paths, i.e. the number of

linear extensions, containing an edge labelled x at height i. Recall that the

height of an edge is defined as the path length from v⊥ to this edge.

In order to compute for each edge the number of paths containing that edge,

we suggest the following strategy. In Algorithm 3.2, for each vertex v ∈ VLP

the number of paths from v⊤ to v is computed and stored as LEF(v). We

can now apply a similar technique and compute the number of paths from

v to v⊥ and store this number as LEI(v). The number of paths containing

an edge e ∈ ELP
now equals the product of LEI(vt) and LEF(vh), where vh

is the head vertex of e and vt its tail vertex.

Essentially, this means we will extend the data structure LP and store for

each vertex v ∈ VLP
:

• LEF(v), the number of linear extensions of the filter P \ I f (v) of P
where I f (v) yields the ideal corresponding to vertex v;

• LEI(v), the number of linear extensions of the ideal I f (v) of P;

• Visited(v), a boolean flag indicating whether vertex v has already

been visited.

The counting procedure is carried out in Algorithm 4.1. Remark that the

algorithm consists of three procedures:

• AssignTopDown: the procedure used in Algorithm 3.2 to count the

number of paths from v⊤ to each vertex v ∈ VLP
.

• AssignBottomUp: LP is traversed in a breadth-first way such that the

number of paths from v⊥ to each vertex v ∈ VLP
is computed.

• ComputeRankProb: the actual rank probabilities are computed on the



64 4 Ranking the elements of a poset

basis of the counting information.

Remark that the variable L in line 3 of the procedure AssignBottomUp rep-

resents an ordered list of vertices. The notation L + v′ adds a vertex v′ to

the end of the list L, and L[0] in line 5 refers to the first vertex of L. In the

procedure ComputeRankProb the two-dimensional array rp[x, h] on line 9

equals Prob(rank(x) = h) for x ∈ P and h ∈ {1, 2, . . . , n}.

Example 4.3. The product of LEI(vt) and LEF(vh) for each edge (vt , vh) ∈
ELP

is shown in Figure 4.1. •
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Figure 4.1: The Hasse diagram LΩ of the lattice of ideals of (Ω,≤Ω) with

both path numbers assigned.

The above discussion implies that all rank probability distributions can be

obtained by this two-pass technique in time linear in the number of edges

in LP, leading to a time complexity of O(i(P) · w(P)).

4.2.2 Approximate computation

Although the algorithm presented in the previous section will in practice

perform much better than the approach consisting of enumerating all linear

extensions, it still has a complexity that is exponential in the number of el-
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Algorithm 4.1 Computing the rank probability distribution for each element

x in (P,≤P)

1: initialize an array rp setting its components to 0
2: build the Hasse diagram LP of the lattice of ideals of (P,≤P)
3: initialize an array Visited setting its components to false

4: e←AssignTopDown(v⊥)
5: initialize an array Visited setting its components to false

6: AssignBottomUp()

7: initialize an array Visited setting its components to false

8: ComputeRankProb(v⊥, 0)
9: return rp

procedure AssignTopDown(Vertex v)

1: Visited(v)←true

2: e← 0
3: for each vertex v′ ∈ ImSucc(v) do

4: if v′ = v⊤ then

5: e← e + 1
6: else

7: if not Visited(v′) then

8: e← e + AssignTopDown(v′)
9: else

10: e← e + LEF(v′)
11: LEF(v)← e
12: return e

procedure AssignBottomUp()

1: LEI(v⊥)← 1
2: for each v′ ∈ ImSucc(v⊥) do

3: L← L + v′

4: while L not empty do

5: v← L[0]
6: remove L[0]
7: Visited(v)← true

8: for each v′ ∈ ImSucc(v) do

9: LEI(v′)← LEI(v′) + LEI(v)
10: if not Visited(v′) then

11: L← L + v′
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Algorithm 4.1 (continued) Computing the rank probability distribution

for each element x in (P,≤P)

procedure ComputeRankProb(Vertex v, Integer h)

1: Visited(v)← true
2: for each v′ ∈ ImSucc(v) do

3: x← I f (v
′) \ I f (v)

4: rp[x, h] ← rp[x, h] + (LEI(v)× LEF(v′)) /e
5: if v′ 6= v⊤ and not Visited(v′) then

6: ComputeRankProb(v′, h + 1)

ements. Therefore, since no better algorithms are known, one has to resort

to approximate algorithms for larger posets. In some cases a good approxi-

mation of the rank probabilities and average ranks can be acceptable.

Brüggemann et al. [23] suggest a simple formula to calculate an approxima-

tion of the average rank of an element x ∈ P by using a so-called local partial

order model. Their formula ρ̂(x) = (S(x) + 1) · (N + 1)/(N + 1 − U(x))
uses the number S(x) of elements larger than x in P, the total number N of

objects of P and the number U(x) of objects incomparable with x in P. The

main advantage of this approach is clearly its simplicity and the fact that it

has a time complexity that is linear in the number of elements of P. They

verify the quality of this approach by comparing the approximations with

the exact average ranks for small example posets. Formulas for estimating

the rank probabilities are also suggested. However, as it is easy to construct

posets on which the approximations perform poorly, in some contexts they

are of limited use.

Lerche et al. [83] and [84] use the approach described in Paragraph 3.2.3.1.

It is used to obtain pseudo-random samples from the set of linear extensions

E(P) to estimate the rank distributions and average ranks of (P,≤P).

Furthermore, one could use the Markov chain Monte Carlo algorithm pre-

sented in Paragraph 3.2.3.2 to draw samples from E(P) (almost) uniformly

at random. These samples can then be used to estimate the rank probabili-

ties.
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4.3 Mutual rank probabilities

Definition 4.3.1. The mutual rank probability Prob(x > y) of two elements

x, y ∈ P for a poset (P,≤P) is defined as the probability that for a linear

extension (P,≤L) of a poset (P,≤P) sampled uniformly at random from

E(P) it holds that x >L y. ⋄

Stated differently, the mutual rank probability Prob(x > y) is the fraction

of linear extensions in which element x is ranked higher than element y.

The number Prob(x > y) can be seen as a degree of preference of ranking

object x higher than object y. One can say that, the closer Prob(x > y) to

1/2, the more indifference there is between ranking x above y or y above

x, while the closer Prob(x > y) to 1, the higher the degree of preference of

ranking x above y.

Example 4.4. In Table 4.2 the mutual rank probabilities Prob(x > y) for

each pair of elements x, y of (Ω,≤Ω) are shown. One can e.g. see that there

is a high degree of preference of ranking ω5 above ω2, while ω4 and ω5 are

rather indifferent. •
x\y ω1 ω2 ω3 ω4 ω5

ω1 0 1/3 0 0 0
ω2 2/3 0 1/3 0 1/9
ω3 1 2/3 0 2/9 0
ω4 1 1 7/9 0 4/9
ω5 1 8/9 1 5/9 0

Table 4.2: The mutual rank probabilities Prob(x > y) for each pair of ele-

ments x, y of (Ω,≤Ω).

4.3.1 Exact computation

In order to obtain the exact mutual rank probabilities Prob(x > y) for all

pairs of elements x, y of a poset (P,≤P) one can again use one of the enu-

meration algorithms for linear extensions of (P,≤P) and count the number

of linear extensions in which x is ranked higher than y. Also here, while it
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has the advantage of needing only a limited amount of memory, it quickly

becomes infeasible for larger posets.

Alternatively, the lattice of ideals representation of (P,≤P) can be used to

compute the mutual rank probabilities. We construct the lattice of ideals as

described in Section 2.3 and we use Algorithm 4.1 from the previous section

to obtain the number of paths from the source to the sink containing each

edge of LP. If we add all numbers associated to edges labelled y below

an edge labelled x, we obtain the number of linear extensions for which

it holds that x is ranked higher than y. Dividing this number by the total

number of linear extensions gives the mutual rank probability Prob(x > y).
Of course, we insist on obtaining the mutual rank probabilities Prob(x > y)
for all x, y ∈ P in a single pass, which will constitute a major gain in time

compared to the standard approach of enumerating all linear extensions

and calculating for every couple x, y ∈ P the number of linear extensions

obeying the condition x > y.

We will propose an algorithm that gradually builds up a two-dimensional ta-

ble mrp initialized with zeroes, which will after execution of the algorithm

contain the mutual rank probabilities Prob(x > y) for all x, y ∈ P. The

main idea is to traverse the lattice of ideals recursively in a depth-first man-

ner, passing in each recursive call an array of boolean flags VisitedElement
indicating which elements from P have already been visited in the traversal.

For each vertex v ∈ VLP
the following information will be stored:

• LEF(v), the number of linear extensions of the filter P \ I f (v) of P
where I f (v) yields the ideal corresponding to vertex v;

• LEI(v), the number of linear extensions of the ideal I f (v) of P;

• Visited(v), a boolean flag indicating whether vertex v has already

been visited by the algorithm.

and for each element x ∈ P, we store:

• VisitedElement(x), a boolean flag indicating whether element x has

already been visited in the traversal.

The traversal of the Hasse diagram LP is shown in Algorithm 4.2. Note that

the procedures AssignTopDown and AssignBottomUp in lines 4 and 6 can
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be found in Algorithm 4.1.

Algorithm 4.2 Computing the mutual rank probability for each couple

(x, y) ∈ P2 for (P,≤P)

1: initialize an array mrp setting its components to 0
2: build the Hasse diagram LP of the lattice of ideals (I(P),⊆) of (P,≤P)
3: initialize an array Visited setting its components to false

4: e←AssignTopDown(v⊥)
5: initialize an array Visited setting its components to false

6: AssignBottomUp()

7: initialize an array Visited setting its components to false

8: initialize an array VisitedElement setting its components to false

9: ComputeMutualRankProb(v⊥, 1)
10: return mrp

procedure ComputeMutualRankProb(Vertex v, Integer h)

1: Visited(v)← true

2: for each v′ ∈ ImSucc(v) do

3: for each y ∈ P do

4: if VisitedElement(y) then

5: x← I f (v
′) \ I f (v)

6: mrp[x, y] ← mrp[x, y] + (LEI(v)× LEF(v′))/e
7: if v′ 6= v⊤ and not Visited(v′) then

8: VisitedElement(I f (v
′) \ I f (v))← true

9: ComputeMutualRankProb(v′, h + 1)
10: VisitedElement(I f (v

′) \ I f (v))← false

After the depth-first traversal the table mrp[x, y] will precisely contain the

mutual rank probabilities Prob(x > y) for all x, y ∈ P in line 10. It is easy

to see that the required time complexity is bounded by O(i(P) · n · w(P))
since for every edge of the lattice of ideals a loop over all the elements in P
will be executed in line 3 of the procedure ComputeMutualRankProb.

4.3.2 Approximate computation

One could of course use the strategy from Subsection 4.2.2 and sample (al-

most) uniformly from the set of linear extensions to derive approximations
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for the mutual rank probabilities. Alternatively, Brüggemann et al. [20] have

developed a formula to approximate the mutual rank probabilities. They de-

fine Q(x, y) = (Nu(x, y) + 1)/(Nd(x, y) + 1), where Nu(x, y) is the number

of objects above x which are not at the same time above y, and Nd(x, y)
is the number of objects under x which are not at the same time under

y. The probability that x is ranked higher than y is then approximated as

Q(y, x)/(1 + Q(x, y)). A similar attempt to approximate mutual rank prob-

abilities is described by Lerche et al. [84].

4.3.3 Relation between the average ranks and mutual rank prob-
abilities

In Theorem 4.3.2 an interesting relation between the average ranks and

mutual rank probabilities is pointed out. In order to obtain the average rank

ρ(x) of an element x of (P,≤P) it is sufficient to compute the mutual rank

probabilities Prob(x > y) for all y ∈ P. As a result, it is not necessary to

compute all rank probabilities Prob(rank(x) = i) for i = 1, . . . , n to obtain

the average rank ρ(x) of x.

Theorem 4.3.2. For a poset (P,≤P) where P = {p1, p2, . . . , pn} and pl ∈ P,

the following relation between the average ranks and the mutual rank proba-

bilities holds:

ρ(pl) =
n

∑
i=1

i · Prob(rank(pl) = i) = 1 +
n

∑
j=1, p j 6=pl

Prob(pl > p j).

Proof : We will prove a slightly more general equality. Let A be any list

of m permutations of n symbols p1, p2, . . . , pn. Denote by n
p j

i the number of

times symbol p j occurs at position i in A, and by np j>pi the number of times

symbol p j occurs after symbol pi in A.

We want to prove that for any symbol pl ∈ {p1, p2, . . . , pn} it holds that

n

∑
i=1

i · npl
i = m +

n

∑
j=1, p j 6=pl

npl>p j
. (4.1)

Dividing both sides by m, the left-hand side denotes the average position of

symbol pl in A, whereas the right-hand side represents the sum of the ele-



4.3 Mutual rank probabilities 71

ments in column l of the matrix B with elements bi j = Prob(p j > pi|A) for

all i, j ∈ {1, 2, . . . , k} where i 6= j, and with bii = 1 for all i ∈ {1, 2, . . . , n}.

The proof goes by induction. First let n = 2 and denote the 2 symbols as

p1 and p2. Suppose A contains m1 permutations (p1, p2) and m2 = m−m1

permutations (p2, p1). We have n
p1
1 = n

p2
2 = m1, n

p1
2 = n

p2
1 = m2, np2>p1 =

m1, np1>p2 = m2 and m1 + m2 = m. Whence it holds that

2

∑
i=1

i · np1
i = n

p1
1 + 2 · np1

2 = m1 + 2 ·m2 = m + m2

2

∑
i=1

i · np2
i = n

p2
1 + 2 · np2

2 = m2 + 2 ·m1 = m + m1

yielding 2

∑
i=1

i · np1
i = m + np1>p2

and
2

∑
i=1

i · np2
i = m + np2>p1 .

Therefore expression (4.1) is satisfied for n = 2.

Now suppose (4.1) is satisfied for some n ≥ 2. We will now prove that

this is also satisfied for n + 1. Let A be the given set of m permutations

of n + 1 symbols. Denote any of these symbols as x and the remaining

symbols as p1, p2, . . . , pn. With each permutation in A, define a new per-

mutation of n symbols p1, p2, . . . , pn by leaving out symbol x. Denote by

A′ the list of m permutations obtained in this way. Let us take any symbol

pl ∈ {p1, p2, . . . , pn}. Denote the number of times pl occurs at position i in

A′ as n′ pli and the number of times pl occurs after p j in A′ as n′pl>p j
. In A′,

equality (4.1) holds:

n

∑
i=1

i · n′ pli = m +
n

∑
j=1, p j 6=pl

n′pl>p j

We add to the permutations of A′ the symbol x such as to retrieve the per-

mutations of A. Suppose that pl is at position i in a permutation of A′, and

pl comes after x in the corresponding permutation of A, then we have one
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permutation less in A with pl at position i and one permutation more with

pl at position i + 1. Hence, it follows that

n+1

∑
i=1

i · npl
i =

n

∑
i=1

i · n′ pli + npl>x.

Moreover, n′pl>p j
= npl>p j

for all p j 6= pl and p j 6= x. Hence,

n+1

∑
i=1

i · npl
i =

n

∑
i=1

i · n′ pli + npl>x = m +
n

∑
j=1,p j 6=pl

npl>p j
+ npl>x.

Since x and pl are any two symbols from the n+ 1 symbols, expression (4.1)

is valid for n + 1.

4.4 Real-world application

The environmental protection agency of Baden–Württemberg (Germany)

has established a general monitoring system of bioindicators w.r.t. the accu-

mulation of polluting chemical elements in different targets such as the herb

layer, moss layer and leaves. In order to obtain a geographical overview

[93], the state of Baden–Württemberg has been divided into 60 approxi-

mately homogeneous regions (Figure 4.2), and each region is represented

by one measuring site where various chemical elements are determined as

concentrations in the targets. As an illustration, we will use the pollution

data of the herb layer in Table 4.3 to establish an objective ranking of the

regions according to their pollution. Remark that for one region (region 55),

no data is available, such that only 59 regions are to be ranked.

In order to rank the regions, we use three different approaches [40]. First,

we compute the exact rank probabilities using the lattice of ideals represen-

tation (see Subsection 4.2.1) in order to obtain the average rank for each

region. However, since memory requirements make this problem infeasible

with present technology, we first apply a transformation on the data (cf.

[21]). It might be reasonable to assume that for low concentrations of a

polluting chemical element a modification of the data is allowed. For each
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Figure 4.2: Division of Baden–Württemberg into 60 regions
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Figure 4.3: Hasse diagram corresponding to the reduced data set.

criterion ci, a threshold si is chosen resulting in the modified criterion c′i

c′i(x) :=
{

ci(x) if ci(x) ≥ si
−∞ if ci(x) < si

.

Each threshold is chosen such that 25% of the objects retain their original

value. The thresholds si are shown in Table 4.4, and correspond to crite-

rion values ci(xi) where xi is the 44th object sorted increasingly according

to criterion ci. This transformation reduces the number of unique regions to

33 equivalence classes (see Table 4.5 for the non-trivial classes). The Hasse

diagram corresponding to this reduced data set is shown in Figure 4.3, gen-

erated by means of the software tool WHASSE [19].

Subsequently, all rank probabilities for the 33 classes and the corresponding
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average ranks are computed. As a side result the number of linear extensions

and ideals is obtained. Since our poset has 15 909 106 995 077 310 937 728
linear extensions, i.e. possible rankings, the naive approach to enumerate

all linear extensions in order to derive the rank probabilities is clearly in-

feasible in this case. A drawback of our approach is the huge amount of

memory required to store the lattice of ideals which contains 108 862 ideals.

However, this is clearly offset by the limited time needed to build the lattice

of ideals and compute the rank probabilities: on a Linux-based 2.8Ghz ma-

chine with 2.5Gb of memory, our Java implementation only needs a couple

of seconds. In order to verify the correctness of the implementations of the

algorithms to compute the (mutual) rank probabilities, for posets on up to

9 elements all rank probability and mutual rank probability relations were

compared with the results obtained by an independent approach based on

the Varol-Rotem algorithm listed in Algorithm 3.1. For each poset, all linear

extensions were enumerated and the rank probability relation and mutual

rank probability relation were computed. Furthermore, the exact results for

the data sets we consider in this chapter have been compared with the re-

sults obtained by the approximative algorithms based on the Markov chain

Monte Carlo methods. In Table 4.6 the 10 regions with the highest aver-

age ranks ρ are shown, and Figure 4.4 shows a scatter plot of the average

ranks of each region. Remark that non-representative regions are indicated

with an X instead of a diamond and obtained the same average rank as their

representative region.

In the last approach, we compute approximate average ranks of all 59 re-

gions (see Figure 4.5). We used the same parameters as in the second ap-

proach. Although most regions having a high average rank in the trans-

formed data set obtain a high approximate average rank in the original data

set and vice versa, for some regions there is a striking difference. Region 34,

for example, receives the second highest average rank in the first approach,

while it drops to an average position in this approach. The reason for this

discrepancy is that this region is characterized by an extremely low concen-

tration of lead and sulfur, while very high concentrations of cadmium and

zinc are measured. Due to the transformation, the impact of the high cad-

mium and zinc concentrations clearly intensifies, therefore favoring a higher

average rank.

Finally, to conclude our real-world example, we also compute the exact mu-

tual rank probabilities in the reduced data set. The results for the regions

with the 10 highest average ranks, which turn out to be the set of max-
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imal elements in the reduced data set, are shown in Table 4.7. Remark

that the two regions with the highest average ranks, i.e. region 52 and 34,

have mutual rank probabilities which are very close to 1/2 (i.e. 0, 52 and

0, 48), indicating that they are rather indifferent. This observation is also

confirmed by the fact that their average ranks are very close to each other.

For regions 35 and 57, the mutual rank probabilities are even exactly 1/2.

To the contrary, the probability that region 52 is ranked higher than region

45 is 0, 73, indicating that region 52 is clearly to be preferred over region 45.
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region Pb Cd Zn S region Pb Cd Zn S

6 1, 0 0, 07 29 1750 36 1, 2 0, 05 31 1570
8 1, 5 0, 07 27 1750 46 0, 8 0, 09 33 1680
7 1, 2 0, 09 28 1600 50 1, 4 0, 13 29 1730

17 0, 6 0, 06 36 1820 53 1, 0 0, 12 36 1750
9 0, 09 0, 2 850 580 45 1, 5 0, 17 45 1780

16 1, 0 0, 12 32 1520 54 0, 7 0, 1 26 1750
22 1, 0 0, 03 28 2150 59 1, 3 0, 13 26 1470
18 0, 5 0, 43 28 4030 60 1, 0 0, 2 32 2160
30 0, 8 0, 08 27 1610 58 1, 0 0, 11 28 1980
23 1, 1 0, 04 42 2000 57 1, 7 0, 15 39 1850
15 0, 9 0, 1 24 1670 35 0, 08 0, 24 720 1960
14 1, 0 0, 17 34 1830 34 0, 14 0, 39 950 400
5 1, 1 0, 1 32 1990 33 0, 16 0, 26 800 530

28 0, 9 0, 05 34 1670 25 0, 9 0, 09 35 1460
39 1, 0 0, 1 38 1740 12 0, 16 0, 23 910 1460
40 0, 7 0, 06 34 1770 21 0, 06 0, 24 830 620
29 0, 6 0, 14 27 1680 11 0, 9 0, 08 27 1720
41 0, 7 0, 17 39 1840 2 0, 7 0, 14 27 1770
42 0, 7 0, 1 33 1690 1 1, 0 0, 04 21 1540
27 0, 1 0, 12 26 1600 10 1, 0 0, 03 29 1780
38 1, 7 0, 18 34 1720 20 1, 5 0, 14 32 1730
49 0, 8 0, 11 37 1680 24 1, 7 0, 18 39 1740
37 0, 6 0, 12 33 1580 31 1, 1 0, 15 28 1740
47 1, 1 0, 11 25 1650 32 1, 2 0, 03 35 1820
48 2, 3 0, 42 33 1600 19 0, 8 0, 01 18 4030
51 0, 8 0, 14 22 1640 43 0, 5 0, 11 39 4030
4 0, 8 0, 02 26 1790 44 0, 8 0, 08 38 1800
3 0, 8 0, 14 31 1710 52 2, 0 0, 23 36 4030

13 0, 18 0, 18 1160 350 56 1, 0 0, 11 34 1970
26 0, 8 0, 05 19 1620

Table 4.3: Herb layer pollution with Pb, Cd, Zn and S of each region in

Baden–Württemberg (in mg per kg dry weight).
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ci si
Pb 1, 1 mg/kg

Cd 0, 17 mg/kg

Zn 38 mg/kg

S 1820 mg/kg

Table 4.4: The chosen threshold si (in mg per kg dry weight) for each at-

tribute ci.

regions number pattern

{1, 2, 3, 4, 6, 10, 11, 15, 16, 25, 26, 27, 23 (−∞;−∞;−∞;−∞)
28, 29, 30, 37, 40, 42, 46, 49, 51, 53, 54}
{39, 44} 2 (−∞;−∞; 38;−∞)
{31, 47} 2 (1, 1;−∞;−∞;−∞)
{7, 36} 2 (1, 2;−∞;−∞;−∞)
{8, 20} 2 (1, 5;−∞;−∞;−∞)

Table 4.5: Equivalence classes with more than one element and their repre-

sentative element in boldface.

x ρ(x) ρ̂(x)
52 29, 21 29, 20
34 29, 12 29, 10
18 27, 91 27, 91
24 26, 94 26, 93
48 26, 93 26, 92
43 26, 37 26, 37
57 26, 27 26, 28
35 26, 04 26, 06
23 25, 51 25, 51
45 24, 86 24, 88

Table 4.6: Regions with the 10 highest average ranks ρ and their approxi-

mations ρ̂ by the second approach.
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x\y 18 23 24 34 35 43 45 48 52 57

18 0 0, 62 0, 56 0, 41 0, 58 0, 59 0, 65 0, 56 0, 41 0, 59
23 0, 38 0 0, 44 0, 31 0, 47 0, 46 0, 54 0, 44 0, 31 0, 47
24 0, 44 0, 56 0 0, 36 0, 53 0, 53 0, 61 0, 5 0, 36 0, 54
34 0, 59 0, 69 0, 64 0 0, 66 0, 66 0, 72 0, 64 0, 52 0, 66
35 0, 42 0, 53 0, 47 0, 34 0 0, 49 0, 56 0, 47 0, 35 0, 5
43 0, 41 0, 54 0, 47 0, 34 0, 51 0 0, 57 0, 47 0, 34 0, 51
45 0, 35 0, 46 0, 39 0, 28 0, 44 0, 43 0 0, 39 0, 27 0, 43
48 0, 44 0, 56 0, 5 0, 36 0, 53 0, 53 0, 61 0 0, 36 0, 54
52 0, 59 0, 69 0, 64 0, 48 0, 65 0, 66 0, 73 0, 64 0 0, 67
57 0, 41 0, 53 0, 46 0, 34 0, 5 0, 49 0, 57 0, 46 0, 33 0

Table 4.7: Mutual rank probabilities Prob(x > y) of the regions with the 10

highest average ranks in the reduced data set.





5 Transitivity of mutual

rank probabilities

5.1 Introduction

5.1.1 Reciprocal relations

Definition 5.1.1. A reciprocal relation Q on a set of alternatives A is a map-

ping Q : A2 → [0, 1] such that for all a, b ∈ A, it holds that Q(x, y) +
Q(y, x) = 1. ⋄

A reciprocal relation [38, 48, 49] is sometimes also called a probabilistic or

ipsodual relation.

Reciprocal relations serve as a popular representation of various preference

models [33, 57, 113] where often the number Q(x, y) expresses the degree

of preference of alternative x over alternative y. If we confront a subject

with two alternatives, say a and b, and ask which alternative is preferred,

three answers are possible: a is preferred over b, b is preferred over a or

a and b are equally preferred, i.e. the subject is indifferent with respect to

a and b. Remark that although we allow for indifference, we assume that

incomparability cannot occur. Note that incomparability here has to be seen

in the context of preference structures rather than in the context of posets.

To obtain a degree to which a is preferred over b, the proportion of answers
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in which the subject prefers a with respect to a total of n answers can be

used:

P(a, b) =
#{a is preferred to b}

n
.

As we allow for indifference, the relation P is not necessarily a reciprocal

relation. A reciprocal relation Q can, however, be easily constructed from

P:

Q(a, b) = P(a, b) +
1

2
I(a, b),

where

I(a, b) =
#{a and b are equally preferred}

n
.

It is easily verified that the relation Q is a reciprocal relation. Note that

a subject need not necessarily be asked her preference multiple times: an

estimate of the degree of preference could be obtained otherwise.

Reciprocal relations are a convenient tool for expressing the result of a pair-

wise comparison of a set of alternatives [33] and appear in various fields

such as game theory [51], voting theory [65, 94] and psychological stud-

ies on preference and discrimination in decision-making methods [50]. In

fuzzy set theory, reciprocal relations are used for representing intensities of

preference [29, 75, 115]; in group decision making, they represent collec-

tive preferences [64, 75], and in social choice theory, given preferences are

expressed in terms of reciprocal relations [31, 51, 74, 82, 94].

5.1.2 Aggregation operators

Transitivity properties are described by using specific classes of aggregation

operators, some of which are introduced below.

Definition 5.1.2. A binary operation T : [0, 1]2 → [0, 1] is called a t-norm

has the following properties:

(i) 1 is the neutral element: T(x, 1) = x = T(1, x), ∀x ∈ [0, 1]

(ii) monotonicity: T is increasing in each variable

(iii) commutatitivity: T(x, y) = T(y, x), ∀x, y ∈ [0, 1]

(iv) associativity: T(x, T(y, z)) = T(T(x, y), z), ∀x, y, z ∈ [0, 1]
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⋄

A related concept is that of a t-conorm, which is a binary operation on [0, 1]
satisfying conditions (ii)-(iv) and which has 0 as the neutral element. Fur-

thermore, to any norm T there corresponds a dual conorm S defined by

S(x, y) = 1− T(1− x, 1− y). (5.1)

The smallest t-norm is the drastic product TD, which is right-continuous only

and is 0 everywhere up to the boundary condition TD(x, 1) = TD(1, x) =
x. The three main continuous t-norms are the minimum operator TM, i.e.

TM(x, y) = min(x, y), the algebraic product TP, i.e. TP(x, y) = x · y, and the

Łukasiewicz t-norm TL(x, y) = max(0, x + y− 1). It holds that TD ≤ TL ≤
TP ≤ TM, according to the usual ordering of functions

Remark 5.1.3. The three continuous t-norms TM, TP and TL belong to an im-

portant parametric family of t-norms, namely the Frank family (TF
λ )λ∈[0,∞].

For λ ∈]0, 1[∪]1,∞[, the t-norm TF
λ is defined by

TF

λ (x, y) = logλ

(

1 +
(λx − 1)(λy − 1)

λ− 1

)

.

As limit cases, one obtains TM(λ → 0), TP(λ → 1) and TL(λ →∞).

Definition 5.1.4. A binary operation C : [0, 1]2 → [0, 1] is called a quasi-

copula if it has the following properties:

(i) 1 is the neutral element: C(x, 1) = x = C(1, x), ∀x ∈ [0, 1]

(i’) absorbing element: C(x, 0) = C(0, x) = 0, ∀x ∈ [0, 1]

(ii) monotonicity: C is increasing in each variable

(iii) 1-Lipschitz property: |C(x1, y1)− C(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|,
∀x1, x2, y1, y2 ∈ [0, 1]

Moreover, the binary operation C is called a copula if, instead of the 1-

Lipschitz property, the following stronger property holds:

(iv) moderate growth (2-increasing):

(x1 ≤ x2 ∧ y1 ≤ y2)⇒ C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1),
∀x1, x2, y1, y2 ∈ [0, 1]
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Note that condition (i’) follows from conditions (i) and (ii). For a copula,

condition (ii) can be omitted as it follows from (iv) and (i’). Remark that

any copula is a quasi-copula, and therefore has the 1-Lipschitz property; the

opposite, however, is not true. ⋄

Note that 1-Lipschitz continuous t-norms are nothing else but associative

copulas. Note that TM is the greatest t-norm and copula, TL is the smallest

copula, while TP is the independence copula.

5.1.3 Transitivity

Transitivity is a simple, yet powerful property of relations.

Definition 5.1.5. A binary relation R on a universe A is called transitive if

for any a, b, c ∈ A it holds that

((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R. (5.2)

⋄
Example 5.1. The relation “is a subset of” for a set of sets is an example of

a transitive relation: if for three sets A, B and C it holds that A is a subset of

B and B is a subset of C then necessarily A is a subset of C. •

Identifying a relation with its characteristic mapping, i.e. defining

R(a, b) =

{

1 if (a, b) ∈ R
0 if (a, b) 6∈ R

transitivity can be stated equivalently as

(R(a, b) = 1 ∧ R(b, c) = 1) ⇒ R(a, c) = 1.

However, many other equivalent formulations may be devised, such as

(R(a, b) ≥ α ∧ R(b, c) ≥ α) ⇒ R(a, c) ≥ α, (5.3)

for any α > 0. Alternatively, transitivity can also be expressed in the follow-

ing functional form:

min(R(a, b), R(b, c)) ≤ R(a, c). (5.4)

Note that on {0, 1}2 the minimum operator is the Boolean conjunction:

when one or more of the arguments is 0, the result is 0.
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5.1.3.1 Reciprocal relations

Transitivity properties of reciprocal relations are usually of the form in (5.3).

Various kinds of stochastic transitivity for reciprocal relations exist and will

be discussed in Section 5.3.

We remark that reciprocity is linked with completeness. Let R be a complete

{0, 1}-valued relation on A, i.e. max(R(a, b), R(b, a)) = 1 for any a, b ∈ A,

then R has an equivalent {0, 12 , 1}-valued reciprocal representation Q given

by

Q(a, b) =







1 if R(a, b) = 1 and R(b, a) = 0,
1
2 if R(a, b) = R(b, a) = 1,
0 if R(a, b) = 0 and R(b, a) = 1,

(5.5)

which can be easily rewritten in the more compact form

Q(a, b) =
1 + R(a, b)− R(b, a)

2
. (5.6)

Remark that a complete relation that is transitive in the sense of (5.2) is a

weak order relation.

One easily verifies that R is transitive if and only if its reciprocal represen-

tation Q satisfies, for any a, b, c ∈ A:

(Q(a, b) ≥ 1/2 ∧Q(b, c) ≥ 1/2) ⇒ Q(a, c) = max(Q(a, b),Q(b, c)) (5.7)

5.1.3.2 Fuzzy relations

A fuzzy relation R on A is a A2 → [0, 1] mapping expressing the degree of

relationship between elements of A. The extreme case where R(a, b) = 0
means that a and b are not related at all, while R(a, b) = 1 expresses full

relationship. A value R(a, b) ∈ ]0, 1[ expresses partial relationship.

In the setting of fuzzy set theory, a T-norm is used as a generalization for

the Boolean conjunction in formulation (5.4).

Definition 5.1.6. Let T be a t-norm. A fuzzy relation R on A is called T-

transitive if for any a, b, c ∈ A it holds that

T(R(a, b), R(b, c)) ≤ R(a, c). (5.8)



88 5 Transitivity of mutual rank probabilities

⋄

By using a fuzzy preference relation R, a fuzzy model of preferences could be

used to obtain a reciprocal relation. In the specific case of a fuzzy preference

relation, R(a, b) expresses the (subjective) judgement of degree in which a
is preferred to b. When R(a, b) = 0, b is completely preferred to a, while

R(a, b) = 1 indicates that a is completely preferred to b.

Remark 5.1.7. Note that although the condition R(a, b) + R(b, a) = 1 is in

general not required for fuzzy preference relations, we will restrict ourselves

to fuzzy preference relations that obey this condition, and thus are recipro-

cal. Although formally reciprocal relations can be seen as a special kind of

fuzzy relations, they are not equipped with the same semantics.

Definition 5.1.8. A binary operation f : [0, 1]2 → [0, 1] is called a conjunctor

if it has the following properties:

(i) its restriction to {0, 1} coincides with the Boolean conjunction;

(ii) monotonicity: f is increasing in each variable.

⋄

Definition 5.1.9. Let f be a conjunctor. A reciprocal relation Q on A is

called f -transitive if for any a, b, c ∈ A it holds that

f (Q(a, b),Q(b, c)) ≤ Q(a, c). (5.9)

⋄

We have already seen two particular classes of conjunctors with neutral ele-

ment 1: the class of t-norms and the class of (quasi)-copulas, which, just as

t-norms, finds its origin in the study of probabilistic metric spaces.

For two conjunctors f1 ≤ f2, it clearly holds that f1-transitivity implies f2-
transitivity. However, it is important to note that f1 ≤ f2 is not a necessary

condition for the latter implication to hold for reciprocal relations.
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5.2 Cycle-transitivity

The framework of cycle-transitivity [34, 38] presented in this section unifies

reciprocal transitivity and fuzzy transitivity, which are basically two differ-

ent concepts. It is, however, useful to have the class of transitivity properties

as broad as possible, since the standard types of stochastic transitivity are in-

sufficient to model e.g. human preferences described by reciprocal relations.

In experimental studies, it has been observed that when persons are asked

to express their preference between the elements of some set pairwisely, it is

not uncommon that cycles occur in the resulting preference relation. More-

over, it will turn out that the mutual rank probability relation MP studied

in this chapter can also contain cycles. The framework of cycle-transitivity

offers a convenient way out, since it does not exclude the possibility of this

cyclic behavior. Although T-transitivity has been devised for fuzzy relations,

which are not necessarily reciprocal relations, we will start by studying TP-

transitivity for reciprocal relations. The observations made will form a mo-

tivation for the introduction of the concept of cycle-transitivity.

Consider an arbitrary set A of alternatives. For a reciprocal relation Q on A,

we write qab := Q(a, b). For any a, b, c ∈ A let

αabc = min(qab, qbc, qca),

βabc = median(qab, qbc, qca),

γabc = max(qab, qbc, qca).

Note that it is not necessary for A to be countable. It now obviously holds

that

αabc ≤ βabc ≤ γabc, (5.10)

and also

αabc = αbca = αcab, βabc = βbca = βcab, γabc = γbca = γcab. (5.11)

Due to the reciprocal nature of Q, it also holds that

αcba = 1−γabc, βcba = 1−βabc, γcba = 1−αabc. (5.12)
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5.2.1 TP-transitivity for reciprocal relations

Let us consider TP-transitivity for a reciprocal relation Q on A. For any

a, b, c ∈ A, six conditions are to be satisfied:

qac qcb ≤ qab, qba qac ≤ qbc, qcb qba ≤ qca,

qbc qca ≤ qba, qca qab ≤ qcb, qab qbc ≤ qac.

Since Q is reciprocal, these conditions can be expressed in terms of αabc,βabc

and γabc solely, as follows

(1−βabc)(1−γabc) ≤ αabc, βabc γabc ≤ 1−αabc,

(1−αabc)(1−γabc) ≤ βabc, αabc γabc ≤ 1−βabc, (5.13)

(1−αabc)(1−βabc) ≤ γabc, αabc βabc ≤ 1−γabc.

The three left-hand inequalities of (5.13) can be rewritten as

βabc γabc ≤ αabc + βabc + γabc − 1,

αabc γabc ≤ αabc + βabc + γabc − 1,

αabc βabc ≤ αabc + βabc + γabc − 1.

From (5.10) it follows that αabc βabc ≤ αabc γabc ≤ βabcγabc. Therefore, only

the first inequality should be withheld as a condition for TP-transitivity.

Similarly, the three right-hand inequalities of (5.13) can be rewritten as

αabc + βabc + γabc − 1 ≤ 1− (1−βabc)(1− γabc),

αabc + βabc + γabc − 1 ≤ 1− (1−αabc)(1− γabc),

αabc + βabc + γabc − 1 ≤ 1− (1−αabc)(1−βabc).

From (5.10) it now follows that only the last inequality should be retained.

The six inequalities in (5.13) are therefore equivalent to the double inequal-

ity

βabcγabc ≤ αabc + βabc + γabc − 1 ≤ 1− (1−αabc)(1−βabc). (5.14)

The way we arrived at this double inequality immediately shows that if it

holds for a, b, c ∈ A, then it also holds for all permutations of (a, b, c).

If we denote the upper and lower bounds of (5.14) as u(αabc,βabc) and

l(βabc,γabc), respectively, we observe the following type of duality:

l(x, y) = 1− u(1− y, 1− x), ∀ 0 ≤ x ≤ y ≤ 1. (5.15)
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5.2.2 Definition

The simple formulation (5.14)-(5.15) of TP-transitivity for reciprocal rela-

tions has been the source of inspiration for a new way of describing the tran-

sitivity of probabilistic relations. Let us denote ∆ = {(x, y, z) ∈ [0, 1]3 | x ≤
y ≤ z} and consider a function U : ∆ → R, then, in analogy to (5.14), we

could call a probabilistic relation Q on A transitive with respect to U if for

any a, b, c ∈ A it holds that

αabc + βabc + γabc − 1 ≤ U(αabc,βabcγabc), (5.16)

and that

1−U(1− γabc, 1−βabc, 1−αabc) ≤ αabc + βabc + γabc − 1. (5.17)

Remark that in the case of TP-transitivity, the corresponding function UP is

given by

UP(α,β,γ) = 1− (1−α)(1−β) = α + β−α β. (5.18)

The minimal requirement we will impose is that the reciprocal represen-

tation Q of any transitive complete relation R given in (5.6) satisfies any

form of cycle-transitivity. Therefore, due to the condition (5.7) for R be-

ing transitive, we know that (αabc,βabc,γabc) is either (0, 0, 1), (0, 1/2, 1),
(1/2, 1/2, 1/2) or (0, 1, 1). Insisting that (5.16)-(5.17) is valid for these

possible values for (αabc,βabc,γabc) yields the following conditions on U:

U(0, 1/2, 1) ≥ 1/2, U(1/2, 1/2, 1/2) ≥ 1/2, (5.19)

U(0, 0, 1) ≥ 0, U(0, 1, 1) ≥ 1.

Remark 5.2.1. Similarly, we could insist that the only {0, 1/2, 1}-valued re-

ciprocal relations that are transitive with respect to U are the reciprocal

representations of transitive complete relations. As this requirement would

limit the generality of the framework considerable, it is not imposed.

Definition 5.2.2. A function U : ∆→ R is called an upper bound function if

it satisfies:

(i) U(0, 0, 1) ≥ 0 and (0, 1, 1) ≥ 1

(ii) for any (α,β,γ) ∈ ∆:

U(α,β,γ) +U(1−γ, 1−β, 1−α) ≥ 1 (5.20)
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⋄

Note that the conditions U(0, 1/2, 1) ≥ 1/2 and U(1/2, 1/2, 1/2) ≥ 1/2
follow immediately from (5.20) when (α,β,γ) = (0, 1/2, 1) and (α,β,γ) =
(1/2, 1/2, 1/2) respectively.

The function L : ∆→ R defined by

L(α,β,γ) = 1−U(1−γ, 1−β, 1−α) (5.21)

is called the dual lower bound function of a given upper bound function U.

Inequality (5.20) then simply expresses that L ≤ U. Remark furthermore

that there is no monotonicity constraint for U.

Definition 5.2.3. A reciprocal relation Q on A is called cycle-transitive with

respect to an upper bound function U if for any a, b, c ∈ A it holds that

L(αabc,βabc,γabc) ≤ αabc + βabc + γabc − 1 ≤ U(αabc,βabc,γabc), (5.22)

where L is the dual lower bound function of U. ⋄

Remark that due to (5.11) all cyclic permutations of (a, b, c) yield conditions

equivalent to (5.22). Let us now take a permutation of (a, b, c) ∈ A3 that

is not a cyclic permutation, e.g. (c, b, a), such that the following condition is

obtained:

L(αcba,βcba,γcba) ≤ αcba + βcba + γcba − 1 ≤ U(αcba,βcba,γcba),

which is, due to (5.12), equivalent to

1− L(1−γabc, 1−βabc, 1−αabc) ≥ αabc + βabc + γabc − 1

≥ 1−U(1−γabc, 1−βabc, 1−αabc).

Using the built-in duality of U and L it can easily be shown this condition

is equivalent to (5.22). Analogous observations for the cyclic permutations

(b, a, c) and (a, c, b) can be made. In practice, therefore, it suffices to verify

whether (5.22) holds for a single permutation of (a, b, c) ∈ A3.

Alternatively, it is also sufficient to verify the right-hand inequality (or equiv-

alently, the left-hand inequality) for two permutations of any (a, b, c) ∈ A3

that aren’t cyclic permutations of one another, e.g. (a, b, c) and (c, b, a). In-

deed, consider the condition corresponding to the permutation (c, b, a):

αcba + βcba + γcba − 1 ≤ U(αcba,βcba,γcba).
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Due to (5.12), it can be rewritten as

(1−γabc) + (1−βabc) + (1−αabc)− 1 ≤ U(1− γabc, 1−βabc, 1−αabc),

which is, following directly from the definition of the dual lower bound,

equivalent to

αabc + βabc + γabc − 1 ≥ L(αabc,βabc,γabc).

Together with the condition

αabc + βabc + γabc − 1 ≤ U(αabc,βabc,γabc),

we obtain the definition (5.22) of cycle-transitivity.

Remark 5.2.4. If the equality in (5.20) holds for all (α,β,γ) ∈ ∆, i.e.

U(α,β,γ) +U(1−γ, 1−β, 1−α) = 1, (5.23)

then the upper bound function U is said to be self-dual, since in that case it

coincides with its dual lower bound function L. The simplest self-dual upper

bound function is given by the median, i.e. UM(α,β,γ) = β.

Note that a value of U(α,β,γ) equal to 2 will often be used to express that

for the given arguments there is no restriction at all. Indeed, α + β + γ− 1
is always upper bounded by 2.

For two upper bound functions U1 ≤ U2, it clearly holds that cycle-transitivity

with respect to U1 implies cycle-transitivity with respect to U2. However, it

is clear that U1 ≤ U2 is not a necessary condition for the latter implication

to hold. Two upper bound functions U1 and U2 will be called equivalent if

for any (α,β,γ) ∈ ∆3 it holds that α +β +γ− 1 ≤ U1(α,β,γ) is equivalent

to α + β + γ − 1 ≤ U2(α,β,γ). For instance, suppose that the inequality

α +β+γ− 1 ≤ U1(α,β,γ) can be rewritten asα ≤ h(β,γ), then an equiva-

lent upper bound function U2 is given by U2(α,β,γ) = β +γ− 1+ h(β,γ).
In this way, it is often possible to find an equivalent upper bound function

in only two of the three variables α, β and γ.
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5.3 A hierarchy of types of transitivity for reciprocal

relations

Most of the types of transitivity encountered in applications involving re-

ciprocal relations fit into the cycle-transitivity framework with upper bound

functions that are polynomials of low degree.

The following propositions will be invoked multiple times throughout this

chapter [38].

Proposition 5.3.1. Consider a commutative conjunctor f ≤ TM, then f -
transitivity of reciprocal relations is equivalent to cycle-transitivity with respect

to the upper bound U f defined by

U f (α,β,γ) = min(α + β− f (α,β),β + γ − f (β,γ),γ +α − f (γ,α)) .
(5.24)

Moreover, if the conjunctor f satisfies some additional conditions, the upper

bound function U f is further simplified [38]. An important case concerns

t-norms [79].

Proposition 5.3.2. Consider a 1-Lipschitz continuous t-norm T, then T-transi-

tivity of reciprocal relations is equivalent to cycle-transitivity with respect to the

upper bound function UT defined by

UT(α,β,γ) = α + β− T(α,β) . (5.25)

5.3.1 Constant upper bound functions

If the upper bound function U is a constant function, we distinguish the

following interesting cases:

(i) U(α,β,γ) = 2.

Cycle-transitivity with respect to this upper bound function imposes

no restrictions and is trivially satisfied by any reciprocal relation. One

could even argue that this is not a type of transitivity.
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(ii) U(α,β,γ) = 1.

It can be shown that an equivalent upper bound function is given by

UL(α,β,γ) = min(α + β, 1) = α + β−max(α + β− 1, 0). In view

of Proposition 5.3.2, this type of cycle-transitivity corresponds to TL-

transitivity. Interestingly, TL-transitivity is also equivalent to the trian-

gle inequality: a reciprocal relation Q on A is TL-transitive if and only

if Q(a, b) + Q(b, c) ≤ Q(a, c), for any (a, b, c) ∈ A3 [118].

Note that the function U(α,β,γ) = 1/2 is not suitable as an upper bound

function as the condition U(0, 1, 1) ≥ 1 is not satisfied. Reciprocal relations

satisfying the condition αabc + βabc + γabc = 3/2, i.e. relations being cycle-

transitive with respect to this specific U, are called (additive) consistent

in literature [72]. Although it is often presented as a type of transitivity,

it does not deserve to be called so, as it is even in general not satisfied by

the reciprocal 3-valued representation of a transitive complete {0, 1}-valued

relation.

5.3.2 Linear upper bound functions

If the upper bound function is a linear function, two cases are of particular

interest:

(i) UM(α,β,γ) = β.

In view of Proposition 5.3.2, cycle-transitivity with respect to this up-

per bound function corresponds to TM-transitivity. One easily verifies

that UM is self-dual.

(ii) Up(α,β,γ) = γ.

Cycle-transitivity with respect to this upper bound function is equiv-

alent to a type of transitivity known as partial stochastic transitiv-

ity [48]. A reciprocal relation Q on A is called partially stochastic

transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) > 1/2 ∧Q(b, c) > 1/2) ⇒ Q(a, c) ≥ min(Q(a, b),Q(b, c)) .
(5.26)

We also retrieve interesting types of transitivity by considering piecewise

linear upper bound functions, in particular, upper bound functions of the
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form

Ug(α,β,γ) =







β + γ− g(β,γ) if β ≥ 1/2 ∧α < 1/2 ,
1/2 if α ≥ 1/2 ,
2 if β < 1/2 ,

where g : [1/2, 1]2 → [0, 1] is an increasing linear function satisfying

g(1/2, x) ≤ x for any x ∈ [1/2, 1].

Cycle-transitivity with respect to the upper bound function Ug is equivalent

to g-stochastic transitivity [38]. A reciprocal relation Q on A is called g-

stochastic transitive if for any (a, b, c) ∈ A3 it holds that

(Q(a, b) ≥ 1/2 ∧Q(b, c) ≥ 1/2) ⇒ Q(a, c) ≥ g(Q(a, b),Q(b, c)) . (5.27)

For some functions g, special names are given to the corresponding type of

transitivity [57]:

(i) strong stochastic transitivity: g(β,γ) = max(β,γ) = γ,

(ii) moderate stochastic transitivity: g(β,γ) = min(β,γ) = β,

(iii) weak stochastic transitivity: g(β,γ) = 1/2.

5.3.3 Quadratic upper bound functions

An interesting quadratic upper bound function is the one associated with

TP-transitivity. Inspired by this example, we distinguish the following three

upper bound functions:

(i) strong product transitivity: UP(α,β,γ) = α + β−αβ.

Obviously, it is the cycle-transitive formulation of TP-transitivity.

(ii) moderate product transitivity: Ump(α,β,γ) = α + γ −αγ.

Cycle-transitivity with respect to this upper bound function has, to

our knowledge, not yet been reported in literature. It will play an

important role further in this chapter.

(iii) weak product transitivity: UD(α,β,γ) = β + γ−βγ.

Cycle-transitivity with respect to this upper bound function is called

dice transitivity [46, 49].
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5.3.4 Cubic upper bound functions

One cubic self-dual upper bound function is of particular interest, namely

Um(α,β,γ) = αβ +αγ + βγ− 2αβγ .

Cycle-transitivity with respect to the upper bound function Um is equiva-

lent to a type of transitivity called multiplicative transitivity [38, 115]. A

reciprocal relation Q on A is called multiplicatively transitive if for any

(a, b, c) ∈ A3 it holds that

Q(a, b)Q(b, c)Q(c, a) = Q(b, a)Q(a, c)Q(c, b).

5.3.5 A taxonomy of types of transitivity

When considering different types of cycle-transitivity, we can try to distin-

guish weaker or stronger types. Obviously, one type is called weaker than

another, if it is implied by the latter. Hence, we can equip a collection of

types of transitivity with this natural partial order relation and depict it

graphically by means of a Hasse diagram.

A sufficient condition for verifying such an implication is the comparability

of the corresponding upper bound functions: greater functions correspond

to weaker types. However, a more refined investigation is often necessary to

construct the full Hasse diagram. We have done this exercise for the types

of transitivity discussed in this section.

The resulting Hasse diagram is shown in Figure 5.1. At the lower end of the

diagram, TM-transitivity and multiplicative transitivity, two types of cycle-

transitivity with respect to a self-dual upper bound function, are incompara-

ble and can be considered as the strongest types of transitivity. At the upper

end of the diagram, also TL-transitivity and weak stochastic transitivity are

incomparable and can be considered as the weakest types of transitivity.

Finally, note that the subchain consisting of partial stochastic transitivity,

moderate product transitivity and weak product transitivity, bridges the gap

between g-stochastic transitivity and T-transitivity.
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5.4 Mutual rank probability relation

Given n random variables X1,X2, . . . ,Xn, we consider the reciprocal relation

Q defined by

Q(Xi,X j) = Prob(Xi > X j) +
1

2
Prob(Xi = X j).

If X1,X2, . . . ,Xn are pairwisely independent, it has been proven in [46] that

Q is dice transitive, irrespective of the marginal distributions of the random

variables Xi. For discrete random variables, Q then describes the rules of a

game with a collection of generalized dice (see also [47]). This explains the

origin of the name dice transitivity.

If X1,X2, . . . ,Xn are not pairwisely independent, the computation of Q re-

quires the knowledge of the bivariate distribution functions. In our usual

setting [35], these bivariate distribution functions are artificially constructed

from the marginal distribution functions using a single copula C, inspired by

the theorem of Sklar, i.e. FXi ,X j
= C(FXi

, FX j
), for all random variables Xi,X j.

This artificial coupling need not be compatible with the random variables

X1,X2, . . . ,Xn constituting a random vector. For instance, as it is impossible

for all (Xi,X j) to be coupled counter-monotonically, the case C = TL cannot

occur in reality. This is related to the compatibility problem of copulas [92].

The following transitivity results have been obtained [35, 45, 48]:

(i) if C = TM, then the reciprocal relation Q is TL-transitive,

(ii) if C = TL, then the reciprocal relation Q is partially stochastic transi-

tive.

Note that the first case might correspond to a realistic coupling of random

variables, namely the situation in which the random variables are coupled

comonotonically.

The set E(P) of all linear extensions of a finite poset (P,≤P), equipped with

the uniform measure U , constitutes a probability space (E(P),P(E(P)),U).
The discrete random variable Xx : E(P) → {1, . . . , |P|} then denotes the

position (rank) Xx(e) of an element x ∈ P in a random linear extension
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e ∈ EP. Recall that the rank probability Prob(rank(x) = i) is defined as the

fraction of linear extensions of P in which x appears at position i, i.e.

Prob(rank(x) = i) = Prob(Xx = i).

The mutual rank probability Prob(x > y) of two elements x, y ∈ P is the

fraction of linear extensions of P in which x succeeds y (x is ranked higher

than y), i.e.

Prob(x > y) = Prob(Xx > Xy).

Let us define the mutual rank probability relation MP, based on the mutual

rank probabilities Prob(x > y) of a poset (P,≤P) as follows for all x, y ∈ P
(cf. Definition 4.3.1):

MP(x, y) =

{

Prob(x > y) if x 6= y,
1/2 otherwise.

(5.28)

Clearly, MP is a reciprocal relation as it holds that

MP(x, y) + MP(y, x) = 1 ∀x, y ∈ P. (5.29)

We are concerned with the pairwise comparison of random variables con-

stituting a discrete random vector (Xx1 , . . . ,Xxn). Such a random vector is

determined by a given finite poset (P,≤P) where P = {x1, . . . , xn}. The

reciprocal relation MP associated with such a random vector is nothing else

but the mutual rank probability relation of the corresponding poset. Note

that, despite the fact that the joint distribution function FXx1
,...,Xxn

does not

lend itself to an explicit expression, a fair amount of pairwise couplings are

of a very simple type. If it holds that x <P y, then x precedes y in all linear

extensions of P, whence Xx and Xy are comonotone. For pairs of incompa-

rable elements, the bivariate couplings can vary from pair to pair. Certainly,

these couplings cannot all be counter-monotone. Despite all this, it is possi-

ble to obtain transitivity results on mutual rank probability relations.

The problem of characterizing the transitivity of this mutual rank probability

relation MP, also called the problem of proportional probabilistic transitivity

in a finite poset (P,≤P), was already raised by Fishburn [60]: for any u, v ∈
[0, 1], define δ(u, v) as

δ(u, v) = inf{Prob(a > c) | Prob(a > b) ≥ u ∧ Prob(b > c) ≥ v} ,
(5.30)
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where the infimum is taken over all finite posets (P,≤P) and all (a, b, c) ∈
P3. His problem can be elegantly reformulated as to identify the conjunctor

δ : [0, 1]2 → [0, 1] such that the inequality

δ(MP(a, b),MP(b, c)) ≤ MP(a, c) (5.31)

holds for any finite poset (P,≤P) and any (a, b, c) ∈ P3. For obvious reasons,

we will refer to δ-transitivity as mutual rank transitivity.

Fishburn proved that:

δ(u, v) = 0 if u + v < 1 ,

u + v− 1 ≤ δ(u, v) ≤ min(u, v) ,

δ(u, 1− u) ≤ 1/e ,

δ(u, v) ≤ 1− (1− u)(1− v)(1− ln[(1− u)(1− v)]) . (5.32)

The conjunctor δ is clearly bounded from above by TM, expressing that mu-

tual rank transitivity is weaker than TM-transitivity. On the other hand, δ

is bounded from below by TL, implying that MP is TL-transitive, a property

that was shown to hold for any random vector in [35]. Hence, this is a very

weak statement, and it is clear that MP can be expected to exhibit a stronger

type of transitivity. In other words, a sharper lower bound on δ is desired.

Such a non-trivial lower bound on δ was obtained by Kahn and Yu [76] via

geometric arguments.

Proposition 5.4.1. For any u, v ∈ [0, 1], define δ∗(u, v) as

δ∗(u, v) = inf{Prob(Yi > Yk) | Prob(Yi > Yj) ≥ u ∧ Prob(Yj > Yk) ≥ v} ,

where the infimum is taken over all (Y1,Y2, . . .Yn) chosen uniformly from

some n-dimensional compact convex subset of Rn. Then it holds that

δ∗(u, v) =



















0 if u + v < 1 ,
min(u, v) if u + v− 1 ≥ min(u2, v2) ,

(1− u)(1− v)

u + v− 2
√
u + v− 1

otherwise .

(5.33)

As Fishburn’s problem can be embedded in the above more general setting,

the following corollary was obtained [76].
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Corollary 5.4.1. The function δ∗ provides a lower bound for δ, i.e. δ∗ ≤ δ. ⋄

The above corollary implies that for any poset P and any (a, b, c) ∈ P3, the

mutual rank probability relation MP satisfies the inequality

δ∗(MP(a, b),MP(b, c)) ≤ MP(a, c) . (5.34)

Since δ∗ is a conjunctor, we can also say that mutual rank transitivity implies

δ∗-transitivity. Obviously, δ∗-transitivity is stronger than TL-transitivity and

weaker than TM-transitivity. Note that on the opposite diagonal

{(u, v) ∈ [0, 1]2 | u + v = 1},
δ∗ coincides with TP. However, in general the conjunctors TP and δ∗ are

incomparable.

The conjunctor δ∗ is also commutative, has neutral element 1 and is contin-

uous on the set

{(u, v) ∈ [0, 1]2 | u + v ≥ 1}.
However, it is not associative, and thus not a t-norm. Indeed,

δ∗(0.5, δ∗(0.6, 0.7)) = 0.4150 6= 0.4158 = δ∗(δ∗(0.5, 0.6), 0.7).

5.5 Situating δ
∗-transitivity and mutual rank transi-

tivity in the cycle-transitivity framework

We start this section with a positive result concerning δ∗-transitivity, namely

that it implies moderate product transitivity. Since any mutual rank proba-

bility relation MP is δ∗-transitive, Proposition 5.3.1 implies that MP is cycle-

transitive with respect to the upper bound function Uδ∗, given by

Uδ∗(α,β,γ) = min(V(α,β),V(α,γ),V(β,γ)) , (5.35)

where the function V : ∆2 → [0, 1] is defined by

V(u, v) =















u + v if u + v < 1 ,
v if u + v− 1 ≥ u2 ,

u + v− (1− u)(1− v)

(1−
√
u + v− 1)2

if u ≤ v ≤ 1− u + u2 ≤ 1 .

(5.36)
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Note that each of V(α,β), V(α,γ) and V(β,γ) can be considered as an

upper bound function.

Theorem 5.5.1. δ∗-transitivity implies moderate product transitivity.

Proof : One way of proving this theorem would be to show that Uδ∗(α,β,γ)
≤ Ump(α,β,γ). Unfortunately, there is no fixed ordering on the function

values V(α,β), V(α,γ) and V(β,γ) for all (α,β,γ) ∈ ∆3. In order to

circumvent this problem, we will prove that cycle-transitivity with respect

to each of the upper bound functions V(α,β), V(α,γ) and V(β,γ) implies

moderate product transitivity. Hence, the proof consists of three parts. For

technical reasons we prefer to use the equivalent upper bound function U′mp

for moderate product transitivity, given by

U′mp(α,β,γ) =

{

α + γ −αγ if β ≥ 1/2 ,
2 if β < 1/2 .

(5.37)

(i) Cycle-transitivity with respect to V(β,γ) implies moderate product transi-

tivity

We need to prove for any (α,β,γ) ∈ ∆3 that α + β + γ − 1 ≤ V(β,γ)
implies that α + β + γ− 1 ≤ U′mp(α,β,γ).

If β + γ < 1 (and hence β < 1/2), the implication is trivially fulfilled.

This is also the case when β + γ − 1 ≥ β2 since then γ ≤ U′mp(α,β,γ).

Next, we investigate the remaining case β ≤ γ ≤ 1 − β + β2 ≤ 1. Then,

α + β + γ− 1 ≤ V(β,γ) is equivalent to

α ≤ 1− (1−β)(1−γ)

(1−√β + γ − 1)2
,

whereas α + β + γ− 1 ≤ U′mp(α,β,γ) is equivalent to

α ≤ 1−β

γ
.

Obviously, we must prove that

1− (1−β)(1−γ)

(1−√β + γ − 1)2
≤ 1−β

γ
, (5.38)
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or, equivalently, that the inequality

βγ2 − (β + γ− 1)(β + 2γ − 2
√

β + γ− 1) ≥ 0 ,

holds for all γ ≤ 1−β + β2. To verify this, let us regard the left-hand side

of this inequality as a function of two independent variables β and γ and

compute its extremal points. These are solutions of the system

{

β + γ− 1 + γ2 − 2βγ = 0
3β + 4γ − 2βγ − 2− 3

√
β + γ− 1 = 0 .

There is only one real solution (β,γ) = (1, 1), but computation of the Hes-

sian proves that it is not a minimizer. Therefore, the minimum of this func-

tion on the domain under consideration must be attained on its border. This

border consists of 3 segments:

(a) The curve γ = 1 − β + β2 with β ∈ [1/2, 1]. The function value on

the curve is β(γ−β)2, and is always positive.

(b) The line segment β = 1/2 with γ ∈ [1, 2, 3/4]. The function value on

the line segment is 2(γ− 1/2)
√

γ − 1/2− 3γ2/2 + γ/2 + 1/4, and it

is easily verified that on the interval [1/2, 3/4] this function attains its

minimum value 1/32 at γ = 3/4.

(c) The line segment γ = β with β ∈ [1/2, 1]. The function reduces to

β3 − (2β− 1)(3β− 2
√
2β− 1), and is always positive.

(ii) Cycle-transitivity with respect to V(α,γ) implies moderate product transi-

tivity

Now both V(α,γ) and U′mp(α,β,γ) are functions of α and γ alone. If

α + γ < 1, then cycle-transitivity with respect to V(α,γ) imposes no con-

dition β < 1/2 and it also follows that β ≤ γ < 1 − α, whence α +
β + γ − 1 < α + γ −αγ, showing that cycle-transitivity with respect to

U′mp(α,β,γ) imposes no restriction. If α + γ − 1 ≥ α2, the inequality

V(α,γ) ≤ U′mp(α,β,γ) holds as γ ≤ U′mp(α,β,γ) everywhere in ∆3. There

remains to investigate the domain determined by γ ≤ 1−α +α2 ≤ 1. We

need to prove that on this domain the inequality

(1−α)(1−γ)

(1−√α + γ− 1)2
−αγ ≥ 0 ,
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or, equivalently, the inequality

4α2γ2 − (α + γ − 1)(αγ + 1)2 ≥ 0 ,

holds. The left-hand side of the latter, regarded as a function of two inde-

pendent variables α and γ, has only one extremal point in [0, 1]2, namely

(α,γ) = (1, 1). It is a point of the domain under consideration and the

function attains there the value 0. However, this point does not yield a min-

imizer and we have to study the function on the border of the domain. The

reader can easily verify that on that border the minimum is indeed attained

at the point (α,γ) = (1, 1).

(iii) Cycle-transitivity with respect to V(α,β) implies moderate product tran-

sitivity

The proof goes as for the other cases. The only non-trivial situation occurs

in the subdomain determined by α ≤ β ≤ 1−α +α2. On this subdomain

cycle-transitivity with respect to V(α,β) is equivalent to the inequality

γ ≤ 1− (1−α)(1−β)

(1−√α + β− 1)2
,

whereas cycle-transitivity with respect to U′mp is equivalent to the inequality

γ ≤ 1−β

α
.

Hence, we must prove that the inequality

1− (1−α)(1−β)

(1−√α + β− 1)2
≤ 1−β

α
,

or, equivalently, the inequality

α(1−α)(1−β)− (α + β− 1)(α + β− 2
√

α + β− 1) ≥ 0 ,

holds for all α ≤ β ≤ 1−α +α2. It can be shown that the left-hand side,

regarded as a function of α and β, has no minimizer inside the domain

under consideration. The minimum is attained on the border of the domain

at all points of the curve β = 1 −α + α2 where α ∈ [0, 1/2]. Since the

minimum function value is 0, the inequality indeed holds on that domain.
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Theorem 5.5.1 states that δ∗-transitivity and mutual rank transitivity have

to be situated below moderate product transitivity in Figure 5.3. This allows

us to conclude that:

(i) Weak stochastic transitivity does neither imply δ∗-transitivity, nor mu-

tual rank transitivity.

We continue with some negative results.

Proposition 5.5.1. Moderate stochastic transitivity does not imply δ∗-transi-

tivity.

Proof : Consider the reciprocal relation Q on A = {a, b, c} defined by

Q(a, b) = 0.4, Q(b, c) = 0.6 and Q(a, c) = 0.2. Obviously, Q is moderately

stochastic transitive, since min(Q(b, c),Q(c, a)) = 0.6 ≥ Q(b, a) = 0.6.

However, since δ∗(Q(a, b),Q(b, c)) = 0.24 > Q(a, c) = 0.2, Q is not δ∗-
transitive.

Proposition 5.5.1 generates the following additional results:

(ii) Moderate stochastic transitivity does not imply mutual rank transitiv-

ity.

(iii) Partial stochastic transitivity does neither imply δ∗-transitivity, nor mu-

tual rank transitivity.

Proposition 5.5.2. Mutual rank transitivity does not imply partial stochastic

transitivity, nor weak stochastic transitivity.

Proof : Partial stochastic transitivity of a reciprocal relation states that

α + β ≤ 1 for all β ∈ [0, 1], which implies that α ≤ 1/2. In particular,

if a reciprocal relation Q on A is partially stochastic transitive, no triplet

(a, b, c) ∈ A3 can exist, such that simultaneously Q(a, b) > 1/2, Q(b, c) >
1/2, and Q(c, a) > 1/2. The same situation is incompatible with weak

stochastic transitivity.

Now consider the poset with Hasse diagram in Figure 5.2. For the elements

a, b and c it holds that MP(b, a) = MP(a, c) = MP(c, b) = 80/159 > 1/2,
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Figure 5.2: A poset where MP(b, a) = MP(a, c) = MP(c, b) > 1/2.

which is a so-called linear extension majority cycle. Note that such linear

extension cycles will be the subject of Chapter 6. Since the above situation

is encountered, it leads to the announced negative results.

Proposition 5.5.2 generates the following additional results:

(iv) δ∗-transitivity does not imply partial stochastic transitivity, nor weak

stochastic transitivity.

(v) Neither mutual rank transitivity, nor δ∗-transitivity, implies any type of

transitivity stronger than partial or weak stochastic transitivity, such as

moderate and strong stochastic transitivity.

Next, we provide a second positive result.

Proposition 5.5.3. Strong stochastic transitivity implies mutual rank transi-

tivity.

Proof : In [38] the t-norm Tss defined by

Tss(x, y) =

{

min(x, y) if max(x, y) ≥ 1/2 ,

0 if max(x, y) < 1/2 ,

is introduced, which is situated between TL and TM. It is shown that the

upper bound function UTss obtained from (5.25) by setting f = Tss is equiv-

alent to the upper bound function that characterizes strong stochastic tran-

sitivity. Hence, Tss-transitivity is equivalent to strong stochastic transitivity.
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Since δ(x, y) = 0 if x + y < 1 and δ ≤ min it holds that δ ≤ Tss, whence

strong stochastic transitivity implies mutual rank transitivity.

Finally, we need to clarify the relationship between TP-transitivity on the one

hand, and δ∗-transitivity and mutual rank transitivity on the other hand.

Proposition 5.5.4. Mutual rank transitivity does not imply TP-transitivity.

Proof : Consider the poset P = {a, b, c}, with <P= {(a, c)}. One easily

verifies that MP(a, b) = 1/3, MP(b, c) = 1/3 and MP(a, c) = 0, which

violates TP-transitivity.

Proposition 5.5.5. TP-transitivity does not imply δ∗-transitivity.

Proof : Consider the reciprocal relation Q on A = {a, b, c} defined by

Q(a, b) = 0.6, Q(b, c) = 0.6 and Q(a, c) = 0.4. Obviously, Q is TP-transitive.

However, since

δ∗(Q(a, b),Q(b, c)) = 0.5236 > Q(a, c) = 0.4,

Q is not δ∗-transitive.

Propositions 5.5.4 and 5.5.5 generate the following additional results:

(vi) δ∗-transitivity does not imply TP-transitivity.

(vii) TP-transitivity does not imply mutual rank transitivity.

Combining all of the above results leads to the precise location of δ∗-transitivity

and mutual rank transitivity in the Hasse diagram of Figure 5.1, leading to

the extended Hasse diagram in Figure 5.3.
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Figure 5.3: Hasse diagram including δ∗-transitivity and mutual rank transi-

tivity.





6 Linear extension majority

cycles

6.1 Counting posets with linear extension majority

cycles

Definition 6.1.1. The linear extension majority relation or LEM relation of a

poset P is the binary relation ≻LEM on P such that x ≻LEM y if

Prob(x > y) > Prob(y > x). Since the mutual rank probability relation is

reciprocal, it is equivalent to say that x ≻LEM y if Prob(x > y) > 1/2. ⋄

The linear extension majority relation ≻LEM first appeared in 1968 in the

work of Kislitsyn [78], and it was conjectured that ≻LEM is transitive, and

thus cannot contain cycles, i.e. subsets {x1, x2, . . . , xm} of elements of P
such that x1 ≻LEM x2 ≻LEM · · · ≻LEM xm ≻LEM x1. However, in 1974 Fish-

burn [58] showed that ≻LEM can contain cycles, and thus is not transitive.

These cycles are referred to as LEM cycles of length m. Since then, quite some

attention has been given to LEM cycles in the literature. Examples of posets

with LEM cycles in different contexts are given in [1, 59, 60, 61, 62, 67, 69],

frequency estimates for LEM cycles have been reported in [66, 68], and the

occurrence of LEM cycles in certain subclasses of posets has been studied

in [14, 54].

Aside from the fact that the existence of LEM cycles is an intriguing phe-
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nomenon in its own right, a better understanding of LEM cycles might help

in the ongoing quest to characterize the transitivity of mutual rank probabil-

ities in posets [37, 60, 76, 121]. Furthermore, Gehrlein and Fishburn [68]

discuss an interesting application of LEM cycles in which incomplete infor-

mation about a linear order ≤L on a set P is given in the form of a partial

order ≤P. Assuming the partial information is correct, they consider the

problem of attempting to reconstruct the linear order ≤L. The choice of

such a linear order amounts to the selection of a single extension from the

set of all linear extensions of the poset. As already described in Chapter 4,

this is a problem frequently encountered in real world situations, e.g. when

a decision maker insists on obtaining a linear order on all objects instead

of a partial order obtained by comparing the attribute vectors of the ob-

jects [22, 24, 28, 40, 44, 83, 84, 96]. The approach Gehrlein and Fishburn

suggest assesses a conditional probability pi that the corresponding linear

extension (P,≤Li) of the poset represents ≤L given the partial information

contained in ≤P. Once these probabilities pi are obtained, it is possible to

compute the probability that x <L y as the sum of all probabilities pi corre-

sponding to a linear extension for which it holds that x <Li y.

One model of interest describing the manner in which the partial order ≤P

is obtained from ≤L implies that all of these probabilities pi equal 1/e(P).
In this case, the probability that x <L y is identical to the mutual rank

probability Prob(y > x) according to the partial order ≤P. Moreover, the

maximum likelihood estimator ≺∗ of ≤L defined by x ≺∗ y if Prob(y >
x) > Prob(x > y), is nothing else but the LEM relation, in the sense that

x ≺∗ y if and only if y ≻LEM x. Since posets exist with LEM cycles, the maxi-

mum likelihood estimator ≺∗ can be intransitive. This notion of a maximum

likelihood estimator of ≤L being quite appealing, it would be interesting to

obtain some measure of the propensity of this technique to produce intran-

sitive maximum likelihood estimators.

Gehrlein and Fishburn [69] conducted a computer search to find all non-

isomorphic posets with LEM cycles for poset cardinalities n ≤ 9 and showed

that no cycles exist for n ≤ 8. Moreover, exactly 5 non-isomorphic posets

for n = 9 were found. In Figure 6.1 three of these posets are depicted.

The other posets are their dual versions. Remark however that due to sym-

metry the leftmost poset coincides with its dual, such that 5 unique non-

isomorphic posets with LEM-cycles are obtained for n = 9. In a later paper,

Gehrlein [66] estimated the likelihood of LEM cycles for posets on up to

n = 12 elements by generating random connected posets.
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Figure 6.1: Three posets of size 9 with LEM-cycles (a ≻LEM b, b ≻LEM c and

c ≻LEM a).

6.1.1 The algorithm

Unless some direct method is invented to avoid explicit enumeration, count-

ing all posets with LEM cycles requires at least all posets to be enumerated

and their mutual rank probability relation to be computed.

Brinkmann and McKay [18] developed a very efficient method to construct

pairwise non-isomorphic posets, which allows them to enumerate posets on

up to 16 elements. As an illustration of the size of the problem, the number

of non-isomorphic posets of sizes 9 to 16 are shown in Table 6.1.

n number of posets

9 183 231
10 2 567 284
11 46 749 427
12 1 104 891 746
13 33 823 827 452
14 1 338 193 159 771
15 68 275 077 901 156
16 4 483 130 665 195 087

Table 6.1: Number of non-isomorphic posets for n = 9, 10, . . . , 16.

As shown in Subsection 4.3.1, a direct way to compute the mutual rank

probability relation using the lattice of ideals representation of a poset no

longer necessitates the enumeration of all linear extensions, though requires

additional memory for storing the lattice of ideals. Since we are precisely

interested in generating small posets, the lattice of ideals of such posets
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nicely fits into memory of current computer architectures.

Indeed, an approach based on enumerating all linear extensions would im-

ply that only for the antichain of 13 elements, already more than 62 billion

linear extensions need to be enumerated. This computationally extremely

intensive process combined with the number of posets that grows quickly for

increasing n, would make the counting procedure out of reach for n = 12,

let alone for n = 13.

We combined the poset generation algorithm of Brinkmann and McKay [18]

and Algorithm 4.2 described in Subsection 4.3.1 to compute the mutual rank

probability relation for each poset enumerated. This approach enabled us

to obtain exact counts for posets on up to 13 elements.

For each poset (P,≤P) generated by the algorithm of Brinkmann and McKay,

Algorithm 6.1 is executed. This algorithm checks whether a given poset

(P,≤P) contains a LEM cycle of length l, where l = 3, 4, . . . , k with k ≤ n.

The result of the check is returned as an array of booleans in which the

element at index l is true if (P,≤P) contains a LEM cycle of length l and

false in the negative case.

In the first line of Algorithm 6.1, the Hasse diagram LP of the lattice of ideals

of (P,≤P) is constructed. The most efficient algorithm currently known for

constructing is the algorithm of Habib et al. [70] presented in Section 2.3,

which has an optimal complexity up to a constant factor. In line number 2
the mutual rank probability relation MP is computed as in Algorithm 4.2.

Let us construct the directed weighted graph G in which the vertices are the

elements of our poset (P,≤P) and the directed edges the couples (x, y) ∈ P2

for which MP(x, y) > 1/2. Furthermore, let us attribute a weight MP(x, y)
to each directed edge (x, y). Clearly, a cycle in G of length l is a LEM cycle

of length l.

Once the relation MP is computed, in order to know whether there exists a

closed walk in G from a vertex x ∈ V to the same vertex x with l directed

edges, we calculate Ml
P, in which the matrix multiplication Ml−1

P × MP is

defined as the usual matrix multiplication where min is substituted for ·
and max for +. Remark that the first multiplication MP ×MP assigned to

M2
P takes place before the for-loop in line 3, since it is impossible for cycles

of length 2 to occur due to the reciprocity of the mutual rank probability
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Algorithm 6.1 Checking whether a given poset (P,≤P) contains a LEM cycle

of length l, where l = 3, 4, . . . , k with k ≤ n

1: build the Hasse diagram LP of the lattice of ideals (I(P),⊆) of (P,≤P)
2: compute the mutual rank probability relation MP using (I(P),⊆)
3: M2

P ← MP ×MP

4: for each l = 3, 4, . . . , k do

5: cycle[l] ← false

6: Ml
P ← Ml−1

P ×MP

7: c← 0
8: for each j = 1, . . . , n do

9: if Ml
P( j, j) > 1/2 then

10: if l < 6 then

11: cycle[l]← true

12: break for

13: c← c+ 1
14: elem[c]← j
15: if c ≥ l then

16: for each i = 1, 2, . . . , c do

17: if there is a cycle of length l starting in elem[i] then

18: cycle[l]← true

19: break for

20: return cycle
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relation MP. Each subsequent multiplication is executed inside the for-loop

in line 6. If it holds for an element x that Ml
P(x, x) > 1/2 (line 9), there is

a closed walk with l edges. It is clear that, if there is no closed walk with

l edges, a cycle of length l is impossible, so no further check is needed. If

there is a closed walk of length l < 6, there is a cycle of length l (line 10).

Indeed, due to the fact that if an edge (x, y) ∈ E is present, no edge (y, x)
can be present, the smallest cycles that can occur have length 3. For l = 6, a

closed walk of length 6 could arise from two cycles of length 3 sharing one

common vertex. Therefore it is clear that for l ≥ 6 a situation can occur in

which a closed walk of length l is the composition of two or more cycles.

Since we are searching for cycles of length l, it is clear that, in order for

such a cycle to occur, at least l elements should have a closed walk of length

l (line 15). Finally, an explicit depth-first search should be done for each

candidate element (line 17), i.e. each element x having Ml
P(x, x) > 1/2,

to verify whether a cycle of length l is present. For each such candidate,

recursively all possible successor edges which have not yet been visited are

selected until exactly l edges have been chosen. Subsequently, if the vertex

at the last edge is the starting vertex, a cycle is detected.

The algorithm we implemented in Java is a actually slight variant of the

above one, in the sense that we search for all possible LEM cycles of length

l instead of just returning whether (P,≤P) contains a LEM cycle of length

l. Moreover, each poset in which a LEM cycle occurs is stored in a database

for future reference.

6.1.2 Results

When generating posets on n elements, the algorithm of Brinkmann and

McKay [18] will, for arbitrary r,m ∈ N, r < m, generate all posets on n− 4
elements and number them in the order they occur, while only generating

successors of those posets whose number equals r mod m. This option

allowed us to split the generation process, and thus the counting procedure.

For n = 12, we divided the generation process into 100 parts and for n = 13
into 1000 parts. Rescaled to a single 2.4 GHz processor the entire process

for n = 13 would take around 4 computing years. Because of the fact that

the number of posets for n = 14 is almost 40 times larger than the number

of posets for n = 13, combined with the exponential behaviour in n of the
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number of ideals, it is not possible to obtain results for n > 13 in a feasible

time frame with our approach, unless substantially more computing power

is available. Moreover, due to the growing size of the lattice of ideals, the

size of the memory also becomes a constraining factor for larger values of

n. It should be remarked that implementing Algorithm 6.1 in a language

which is more performant than Java could possibly reduce the running time

in a substantial way. However, due to the exponential nature of the problem

it would now allow us to go any step further in the computation: counting

all LEM cycles on posets on up to 14 elements would still be out of reach.

In order to verify the correctness of the implementation of Algorithm 4.2,

for posets on up to 9 elements all mutual rank probability relations were

compared with the results obtained by an independent approach based on

the Varol-Rotem algorithm listed in Algorithm 3.1. For each poset, all linear

extensions were enumerated and the mutual rank probability relation was

computed.

6.1.2.1 LEM cycles

n\l 3 4 5 6 7 8 all

9 5 - - - - - 5
10 148 6 - - - - 153
11 5 740 101 - - - - 5 815
12 216 573 2 885 5 21 - - 218 097
13 9 318 881 102 127 471 363 1 - 9 348 400

Table 6.2: Number of n-element posets with LEM cycles of length l, for

n = 9, 10, . . . , 13 and l = 3, 4, . . . , 8.

In Table 6.2, the number of n-element posets having a LEM cycle of length l
is shown, while in Table 6.3 the relative number of n-element posets having

a LEM cycle of length l, multiplied by 104, is shown. The fact that for n > 9,

the numbers in the last column in each of these tables are smaller than the

sum of the preceding numbers on the same row, reflects the fact that some

posets contain LEM cycles of different lengths.

Clearly, the results in Table 6.3 provide additional support for the conjecture

formulated by Gehrlein and Fishburn [69] that the likelihood of observing
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n\l 3 4 5 6 7 8 all

9 0.273 - - - - - 0.273
10 0.576 0.023 - - - - 0.596
11 1.228 0.022 - - - - 1.244
12 1.960 0.026 0.000 0.000 - - 1.974
13 2.755 0.030 0.000 0.000 0.000 - 2.764

Table 6.3: Relative number of n-element posets having a LEM cycle of length

l, multiplied by 104, for n = 9, 10, . . . , 13 and l = 3, 4, . . . , 8.

a random poset with a LEM cycle increases as n increases. The rate at

which the likelihood increases, however, seems to decrease with increasing

n. This is in accordance with the LEM cycle frequency estimates made by

Gehrlein [66]. Moreover, when we sampled 1 071 200 posets of size 14 uni-

formly at random, a relative number of 3.641 · 10−4 turned out to have at

least one cycle, in line with the trend of a decreasing rate.

When using nonlinear optimization to fit a function f (x) = a + b · x + x ·
log (x) with two parameters a, b ∈ R to the total relative frequencies in

Table 6.3, we found values a = 5.2304 and b = −2.7572 such that f (x)
explains 99.59% of the variance. Of course, using such a formula to estimate

the relative number of n-element posets with LEM cycles should be done

with great caution, especially for larger n. We expect, however, that for n
smaller than 50, a reasonable approximation is obtained using f (x).

6.1.2.2 Posets of height 1

Ewacha et al. [54] have shown that posets of height 1 can have LEM cycles.

Our results indicate that the smallest posets having this property have 11
elements. Actually, there are only two such 11-element posets: the poset

depicted in Figure 6.2 and its dual poset which have a LEM cycle of length

4. The results of this counting operation for n = 11, 12, 13 are shown in

Table 6.4, while the relative number of n-element posets of height 1 having

LEM cycles are shown in Table 6.5. Remark that no 11-element poset of

height 1 has LEM cycles of length 3. An analogous observation can be made

for 12 and 13-element posets of height 1: although LEM cycles of length 6
occur, no poset has a LEM cycle of length 5. It is clear that the probability
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of encountering a LEM cycle in the class of n-element posets of height 1
is much lower than in the class of all n-element posets. Note also that the

relative number of posets of height 1 that have a LEM cycle seems to increase

at a lower pace than the total number of n-element posets that have a LEM

cycle.

6 7

3 4

9 1110

21 5

8

Figure 6.2: The smallest poset of height 1 having a LEM cycle, where

Prob(4 > 2) = Prob(5 > 3) = 174660/349260 and Prob(3 > 4) =
Prob(2 > 5) = 174790/349260

n\l 3 4 5 6 7 all

11 - 2 - - - 2
12 11 9 - 1 - 20
13 175 123 - 3 - 296

Table 6.4: Number of n-element posets of height 1 having a LEM cycle of

length l, for n = 11, 12, 13 and l = 3, 4, . . . , 7.

n\l 3 4 5 6 7 all

11 - 0.308 - - - 0.308
12 0.219 0.179 - 0.020 - 0.399
13 0.345 0.273 - 0.006 - 0.584

Table 6.5: Relative number of n-element posets of height 1 having a LEM

cycle of length l, multiplied by 104, for n = 11, 12, 13 and l = 3, 4, . . . , 7.

6.1.2.3 Worst balanced posets

For a poset (P,≤P), the balance constant b(P) is defined as the maximum

over all pairs (x, y) ∈ P of min(Prob(x > y), Prob(y > x)). Worst balanced

n-element posets are n-element posets of which the balance constant is the
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smallest and which are not a linear sum of other posets. The importance of

these worst balanced posets stems from a well-known conjecture made by

Kislitsyn in 1968 [78], known as the 1/3-2/3-conjecture. It states that in any

non-chain poset P one can always find a couple of elements (x, y) ∈ P such

that

1/3 ≤ Prob(x > y) ≤ 2/3.

Brightwell et al. [13] proved that there exists a couple of elements (x, y) ∈ P
such that

(5−
√
5)/10 ≤ Prob(x > y) ≤ (5 +

√
5)/10

and showed that for a class of countably infinite posets for which the notion

of mutual rank probabilities makes sense, it is the best possible bound. A

finite non-chain poset for which b(P) < 1/3 would be a counterexample to

this conjecture.

Brightwell [12] presented all worst balanced posets for n up to 8, and

Peczarski [98] found the worst balanced posets for n = 9, 10, 11. Due to

the regularity one can observe, Peczarski introduced a new class of badly

balanced posets, which he called ladders with broken rungs. We obtained

the worst balanced posets for n = 12, 13, and, as can be seen in Figure 6.3,

they indeed fall into Peczarski’s class of ladders with broken rungs.

6.2 Minimum cutting levels

In the previous section it was shown that the mutual rank probability rela-

tion can contain LEM cycles, and all posets on up to 13 elements containing

such cycles were counted. We would now like to determine a minimum

cutting level δm such that the crisp relation obtained from the mutual rank

probability relation by setting its elements smaller than or equal to δm equal

to 0 and its other elements equal to 1 is free from cycles of size l ≤ m. In

other words, we want to obtain the minimum δm such that at least one mu-

tual rank probability in any LEM cycle of size l ≤ m is smaller than or equal

to δm.

Definition 6.2.1. The strict cut at δ ∈ [1/2, 1[ of a reciprocal relation Q
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P3

b(P3) = 0.333333 . . .

P4

b(P4) = 0.4

P5

b(P5) = 0.363636 . . .

P6

b(P6) = 0.357142 . . .

P7

b(P7) = 0.358974 . . .

P8

b(P8) = 0.355555 . . .

P9

b(P9) = 0.352941 . . .

P10

b(P10) = 0.349057 . . .

P11

b(P11) = 0.350877 . . .

P12

b(P12) = 0.350181 . . .

P13

b(P13) = 0.350446 . . .

Figure 6.3: All worst balanced posets for n = 3, 4, . . . , 13.
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defined on a set A, is the crisp relation Qδ defined by

Qδ(x, y) =

{

1 if Q(x, y) > δ ,

0 otherwise.

⋄

Definition 6.2.2. The minimum cutting level δm is the smallest number such

that for any finite poset the strict cut at δm of the corresponding mutual rank

probability relation is free of LEM cycles of length l ≤ m. ⋄

Recall that in the previous section a directed weighted graph G was intro-

duced in which the vertices are the elements of our poset (P,≤P) and the

directed edges the couples (x, y) ∈ P2 for which Prob(x > y) > 1/2. Find-

ing a minimal cutting level δm is equivalent to requiring the graph obtained

by removing edges from G corresponding to values Prob(x > y) ≤ δm to be

free of cycles of length l ≤ m.

6.2.1 Theoretical upper bounds

From the previous chapter it is known that the mutual rank probability re-

lation MP of any poset (P,≤P) is cycle-transitive with respect to the upper

bound function

U(α,β,γ) = α + γ −αγ. (6.1)

Using the definition of cycle-transitivity (5.22) this is identical to imposing

that for any a, b, c ∈ P it holds that

α + β + γ− 1 ≤ α + γ−αγ, (6.2)

or equivalently

1−β ≥ αγ, (6.3)

where α, β and γ are defined as usually, i.e.

α = min (MP(a, b),MP(b, c),MP(c, a)) ,

β = median (MP(a, b),MP(b, c),MP(c, a)) ,

γ = max (MP(a, b),MP(b, c),MP(c, a)) .
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This property allows us to theoretically derive an upper bound for the mini-

mum cutting level δm.

Denote byMR the set of mutual rank probability relations MP of all finite

posets (P,≤P) and by CR the set of all reciprocal relations Q on a finite

set A that are cycle-transitive with upper bound function (6.1). Clearly

MR ⊆ CR.

First the case m = 3 is considered. The minimum cutting level δ3 is the

largest value that can be obtained for the minimum of MP(a, b), MP(b, c)
and MP(c, a) forming a cycle of length 3 in a mutual rank probability rela-

tion MP of a poset (P,≤P) with a, b, c ∈ P, i.e.:

δ3 = sup
P

max
a,b,c∈P

min(MP(a, b),MP(b, c),MP(c, a)),

where the supremum is taken over all finite posets (P,≤P). Since MR ⊆
CR, an upper bound δ̄3 for δ3 is

δ̄3 = sup
Q∈CR

max
a,b,c∈A

min(Q(a, b),Q(b, c),Q(c, a)).

To obtain δ̄3, it is therefore sufficient to consider reciprocal relations from

CR with three elements and to find a set of values of Q(a, b), Q(b, c), Q(c, a)
such that min(Q(a, b),Q(b, c),Q(c, a)) is maximal. From symmetry con-

siderations it follows that the investigation may be restricted to reciprocal

relations for which

Q(a, b) = Q(b, c) = Q(c, a) = q.

Expressing that such a reciprocal relation should be transitive with respect to

the upper bound function (6.1), yields the condition q2 ≤ 3q− 1 ≤ 2q− q2,
or equivalently (3−

√
5)/2 ≤ q ≤ (

√
5− 1)/2. As a consequence we have

that

δ3 ≤ δ̄3 = (
√
5− 1)/2 ≈ 0.618034.

Remark that this is precisely the golden section.

In general, for m ≥ 3, let us introduce the following notations. We number

the nodes of the complete graph from 1 to m and consider the cycle of length

m in which the nodes appear in the natural order. The edges of this cycle are

attributed equal weight am1 . We need to find the maximal value of am1 such

that the reciprocal relation which underlies the graph is cycle-transitive with



124 6 Linear extension majority cycles

respect to the upper bound function (6.1). Due to symmetry, we attribute to

the edges starting at node i and ending at node (i+ k) mod m, irrespective

of i, the same weight amk , where k ∈ {1, 2, . . . ,m − 1}. Clearly, since the

relation underlying this graph should be reciprocal, it holds that

amk = 1− amm−k for all k ∈ {1, 2, . . . ,m− 1}.

We call these weighted graphs max-optimal.

In the first column of Table 6.6 the maximum values of am1 , which are pre-

cisely the minimum cutting levels δ̄m, are listed for m = 3, . . . , 7. In the next

two columns the values of amk for k = 2, . . . , ⌊m/2⌋ are shown. Remark that,

because of the reciprocity, the remaining values, i.e.

amk for k = ⌊m/2⌋+ 1, . . . ,m,

can be found by complementation. Finally, in the last column, the polyno-

mial equation whose largest real root provides the value of am1 is given for

each m. Let us illustrate how this equation is found. For m = 3 there is only

one cycle of length 3. By substituting α = β = γ = a31 in (6.3) the inequality

1− a31 ≥ (a31)
2 is found. Maximizing a31 in this equality yields the equation

(a31)
2 + a31 − 1 = 0. Remark that no stricter condition is obtained by consid-

ering the inverse cycle and thus by expressing that α = β = γ = 1 − a31.
Imposing that (6.3) holds for all cycles of length 3 for m = 4 yields the con-

dition 1− a41 ≥ a31a
4
2. At the same time, because of symmetry, we know that

a42 = 1− a42. By maximizing a41 the equation 3a41 − 2 = 0 is obtained. When

m = 5, the following conditions are obtained:

{

1− a52 ≥ a51a
5
2

1− a51 ≥ a51(1− a52)
⇔

{

a51 ≤ (1− a52)/a
5
2

a51 ≤ 1/(2− a52)
.

It is easily verified that a51 attains a maximum at the intersection of the upper

bounds on a51, such that we obtain the equation

(1− a52)(2− a52) = a52.

Substituting a52 = 1/(1 + a51) into this equation yields 2(a51)
2 − 1 = 0. Anal-

ogous calculations can be made for m ≥ 6.

A similar exercise can be made for the δ∗-transitivity in (5.34) which is

stronger than our cycle-transitive formulation. If we denote by DR the set
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m am1 = δ̄m am2 am3 polynomial equation

3 0.61803 (a31)
2 + a31 − 1 = 0

4 0.66667 0.50000 3a41 − 2 = 0

5 0.70711 0.58579 2(a51)
2 − 1 = 0

6 0.72361 0.61803 0.50000 5(a61)
2 − 5a61 + 1 = 0

7 0.74227 0.65270 0.53209 3(a71)
3 − 3a71 + 1 = 0

Table 6.6: Weights of graphs with m nodes that represent max-optimal cycle-

transitive reciprocal relations with respect to the upper bound function (6.1)

whose strict cuts at δ̄m are free of cycles of length m.

of all finite reciprocal relations that exhibit δ∗-transitivity, it is clear that

MR ⊆ DR ⊆ CR. Let us now denote δ̃m as the minimum cutting level

for the class DR. The results obtained by using a numerical solver for m
up to 13 are summarized together with the values for δ̄m for m up to 13 in

Table 6.7. Remark that the bounds obtained by the minimum cutting level

δ̃m for relations in DR are considerably sharper than those obtained by δ̄m
for relations in CR.

m δ̃m δ̄m
3 0.555556 0.618034
4 0.585787 0.666667
5 0.605696 0.707107
6 0.620118 0.723607
7 0.631193 0.742227
8 0.640043 0.75
9 0.647324 0.767592
10 0.653448 0.773459
11 0.658690 0.780777
12 0.663243 0.788675
13 0.667243 0.792256

Table 6.7: Theoretical upper bounds on the minimum cutting level to avoid

LEM cycles of length l ≤ m obtained by the minimum cutting level δ̃m for

reciprocal relations in DR and δ̄m for reciprocal relations in CR.
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It is known from the work of Yu [121] that the strict cut of any mutual rank

probability relation at the value

ρ =
1 + (

√
2− 1)

√

2
√
2− 1

2
≈ 0.780048

yields a crisp relation that is transitive, and thus obviously is free of cycles

of length m for any m > 0. Therefore, it must hold that

lim
m→∞

δm ≤ ρ .

6.2.2 Experimental results

Remark that the theoretical considerations on the minimum cutting lev-

els concern the entire supersets CR and DR of MR. Therefore the given

bounds are not sharp when we restrict to posets of some given size. In

this subsection we will experimentally compute the exact minimum cutting

levels for posets on up to 13 elements.

An algorithm is introduced in Section 6.1.1 to retrieve all posets of a given

size n with LEM cycles. It is straightforward to adapt this algorithm to keep

track of the posets requiring the highest cutting level δnm such that all mutual

rank probabilities in a LEM cycle of length m are greater than or equal to

δnm. In Table 6.8, the minimum cutting levels to avoid cycles of length m in

n-element posets are shown. Note that since no posets with n ≤ 13 exist

with LEM cycles of length 8, the cutting level for m = 8 is 0.5.

n\m 3 4 5 6 7

9 0.50314465 0.5 0.5 0.5 0.5
10 0.50396825 0.50284900 0.5 0.5 0.5
11 0.50619469 0.50284900 0.5 0.5 0.5
12 0.50735039 0.50866575 0.50039788 0.50242592 0.5
13 0.50886687 0.50866575 0.50289997 0.50246440 0.50018080

Table 6.8: Minimum cutting level δnm to avoid LEM cycles of length m in

posets of size n = 9, . . . , 13 for m = 3, . . . , 7.

Since one can trivially establish a poset of size n + 1 from a poset of size n
with an equal minimum cutting level by adding an element which is either
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smaller than, larger than or incomparable to all n elements, the minimum

cutting levels δnm are monotonically increasing for increasing n. Therefore, a

minimum cutting level δnm avoids all LEM cycles of length l ≤ m. In Table 6.8

one can observe that for n = 11 no higher cutting level for avoiding cycles

of length 4 is found than for n = 10 since δ114 = δ104 , and similarly it is found

that δ134 = δ124 . Remark furthermore that a cutting level δnm = 0.5 indicates

that no LEM cycles of length l ≤ m are present.

In Figures A.1-A.14 of Appendix A the posets requiring the non-trivial min-

imum cutting levels indicated in boldface in Table 6.8 are depicted by their

Hasse diagrams. Note that the dual of a poset has an equal minimum cut-

ting level, and therefore is not shown. However, four depicted posets are

identical to their dual posets (Figures A.1, A.5, A.6 and A.14). It is also

interesting to mention that some posets have multiple LEM cycles with an

identical cutting level, while others have LEM cycles of different lengths.

The poset of size 9 in Figure A.1, for example, has three cycles of length

3 with identical probabilities, while for the poset of size 12 in Figure A.5,

aside from the cycle with length 3, a cycle of length 4 is present, since it

holds that

Prob(5 > 7) = Prob(7 > 8) =
6184

12244
.

The poset of size 12 in Figure A.7 is quite remarkable in this respect, since

aside from the cycle of length 5, cycles of length 3, 4 and 6 are present. The

poset in Figure A.14 even has cycles of length 3, 4, 5, 6 and 7. Furthermore,

the poset in Figure A.8 also has a cycle of length 3, the poset in Figure A.11

has cycles of length 3 and 4, and the posets in Figure A.12 and A.13 have

both cycles of length 3. For some cutting levels multiple posets, aside from

their dual versions, are found. This is the case for the posets of size 13
in Figure A.9 and A.10 which attain the minimum cutting level for cycles

of length 3. In addition, the same is true for cycles of length 6 in Fig-

ure A.12 and A.13.

As an additional verification of the implementations of the algorithms, the

mutual rank probabilities of all posets contained in this subsection have

been verified using an implementation of an algorithm of Pruesse et al. [102]

based on the fast generation of all linear extensions.

One of the aims of the experiments was to find common properties for posets

with LEM cycles or to see a common structure emerging in the posets re-

quiring the minimum cutting level. Indeed, if some common properties
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are found it might be possible to confine the search space to one or more

subclasses of posets, or at least to rule out several hopefully large enough

subclasses. By doing this, one could hope to take a step further and to find

all posets with LEM cycles for n = 14 or maybe even n = 15. However,

to our surprise the posets have little in common. Possibly due to the fact

that the posets are still very limited in size no common (sub)structures can

yet be observed for increasing size. However, the symmetrical and relatively

simple structure of the poset of size 12 in Figure A.6 requiring the minimum

cutting level δ4 inspired us in the next subsection to try to generalize it and

to find a lower bound for δ4 as sharp as possible for increasing poset size.

6.2.3 A lower bound for δ4

Consider in Figure 6.4 the generalization of the poset in Figure A.6 requiring

the highest cutting level to avoid cycles of length l ≤ 4 in posets with 12
elements. Note that if we set p = 1 and q = 0 the original poset in Figure A.6

is obtained. We observed that by increasing q the cutting level needed to

avoid cycles of size l ≤ 4 increases as well. The same observation was made

for increasing p. Moreover, there is exactly one cycle of length 4, consisting

of the elements ω1,ω2,ω3 and ω4, requiring this cutting level. Due to

symmetry, the probabilities in the cycle are identical, i.e. Prob(ω2 > ω1) =
Prob(ω1 > ω4) = Prob(ω4 > ω3) = Prob(ω3 > ω2). Therefore it would

be interesting to have an analytical expression for e.g. Prob(ω2 > ω1) as a

function of p and q, since we would then obtain cutting levels for removing

cycles of length 4 in a family of posets which seem promising for obtaining

a lower bound for δ4 as close as possible to the theoretical upper bound

δ̃4 ≈ 0, 585787 from Table 6.7.

As a first step, we count the number of linear extensions of the poset, as

this number will be the denominator of Prob(ω2 > ω1). Note that the four

indicated elements a, b, c and d on Figure 6.4 can occur in four different

orders in a linear extension:

a < b < c < d,

a < b < d < c,

b < a < c < d,

b < a < d < c.
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p

q

q

p

ω2 ω4

ω3 ω1

d c

ab

q

p

p

q

Figure 6.4: Generalization of the poset in Figure A.6 requiring the highest

cutting level to avoid cycles of length l ≤ 4 in posets with 12 elements.

Again due to symmetry, the number of linear extensions where a < b is

identical to those where b < a. We can therefore restrict to the orders

a < b < c < d and a < b < d < c and multiply the expression found by 2 in

order to obtain the total number of linear extensions.
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Since we will often need the number of linear extensions of the poset con-

sisting of two chains with lengths i and j, in what follows we will denote

this number as κ(i, j), i.e. we define

κ(i, j) =

(

i + j

j

)

.

The total number of linear extensions N(p, q) can now be written as the

following summation

q

∑
i1=0

κ(q, i1)
2p+1

∑
i2=0

κ(i2 , q− i1)
[

Ncd(p, q, i1 , i2) + Ndc(p, q, i1 , i2)
]

, (6.4)

where the two functions Ncd and Ndc cover the case that c < d and d < c
respectively

Ncd(p, q, i1, i2) =
2p+1

∑
i3=0

κ(2p− i2 + 1, i3)
q

∑
i4=0

ncdκ(i4 , 2p− i3 + 1)κ(q− i4, q),

Ndc(p, q, i1, i2) =
2p+1−i2

∑
i3=0

κ(2p + 1, i3)
q

∑
i4=0

ndcκ(i4 , 2p− i2 − i3 + 1)κ(q− i4, q).

We denote the number of elements in the poset that are smaller than ω3 in

each linear extension as ω3. In other words, ω3 is a lower bound for the

position of ω3. Similarly, we denote the upper bound on ω3 when c < d as

ωcd
3 and the upper bound on the position of ω3 when d < c as ωdc

3 . These

bounds are given as follows:

ω3 = q + i1 + 1,

ωcd
3 = 4p + 2q + i4 + 5,

ωdc
3 = 2p + 2q + i2 + i3 + 3.

Analogously we obtain a lower bound ω1 and two upper bounds ωcd
1 and
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ωdc
1 on the position of ω1,

ω1 = 2q + i2 + 2,

ωcd
1 = 2p + 2q + i3 + 3,

ωdc
1 = 4p + 2q + i4 + 5.

Consider the case c < d. The element ω1 can be freely inserted between

positions ω1 and ωcd
1 , and similarly the element ω3 can be inserted between

ω3 and ωcd
3 . However, as can be seen in Figure 6.5, between ω1 and ωcd

1 an

additional position for ω3 appears due to the insertion of ω1. In order to

account for all possible positions of the two elements ω1 and ω3 in all linear

extensions, we therefore have to add the term ωcd
1 −ω1 + 1 as to obtain

ncd = (ωcd
1 −ω1 + 1)(ωcd

3 −ω3 + 1) +ωcd
1 −ω1 + 1. (6.5)

When d < c a similar argument holds as shown in Figure 6.6:

ndc = (ωdc
1 −ω1 + 1)(ωdc

3 −ω3 + 1) +ωdc
3 −ω1 + 1. (6.6)

ω3 ωcd
3ω3

ω1ω1 ωcd
1

Figure 6.5: Lower and upper bounds on the positions of ω1 and ω3 when

c < d.

ω3 ωdc
3ω3

ω1ω1 ωdc
1

Figure 6.6: Lower and upper bounds on the positions of ω1 and ω3 when

d < c.
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After simplifying expressions (6.5) and (6.6) we obtain

ncd = (2p− i2 + i3 + 2)(4p + q− i1 + i4 + 6),

ndc = (4p− i2 + i4 + 4)(2p + q− i1 + i2 + i3 + 3) + (2p + i3 + 2).

It can be proven that the following equalities hold

q

∑
i1=0

κ(q, i1)κ(i2, q− i1) = κ(q + i2 + 1, q),

q

∑
i1=0

(q− i1 + i2 + 1)κ(q, i1)κ(i2, q− i1) = (i2 + 1)κ(q + i2 + 2, q), (6.7)

such that if we define t = 2p + 1, it is easily verified that N(p, q) in expres-

sion (6.4) can be rewritten as

t

∑
i2=0

t

∑
i3=0

κ(t− i2, i3)
q

∑
i4=0

κ(i4 , t− i3)κ(q− i4, q)·

[(t− i2 + i3 + 1)(i2 + 1)κ(q + i2 + 2, q) +

(t− i2 + i3 + 1)(2t− i2 + i4 + 3)κ(q + i2 + 1, q)]

+
t

∑
i2=0

t−i2
∑
i3=0

κ(t, i3)
q

∑
i4=0

κ(i4, t− i2 − i3)κ(q− i4, q)·

[(2t− i2 + i4 + 2)(i2 + 1)κ(q + i2 + 2, q) +

(2t− i2 + i4 + 3)(t + i3 + 1)κ(q + i2 + 1, q)] . (6.8)

In analogy to the equalities in (6.7) it is found that

q

∑
i4=0

κ(i4 , t− i3)κ(q− i4, q) =
q

∑
i4=0

κ(q− i4, t− i3)κ(i4 , q)

= κ(t + q− i3 + 1, q),

and

q

∑
i4=0

κ(i4 , t− i2 − i3)κ(q− i4, q) =
q

∑
i4=0

κ(q− i4, t− i2 − i3)κ(i4 , q)

= κ(t + q− i2 − i3 + 1, q).
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Moreover,

q

∑
i4=0

(t− i3 + i4 + 1)κ(i4 , t− i3)κ(q− i4, q)

=
q

∑
i4=0

(t + q− i3 − i4 + 1)κ(q− i4, t− i3)κ(i4, q)

= (t− i3 + 1)κ(t + q− i3 + 2, q),

and
q

∑
i4=0

(t− i2 − i3 + i4 + 1)κ(i4 , t− i2 − i3)κ(q− i4, q)

=
q

∑
i4=0

(t + q− i2 − i3 − i4 + 1)κ(q− i4, t− i2 − i3)κ(i4 , q)

= (t− i3 + 1)κ(t + q− i2 − i3 + 2, q),

such that (6.8) simplifies to

t

∑
i2=0

t

∑
i3=0

κ(t− i2, i3)·

[(t− i2 + i3 + 1)(i2 + 1)κ(t + q− i3 + 1, q)κ(q + i2 + 2, q)+

(t− i2 + i3 + 1)(t− i3 + 1)κ(t + q− i3 + 2, q)κ(q + i2 + 1, q)+

(t− i2 + i3 + 1)(t− i2 + i3 + 2)κ(t + q− i3 + 1, q)κ(q + i2 + 1, q)]

+
t

∑
i2=0

t−i2
∑
i3=0

κ(t, i3)·

[(t− i2 − i3 + 1)(i2 + 1)κ(t + q− i2 − i3 + 2, q)κ(q + i2 + 2, q)+

(t + i3 + 1)(i2 + 1)κ(t + q− i2 − i3 + 1, q)κ(q + i2 + 2, q)+

(t + i3 + 1)(t− i2 − i3 + 1)κ(t + q− i2 − i3 + 2, q)κ(q + i2 + 1, q)+

(t + i3 + 1)(t + i3 + 2)κ(t + q− i2 − i3 + 1, q)κ(q + i2 + 1, q)] .

(6.9)

As a next step we calculate the number of linear extensions where ω2 < ω1,

which is identical to the number of linear extensions of the poset in Fig-

ure 6.7. We will use an analogous technique, but since symmetry is lost in

this case it is necessary to consider both cases a < b and b < a.
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Figure 6.7: Generalization of the poset in Figure A.6 requiring the highest

cutting level to avoid cycles of length l ≤ 4 in posets with 12 elements where

the ordered pair ω2 < ω1 is added.
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We obtain for the number of linear extensions Mab(p, q) where a < b

q+p+1

∑
i1=0

κ(q, i1)
2p+1

∑
i2=0

κ(i2 , p + q− i1 + 1)
[

Mcd
ab(p, q, i1 , i2)+Mdc

ab(p, q, i1, i2)
]

,

(6.10)

where the two functions Mcd
ab and Mdc

ab cover the case that c < d and d < c
respectively:

Mcd
ab(p, q, i1 , i2) =

p

∑
i3=0

κ(2p− i2 + 1, i3)
q

∑
i4=0

mcd
abκ(i4 , p− i3)κ(q− i4, q),

Mdc
ab(p, q, i1 , i2) =

2p+1−i2
∑
i3=0

κ(p, i3)
q

∑
i4=0

mdc
abκ(2p− i2 − i3 + 1, q)κ(q− i4, q).

The bounds on ω1 and ω3 are as follows

ω3 = q + i1 + 1,

ωcd
3 = 4p + 2q + i4 + 5,

ωdc
3 = 2p + 2q + i2 + i3 + 3,

ω1 = p + 2q + i2 + 3,

ωcd
1 = 3p + 2q + i3 + 4,

ωdc
1 = 4p + 2q + i4 + 5.

while

mcd
ab = (ωcd

1 −ω1 + 1)(ωcd
3 −ω3 + 1) + ωcd

1 −ω1 + 1,

mdc
ab = (ωdc

1 −ω1 + 1)(ωdc
3 −ω3 + 1) + ωdc

3 −ω1 + 1.
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and after simplification we obtain for Mab(p, q)

2p+1

∑
i2=0

p

∑
i3=0

κ(2p− i2 + 1, i3) [(2p + i3 − i2 + 2)·

{(i2 + 1)κ(p + q− i3 + 1, q)κ(q + i2 + 2, p + q + 1)+

(2p− i2 + i3 + 3)κ(q + i2 + 1, p + q + 1)κ(p + q− i3 + 1, q)+

(p− i3 + 1)κ(q + i2 + 1, p + q + 1)κ(p + q− i3 + 2, q)}]

+
2p+1

∑
i2=0

2p+1−i2
∑
i3=0

κ(p, i3) [(p + i3 + 1)·

{(2p− i2 − i3 + 2)κ(q + i2 + 1, p + q + 1)κ(2p + q− i2 − i3 + 3, q)+

(p + i3 + 2)κ(q + i2 + 1, p + q + 1)κ(2p + q− i2 − i3 + 2, q)}
+(i2 + 1)·
{(p + i3 + 1)κ(q + i2 + 2, p + q + 1)κ(2p + q− i2 − i3 + 2, q)+

(2m− i2 − i3 + 2)κ(q + i2 + 2, p + q + 1)κ(2p + q− i2 − i3 + 3, q)}] .
(6.11)

Let us now consider the case b < a, i.e. Mba(p, q),

q

∑
i1=0

κ(p + q + 1, i1)
p

∑
i2=0

κ(i2 , q− i1)
[

Mcd
ba(p, q, i1, i2)+Mdc

ba(p, q, i1 , i2)
]

,

(6.12)

where the two functions Mcd
ba and Mdc

ba cover the case that c < d and d < c
respectively,

Mcd
ba(p, q, i1 , i2) =

2p+1

∑
i3=0

κ(p− i2, i3)
q

∑
i4=0

mcd
baκ(i4 , 2p− i3 + 1)κ(q− i4, q),

Mdc
ba(p, q, i1 , i2) =

p−i2
∑
i3=0

κ(2p + 1, i3)
q

∑
i4=0

mdc
baκ(p− i2 − i3, q)κ(q− i4, q).
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The bounds on ω1 and ω3 are as follows

ω3 = p + q + i1 + 2,

ωcd
3 = 4p + 2q + i4 + 5,

ωdc
3 = 3p + 2q + i2 + i3 + 4,

ω1 = p + 2q + i2 + 3,

ωcd
1 = 2p + 2q + i3 + 3,

ωdc
1 = 4p + 2q + i4 + 5.

while

mcd
ba = (ωcd

1 −ω1 + 1)(ωcd
3 −ω3 + 1) + ωcd

1 −ω1 + 1.

mdc
ba = (ωdc

1 −ω1 + 1)(ωdc
3 −ω3 + 1) + ωdc

3 −ω1 + 1,

and after simplification we obtain for Mba(p, q)

p

∑
i2=0

2p+1

∑
i3=0

κ(p− i2, i3) [(p− i2 + i3 + 1)·

{(2p− i3 + 2)κ(p + q + i2 + 2, q)κ(2p + q− i3 + 3, q)+

(p− i2 + i3 + 2)κ(p + q + i2 + 2, q)κ(2p + q− i3 + 2, q)+

(i2 + 1)κ(p + q + i2 + 3, q)κ(2p + q− i3 + 2, q)}]

+
p

∑
i2=0

p−i2
∑
i3=0

κ(2p + 1, i3) [(2p + i3 + 2)·

{(p− i2 − i3 + 1)κ(p + q− i2 − i3 + 2, q)κ(p + q + i2 + 2, q)+

(2p + i3 + 3)κ(p + q− i2 − i3 + 1, q)κ(p + q + i2 + 2, q)}
+(i2 + 1)·
{(p− i2 − i3 + 1)κ(p + q− i2 − i3 + 2, q)κ(p + q + i2 + 3, q)+

(2p + i3 + 2)κ(p + q− i2 − i3 + 1, q)κ(p + q + i2 + 3, q)}] .
(6.13)

It is clear that for arbitrary p and q the mutual rank probability Prob(ω2 >
ω1) is now given by the expression
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1− Mab(p, q) + Mba(p, q)

2N(p, q)
. (6.14)

We will now consider the case where q → ∞. We remark that for the

functions in expressions (6.9), (6.11) and (6.13) having the form

κ(q + i, q + j) =

(

2q + i + j

q + j

)

=
(2q + i + j)!

(q + i)! · (q + j)!

Stirling’s approximation can be used, i.e.

f (q)! ≈
√

2π · f (q) · f (q) f (q) · e− f (q) when q→∞,

such that

κ(q + i, q + j) ≈ 22q+i+ j

√
π · n when q→∞.

Due to the nature of the fraction in expression (6.14), it is equivalent to

substitute

κ(q + i, q + j) by 2i+ j. (6.15)

It is now feasible to compute Prob(ω2 > ω1) for given p when q → ∞.

Some values are given in Table 6.9 and a plot is shown in Figure 6.8.

As can be seen, the minimum cutting level quickly increases for increasing

values of p, but soon the rate at which the function increases diminishes

to attain values slightly below 0, 58. Recall that the upper bound δ̃4 on

δ4 is approximately 0, 585787, such that we obtain a quite narrow interval

for the minimum cutting level δ4. It comes as no surprise that we do not

attain δ̃4 since, as already mentioned, this upper bound is obtained by a

generalization of the mutual rank probability relation. Moreover, it can be

expected that posets with more than 12 elements that do not fall into this

family of posets provide sharper lower bounds.



6.2 Minimum cutting levels 139

p Prob(ω2 > ω1)
1 8/15 ≈ 0.533333
20 419/731 ≈ 0.573187
40 1051/1826 ≈ 0.575575
60 1158/2009 ≈ 0.576406
80 12223/21190 ≈ 0.576829
100 3163/5481 ≈ 0.577084
120 9071/15714 ≈ 0.577256
140 18464/31979 ≈ 0.577379
160 16041/27778 ≈ 0.577471
180 10133/17545 ≈ 0.577543
200 74953/129766 ≈ 0.577601

Table 6.9: The mutual rank probabilities Prob(ω2 > ω1) for given p when

q→∞.

Figure 6.8: A plot of the mutual rank probabilities Prob(ω2 > ω1) for

q→∞.
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Conclusion

As the title of this work indicates, the central theme in this work is the com-

putation of rank probabilities of posets. Since the probability space consists

of the set of all linear extensions of a given poset equipped with the uniform

probability measure, in first instance we developed algorithms to explore

this probability space efficiently. We considered in particular the problem

of counting the number of linear extensions and the ability to generate ex-

tensions uniformly at random. Algorithms based on the lattice of ideals

representation of a poset were developed.

Since a weak order extension of a poset can be regarded as an order on

the equivalence classes of a partition of the given poset not contradicting

the underlying order, and thus as a generalization of the concept of a lin-

ear extension, algorithms were developed to count and generate weak or-

der extensions uniformly at random as well. However, in order to reduce

the inherent complexity of the problem, the cardinalities of the equivalence

classes is fixed a priori. Due to the exponential nature of these algorithms

this approach is still not always feasible, forcing one to resort to approxi-

mative algorithms if this is the case. It is well known that Markov chain

Monte Carlo methods can be used to generate linear extensions uniformly

at random, but no such approaches have been used to generate weak order

extensions. Therefore, an algorithm that can be used to sample weak order

extensions uniformly at random was developed.

A monotone assignment of labels to objects from a poset corresponds to the

choice of a weak order extension of the poset. Since the random monotone

assignment of such labels is a step in the generation process of random
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monotone data sets, the ability to generate random weak order extensions

clearly is of great importance. The contributions from this part therefore

prove useful in e.g. the field of supervised classification, where a need for

synthetic random monotone data sets is present.

The second part focused on the ranking of the elements of a partially or-

dered set. Algorithms for the computation of the (mutual) rank probabil-

ities that avoid having to enumerate all linear extensions were suggested

and applied to a real-world data set containing pollution data of several

regions in Baden-Württemberg (Germany). With the emergence of several

initiatives aimed at protecting the environment like the REACH (Registra-

tion, Evaluation, Authorisation and Restriction of Chemicals) project of the

European Union, the need for objective methods to rank chemicals, regions,

etc. on the basis of several criteria still increases. Additionally, an inter-

esting relation between the mutual rank probabilities and the average rank

probabilities is proven.

The third and last part studied the transitivity properties of the mutual

rank probabilities and the closely related linear extension majority cycles

or LEM cycles for short. The type of transitivity was translated into the

cycle-transitivity framework, which has been tailor-made for characteriz-

ing transitivity of reciprocal relations, and has been proved to be situated

between strong stochastic transitivity and a new type of transitivity called

δ∗-transitivity. It is shown that the latter type is situated between partial

stochastic transitivity and a kind of product transitivity. Furthermore, the-

oretical upper bounds for the minimum cutting level to avoid LEM cycles

were found. Cutting levels for posets on up to 13 elements were obtained

experimentally and a theoretic lower bound for the cutting level to avoid

LEM cycles of length 4 has been computed. Especially in this part of the

work there is still a lot of research to be done. The type of transitivity exhib-

ited by the mutual rank probabilities is far from characterized and it is not

yet understood when precisely LEM cycles occur.

The research presented in this work has been published in international

peer-reviewed journals ([36, 37, 39, 40, 41, 42, 43, 44]) and has been pre-

sented on international conferences. A Java implementation of several of

the algorithms presented in this work, as well as binary files containing all

posets on up to 13 elements with LEM cycles, can be downloaded from the

website http://www.kermit.ugent.be.
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Het vergelijken van objecten en maken van een rangschikking ervan op basis

van criteria is een vaak terugkomende taak. Denk bijvoorbeeld aan het rang-

schikken van verschillende sollicitanten voor een openstaande betrekking,

het rangschikken van regio’s volgens vervuiling door schadelijke chemische

verbindingen, het rangschikken van bedrijven volgens kredietwaardigheid,

enz. In dit werk beperken we ons tot monotone rangschikkingen: wanneer

een object x voor alle criteria minstens even goede scores behaalt als een

object y zal object x nooit lager gerangschikt worden dan object y.

Beschouw bij het rangschikken van regio’s volgens hun vervuiling de situa-

tie waarbij een bepaalde regio x gekenmerkt wordt door een sterkere ver-

vuiling van lood dan een regio y, terwijl terzelfdertijd regio x gekenmerkt

wordt door een minder sterke vervuiling van cadmium dan regio y. Op basis

van deze twee criteria kunnen beide regio’s niet vergeleken worden zolang

geen gemeenschappelijke schaal voor de criteria wordt toegekend. Het toe-

kennen van een dergelijke schaal komt in feite neer op het toekennen van

gewichten aan ieder criterium en is dikwijls controversieel omwille van het

subjectieve karakter. Precies omwille van deze reden wordt ervoor gekozen

om niet langer te eisen dat alle objecten vergelijkbaar zijn. Omdat objecten

nu onderling onvergelijkbaar kunnen zijn wordt de verzameling van objec-

ten een partieel geordende verzameling of poset genoemd.

In het tweede hoofdstuk wordt een formele introductie gegeven op het rang-

schikken en worden de nodige begrippen omtrent partieel geordende verza-
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melingen aangebracht. Er wordt aangetoond dat het rangschikken van de

elementen van een partieel geordende verzameling neerkomt op het bepa-

len van een lineaire extensie. Verder wordt ingegaan op een alternatieve

representatie van een partieel geordende verzameling door zijn tralie van

idealen. Tenslotte wordt het algoritme van Habib et al. [70] voor het op-

bouwen van deze tralie, dat tot op een constante factor na optimaal is,

besproken. Een lemma van Bonnet et al. [10] geeft immers een bijectief

verband tussen paden van maximale lengte in deze tralie van idealen en de

lineaire extensies van de partieel geordende verzameling zelf.

Een belangrijke tak binnen het machinaal leren is het gesuperviseerd clas-

sificeren. In een classificatieprobleem wil men labels uit een lineair ge-

ordende verzameling toekennen aan objecten uit een partieel geordende

verzameling. Merk op dat rangschikken een speciaal geval is van clas-

sificeren: de labelverzameling is de verzameling van natuurlijke getallen

{1, 2, . . . , n} en de unieke labels corresponderen met de posities van de ob-

jecten {x1, x2, . . . , xn} in de rangschikking. Met het predicaat gesupervi-

seerd doelt men op het aanwezig zijn van een dataverzameling met leer-

voorbeelden, i.e. objecten met een reeds toegekend label. Op basis van deze

leervoorbeelden is het de bedoeling nieuwe objecten die nog niet aanwezig

zijn in de dataverzameling een label toe te kennen. Dataverzamelingen uit

de praktijk bevatten dikwijls ruis en zijn dus niet noodzakelijk monotoon:

het is mogelijk dat een object x dat op alle criteria minstens even goed

scoort als object y en voor één of meerdere criteria zelfs beter scoort, toch

een slechter label krijgt toegekend. Veel algoritmen voor het gesuperviseerd

classificeren kunnen echter slechts met monotone dataverzamelingen om-

gaan. Wil men nu op een objectieve wijze de performantie van verschillende

gesuperviseerde classificatiealgoritmen kunnen vergelijken dan heeft men

nood aan synthetisch geproduceerde monotone dataverzamelingen, waar-

bij het wenselijk is dat iedere dataverzameling met eenzelfde probabiliteit

gegenereerd wordt. In het derde hoofdstuk wordt voor dit probleem een

algoritme ontworpen. Een dataverzameling bestaat uit een verzameling van

objecten en labels, samen met een monotone toekenning van labels aan de

objecten. De partieel geordende verzameling van objecten en de verzame-

ling van labels kunnen worden gegenereerd volgens a priori gekozen dis-

tributiefuncties. Wanneer het aantal objecten en het aantal labels identiek

is, komt het genereren van een motonone toekenning neer op het genere-

ren van een lineaire extensie van de partieel geordende verzameling van

objecten. In het algemene geval, waarbij het aantal labels niet vastgelegd

wordt, dient een zogenaamde zwak geordende extensie van de verzameling
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te worden gegenereerd. Zwak geordende extensies kunnen gezien worden

als lineaire extensies waarbij zich mogelijke ex-aequo’s kunnen voordoen

en dus equivalentieklassen aanwezig zijn. Objecten die zich in dezelfde

equivalentieklasse bevinden worden dan eenzelfde label toegekend. Om de

complexiteit van het probleem te reduceren wordt een algoritme ontwor-

pen waarbij de cardinaliteiten van deze equivalentieklassen op voorhand

worden vastgelegd. De inherente exponentiële complexiteit laat echter niet

toe dit algoritme in te zetten voor grotere verzamelingen. Precies omwille

van deze beperking wordt verder aandacht besteed aan benaderende algo-

ritmen die dergelijke dataverzamelingen genereren op een (bijna) uniforme

wijze.

In het vierde hoofdstuk worden de (mutuele) rangschikkingsprobabilitei-

ten van de elementen van een partieel geordende verzameling aangebracht.

De rangschikkingsprobabiliteit Prob(rank(x) = i) dat element x op positie

i gerangschikt wordt is gedefinieerd als de fractie van de lineaire exten-

sies waarbij x op positie i voorkomt. De mutuele rangschikkingsprobabilteit

Prob(x > y) voor twee elementen x en y is gelijk aan de fractie van de line-

are extensies waarin x voor y gerangschikt wordt. Opnieuw worden algorit-

men gëıntroduceerd die gebaseerd zijn op de voorstelling van een partieel

geordende verzameling als tralie van idealen voor het berekenen van deze

probabiliteiten. Er wordt tevens een interessant verband tussen de mutuele

rangschikkingsprobabiliteiten en de gemiddelde rangschikkingsprobabilitei-

ten bewezen. Tenslotte worden de algoritmen toegepast op een dataverza-

meling uit de praktijk van concentraties van lood, cadmium, zink en zwavel

in de kruidlaag van 59 regios in Baden-Württemberg (Duitsland). Er wordt

uiteengezet hoe deze probabiliteiten kunnen helpen bij het bekomen van

een rangschikking van de regio’s volgens vervuiling.

In het volgende hoofdstuk worden de transitiviteitseigenschappen van de

mutuele rangschikkingsprobabiliteitenrelatie bestudeerd. Transitiviteit is

een eenvoudige maar krachtige eigenschap van relaties die opgelegd wordt

aan ieder triplet van elementen. Fishburn [60] introduceerde het begrip

proportionele transitiviteit met als doel het zo precies mogelijk karakterise-

ren van de mutuele rangschikkingsprobabiliteitenrelatie. We trachten deze

vorm van transitiviteit te bestuderen binnen het kader van cykeltransitivi-

teit, specifiek ontworpen voor het karakteriseren van de transitiviteit van

reciproke relaties. Kenmerkend voor deze cykeltransitiviteit is het cyclische

karakter waarmee de tripletten doorlopen worden. Er wordt aangetoond

dat het transitiviteitstype vertoond door de mutuele rangschikkingsproba-
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biliteitenrelatie te situeren is tussen sterk stochastische transitiviteit en een

nieuw type transitiviteit, genaamd δ∗-transitiviteit. Dit laatste type is zelf

gesitueerd tussen partiële stochastische transitiviteit en een tussenvorm van

producttransitiviteit.

Een direct gevolg van het feit dat de mutuele rangschikkingsprobabilitei-

tenrelatie niet partieel stochastisch transitief is, is het voorkomen van zo-

genaamde lineaire extensie majoriteiten cykels of kortweg LEM cykels. Een

LEM cykel komt voor wanneer de mutuele rangschikkingsprobabiliteiten in

een cyclisch doorlopen triplet allen strikt groter zijn dan 0.5. Gehrlein et

al. [69] toonden aan dat dergelijke cykels enkel voorkomen bij partieel ge-

ordende verzamelingen met minstens 9 elementen. In de literatuur werden

schattingen gemaakt voor de waarschijnlijkheid om LEM cykels aan te tref-

fen in posets tot 12 elementen. Gebaseerd op de algoritmen ontwikkeld

in de vorige hoofdstukken trachten we echter in het laatste hoofdstuk alle

(niet-isomorfe) partieel geordende verzamelingen tot en met 13 elementen

die één of meer LEM cykels bevatten te tellen en op te slaan in een data-

bank voor latere referentie. Typisch is de geheugengrootte de beperkende

factor bij deze aanpak gebaseerd op de tralie van idealen, vermits de tralie

in zijn totaliteit in het geheugen geplaatst dient te worden. Hoewel het aan-

tal idealen nog steeds exponentieel is in het aantal elementen, hebben in

dit geval de verzamelingen nooit een cardinaliteit groter dan 13, waardoor

deze aanpak adequaat is. De bekomen resultaten bevestigen een conjectuur

geformuleerd door Gehrlein et al. [69] waarin gesteld wordt dat de pro-

babiliteit om in een willekeurige partieel geordende verzameling een LEM

cykel te vinden stijgt voor stijgende cardinaliteit. Echter, de mate waarin de

probabiliteit toeneemt lijkt af te nemen voor stijgende cardinaliteit.

In een tweede gedeelte van het zesde hoofdstuk wordt onderzoek verricht

naar de zogenaamde minimale snijniveau’s voor het vermijden van LEM cy-

kels van opgegeven lengte. Dit minimale snijniveau δm is het kleinst moge-

lijke getal zodat tenminste één mutuele rangschikkingsprobabiliteit in een

arbitraire LEM cykel van lengte maximaal m kleiner dan of gelijk aan δm
is. In eerste instantie worden theoretische bovengrenzen bepaald voor δm
op basis van de gekende transitiviteitseigenschappen. Vervolgens worden

experimenteel de minimale snijniveau’s bepaald voor partieel geordende

verzamelingen tot 13 elementen. Tenslotte wordt, gëınspireerd op de expe-

rimenteel gevonden partieel geordende verzameling met 12 elementen die

aanleiding geeft tot het hoogste vereiste snijniveau voor cykels van lengte 4,

een theoretische ondergrens voor δ4 bekomen.
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[109] U. Simon, R. Brüggeman, and S. Pudenz. Aspects of decision support

in water management - example Berlin and Potsdam (Germany) I -

spatially differentiated evaluation. Water Research, 38:1809–1816,

2004.

[110] U. Simon, R. Brüggeman, and S. Pudenz. Aspects of decision support

in water management - example Berlin and Potsdam (Germany) II -

improvement of management strategies. Water Research, 38:4085–

4092, 2004.

[111] M. Squire. Enumerating the ideals of a poset. North Carolina State

University, 1995.

[112] G. Stachowiak. Hamilton paths in graphs of linear extensions for

unions of posets. SIAM Journal on Discrete Mathematics, 5:199–206,

1992.

[113] S. Switalski. Rationality of fuzzy reciprocal preference relations.

Fuzzy Sets and Systems, 107:187–190, 1999.

[114] M. Sysło. Minimizing the jump-number for partially ordered sets: A

graph-theoretic approach. Order, 1:7–19, 1984.

[115] T. Tanino. Non-conventional preference relations in decision making.

In Lecture Notes in Economics and Mathematical Systems, volume 301,

chapter Fuzzy preference relations in group decision making, pages

54–71. Springer-Verlag, Berlin, 1988.

[116] Y. Varol and D. Rotem. An algorithm to generate all topological sort-

ing arrangements. The Computer Journal, 24:83–84, 1981.

[117] A. Verkeyn, D. Botteldooren, and B. De Baets. Genetic learning of

fuzzy integrals accumulating human-reported environmental stress.

Applied Soft Computing, to appear.

[118] W. Waegeman and B. De Baets. A transitivity analysis of bipartite

rankings in pairwise multi-class classification. Information Sciences,

submitted.



174 Bibliography

[119] D. West. Generating linear extensions by adjacent transpositions.

Journal of Combinatorial Theory, Series B, 57:58–64, 1993.

[120] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann Publishers, Elsevier, San Fran-

sisco, 2005.

[121] Y. Yu. On proportional transitivity of ordered sets. Order, 15:87–95,

1998.


