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Abstract

To counter software reverse engineering or tampering, software obfuscation tools can be
used. However, such tools to a large degree hard-code how the obfuscations are deployed.
They hence lack resilience and stealth in the face of many attacks. To counter this prob-
lem, we propose the novel concept of flexible obfuscators, which implement protections
in terms of data structures and APIs already present in the application to be protected.
The protections are hence tailored to the application in which they are deployed, making
them less learnable and less distinguishable. In our research, we concretized the flex-
ible protection concept for opaque predicates. We designed an interface to enable the
reuse of existing data structures and APIs in injected opaque predicates, we analyzed
their resilience and stealth, we implemented a proof-of-concept flexible obfuscator, and
we evaluated it on a number of real-world use cases. This paper presents an in-depth
motivation for our work, the design of the interface, an in-depth security analysis, and
a feasibility report based on our experimental evaluation. The findings are that flexible
opaque predicates indeed provide strong resilience and improved stealth, but also that
their deployment is costly, and that they should hence be used sparsely to protect only
the most security-sensitive code fragments that do not dominate performance. Flexible
obfuscation therefor delivers an expensive but also more durable new weapon in the ever
ongoing software protection arms race.

Keywords: Man-at-the-end attacks, obfuscation, code reuse, software protection,
flexibility, stealth, resilience, opaque predicates

1. Introduction

Many commercial software applications are susceptible to man-at-the-end (MATE)
attacks, such as reverse engineering or tampering. Software developers want to make sure
that confidential data and code in their application cannot easily be extracted and that
their product is used the way it is meant to be, i.e., that the integrity of the code and of
the data on which the code operates is guaranteed. Hence, they want to mitigate as many
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relevant attacks as possible. To hamper such attacks, software protection techniques such
as code obfuscation and remote attestation are deployed [1].

The research presented here focuses mostly on control flow obfuscation techniques,
which extend and replace the original control flow of the program by artificially more
complex forms that cannot easily be reversed. As a result, the time required to analyse
the application increases, and the precision and recall of the attackers’ analyses can be
decreased. Examples of control flow obfuscations are control flow flattening [2], branch
functions [3], and bogus control flow insertion by means of opaque predicates (OPs) [4, 5].

Adversaries will often try to analyse the applied protections to revert them or work
around them, for which they can deploy several strategies. A first attack strategy to
automate the deobfuscation is to identify fragments that are known a priori to be overly
artificially complex replacements of simpler control flow constructs, and then replacing
them by the known simpler variations. This strategy can build on techniques such as
pattern matching [6], symbolic execution [7], and abstract interpretation [8]. For some
techniques, off-the-shelf extensible frameworks are available that attackers can easily
customize [9, 10]. A key feature is that the attackers know in advance what fragments
they are looking for and at what abstraction level.

A second strategy builds on the assumption that the code implementing protections
is often superfluous and unnecessarily complex with respect to the semantics of the
protected software, and that such protection code stands out from original program code
in detectable ways that allow at once the deobfuscation and simplification of obfuscated
control flow. This is the overall strategy of generic deobfuscation, simplifying code that it
identifies as behaving quasi-invariantly in execution traces (i.e., producing the same result
every time they are executed) and then removes code that it identifies as not contributing
to the observed semantics of the traces, i.e., the observed input-output relation [11].

Fundamentally, the first strategy builds on a priori protection-specific knowledge,
while the second strategy builds on the observation that protection code functions differ-
ently from original application code. In empirical research, we also observed that when
attackers face programs that are small enough for their manual analysis scalability, some
of them skip automated tools to detect certain fragments and instead manually scan and
analyse the code in search for the relevant protection fragments [12].

Protection code is injected by software protection tools, of which a variety exists [13,
14, 15]. While the tools offer a convenient way to deploy software protections, most of
them are limited in functionality by design. Concretely, they can only deploy a pre-
determined set of protections and the injected protection code only spans a limited
number of code patterns, which differ from the patterns in the original software and
which most often confirm the observations exploited by Yadegari et al. in their generic
deobfuscation technique. In other words, the injected code is learnable such that it
becomes attackable with the first discussed strategy, and it differs fundamentally from
the original code such that it becomes attackable with the second strategy as well.

To block both attack strategies, we propose the radical shift of no longer supporting
and implementing protections in a pre-determined manner hard-coded into protection
tools, but instead to make those protection tools implement the injected protections by
means of code fragments already present and used in the original software to be protected.
In other words, we propose to reuse already present application code for implementing
the protections.

When this paradigm shift is done well, we project several potential benefits. A first
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consequence is that the code that implements the protections can vary from one pro-
tected application to another. Attackers can hence not learn protections as easily a
priori, which will reduce the effectiveness of the first automated attack strategy. The
second consequence is that the code fragments used for implementing the protections
will by definition contribute to the original program semantics, as they are still executed
as part of its original computations. The third consequence is that those fragments
will not display quasi-invariant behavior, as they are executed in multiple contexts that
provide them different inputs for which they produce different outputs. The latter two
consequences will help to mitigate the second automated attack strategy of generic de-
obfuscation and other attacks. The resilience of protections will hence be improved by
making them more stealthy for the discussed attack strategies and tools.

A fourth consequence will be that the code of the protected application can no longer
be cleanly partitioned into application code and protection code, as the reused code
fragments play a role in both parts. We know from software engineering paradigms
such as separation of concerns that code is easier to comprehend and to maintain when
the software components have clearly defined roles and interfaces in a program. When
some code fragments start playing multiple roles, as we propose, human analysis and
comprehension of the code might suffer. The potency of the protections, in particular
obfuscations, might therefore potentially be improved as well. Needless to say, when code
fragments implement both original application functionality and protection functionality,
tampering with those fragments to bypass or undo protections also becomes harder as
the tampering then inherently also impacts the original program semantics.

In our research, we studied the proposed shift by instantiating it for OPs. We studied
options to encode OPs, we studied the feasibility of reusing code in existing real-world
applications, and we implemented a prototype implementation to validate our work. This
paper reports on our research, and offers the following contributions:

1. We pitch the idea of reusing application code for flexibly implementing software
protections.

2. As a case study, we discuss how this idea can be made concrete for flexible OPs.

3. We present a meta-API to enable automated reuse of application code in flexible
OPs.

4. As a proof-of-concept, we present an open-source, automated tool to inject flexible
OPs.

5. We perform an in-depth security analysis, focusing on the resilience of flexible OPs.

6. We present an experimental validation and evaluation on a number of real-world
programs.

7. We discuss practical issues related to automation and decision support.

The paper is structured along the lines of these contributions.

2. Code reuse for software protections

To hamper automated deobfuscation, we propose to reuse existing application code
for implementing software protections. The injected protection code will then look and
behave more similar to the original application code. This will make it harder for attack-
ers to identify the protection code and to analyze and alter it with targeted techniques.
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Conceptually, we propose the radical shift of no longer constructing protection tools
with a predetermined and hard-coded set of data structures to implement protections,
but instead making protection tools reuse existing application code to instantiate and
manipulate data structures present in the unprotected application. Figure 1(a) illustrates
the deployment of a traditional, fixed obfuscator that protects two programs that use
the different data structures shown in blue. In this example, the obfuscator injects code
to deploy Collberg’s alias-based OPs [16], which are based on comparisons of pointers to
elements in graphs. To inject that code, the obfuscator incorporates a code transforma-
tion engine, as well as a fixed implementation of a graph data structure, e.g., in the form
of a CollbergGraph class, which is shown in red.

In general, and while possibly being the subject of some syntactic diversification, the
code injected by a traditional obfuscator consists of fixed implementations of protection
techniques that deploy fixed data structures that were determined by the obfuscator
developer at the design time of the obfuscator. Like programs 1 and 2, all programs
protected by the obfuscator will hence contain the same data structures. Consequently,
adversaries can try to locate the injected code manipulating the data structures with
targeted techniques that result from a human or machine learning processes. Because
the injected code fragments do not perform computations contributing to the original
program, they are also vulnerable to attacks that identify semantically irrelevant code,
such as generic deobfuscation.

Figures 1(b) and 1(c) illustrate our idea of supple and flexible obfuscators. Where
possible, such obfuscators inject protection code tailored to the application at hand,
i.e., using data structures internal to the application itself instead of data structures
implemented in the obfuscator.

The ideal case is illustrated by program 3 in Figure 1(b), in which a supple obfusca-
tor uses the application’s graph implementation to deploy a protection instead of its own
hardcoded one. If a protection designed and implemented by security experts uses specific
data structures, such as hash tables and graphs, and the unprotected application con-
tains equivalents to these data structures, the protection reuses the application-specific
implementation. In our mind, based on our experience, this will yield stronger, harder to
defeat protection because the injected code is tuned to the original application’s graph
API, and hence will be not as easily spotted and learnable by adversaries.

In practice, however, the described supple obfuscation is ad hoc and hard to generalise.
First, complex data structures used by a protection will not be available for reuse in all
programs, such as program 4 in the figure. Secondly, some protections don’t use any
complex data structure at all.

We therefore present an alternative technique to reuse data structures. This alterna-
tive builds on the fact that, even in cases in which application data structures cannot be
reused in the ideal way as described above, they can still be used to replace direct data
dependencies with indirect ones. Instead of passing and storing data directly between
ordinary variables and simple data structures within the protection code, that data can
be stored temporarily in complex data structures reused from the original application.
This is illustrated in Figure 1(c), in which we introduce the concept of a flexible obfusca-
tor. In this example, the tradional implementation of an injected protection would store
and pass some values in ordinary variables a, b and c. Rather than injecting only the de-
fault implementation thereof, the obfuscator instead reuses the complex data structures
already available in the original programs to store the data and to pass it around. In
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Figure 1: Overview of obfuscator designs.

general, anywhere in the protection code where a value is produced that will be assigned
to a variable or anywhere an assignment to it occurs, the value can be stored or encoded
in a complex data structure. Anywhere the variable is then later accessed, the value can
be retrieved from the data structure. Besides obfuscating the data flow, it is clear that
the reuse of data structures helps in making the protection code look more similar to the
application code.

One option then is to simply store values in the complex data structures using native
encodings. For example, integers can be stored in the keys or values of hash tables.
Alternatively, values can also be encoded in features or shapes of the complex data
structures. One example of this are the aliasing-based predicates we referred to earlier,
but many other alternatives can be implemented as well: paths in a graph, the size of
a hash table, or relations between values in a container are only some examples of how
values can be encoded.

The stealth of the injected code heavily depends on the observable differences between
that code and the application code. The more both look and behave alike, the more effort
adversaries will have to invest in order to distinguish one from another. There are several
ways to make the protection code look similar. First, data structures are preferably
created and manipulated using the data structures’ API functions already invoked in the
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original program. Typically, API invocations in the original program will target the data
structure’s public API. Sometimes, however, (part of) the private API will be invoked
instead. This is the case, for example, in code that has been inlined by the compiler.
In that case, that part of the private API can also be used. Second, preferably API
functions that are actually executed by the original application, at least for some inputs,
are executed in the injected code. This will hamper attacks that identify and expose the
protection code and its related functionality by its (quasi-)invariant behaviour. If then,
e.g., the arguments and return values of the called API functions are quasi-invariant in
the context of the protection code, the API functions will still appear as having variable
arguments and return values because they are called with other values and return other
values in the original application code. To identify the executed API functions, one can
use several techniques, such as profiling and instruction tracing. Third, similar data
types and values as those in the original application are preferably used. Doing this
will render the results of type-sensitive analysis useless. For example, if a program only
stores string keys in hash tables, the injected code preferably also uses strings for that.
Ideally, those strings are either already present in the original application statically,
or analysis has shown that they are generated dynamically therein. A variety of tools
and techniques exist to collect information on datatype usages and occurring values
either statically, such as disassemblers and static analysis tools, or dynamically, such as
debuggers and instrumentation tools. Fourth and final, varying argument values for API
functions called from within the protection code are preferably generated. This will lessen
the amount of invariants present in said code, and, if those values depend on program
input, the accuracy of the attacker’s analyses will drop. One way to do this is to set an
argument value within an existing if-then-else construction. In typical applications, the
tested condition will be input-dependent, hence extending that input-dependency to the
argument values.

3. Flexible opaque predicates

To make the proposed technique more concrete and validate the general idea, we
present a proof-of-concept design in which we inject bogus control flow into a program
by deploying flexible OPs, i.e., OPs that build on application data structures and APIs
already available in the original program.

Concretely, an OP consists of a computation resulting in a boolean value. The re-
sult of the computation is known by the obfuscator, but is hard to extract by reverse
engineers without targeted techniques. Much research has been carried out on different
forms of OPs. Algebraic or number-theoretic predicates are the most basic form [17, 4].
Examples are the divisibility of some expression by a number, and well-known inequal-
ities. Concurrency-based predicates are also available, such as the ones proposed by
Nagra et al., which exploit the difficulty of analysing the data and control flow of multi-
threaded programs [18]. And finally, some predicates are encoded in opaque invariants
maintained by complex data structures. While the instantiated data structures are ma-
nipulated, and hence display variable behaviour, the injected manipulations maintain
the invariants. The invariants in Collberg’s approach relate to aliases between pointers
to elements in manipulated graphs. The opaqueness of those invariants results from the
fact that alias analysis is a hard static analysis problem [19].
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In this research, we protect programs with one-way and two-way predicates. A one-
way OP is a predicate that invariantly evaluates to true or false. In that case, one of the
control flow edges originating from the predicate is truly bogus: it will never be taken.
The bogus control flow edge can hence be used to confuse an adversary and his tools by
connecting it to an arbitrary location within the program [3]. Figure 2(a) illustrates the
protection of a program with such a predicate, where part of an unprotected program is
shown on the left and its protected version on the right. Specifically, some evaluation
code is injected between blocks A and B to evaluate a predicate P, resulting in the
introduction of a bogus control flow edge. The evaluation code produces the OP value
by means of a numeric computation, as is the case for algebraic predicates, or by means
of a check of some invariant, as is the case with Collberg’s alias-based predicates.

We consider two options to implement such OPs that check invariants on complex
data structures. The first option involves flow-sensitive invariants, i.e., invariants that
hold at some program points but not at others. In the literature, these are also called
contextual OPs. Figure 2(a) illustrates one. To ensure that P evaluates to the required
true (or false) at the conditional branch, some code is executed on the data structures
that forces P to true (or false) on the path to the evaluation point. Prior to that last
setting of P, the underlying data structures can have been manipulated such that a similar
evaluation at an earlier point in the program would have resulted in another value.

The second option involves flow-insensitive invariants, i.e., invariants that are main-
tained throughout the whole program execution. In that case, the underlying data struc-
tures are initialized at the start of the program to ensure that any check of the invariant
at any program point will evaluate to the same value. Concretely, the “set P to true”
computation in Figure 2(a) is then not executed somewhere on the path to an evaluation
point, but at the start of the program. The underlying data structures can then still be
manipulated during the program’s execution, which is useful to prevent attackers from
observing the invariant all too easily, but only in a way that does not break the invariant.
Collberg’s alias-based predicates are an example of this: disjunct graphs and pointers
to them are initialized upon program initialization, and the pointers traverse the graphs
during the execution, but always keep pointing to different graphs and hence different
nodes.

Which of the two options, flow-sensitive or flow-insensitive, is the strongest is an open
question. Research is needed to check which of the two is easiest to discover. One poten-
tial advantage of flow-sensitive invariants over flow-insensitive ones is that flow-sensitive
ones can be complementary, in the sense that at some program points the data structures
can be manipulated to force the predicate to true (i.e., set the predicate), while at other
program points the data structures can be manipulated to force the predicate to false
(i.e., reset the predicate). Local static analysis of the code fragment that evaluates the
predicate at a single point in the program then does not immediately leak the predicate
value to which other occurrences of the same or a similar fragment will lead. Instead a
more global analysis will be needed that considers evaluation points and set/reset points.

Still, both alternatives for one-way OPs can easily be discovered with dynamic anal-
ysis, as each conditional branch on an OP is either always or never taken. It hence
behaves quasi-invariantly, as is exploited in the generic deobfuscation attack by Yadegari
et al. [11].

By contrast, the result of a two-way OP evaluation varies at run time, and both
outgoing edges of the conditional branch can be taken. One application of such pred-
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icates can be to randomly switch between two diversified variants of the same code
fragment, depending on the computation’s result [1]. Both variants need to be seman-
tically equivalent, but can be implemented differently by means of code diversification
techniques [20]. Such two-way predicates make the control flow and code appear more
complex. Another application are dynamic OPs as proposed by Palsberg et al. [21].
They build groups of opaquely related OPs, such as a group {P1, P2} with the opaque
relation P1 ⇔ ¬P2. They transform straight-line code fragments such as A;B;C; into
if(P1){A;B; }else{A; }; if(P2){B;C; }else{C; }, in which the then and else parts can be
further diversified, and in which each realizable path implements the same semantics.
Within each program execution, the predicates are all constant, but they can evaluate
to different values in different runs, such that different paths can be executed in different
runs of the obfuscated programs. Xu et al. generalized the techniques to code fragments
involving control flow, such as loops, and to predicates of which the predicates’ values
can change within a single run [22]. The generalizations made their technique resilient
against some attacks on (simple) dynamic OPs [23].

Van den Broeck et al. proposed a third application of two-way OPs, namely to
connect unrelated code fragments from different functions, with the goal of hampering
disassemblers that partitioning the code into components such as functions [24]. They do
this by merging control flow paths from different code contexts in different components,
if possible in combination with outlining of equivalent fragments from those contexts. At
the end of each merged path, a dispatcher diverts the control flow back to the original
contexts. Two-way OPs are one of the possible forms for this dispatcher. This form of
two-way predicates is illustrated in Figure 2(b), in which part of an unprotected program
is shown on the left and its protected version on the right. The control flow of two paths
A-B and C-D is merged after blocks A and C. At the merge point, some getter code is
injected for the evaluation of predicate P, as well as some decision code to decide where
the control flow should be redirected to. Control flow can be redirected to either B or
D, depending on the predicate’s value which has been set to complementary values on
each merged code path before the execution of blocks A and C. Van den Broeck et al.
showed that, in combination with code layout randomization techniques, even relatively
simple OPs can severely thwart the disassembly process of commonly used tools such as
IDA Pro and Binary Ninja. They also showed that their technique is resilient to complex
generic analyses such as value set analysis, generic deobfuscation and relatively simple
pattern-matching techniques that search for uninterrupted OP computations. Advanced
pattern-matching techniques are still possible, however, as the patterns of the injected
protection code are hardcoded in the obfuscator.

Our proof of concept implementation applies the principles introduced in Section 2
to one-way predicates used to inject bogus control flow like Collberg’s alias-based OPs
and to the two-way opaque dispatchers proposed by Van den Broeck et al. [24]. For
the one-way predicates, we support flow-sensitive as well as flow-insensitive invariants in
complex data structures. For the two-way OPs, we of course only support flow-sensitive
ones: by definition, the predicate needs to be set on one incoming path, and reset on
the other incoming path. In such cases, the term invariant can be somewhat misleading,
as the predicate evaluation in the dispatcher does not invariantly evaluate to either true
or false. The term is still correct, however, with the invariants being of the form “if the
dispatcher is reached through block A, then P will evaluate invariantly to true.” We will
refer to this as context-sensitive invariants in the remainder of the paper. Clearly, both
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flow-sensitive one-way OPs and context-sensitive two-way OPs are forms of contextual
OPs.

Listing 1 provides a concrete example of our approach for one-way, flow-sensitive
predicates deployed on a graph-processing program, in which the evaluated invariant is
that a graph contains at least two non-adjacent nodes. In the code listing, the original
application code is marked black and the injected protection code is marked red. The
injected one-way OP is evaluated at line 10. The predicate’s evaluation depends on the
values of variables K and L, which are initially set at lines 6 and 7. Between this setter
code and the predicate’s evaluation code, a call to function C is performed in which
the predicate’s value is optionally manipulated at lines 34 and 36, introducing an input
dependency on param. As is clear from its evaluation at line 10, the predicate itself is
defined on an instance of the application-specific Graph implementation. Specifically,
it is evaluated on the original application’s instance G, but an additional instance X is
required to implement the predicate. That instance is created at line 24 as a deep copy
of G. Note that the predicate and its setter code are implemented with functionality that
is already present and invoked in the original application. The invoked functions can
hence not serve as direct indicators of a protection being present. Moreover, they will
hence not show invariant behaviour internally, which will prevent that their invocations
can be omitted as part of trace simplification based on quasi-invariant behaviour.

The same listing can also be used to illustrate our approach on two-way, context-
sensitive OPs. To this end, consider the additional code in Listing 2, assuming that the
function E is called upon by the original application. In that function, variables K and
L are set in order to make the predicate evaluate to a value that is complementary to the
one set in Listing 1. The predicate’s evaluation is initiated by the goto at line 521, after
which the control flow will return to the bogus label at line 54. The check at line 10 will
hence display variable behaviour, which prevents it from being eliminated by the trace
simplification of Yadegari et al [7].

In the example, only calls to public API functions have been injected. However,
users of a flexible obfuscator are not limited to such public APIs. Because public API
functions, in particular wrappers, getters and setters, are often inlined by the compiler
for performance reasons, it may well be that compiled programs contain calls to private
API functions and direct accesses to data structures. In such cases, the injected code
may of course also contain similar calls and data accesses.

In the example, an invariant based on the adjacency of graph nodes was implemented
because it can be evaluated and maintained by calling API functions and using data
structures already present in the original program. Ideally, the obfuscator supports as
many different kinds of invariants on different kinds of data structures as its user can
imagine. The user of the obfuscator must therefore have as much freedom as possible
to specify which data structures are to be used, how they need to be initialized and
manipulated, and how the invariants will be checked. To that end, the user needs to
be able to describe the code chunks to be injected, including calls to existing functions,
preferably on an abstract level, and the obfuscator needs to be able to inject them.
Obviously, the obfuscator must also be able to inject additional control flow, because
bogus and complicated control flow is the actual goal of the obfuscation.

1Interprocedural control flow redirection by means of labels and goto statements is not allowed in
high-level programming languages such as C, but it is allowed at lower levels such as assembly code.
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Listing 1: Example program (black) with protected code (red).

1 Graph ∗G, ∗X
2 Node ∗K, ∗L
3
4 function A( string f i l e , bool param) {
5 int temp1 = B( f i l e )
6 K = X. add node ( temp1 )
7 L = G. get node (0)
8 C(G. get node (0) , param)
9 label l o c a t i o n g e t :

10 i f ( !G. adjacent (K, L) )
11 D( )
12 else goto bogus
13 }
14
15 function B( string f i l ename ) {
16 G = new Graph ( )
17 int edge count = 0
18 for [ from , to ] in F i l e ( f i l ename )
19 Node ∗ I , ∗J
20 I = G. add node ( from )
21 J = G. add node ( to )
22 G. add edge ( I , J )
23 edge count += 1
24 X = G. deep copy ( )
25 return edge count
26 }
27
28 function C(Node ∗ root , bool param) {
29 for n in G. reachab le f rom ( root )
30 for m in G. ge t ne ighbour s (n)
31 i f ( . . . && param)
32 G. de l edge (n , m)
33 . . .
34 X. add edge (K, K)
35 else
36 L = X. get node (m. index )
37 . . .
38 G. add edge (m, n)
39 int temp2 = G. do something ( )
40 G. do someth ing e l s e ( temp2 )
41 }
42
43 function D() {
44 for n in G. nodes
45 i f (G. adjacent (n , n) )
46 G. de l edge (n , n)
47 }

Listing 2: Example program (black) with protected code (red).

48 function E() {
49 int temp = . . .
50 K = X. get node ( temp)
51 L = X. ge t ne ighbour s (K) . get (0 )
52 goto l o c a t i o n g e t
53 label bogus :
54 . . .
55 }
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Figure 2: Overview of predicate designs.

Concerning the manipulation of control flow, our flexible obfuscator does not differ
from a fixed obfuscator, which is why we don’t elaborate on this aspect any further.
Instead, we will focus on the meta-API with which the user of the flexible obfuscator can
provide the necessary inputs.

4. A meta-API for flexible obfuscators

In this section, we will describe the meta-API with which the flexible obfuscator’s
user can provide the required prescriptions.

4.1. Support for calling the application’s API

To correctly inject function calls, the obfuscator needs to know the signature of each
callee: the number of arguments, the data type of each argument and, if relevant, the
return value’s data type.

If the flexible obfuscator is implemented as a source-to-source rewriter, or if it is
integrated into a compiler, then the signatures of the required API functions and the
definitions of the involved data structures are available by design. As those functions
and data structures are called and used by the original application, the compiler needs
to know their signatures and definitions, or it would not be able to build the original
program.

By contrast, binary rewriting obfuscators operate on already compiled code instead.
Source-level information might then still be available, in the form of source code, or in
debug information (e.g., DWARF [25]), or run-time type information (RTTI) available
in the object files that were generated by the compiler.2 It might be, however, that no
source-level information is available, as when pre-compiled third-party C components are
linked into a program and the third parties do not want to share source-level informa-
tion as rich as debug information. In that case, it is still possible to provide the strictly

2The debug information only needs to be stripped from the binary after it has been rewritten.
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necessary information in some custom format. The binary rewriter with which we imple-
mented our prototype does not have full support for parsing DWARF debug information
nor does it support parsing RTTI. Hence, we opted for a custom XML format with which
the user provides the signature descriptions. The design of a custom format is more of an
engineering issue rather than a research topic however, which is why we don’t elaborate
on this any further.

4.2. Support for injecting flexible opaque predicates

To support the injection of protections, in our case control flow obfuscations based on
flow-insensitive, flow-sensitive, and context-sensitive OPs based on complex data struc-
tures, the obfuscator needs to inject code fragments of varying complexity. As shown in
the example listing, they can include programming idioms such as statically allocated
data, local variables, dynamically allocated data, the already discussed function calls,
etc.

Code fragments need to be injected for the following actions:

• Initialize global data structures: As the protections will make use of complex
data structures, those will need to be set up somehow. This can be done statically,
dynamically, or with a combination thereof. In dynamic approaches, this can either
be done by means of code fragments injected into the main application code, or by
means of initializer functions.

• Evaluate the predicate and branch off it: Wherever bogus control flow or
two-way dispatchers will be inserted, the data structures need to be queried to
obtain the predicate value.

• Set and reset predicates: In the case of flow-sensitive or context-sensitive invari-
ants, the obfuscator needs to inject fragments setting and resetting the predicates
by manipulating the underlying data structures on the paths leading to predicate
evaluations.

• Orthogonal data structure manipulations: Whatever form of invariant is
used, we can make it harder for attackers to observe them and to analyze the
predicates’ evaluations by inserting additional manipulations of the underlying data
structures throughout the program. In the case of flow-insensitive invariants, these
manipulations can alter the underlying data structures but not in a way that would
break the invariant. With the other invariants, manipulations can also set or reset
the predicate, and they can even do so in unpredictable ways. In other words,
it is possible to prescribe manipulations of which the obfuscator does not know
what the impact on the predicate will be. Following any program point where such
manipulations are injected, another injected manipulation will always predictably
set or reset (as needed) the predicate value before an evaluation of it is reached.

It is the user of this flexible obfuscator that needs to provide these code fragments.
In our research, we did not yet explore what would be the best (pseudo-)code syntax for
prescribing them. While we consider it an interesting research question, syntax is out
of the scope of this paper. So is the engineering that is necessary to support specific
syntaxes. Instead we will here focus on semantics, with two objectives. First, we aim to
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give the user maximal flexibility to explore any forms of invariants on any kind of data
structure they can imagine. Secondly, we aim for letting the user express his imagination
at an abstract level. We do so for the user’s convenience and because this will give the
obfuscator more freedom to implement the fragments in stealthy and diversified ways.

In light of these goals, we opt to let the user provide pseudo-code fragments aug-
mented with pre-conditions and post-conditions, plus some very basic auxiliary informa-
tion. With post-conditions, the user can describe the effect of each code fragment on
the predicates, i.e., whether a predicate is set, reset, or becomes unknown. With pre-
conditions, the user can prescribe the constraints on the inputs of the code fragments
that need to be met in order to achieve the given post-condition.

For the example in Listing 1, the user first needs to specify the global variables that
need to be defined, being X, K, and L. On them, a predicate initialised() is defined that
is set to false at the program entry point. This predicate can be used in pre- and post-
conditions to indicate that initialization fragments need to be injected. Table 1 shows an
example. The post-condition states that X will be initialized when this fragment has been
executed. If an initialization routine has no pre-conditions, it can be inserted anywhere in
the program. The obfuscator can then use control flow analyses such as interprocedural
dominator analysis [26] to determine the program points that will precede any insertion
of actual OP manipulations or evaluations. At least the program entry point is one of
them. In the example, however, the precondition specifies that the initialization routine
can only be injected at program points where G has been initialized, i.e., when line 27
of the example is reached. Obviously, a flexible obfuscator cannot determine that point
without assistance from the user. So for such initializers, we expect the user to provide a
description of the point where the initialization can be inserted. This can easily be done
by means of pragmas in C or C++ source code, or by an external description in terms
of source line numbers or locations in binary code sections. Requiring such descriptions
of relevant program points does not impose a large additional burden on the users of the
protection tool, as they already have to indicate the program regions on which they want
to deploy software protections anyway.

Tables 2 and 3 show the prescriptions of the set and reset fragments used in the
example listings. When those fragments are injected, the obfuscator has to insert the
necessary glue code that provides inputs to those fragments for the mentioned input
variables. The pre-conditions include requirements that those inputs need to be of a
certain type and (in Table 3) that their values need to meet certain conditions (in this
case being an even number in the range [0, 10]). Additional pre-conditions specify that the
accessed global variables need to have been initialised at the point where the fragments
are injected. We should note that if the user knows that the necessary initialization will
have been done before any of the code regions in which the obfuscations are injected can
be reached, he can simply omit those pre-conditions. The tool then does not need to
deploy complex control flow analysis that potentially might lack the necessary precision.
The post-conditions of the setter and resetter fragments indicate that predicate P will be
have been set to true or false, respectively. The obfuscator assumes that at the program
entry point, P = unknown. The predicates are hence treated as tri-state predicates with
the possible values false, true, and unknown.

Table 4 shows the fragment used to evaluate the predicate. For evaluation functions,
we prescribe the result value, which in this case is simply P. Notice the lack of pre-
conditions on P for this evaluation function. It is up to the flexible obfuscator to combine
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Table 1: Initialisation fragment for P.

Pre-cond initialised(G) = true

Post-cond initialised(X) = true

Fragment X = G.deep copy()

Table 2: Setter fragment for P.

Inputs i

Pre-cond
initialised(X) = true
type(i) = integer

Post-cond

P = true
Q = unknown
initialised(K) = true
initialised(L) = true

Fragment
K = X.add node(i)
L = G.get node(0)

Table 3: Resetter fragment for P.

Inputs i

Pre-cond
initialised(X) = true
type(i) = integer
value(i) ∈ [0:10:2]

Post-cond

P = false
Q = unknown
initialised(K) = true
initialised(L) = true

Fragment
K = X.get node(i)
L = X.get neighbours(K)

↪→ .get(0)

Table 4: Evaluation fragment for P.

Pre-cond
initialised(K) = true
initialised(L) = true

Result P
Fragment !G.adjacent(K, L)

setters and resetters with evaluation fragments in the correct way to construct valid one-
way or two-way OPs.

In the example of Listing 1 only one predicate is stored in the reused data structure,
corresponding to P in the tables, but nothing prevents the user from defining multiple
ones. In fact, it is highly advised to do so, because it will result in a wider range of
data manipulations of the data and hence in stealthier and more resilient deployment.
Tables 5 and 6 illustrate how a second predicate Q can be defined. In this case, Q is not
orthogonal to P, as indicated by P becoming unknown according to the post-conditions.

Table 5 also illustrates how prescribing multiple combinations of pre- and post-
conditions on the same code fragment can be used to set or reset Q with the same
fragment depending on the pre-conditions of the input variables. In this case, Q is set if
i is even, and reset of it is odd.

Finally, we need to discuss one more feature of the meta-API. Tables 7 to 10 prescribe
the code fragments for another predicate R that is defined on a hash table and that
depends on whether or not some key is present. Obviously, the key being checked for the
evaluation of the predicate should be the same as the key used for setting or resetting the
predicate. We do not want to hardcode the keys to be used, however, so we should be
able to prescribe this constraint. We can do so by means of additional variables that do
not show up in the injected code, but that the obfuscator uses internally (similar to the
initialised() predicates) to ensure that only valid combinations of setters, resetters, and
evaluations are injected. In Tables 7 to 10, the internal variable is key. When injecting
a setter or resetter, the obfuscator can freely choose any string as key, as allowed by the
pre-conditions. While no code will be injected to do so, the obfuscator considers key to
be set to key at the end of the injected fragment because of the specified post-condition
on key. For the evaluation fragment, the obfuscator can then not choose the input key
anymore, as the pre-condition states it is bound to key.
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Table 5: (Re)setter fragment for Q.

Inputs i

Pre-cond 1
initialised(X) = true
type(i) = integer
value(i) ∈ [0:10:2]

Post-cond 1
initialised(M) = true
P = unknown
Q = true

Pre-cond 2
initialised(X) = true
type(i) = integer
value(i) ∈ [1:10:2]

Post-cond 2
initialised(M) = true
P = unknown
Q = false

Fragment

M = X.get node(i)
if (i % 2)
X.add edge(M, M)
else
X.remove outgoing edges(M)

Table 6: Evaluation fragment for Q.

Pre-cond
initialised(X) = true
initialised(M) = true

Result Q

Fragment
X.get neighbours(M)

↪→ .size() > 0

Table 7: Initialisation code fragment for R.

Pre-cond initialised(H) = true
Post-cond initialised(X) = true

Fragment X = H.deep copy()

Table 8: Setter code fragment for R.

Inputs key, value

Pre-cond
initialised(X) = true
type(key) = string
type(value) = integer

Post-cond
R = true
key = key

Fragment X.insert(key, value)

Table 9: Resetter code fragment for R.

Inputs key

Pre-cond
initialised(X) = true
type(key) = string

Post-cond
R = false
key = key

Fragment X.remove(key)

Table 10: Evaluation code fragment for R.

Inputs key

Pre-cond
initialised(X) = true
key = key

Result R
Fragment X.get(key)!=NULL

4.3. Stealthy fragment injection

The fragments to manipulate the data structures and the encoded predicates as pre-
sented in the previous sections have inputs on which some constraints are placed by
means of pre-conditions. Within those constraints, the flexible obfuscator has some free-
dom to choose where the inputs will come from at run time, and to generate and inject
corresponding glue code around the injected fragments. This choice has an impact on
stealth and on the ease with which attackers might comprehend what is going on in the
code, and hence where and what the OPs are. At least two aspects matter: variability of
the thus obtained inputs, and similarity to types and data (patterns) already occurring
in the original program. The latter is particularly important for inputs of the fragments
that are passed to API functions invoked on the data structures. If those stand out too
much and seem out of place, it will be easy for attackers to spot one or more “weird”
API calls, hypothesize that those correspond to obfuscations, and write custom scripts
to automate the identification of all similarly standing out API calls, i.e., to generalize
the findings of the attacker. Variability of input values between different occurrences
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of the same fragment (i.e., when a fragment is injected at multiple program points) is
important to block this generalization.3

Run-time variability of the inputs of a specific occurrence of a fragment is equally
important, but for another reason: to make precise automated analyses and deobfuscation
as well as human comprehension harder. Yadegari’s generic deobfuscation technique
relies specifically on data used in obfuscations being quasi-invariant, i.e., the same values
reoccur throughout the execution of a program on some input. Fuzzing also performs
much better if inputs to code fragments can exhibit less variation and less code paths are
hence triggered. So does symbolic execution when certain (input) values can be shown
or assumed to be constant. Even when humans observe likely invariants, such as when
inputs to certain functions are always the same, they also simplify their mental model of
the code based on the assumption that, until proven otherwise, the likely invariant is an
actual invariant. So a lack of run-time variability of inputs to any instance of an injected
fragment will ease both automated analysis and human comprehension by the attacker.

The obfuscator has various options to find input values in the original program. For
primitive types, local and global variables are options in source-to-source or compiler-
based obfuscators. In binary rewriters, local data available in registers or in a stack
frame are options, as well as global data in statically allocated (read-only) data sections,
including string literals. All of those data might be used directly or, if necessary, they
might first be manipulated to meet pre-conditions such as the fact that a number needs
to be odd or even, positive or negative, be in or out of some range, etc. Alternatively,
the obfuscator can create primitive inputs from scratch, be it constant inputs or variable
ones. Constant values can be obfuscated with many obfuscation techniques [27, 28, 29].
Note that even in cases where no debug information is available, binary rewriters can
differentiate among the available registers to select inputs from. For example, our proof-
of-concept flexible obfuscator that we used for the empirical evaluation in Section 5
performs simple data flow analyses to determine whether data in a register is used as an
address in memory accesses, whether it is a constant value or not, whether it can be a
zero or not, a copy of some other register, etc.

To decide how much variability is wanted, the original program can first be traced,
after which statistics can be computed on the values passed to API functions. In the
case source code is available, the source code can also be analyzed statically to find out
which types of arguments are passed to API functions, but that information can also
be retrieved by means of traces and debug information. For example, in the case of
a C++ hash table that accepts any type of key and value objects (as long as the key
objects provide a hash method), a trace or static analysis can be used to find out which
concrete types are actually passed in the hash tables. To find inputs that maximally
provide the wanted variability, the original program can first be traced, such that the
variability of values produced and stored during the program can be assessed. Moreover,
a taint-tracking analysis can be performed to identify the values that actually depend on
input to the program. This will help in defeating attacks based on symbolic execution
and generic deobfuscation.

3Obviously, it is also important that the binary code generated for the injected fragments is not
identical everywhere. For the time being, we assume software diversification and global compiler opti-
mizations (i.e., optimizations that let the form of a particular generated code fragment depend on the
surrounding code) can be used to generate enough syntactic diversity in that respect.
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The mentioned pre-pass techniques to collect information enable the flexible obfusca-
tor to some extent to make decisions on its own to find the most appropriate inputs to
pass to the injected code fragments. The user can also steer the obfuscator, however, by
means of the pre-conditions and post-conditions. For example, the type() pre-conditions
of the fragments in Tables 8 and 9 already specify that the input key needs to be of type
string. Additional pre-conditions can easily be formulated for specifying whether inputs
are (preferably or mandatory) to be based on data that is pre-existing or not, global or
local, constant or read-only, etc. Pre-conditions can also be formulated on the variability
over different occurrences of the injected fragment, e.g., whether the obfuscator should
strive for different values being passed at different instances or not.

In addition, the user can provide additional code fragments that the obfuscator can
inject not to set or reset a predicate, but to generate appropriate inputs for predicate
setters and resetters. For example, the user might provide a set of custom fragments
with a pre-condition type(i) = integer and a post-condition value(i) ∈ [1:10:2]. With
such fragments, the user can extend the limited, predetermined set of computations
that the flexible obfuscator knows to inject for generating even numbers in a range.
By supporting user-provided fragments to compute inputs to setters and resetters, the
attacker’s learnability of that part of the flexible protections can be reduced. Moreover,
users can then choose and tune the provided fragments to achieve the desired variability
of input values to inject setters and resetters, based on their knowledge of the behavior
of the original application they want to protect.

4.4. Generalization

So far, we discussed how the meta-API supports flow-insensitive and contextual one-
way and two-way OPs. As it is, the meta-API can also be used for more advanced types
of OPs, such as dynamic OPs [21], generalized dynamic OPs [22], bi-OPs [30], range
dividers [31], etc. To support those, the necessary decision logic and transformations
need to be implemented in the flexible obfuscation tool, and the necessary relations
between set, reset, and evaluation fragments need to be expressed with the appropriate
pre- and post-conditions. Supporting the more advanced types of OPs might require
some more engineering, but no fundamentally more complex concepts.

Furthermore, the injection of OPs is not the only application supported by the meta-
API. Another interesting application is that of implicit information flow, which are also
known as covert channels [32, 33]. With those, direct data dependencies (i.e., assignments
and copy operations) are rerouted through external system state to hamper taint-analysis
and other data flow analyses that only consider internal program state. The meta-API
allows users of a flexible obfuscator to introduce any implicit information flow they can
imagine to thwart (future) analysis toolboxes that include countermeasures against fixed,
known forms of implicit information flow. Actually, the meta-API can also be used to
reroute direct data dependencies through explicit, but more complex data flow that
reuses data structures and API functions already available in the program. As discussed
in Section 2, this can be useful to diversify linked-in protection code and to tailer it
to the protected program, thus making it harder for attackers to identify the linked-in
protections.

Finally, the meta-API can be used to avoid the reuse of fixed and hence detectable
opaque constant generators, i.e., constant data values such as strings that are not hard-
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coded as data in a program but that are replaced by procedural code that generates their
value dynamically (e.g., [27]).

In summary, we conjecture that the generic nature of the meta-API and its use of
pre- and postconditions enable support for a much wider range of flexible obfuscations
than the OPs we experiment with in this paper.

5. Security Analysis - The Case for Flexible Software Obfuscation

As for the potency of the proposed flexible OPs, this paper does not make new
claims. The bogus control flow paths and other complications of code and data flow
that can result from those paths are independent of their flexible or fixed nature, so
flexible OPs give us the same potency as already evaluated in the extensive literature on
OPs as discussed in Section 3. As for the hint in the introduction that mixing original
program functionality and protection functionality by reusing the former for the latter
might potentially improve the potency of protections, we have no empirical evidence yet.
Lacking any new claims regarding potency, we then do not evaluate potency, and instead
focus on resilience and stealth.

In the context of flexible OPs, resilience and stealth are almost synonymous: Once
attackers identify a predicate as an OP of a certain type (always true, always false, two-
way, ...), the hard work is done. How they then use that gained knowledge to undo
the obfuscation or to bypass it or in some other way depends on their modus operandi
and the specific tools they use, but is independent of whether the OP was a flexible
or a fixed one. The security analysis in this section therefore focuses jointly on the
stealth and resilience of flexible OPs, i.e., the capability of remaining undetected and not
being deobfuscated. As a starting point, we consider the work by Zobernig et al., which
surveyed eight common attacks on one-way OPs [34]. We discuss those eight attacks,
and extensions thereof on two-way OPs, plus additional attacks and attack steps.

Conceptually, most attacks begin with some sort of program inspection to identify
the conditional branches steerd by potential OPs. Program slices can then optionally
be constructed for those branches, in which attacks can be performed. Slices can be
constructed statically or dynamically, and an attacker can try to simplify dynamic slices,
which correspond to parts of execution traces, in a number of ways [11, 35].

5.1. Brute Force Search

In a brute force search attack, the attacker executes the extracted slice on all possible
input value combinations to check whether the possible values of the predicate. While
this can work for simple numerical (e.g., algebraic) opaque predicates of which the slices
only take (narrow enough) numerical values as inputs, we conjecture that generalizing
such attacks to well designed flexible OPs of which the values depend on complex datas-
tructures’ shapes and values, is impossible. Deciding what slice to consider is a hard
problem in the first place, and for any slice of practical length, the space of possible
inputs to consider (i.e., all possible states of the involved data structures), will be im-
practically large. In fact, the attacker has no idea what the real space of potential inputs
looks like, as he is starting from a binary that lacks high-level information such as type
information and as he has no a priori knowledge about the invariants maintained by the
data structures throughout the program’s execution. In an attack on the example of List-
ing 1, for example, if the attacked considers the slice within function A, he doesn’t know
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to what data structures X and G point, whether they point to data structures in disjount
or overlapping memory regions, what values can already be stored in the pointer chains
starting at X and G, etc. The attacker therefore has no basis to decide which potential
memory states should be considered as potential inputs. Not being limited to states
that can actually occur in the program, it is not hard to come up with memory states
that would make the OP on line 10 evaluate in either direction. Not knowing the space
of potential inputs is a sufficiently big problem to make this form of attack fail. If the
considered slices are large enough (e.g., starting at the program entry point), the space
might be known at the conceptual level. But for any non-trivial program, the space will
then be too big to search exhaustively.

5.2. Evaluate at Zero

Zobernig et al. proposed this search-space pruning heuristic themselves, based on their
observation that in typical programs most integer comparisons with constants compare
with zero. They therefore propose to discard a predicate as a potential OP if it evaluates
to true for the zero input. Obviously, this attack can only work for numerical OPs, not
for OPs based on complex data structures.

5.3. Probabilistic Checking

In these attacks, not all the potential inputs are fed to the extracted slice as in a brute
force search, but only a random selection of them. If the resulting predicate is always
the same, the predicate is probabilistically considered a potential OP. This attack can
work well for simple numerical OPs with simple slices, but for ours, it will not work on
local slices, as it is as infeasible as brute force searching, for the same simple reason that
the attacker doesn’t know how to limit the space of global memory states to consider as
inputs.

5.4. Execution Trace Analysis - Fuzzing

These attacks are specific forms of probabilistic checking, in which the slice is the
whole program, and in which the inputs are not selected randomly, but by means of
a fuzzer or by letting an attacker select reasonable program inputs. Note that in this
attack as discussed by Zobernig et al., only the observed branch directions are taken into
account, no further analysis is performed. So the heuristic is that if a conditional branch
is only observed to be executed in one direction, we assume it can only be executed in
one direction, and its predicate is hence a constant predicate. Flexible one-way OPs can
be detected with these attacks in exactly the same way as other one-way OPs. Simply
relying on one or a few execution traces will not suffice, however, as that would result
in a very large number of false positives and hence in a low precision of the attack: as
already observed by Dalla Preda et al [8] on CPU benchmarks, in any vanilla benchmark
(i.e. without any OPs injected) a large number of conditional branches only execute in
one direction when the binary is executed on one or a few representative inputs.

To obtain a clearer, up-to-date view on this aspect, we performed a number of mea-
surements on the real-world test programs we will discuss in more detail in Section 6, and
on some additional complex Linux programs (the evince PDF reader and the VLC media
player) to confirm this. For example, we traced the Python interpreter on 8 different
programs. When an attacker would only consider a single of those 8 traces, between 20%
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and 45% of all possible branch directions would be missed, i.e, of all branch directions
occurring at least once in all 8 traces combined. With any combination of 2 out of 8
traces, between 11% and 36% of the total would still be missed. To get a decent preci-
sion, fuzzing is hence needed. Even then the precision would still be limited [36, 37, 38],
as real-life programs contain many conditional branches that will only be taken in one
direction under “normal” circumstances, such as NULL-pointer checks following mal-
locs, or error checks on functions that can actually not really fail, and input validation
checks that are either redundant (because they check already checked properties) or not
triggered on valid inputs.

Moreover, when the defender does actually worry about this type of attack, the
flexible two-way OPs come to the rescue. Be it static ones or dynamic flexible OPs, they
offer the same resilience as their fixed counterparts do against this type of attack. To
attack those successfully with the described form of execution trace analysis or fuzzing in
which only conditional branch outcomes are considered, some form of intra-procedural
context-sensitive version of the attack would be needed, albeit with contexts that do
not correspond to functions and their callers. While inter-procedural context-sensitive
analyses have been proposed to handle obfuscated calls and returns by considering stack
frames (a semantical feature not easily obfuscated, unlike the easily obfuscatable call
and return instructions) [39], intra-procedural context-sensitive analysis have to the best
of our knowledge not yet been studied. So it remains an open question to what extent
they would be useful to detect potential two-way OPs. On our test programs, we did
measure that of all conditional branches that were observed to go in two directions in
the original, unprotected programs, between 9% and 18% is such that the outgoing path
only depends on the incoming path. So between 9% and 18% of the conditional branches
shows the same behavior of static two-way predicates such as the one in the example
listings 1 and 2. This is a strong indication that even context-sensitive execution trace
analyses will have limited precision. Investigating this type of complex attacks in more
detail is future work.

5.5. Pattern Matching

Dictionary-based pattern matching that can be applied in a plethora of binary anal-
ysis use cases: to detect library functions [40], function prologues and epilogues [41],
high-level programming patterns [42], and to deobfuscate mixed-boolean-arithmetic ob-
fuscations [43]. Zobernig et al. observe that surprisingly few different OPs are supported
by commonly used obfuscation tools. The dictionaries of patterns to match can hence
easily be assembled manually or (semi-)automatically with the help of machine learning
techniques [44]. By design, flexible OPs that build on APIs already available in the
original program, can thwart such attacks to some extent. First and foremost, when a
specific API or data structure is used the first time to obfuscate some high-value code,
attackers lack the necessary a priori knowledge or samples to construct a dictionary. Sec-
ondly, as the reused APIs are already present in the original program, straightforward
pattern matching will offer low precision when defenders deploy them with sufficient
stealth, which they can do by carefully designing the encoding of the OPs in the data
structures and by deploying them stealthily as described in Section 4.3. There are two
caveats, however. First, as pattern matching can be done on a wide range of artifacts
at different levels of abstraction, the injection should leave few fingerprints. The binary
rewriter we used for our proof-of-concept implementation lacks in this regard: injected
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code fragments do not mix naturally enough with the surrounding code. We conjecture,
however, that a source-to-source rewriting implementation will do much better in this
regard. Studying this in future research would be useful. Secondly, once attackers detect
one occurrence of a flexible OP in a (large program) by means of more complex attacks
and/or manual effort, they can start searching for the same pattern to find further oc-
currences. We conjecture that the success and ease of such attack approaches can be
severely limited by deploying code diversification techniques on top of the flexible OPs
to limit the attack’s recall, and by limiting their precision by making sure that the way
the predicates are encoded and evaluated resembles operations already present in the
original program.

5.6. Feature Extraction and Machine Learning

The concept of pattern matching can be generalized to feature extraction. All kinds of
features can be extracted from either traces or static code representations, and all kinds of
machine learning algorithms can be used both to detect OPs and to deobfuscate them.
For detection, the considered labels are “normal predicate” and “opaque predicate”.
For deobfuscation, the labels include the types of opaque predicates, and possible the
direction in which they are taken, such as “always true one-way OP”. As noted by Toghifi
et al. with respect to their supervised-learning approach that considers term frequency
features, machine learning approaches suffer from the problem that they need to be
trained. They specifically observe that models trained on samples produced with one
obfuscator perform badly on code obfuscated by another one [45]. Flexible OPs are
therefore as resilient to feature extraction and machine learning attacks as they are to
pattern matching attacks.

5.7. Taint Analysis

Zobernig et al. use the term taint analysis in a somewhat peculiar way, namely to
denote attacks that identify bogus control flow paths corresponding to OPs by detecting
a mismatch between the data computations prior to a conditional branch and those fol-
lowing the bogus branch direction. This mismatch can be observed in the form of a lack
of (somewhat normal looking) data dependencies, for example when junk code has been
injected at the bogus jump target, and that junk code has not been customized to con-
sume the data produced prior to the injected OP. Depending on the objective with which
OPs are injected, OPs can be inherently susceptible to this form of attack. For example,
in the work of Van den Broeck et al. bogus control flow paths are inserted precisely to
make disassemblers infer connections between code fragments that are actually not at
all related, and thus to thwart the reconstruction of functions [24]. As the connected
fragments are not related by construction, a certain lack of normal data dependencies is
unavoidable. If OPs are inserted simply to complicate the apparent control flow within
functions, however, we think it should not be too difficult to choose the insertion loca-
tions and the bogus paths in such a way that at there are at least some normal looking
data dependencies present. We have not studied this in detail, however, and further
research is needed. Compared to fixed obfuscators, our flexible one does provide at least
one extra opportunity, however. Prior to an inserted OP, the global data structures are
manipulated to set or reset the encoded predicate. Following the OP, be it on a bogus
path or a realizable path, the obfuscator can easily inject additional manipulations. In
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all cases, it can inject the orthogonal manipulations as described in Section 4.2, and in
cases where the predicate is not live after it has been checked for the OP, even set and
reset manipulations can be injected. Code prior to and following the OP and its branch
will therefore at least operate on the same data, this potentially making this form of
attack harder.

5.8. Automated Proving

One can try to let a SMT-solver prove that a computed predicate is a constant. As
noted by Zobernig et al., automated proving on concrete code slices is only feasible for
sufficiently simple OPs, with sufficiently small input domains. The flexible OPs on top
of complex data structures and global state that we proposed are not in the scope of
such automated proving.

5.9. Symbolic Execution

SMT-solvers also back symbolic execution engines [46]. Ming et al. showed that simple
OPs can be detected by symbolic execution [23]. Recently, Banescu et al. evaluated some
state-of-the-art symbolic execution engines on, amongst others, OPs [31]. They observed
that OPs have a small impact on the slowdown of symbolic execution. They also observed
that when the injected OPs do not insert input-dependent computations, the opaque
branches are easily eliminated. Yadegari et al. also demonstrated that deobfuscation by
means of symbolic execution is possible [7]. To counter such attacks, transformations have
been proposed that lead to path explosion, such as range dividers [31] and split/for/write-
obfuscations [33].

To attack OPs or other obfuscations in binaries, such as mixed-boolean-arithmetic
(MBA) data obfuscation [29], symbolic execution is typically deployed locally, i.e., on
a small program fragment or slice [43], for example a path within a function leading
up to a suspected OP conditional branch. Well-known binary symbolic execution tools
such as BINSEC [47, 48] and angr [49] offer this functionality. Such analyses have been
integrated in popular reverse-engineering tools such as IDA Pro [9], Binary Ninja [50]
and Ghidra [51], for example in the DROP tool that integrates the attack of Ming et al.
into IDA Pro [52], such that an attacker can interactively invoke the attack at manually
chosen program points or code fragments. In the case of OPs, the attacker aims to let the
symbolic execution engine’s SMT-solver solve path conditions on the selected fragments
that lead to the execution of different outgoing paths of the OP. Similar to how MBA is
attacked [43], the solver can be customized to target known OPs from fixed obfuscators by
means of template-based normalization rules for path conditions, i.e., rules that recognize
and simplify complex path conditions corresponding to known OPs.

Symbolic execution engines can be considered smarter attacks than “dumb” brute
force search, probabilistic checking, and execution trace analysis. Rather than (ran-
domly) trying many potential inputs to produce the relevant behavior, the SMT-solver
tries to find inputs in a smart, targeted manner by solving path conditions. Still, the
smart attacker and the dumb attacker suffer from exactly the same problem when facing
our flexible OPs that build on complex data structures and global state. As discussed
above, the attackers and their engines do not know what inputs (including what memory
states) can or cannot occur at the start of the symbolically executed slice.

To validate our assessment of how symbolic execution fares with our flexible OPs,
we used the popular tools angr and BINSEC to attack function A in Listing 1 in the
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program version without function E, i.e., where the OP on line 10 truly is a one-way OP.
Specifically, the tools symbolically executed that function, starting at its entry point on
a symbolic input memory state, i.e., every possible memory state. In about 10 seconds,
Angr found two potential input states for A that make the OP go in both directions.
BINSEC did the same in about 20 minutes. Aside from the difference in required run
time, both tools hence yield the same results that the predicate might evaluate to both
values, and hence fail to identify it as a one-way OP. The reason is of course that the
symbolic execution engine in this case is not limited to memory storing disjunct graphs,
which the program is. Operating on binary code that lacks type information, the symbolic
execution engine and the SMT-solver consider any combination of pointers that lets the
predicate evaluate in either direction, and they easily produce such combinations. The
only solution for an attacker then is to let the attacker specify what the possible input
states could be. One option is to use concolic execution, and actually let the symbolic
execution start from a memory state that was observed in a real execution. This, however,
runs into the exact same problem that execution trace analysis had to face, namely the
problem of ensuring that sufficient coverage is achieved with the selected inputs.

Even if attackers can overcome that problem, users of the flexible obfuscators have
additional options to thwart symbolic execution. First, resilience can be achieved by
encoding the predicate values in ways that are not known a priori to attackers, such that
they cannot exploit template-based normalization rules for path conditions. This is, ob-
viously, only possible for flexible obfuscators. In addition, the user of a flexible obfuscator
has the option to embed concrete path-oriented protections, such as the aforementioned
range dividers and split/for/write-obfuscations, in the code fragments that the obfus-
cator will inject, thus causing path explosion leading to inpractical symbolic execution
running times. In general, all the existing defenses against symbolic execution can be
included in the code fragments that will be injected and that operate on the complex
data structures.

In conclusion, our appoach offers the potential to inject resilient OPs, and it is up to
the user of the flexible obfuscator to decide which level of resilience is to be achieved,
and to design the used datastructures, the encoded invariants, and the code fragments
to be injected accordingly.

5.10. Abstract Interpretation

Cousot presented abstract interpretation, a general framework for program analy-
sis [53]. Dalla Preda et al. used abstract interpretation to detect (relatively simple)
one-way OPs [8] and they proposed to measure strength of OPs by means of abstract
interpretation [54]. An underlying assumption of their work makes it practically useless
on flexible OPs. Specifically, they assume that the attacker can extract a slice easily
and that the attacker knows the abstract domain with which the extraced slices need
to be analyzed. With flexible OPs, however, the attacker cannot know the domain a
priori, just like he doesn’t know what patterns to try to match, or what template-based
normalization rules to use.

5.11. Static Analysis

Simple OPs can also be detected and deobfuscated through static data and control
flow analyses that come down to abstract interpretations, but are typically not handled
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as such by attackers or in the literature. For example, using value set analysis [55], the
Binary Ninja disassembler can determine that simple implementations of algebraic OPs
such as (x2 − x)mod 2 evaluate to constants. With simple implementations, we mean
implementations in which x is not read from memory or dependent on an input parameter
of a function, because in those cases, Binary Ninja’s analysis lacks the necessary precision.
It can therefore certainly not handle the flexible OPs we propose. Fundamentally, all
static analyses come with limited precision, if only because memory alias analysis is
an NP-hard [56]. To attack our flexible OPs on complex data structures with global
state, an interprocedural analysis is required that offers high enough local precision. We
conjecture that this is practically infeasible for all but the simplest uses of flexible OPs.
One reason is that the problem is aggrevated by the reuse of API functions used in the
original program. Because those functions are used in multiple, completely independent
calling contexts in a protected program, in many cases it will not be possible to compute
simple pre- or post-conditions that hold for all of a function’s inputs or outputs. In other
words, simple domains will not suffice, and what domain should be used is, as in the case
of abstract interpretation, not known a priori.

Moreover, to achieve sufficient precision, designers of analyses typically combine dif-
ferent forms of sensitivities (to paths, flow, fields, allocation-sites, contexts, etc.), which
they deploy at certain depths, such as K-depth context-sensitivity in which each func-
tion’s considered calling contexts are call chains of length K. For some analyses, they
also choose so-called summary equations to model the data flow through functions, for
example modeling the return value of a function as a first-order linear combination of its
inputs. If for some more complex function the chosen form of summary equation is not
expressive enough to capture the semantics of the function conservatively, the summary
equation defaults to “don’t know”, resulting in a loss of analysis precision. In general,
relying on NP-hard problems such as aliasing to evaluate the resilience of software pro-
tections is not correct, because even if some problem is NP-hard in theory, it is typically
very difficult to generate instances of the problem that can be injected as a software pro-
tection and that cannot be handled by practical and precise enough analysis algorithms.
Indeed, when the problem to tackle is known, algorithm designers can often come up
with the exact combination of sensitivities, depths, and summary functions to achieve
the required precision. For example, Udupa et al. clone basic blocks in flattened control
flow graphs to create sufficient analysis contexts for them [57]. To select the blocks to be
cloned, they specifically build on the a priori knowledge of flattening dispatchers having
many incoming and outgoing edges. For cases where the necessary a priori knowledge is
lacking to select blocks to clone, they offer no concrete solution.

In the case of flexible OPs, attackers don’t know upfront whether their analysis needs
to tackle trees, sets, hashtables, or any other form of complex data structure. Neither
do they know which invariants or other features they can aim for. For these reasons, we
conjecture that flexible OPs, when building on sufficiently complex data structures, will
be very resilient against static analyses.

5.12. Mutation Attacks

In theory, attackers can mutate instructions in the program to check if those mutations
effect the program as it executes on chosen inputs. Such attacks may be used to detect
dummy code or junk code inserted on bogus control flow paths. Zobernig et al. note that
such attacks are hard to automate and scale to larger programs, however. They hence
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are of little practical value. Moreover, unlike in the simplified example in Listing 1, the
uses of one-way and two-way opaque predicates we put forward do not involve junk code
at the tail of bogus control flow transfers. So mutation attacks are moot for these uses.

5.13. Trace Simplification

Several deobfuscation techniques have been proposed in recent years. Generic de-
obfuscation by Yadegari et al. [11] identifies and simplifies quasi-invariant operations in
traces as well as operations that according to a bit-level taint analysis [58] do not con-
tribute to the observed IO-relation. Two-way OPs are resilient to the simplification of
quasi-invariant behavior because they do not behave as such by definition. Furthermore,
if the existing API functions that are reused in the flexible protection were not only
present but also executed in the original program, which the defender can easily check
with a profiler or a tracing tool himself, also their code will not behave quasi-invariantly,
as it is executed in multiple contexts in the protected program. In addition, by using data
that is relevant and input-dependent in the original program as inputs to the injected
fragments, in particular the initialization code of the global data structures, the used
taint analysis will fail to mark the operations on the complex global data structures as
non-contributing to the programs IO-behavior. In Listing 1, the initialization of X as a
deep copy of G, and the dependency of temp1 on an input file examplify this. This feature
also makes the flexible OPs resilient to other taint-analysis based attacks [59, 60]. More-
over, a user of the flexible obfuscator can deploy known anti-taint techniques, such as side
channels [61] and implicit information flow [62, 32], in the injected code fragments, to
provide further hurdles to taint-analysis-based techniques such as generic deobfuscation.

Synthetic code generation is another recently proposed deobfuscation technique [35],
in which the semantics of a complex, obfuscated instruction sequence extracted from a
complete program trace is replaced by a simpler, synthesized code fragment that produces
as much as possible the same outputs as the original fragment for a large set of randomly
selected inputs. The authors of the technique deploy it on clearly delimited instruction
sequences, such as those corresponding to one MBA-expression, one instruction handler
in a bytecode interpreter, or one Return-Oriented-Programming (ROP) chain. They
first execute those fragments on the set of randomly selected inputs to determine the
expected, corresponding outputs. Their code synthesis process is then guided by Monte
Carlo Tree Search (MCTS). It iteratively grows the complexity of the syntesized code in
the direction that produces the expected outputs for as many as possible of the selected
inputs. Our proposed OPs are resilient against this form of deobfuscation for several
reasons. Most importantly, like local symbolic execution, brute force search, probabilistic
checking, and execution trace analysis, the attacker lacks the knowledge to select only
those random inputs that can actually occur during an actual program execution. When
the attacker also selects inputs that correspond to unrealizable global states that would
make the OP evalute in the bogus direction, the code synthesis will aim for code that also
implements the semantics of the bogus path, and then hence still includes a predicate and
a conditional branch. Moreover, it is unclear how an attacker would be able to select the
instruction fragments to be extracted and deobfuscated, given that the slices contain calls
to functions also used elsewhere in the code, and since the injected fragments operate
on global state, with a long lifetime. In short, we don’t consider this technique viable to
attack our flexible OPs.
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5.14. Devirtualization

A specific case of trace simplification concerns devirtualization. Coogan et al. [63]
use similar techniques as Yadegari et al. [11], against which our flexible OPs are resilient
as discussed above. Other devertualization techniques aim for abstracting a virtual pro-
gram counter, which they do by exploiting features typical for virtualization-based ob-
fuscation [64, 65] and the resulting traces. Adapting those abstraction techniques to
target flexible obfuscations is comparable to trying to use abstract interpretation to at-
tack flexible OPs without a priori knowledge about the abstraction domains to be used.
We hence conjecture that engineering abstraction techniques similar to those used in de-
virtualization, and then reusing them to deobfuscate multiple programs protected with
different OPs is not feasible with the current state of the art.

6. Experimental Validation

In the previous section, we performed an extensive theoretic security analysis, backed
up with a number of measurements on real use cases and experiments on small samples
to provide ample evidence of the resilience and stealth of the proposed use of flexible
OPs.

In this section, we evaluate their cost and feasibility by means of a proof-of-concept
implementation and real-world use cases.

6.1. Proof-of-concept Implementation and Experimental Setup

We implemented support for one-way and two-way flexible OPs in Diablo, a post-link-
time binary rewriting research tool [14] that already includes support for a range of other
MATE protections including control flow obfuscations [24] and diversification [66]. We
opted for Diablo because we can reuse the basic functionality for those protections, hence
limiting the engineering effort for developing this proof-of-concept implementation. We
do not consider a link-time rewriter such as Diablo, which does not lift the code to a more
abstract IR but instead transforms assembly-level code, a good choice in terms of security
for real-world deployment, however. Rewriting code at such a low level of abstraction
simply leaves too many fingerprints, as already mentioned in the previous section. For
real-world deployment, a source-to-source rewriting obfuscator would likely be a much
safer choice. As this experimental evaluation focuses on the practical feasibility of the
proposed flexible OPs rather than what is the best way to inject them, we think Diablo
suffices for this evaluation. The code for our implementation is available as open source
at https://github.com/csl-ugent/diablo/tree/meta-api.

The targeted platform of our proof-of-concept is Linux ARMv7. We performed mea-
surements on a SABRE Lite i.MX development board running Ubuntu 18.04.3 LTS (ker-
nel 4.9.88-boundary-14b) [67]. The use cases were built with GNU GCC 5.5.0 (hard-float)
and binutils 2.26.1.

6.2. Benchmark Samples

We evaluated our proof-of-concept implementation on four open-source use cases.
The support code, including the four meta-API descriptions, is available online at https:
//github.com/csl-ugent/meta-api. All flexible OPs defined below can be used both
as contextual OPs and as flow-insensitive invariant OPs.
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Python Our first use case is the interactive shell (i.e., the interpreter) of the reference
implementation of the Python programming language (v3.7.4) [68]. This program is
written in C. Invoked on Python programs, it compiles them into intermediate bytecode
and executes them in a virtual machine. As inputs for our measurement experiments,
we invoked Python on six usage scenarios: installing its package manager PIP, using
that to install 3 packages, and running those packages on sample inputs provided by
their respective developers. For the flexible OPs, we reuse the Py Hashtable t data
structure and its APIs. We encode OPs in two predicates: P1 is true iff a given key is
present in a global hashtable, P2 is true iff two given keys are present with the same value.
Because P2 requires double the amount of operations on the hashtable to set/reset/check
the predicate, its use is about twice as expensive in terms of execution time overhead.
To provide stealthy keys, the injected code reuses strings already present in the original
program.

KeepassXC KeepassXC (v2.6) is an open-source password manager that stores dif-
ferent types of information in a tree-like structure [69]. It builds on the Qt framework and
is written in C++. For our measurements, we performed numerous operations (spread
over 21 different runs) to create and manipulate a database, look up data and manage
users. We then first used the meta-API to encode two flexible OPs reusing Qt’s QString
class: P1 is true iff two given strings are equal, P1’ is true iff a give string ends with a
certain suffix. P1 and P1’ have similar complexity and performance overhead. Secondly,
we encoded a flexible OP in a global Group data structure that represents a directory
tree for storing passwords. P2 is true iff the directory tree representation contains a
given file in a given path. To increase the stealth of the injected API calls, we reuse four
strings that are already present in the original program. The use of P2 is two orders of
magnitude more expensive in terms of execution than that of P1 and P1’.

Ninja Ninja (v1.10.0) is an open-source software build tool that provides a faster
alternative for the well-known automake tool [70]. The perform measurements, we let
Ninja, which is written in C++, build itself, letting the main command-line utility per-
form a dry-run build. Ninja already makes use of the C++ STL sets and maps, which
are both template-specialized versions of the STL’s private red-black tree implementa-
tion class Rb tree impl. We reused the latter tree class to encode three flexible OPs on
global trees. P1 is true iff the tree contains a given value. P2 is true iff two given nodes
are part of the same tree. P3 is true iff all nodes in the given tree have an even value. P1
is cheapest for checking the value of the predicate, while our implementation for P2 is an
order of magnitude cheaper for setting/resetting the predicate. P3 is in between in our
implementation. P1 is hence less costly for flow-insensitive invariant OPs, while P2 is less
costly for contextual OPs. To increase the stealth of these flexible OPs, we instructed the
obfuscator to generate small numbers to feed to the called APIs. Those small numbers
can be encoded in single constant-producing instructions, which also occur frequently in
the original program.

Radare2 The Radare2 framework (v3.8.0) provides a set of command-line utilities
for reverse engineering binaries [71]. For this use case, we did not protect a main bi-
nary, but the dynamically linked shared util library. To perform measurements, we
performed 12 common binary analysis operations on Linux’ ls utility, for which the in-
teractive shell of the main Radare2 utility was invoked. The operations include looking
up the program’s entry point, auto-analysing the binary, listing the imported functions
and program strings, computing the cross-references for some string, listing the func-
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tions in the binary, disassembling the main function and rendering an SVG file for that
function. We used the meta-API to prescribe three flexible OPs on Radare2’s internal
graph implementation in class RGraph. This class also served as the inspiration for the
example in Listing 1. P1 is true iff a certain path is present in a given graph, P2 is true
iff two given nodes are part of the same graph, and P3 is true iff the give graph contains
a one-edge loop. Our implementation of P1 is slightly cheaper when it comes to checking
the predicate, whereas P2 is a factor seven cheaper for setting/resetting the predicate.

For each use case and each encoded predicates, we used the meta-API to prescribe
one evaluation code fragment. For each use case, we also selected one predicate for which
we provided more than one setter and more than one resetter fragment, thus giving the
flexible obfuscator more freedom to select set/reset and evaluation combinations to inject
contextual OPs.

With these use cases and the range of data structures we reuse in them, we demon-
strate the large variability of flexible OPs that can be deployed in practice. How to
encode OPs is really only limited by the imagination of the flexible obfuscator’s user,
and of course by the available data structures to reuse and the cost of the injected OPs.
The latter is evaluated in Section 6.3.

To validate the correctness of our proof-of-concept implementation, we sprinkled the
four use cases with one-way and two-way OPs, randomly injecting OPs in up to 50%
of the executed basic blocks in their code and checking the correct execution of the
thus transformed programs (on the above described inputs) until we no longer triggered
deviations in the program’s input/output. This level of validation suffices to trust the
results of the cost evaluation below.

6.3. Cost Feasibility Evaluation

As already mentioned in the previous section, some injected operations to set/re-
set/check the encoded predicates are much more expensive than others. Moreover, even
the cheaper ones that we implemented are pretty heavy-weight compared to OPs previ-
ously proposed in the literature. Sprinkling a program with expensive operations such
as directory look-ups, tree searches, string comparisons, etc. to obfuscate most of those
programs’ control flow is not likely feasible.

Stealth is another reason for deploying the heavy-weight flexible OPs sparsely. If
a whole program is sprinkled with the same or similar constructs and API calls, their
frequent occurrence alone might make them suspicious to attackers. The defender needs
to co-design the flexible OPs with the application to be protected, which makes using
flexible OPs much more costly in terms of manual effort than fixed OPs, and the number
of data structures to be reused is inherently finite for any program. The defender’s
investment has to be protected, in part by deploying the designed flexible OPs in such a
way that their cover is not easily blown. In other words, it makes sense to deploy flexible
OPs only in those parts of a program where strong protection has the highest priority.

This observation then begs the question as to where in a program sparse deployment of
some specific flexible OPs is feasible, given the defender’s OP design and his performance
overhead budget. To answer this question, a defender can use the following strategy,
which we also applied to the four use cases.

First, we have measured the average execution times of the implemented flexible OP
operations, i.e., of set, reset, and check operations. We did so by executing various
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Figure 3: Estimated overhead for flow-insensitive invariant OPs requiring only an evaluation per executed
OP.

combinations of them in microbenchmark loops injected into the use cases close to their
entry points. This process can be automated completely in the flexible obfuscation tool,
and hence requires no additional manual effort of the defender.

Secondly, we profiled the use cases to collect basic block execution counts and we
measured their execution time, using the inputs discussed in the previous section.

From the collected information, one can easily compute an estimate of how expensive
it would relatively be to inject an OP at some program point. Any OP requires the
execution of a number of predicate evaluation operations equal to the execution count
of the program point. In the case of contextual predicates, a basic implementation like
the one in our proof-of-concept tool additionally requires that one set or reset operation
is executed per executed evaluation operation. For both flow-insensitive invariant and
contextual predicates, it is hence easy to estimate how much additional execution time
would be incurred by the injection of a selected OP at any particular program point, and
hence what the relative slowdown would be. The same can be done for the injection of
additional set, reset, or orthogonal data structure operations.

We validated this approach on the use cases by randomly deploying OPs in the hottest
(i.e., most frequently executed) parts of the use cases and measuring their overhead, and
we confirm that the estimates where within a couple of percentages from the measured
overheads.

Figures 3 and 4 plot the thus estimated relative overhead per basic block in each use
case, for the cheapest and the most expensive OPs (i.e., P1 and P2 as introduced above
for the use cases). The basic blocks are ordered from most frequently executed to least
frequently executed. Blocks that were not executed for any of the discussed inputs are
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Figure 4: Estimated overhead for contextual OPs requiring a set/reset and an evaluation per executed
OP.

excluded. We exclude them for the sake of clarity of the graphs and also because we
deem defenders to be likely not interested in obfuscating code that is never executed
(at least, not executed for the considered inputs). The percentage of all blocks that are
included is indicated in the legends of the charts, as is the average execution time per
executed OP. These execution times are averages for the different set/reset/evaluation
code fragments we provided with the meta-API per predicate. The R/S/E numbers
in the legends indicate exactly how many of them we provided. Overheads lower than
0.001% are rounded off to 0.001%, hence the straight lines at the left bottom of both
charts.

Some interesting observations can be made from these charts. First, the data confirm
that invariant OPs are much cheaper in most cases, up to an order of magnitude in some
cases. Secondly, it is clear that each program has a number of hot program points that
are executed simply too frequently to be feasible injection points for flexible OPs. Even
for invariant OPs injecting the cheapest OPs into the hottest points in a program would
yield run time overheads between 16 and 7765%.

What colder (i.e., less frequently executed) fraction of all executed blocks can be
protected with acceptable overhead can be determined from the individual lines on the
charts. As an example, the arrows in the charts mark the first basic block in each
benchmark that is not within the benchmark’s 10% hottest blocks. In other words, for
90% of the executed blocks of a program, the overhead of injecting one OP in them will be
lower than the Y-value marked by each arrow. For some benchmarks and particular OPs,
the overhead of injecting a flexible invariant OP in those 90% is below 0.1%, meaning
that with a 10% overhead budget, at least 100 OPs can be injected in the 90% coldest
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executed code. That implies that a significant fraction of the colder security-sensitive
functionality can indeed be protected with flexible OPs. For other benchmarks, the
overhead drops below 0.1% only for a smaller percentage of the coldest executed code.

Overall, these results confirm our earlier argument that flexible OPs should only be
used sparsely to protect the most security-sensitive code parts. Moreover, it is clear
that at least flexible OPs with the complexity of our designs for the use cases are not
applicable to the hottest code parts because of the large overhead they incur.

Charts like the ones in Figures 3 and 4 can easily be generated automatically for
a flexible OP design and use case. The defender only needs to provide the necessary
inputs. Furthermore, if the defender marks the security-sensitive code fragments, the
charts can be filtered for the basic blocks in those fragments. With those charts, the
defender can then easily evaluate the feasibility of his flexible OP designs. While the use
of such charts as a decision support tool might not suffice to find designs of sufficient
complexity to provide protection and of low enough complexity to be applicable to the
hottest security-sensitive code fragments, they will make the life of the flexible obfuscator
user much more productive, thus easing the burden of using flexible obfuscation.

7. Discussion

In this paper, we proposed flexible software protection, and we analysed and evaluated
its potential and feasibility, in particular in the form of flexible OPs that we evaluated on
a number of use cases and in an extensive security analysis, with positive conclusions. By
contrast, the flexible protections’ practicality, in terms of defender ease-of-use, general
applicability, and defensive efficacy, remain open issues at this point in time. First,
the deployment as described is not at all easy. Simply to enable it, the users of a
flexible obfuscator need to make a lot of decisions and provide a lot of information and
prescriptions. For instance, they have to decide where to deploy the protections, choose
invariants, define pre- and post-conditions using the meta-API, create an XML file with
the information about the functions’ signatures to be reused, and decide where to insert
initializations. Secondly, even if users are willing and able to invest all of that effort,
they remain in the dark on the actual protection it buys them, and they are on their
own when it comes to optimizing the protection strength. In short, techniques and tools
are missing for automation and decision support.

As for automation, we first note that not all tasks can be automated. Protections, be
it fixed or flexible ones, are deployed to protect assets embedded in software and their
security requirements. A description and prioritization of the assets and their security
requirements, at whatever level of abstraction, needs to come from the users, who take
into account business models and threat models.

We envision that many other tasks can be automated, however. For example, in
follow-up research we will study the use of symbolic execution on compiler intermediate
code representations of the software, as well as other advanced compile-time program
analysis techniques to automate the identification of existing data structures and their
APIs in programs that can be used to store and propagate data in non-trivial ways and to
encode predicates. Using whole-program analyses available in compilers such as LLVM,
we also want to automate and optimize the identification of program points at which API
invocations can be injected. All of this remains challenging future work. Still, simply
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switching to compile-time deployment instead of a binary rewriting approach will already
yield some benefits, such as freeing the user of having to specify function signatures.

The automation described so far is limited to identifying and describing opportunities
to deploy protections, however. Once those opportunities are known, decision support
is needed to make best use of them, i.e., to select concrete instances of protections and
concrete program points to deploy them, given the overhead budget that the user can
afford. For example, in Section 4.2 we stated that inserting orthogonal data structure
manipulations helps increase the strength of the deployed protection, but this immedi-
ately raises the question as to how many such manipulations are useful and where they
should best be inserted. Similarly, we often mentioned “complex data structures”, but
we didn’t discuss what level of complexity is actually needed or useful.

With respect to such decision support, we first want to note that decision support
for MATE software protection is in general still an open issue [72]. Fully-automated
iterative techniques to gradually increase the amount of deployed protection until a cost
budget is reached have been proposed for specific types of protections against specific
threats [73, 66], but for compositions of many different kinds of protections, as needed to
fend off the wide range of attacks that MATE attackers have at their disposal, no mature
research results have been published.

One of the biggest hurdles seems to be the lack of metrics to estimate and evaluate the
stealth and resilience of protections [72]. Flexible obfuscation as we proposed faces the
same challenges in this regard, and possibly even harder challenges, given that the claimed
benefits over existing OPs relate more to stealth than to potency. Beyond the deployment
of concrete attack tools on concrete use cases, many of which were discussed in Section 5,
and measuring the accuracy and other statistical performance criteria reached with those
tools, we know of no good, generally applicable metrics to measure stealth or resilience,
let alone predict it.

Machine learning techniques, in particular deep learning, might theoretically be able
to overcome this challenge, but practically we do not yet see this as an option as they re-
quire large data sets for training. Unless reverse engineering (including program compre-
hension) and software tampering attacks can be automated, i.e., scripts can be developed
that approximate human tool-supported attacks accurately enough, the creation of such
data sets seems unrealistic to us. Note that this is a significant difference from related
domains such as malware classification and detection, and software clone detection, in
which metrics based on precision, recall, etc. and similarity-based metrics are readily
available. When such metrics can serve as optimization objectives, machine learning
obviously becomes an option [74].

In the case of flexible protection, an additional complexity for measuring stealth
and resilience (which by and large overlap for OPs, but do not necessarily do so for
other protections where flexibility might be useful) is that the flexibility aims in part at
countering the learnability of the deployed protections, i.e., to prevent that the attacker
can reuse existing heuristics and code localization techniques for identifying the used
protections. While one can measure the accuracy of existing attacker methods by means
of pen tests or scripts that mimick pen tests, one can obviously not measure how well
not-yet-existing techniques might perform.

What remains is decision support that relies to some extent on human expertise to
compensate for the lack of precise measurements and estimates, and that is based more
on qualitative information (e.g., effectiveness of certain protections against certain attack
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methods as determined by experts) than on quantitative information (i.e., metrics). To
obtain the necessary qualitative insights, we plan to conduct controlled experiments in
which we let students as well as professional pen testers attack flexibly protected software.
Such experiments are expensive in terms of resources, however, and each experiment
delivers only a limited amount of validated information. Building the required body of
knowledge such that we can give users of a flexible protection tools concrete and validated
protection recipes and decision support for deploying the protections and for exploiting
the available flexibility optimally, will hence require quite some time to come. Moreover,
this body of knowledge will not be static, but instead will need to evolve continuously: As
MATE software protection is an ever continuing cat and mouse game between defenders
and attackers, the evaluation methodology continuously needs to be adapted to reflect
the evolving attacker capabilities. For example, it might be that the data structures that
we used in the evaluation section are sufficiently complex to be out of reach of today’s
state-of-the-art symbolic execution engines, but there are no guarantees that they will
remain so for years to come.

To the best of our knowledge, the fixed protection tools used commonly in industry
today [72] also come with (not rigorously validated) recipes for human-assisted decision
making and provide few if any validated qualitative metrics of stealth or resilience. We
hence conclude that if part of the user’s tasks can be automated in the near future
as described above, flexible obfuscation might already have a path towards industrial
adoption.

Finally, we want to point out that flexible protection might not be viable for all pro-
grams. For one, reusing sufficiently complex data structures and API functions assumes
their presence in the original programs to be protected. When they are absent, they
cannot be reused. We do note, however, that the data structures to be reused need not
be present in the specific code fragments or specific application components to be pro-
tected themselves. Instead they can be reused from any other part or component of the
application as well. We hence are confident that on the vast majority of non-trivial pro-
grams, flexible software protection is applicable. In fact, we can even go a step further:
Once the necessary automation is in place to automatically identify API functions and
data structures in programs for reuse in protections to be injected, i.e., to implement the
storage and propagation of data within the injected protections, we see no reason why
that automated technology could also not be usable to extract APIs and data structures
from external code bases to replace and obfuscate the storage and propagation of data
in the original program to be protected. In other words, even if sufficiently complex data
structures are not present in the original program, we could link them into the programs
from within external libraries, rewrite the original program to use them, and then inject
protections that reuse them. Obviously validating this idea is longer-term future work.

8. Related work

To the best of our knowledge, we are the first to pitch the concept of flexible obfus-
cation tools, and nothing close to the techniques we presented in this paper for flexible
obfuscation exists already. For related work on OPs, we refer to the discussion in Sec-
tion 3. For related work regarding attacks on and analysis of obfuscated programs, we
refer to Section 5.
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9. Conclusions

In this paper, we proposed the novel concept of flexible software protection tools that
do not hardcode fixed implementations of software protections but instead implement
them through the reuse of data structures and APIs already available in the software
to be protected. This decreases the learnability and hence the a priori knowledge of
attackers about the protection implementations, allows using global state encoded in
complex data structures, and avoids quasi-invariant and semantically irrelevant behavior
of relevant code fragments, thus increasing the resilience and stealth of the protections
under a wide range of attacks.

We concretized the concept for opaque predicates, one of the most essential building
blocks of software protection against man-at-the-end attacks and reverse engineering. We
presented a meta-API that builds on fundamental concepts such as pre- and postcondi-
tions with which users can prescribe how existing data structures and their APIs can be
reused by the flexible obfuscator. We performed an extensive theoretical security analy-
sis, backed up with concrete measurements on real-world applications and experiments
in which a symbolic execution attack failed on even small toy examples. We developed
a proof-of-concept flexible obfuscator, and deployed it on four real-world programs to
study the feasibility and cost of using flexible opaque predicates.

The overall conclusions of these experiments and discussions are that flexible OPs can
provide strong resilience and improved stealth, but also that they are costly and hence
to be used only sparsely, on code fragments that do not dominate performance.
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