
Dolos: language-agnostic plagiarism
detection in source code
Rien Maertens https://orcid.org/0000-0002-2927-3032
Charlotte Van Petegem https://orcid.org/0000-0003-0779-4897
Niko Strijbol https://orcid.org/0000-0002-3161-174X
Toon Baeyens https://orcid.org/0000-0002-2069-7824
Arne Jacobs https://orcid.org/0000-0003-0412-9648
Peter Dawyndt https://orcid.org/0000-0002-1623-9070
Bart Mesuere https://orcid.org/0000-0003-0610-3441

Correspondence

Rien Maertens (Rien.Maertens@UGent.be),
Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Krijgslaan 281 S9, 9000 Ghent, Belgium

Keywords

plagiarism, cheating, academic dishonesty, source code, programming language, data
visualisation, online learning, remote assessment

Abstract
Learning to code is increasingly embedded in secondary and higher education curricula,
where solving programming exercises plays an important role in the learning process and in
formative and summative assessment. Unfortunately, students admit that copying code from
each other is a common practice. We present a case study to demonstrate that switching to
remote learning even strengthens this phenomenon and introduce Dolos as a user-friendly
plagiarism detection tool that supports many programming languages. Where teachers
indicate they rarely use plagiarism detection tools, Dolos aims at lowering the barrier for
using such tools in practice. Dolos is powered by state-of-the art similarity detection
algorithms and outperforms existing tools on a standardised benchmark. Its interactive
visualisations assist teachers in discovering, proving and preventing plagiarism. Dolos is
available under the permissive MIT open-source licence at dolos.ugent.be.

Lay description

What is already known about this topic?
● Source code plagiarism is common in programming courses.
● Students mention lack of checking as one reason to commit plagiarism.
● Existing plagiarism detection tools are not broadly used in current practice.
● Current tools support few programming languages.

https://orcid.org/0000-0002-2927-3032
https://orcid.org/0000-0003-0779-4897
https://orcid.org/0000-0002-3161-174X
https://orcid.org/0000-0002-2069-7824
https://orcid.org/0000-0003-0412-9648
https://orcid.org/0000-0002-1623-9070
https://orcid.org/0000-0003-0610-3441
mailto:Rien.Maertens@UGent.be
https://dolos.ugent.be

What this paper adds:
● A user-friendly plagiarism detection tool that supports many programming languages.
● Interactive visualisations to discover, prove and prevent plagiarism.
● Plagiarism detection tools can help to prevent plagiarism for remote assessment.

Implications for practice and/or policy:

● Dolos makes it easier for teachers to detect source code plagiarism.
● Dolos helps to prevent students from committing source code plagiarism.
● Interactive visualisations support plagiarism discovery as an exploratory process.
● Keep in mind that high similarity does not equal proven plagiarism.

1.Introduction
A large majority of students admit they have cheated at some point during their higher
education studies, leaving McCabe, Butterfield, & Terviño with the conclusion that "the
prevalence of self-reported cheating is high enough for all of us—students, faculty, and
administrators—to be seriously concerned" (McCabe, Butterfield, & Trevino, 2012, p. 71).
This is not different in computing courses, where students usually practice their coding skills
by solving coding challenges. Teachers also use programming exercises in formative
assessment to improve student attainment or in summative assessment to evaluate student
learning. Solutions for coding challenges typically consist of one or more text documents
containing code for a specific programming language, generally referred to as source code.

Especially when the stakes are high, students may be tempted to resort to dishonest
methods to fulfil their assignments (McCabe, Trevino, & Butterfield, 1999; Ruiperez-Valiente,
Alexandron, Chen, & Pritchard, 2016). A common form of cheating on programming
exercises is submitting source code authored by someone else and failing to adequately
acknowledge that the particular source code is not their own. This practice is defined as
source code plagiarism by Cosma and Joy (2008). It involves obtaining source code either
with or without the permission of the original author, and submitting the copied code with no,
minor, or even major modifications aimed at concealing plagiarism (Rahal & Wielga, 2014).

In a survey by Chuda et al. (2012) at a Slovakian university, 33% of the students admitted
having copied and modified source code for one of their classes at least once. Teachers not
checking for plagiarism or even openly tolerating it, were found among the reasons why
students considered copying code from their peers. Only 8% of the university staff mentioned
they used specific software to detect plagiarism. This is even lower than 14 of 53 (26%)
representatives of higher education computing schools in the United Kingdom interviewed by
Culwin et al. (2001) that indicated using automated tools for plagiarism detection.

We believe that this lack of adoption could be explained by the fact that current plagiarism
detection tools are hard to use.. Problems either arise with installing or running the software,
privacy issues preventing source code being sent to an external server, or interpretation of
the results (Weber-Wulff, 2019). In addition, Novak et al. (2019) conclude in a recent review
paper that most state-of-the-art tools only support one or a limited number of programming
languages, with a major focus on Java, C and C++. However, the diversity of programming
languages used in education is definitely much broader (Simon, Mason, Crick, Davenport, &
Murphy, 2018).

To remedy these issues, we developed an open-source tool called Dolos that lowers the
barrier for using source code plagiarism detection in education. It allows teachers to explore
analysis results by means of highly interactive visualisations. Dolos also supports a broad
range of programming languages out-of-the-box and is easily extensible to additional
languages. We will discuss the underlying algorithms and prove it to be very accurate in
identifying educational source code plagiarism according to the publicly available SOCO
benchmark (Flores, Rosso, Moreno, & Villatoro-Tello, 2014).

Plagiarism detection tools are merely fast and intelligent assistants for finding highly similar
code snippets, but detection of highly similar source code submitted by students in itself is
not a formal proof of plagiarism (Joy & Luck, 1999). We therefore discuss a specific case on
how we designed an introductory Python programming course with longstanding online
learning support for plagiarism prevention and detection, and how remote learning during the
COVID-19 pandemic has challenged the organisation of trustworthy and fair assessments.
We describe how Dolos is used in building lines of defence against plagiarism and to find
evidence for cataloguing specific cases as plagiarism beyond reasonable doubt. This case
study also highlights another asset of the tool: raising student awareness and supporting
exploratory analysis by interactive visualisations.

Research Goals and Methodology
This manuscript addresses the following research questions:

● RQ1: Can generic parser models be used to build source code plagiarism tools that
support a broad range of programming languages and are highly competitive with
state-of-the-art tools in the accurate detection of potential cases of plagiarism?

● RQ2: Can we design open and online learning and assessment environments that
prevent source code plagiarism?

In section Dolos we present a new source code plagiarism detection tool by describing its
algorithm and how it can be used. RQ1 is answered in subsection Validation by running a
comparative benchmark between Dolos and state-of-the-art plagiarism detection tools using
a publicly available dataset. RQ2 is addressed in section Case study, where we present our
experiences and observations with organising a programming course over multiple years.

2.Related work
Plagiarism sensu latu can be defined as copying the work of someone else and presenting it
as your own (Mariani & Micucci, 2012). In education, it prevails in different kinds of cheating
behaviours committed by students (Sheard, Dick, Markham, Macdonald, & Walsh, 2002) and
presents two obvious problems at the institutional level by threatening accurate evaluation of
students and reducing their level of learning (Lupton, Chapman, & Weiss, 2000). Although
this type of dishonesty is a fundamental issue, there is considerable divergence in the
perception of its seriousness and prevalence between students and staff (Brimble &
Stevenson-Clarke, 2005).

Technological advances make it increasingly easy for students to access and misuse
resources. In a traditional physics course it was found that 10% of submitted answers to

problems in an online learning environment were copied (Palazzo, Lee, Warnakulasooriya, &
Pritchard, 2010). This phenomenon is also encountered in non-traditional education; it is
estimated that 10% of certificates earned in Massive Open Online Courses (MOOCs) were
earned at least partially by creating a separate account to harvest answers (Alexandron,
Ruipérez-Valiente, Chen, Muñoz-Merino, & Pritchard, 2017; Northcutt, Ho, & Chuang, 2016).
However, new technologies simultaneously also provide better opportunities for staff to
monitor potential cases of plagiarism (Brin, Davis, & García-Molina, 1995; Ercegovac &
Richardson, 2004; Shivakumar & Garcia-molina, 1995). Where original resources are
available in digital form and students submit digital copies of their work, advanced software
tools can assist in the automation of plagiarism detection for large classes in higher
education (Batane, 2010). Different computational problems arise if the origins of plagiarised
fragments submitted by students can be searched for in a closed document space (e.g.
original document was also submitted), in an open document space (e.g. original document
is available on the Internet) or can not be accessed (e.g. student hired someone else to write
his document). When the documents contain textual data, fast string algorithms exist to
match a plagiarised fragment with the original document, either by indexing the closed
document space or by preprocessing the plagiarised fragment before scanning the open
document space (Gusfield, 1997; Vyverman, De Baets, Fack, & Dawyndt, 2012). If
processing the original document is not an option, author attribution techniques might expose
that author signatures of plagiarised text substantially differ from those of surrounding text or
other documents submitted by the student (Stamatatos, 2009). There are also ways to detect
cheating behaviour in retrospect by identifying aberrant response patterns (Alexandron,
Valiente, & Pritchard, 2019; Karabatsos, 2003).

Plagiarism detection tools must see through the modifications a plagiarised fragment has
undergone to disguise its origin. What kind of modifications are expected, heavily depends
on the content type and the context. For example, typical countermeasures to mask
obfuscations in written natural language are case folding, stemming (removing prefix/suffix
from words), stopping (removing common words) and term parsing (removing whitespace,
punctuation and control characters) (Hoad & Zobel, 2003). To obfuscate source code
plagiarism, inexperienced programmers mainly use stylistic (e.g. altering comments or
renaming variables) and syntactic (e.g. reordering independent lines of code) changes (Đurić
& Gašević, 2013; Karnalim, Simon, & Chivers, 2020; Novak et al., 2019; Whale, 1990),
whereas expert programmers may as well use semantic changes (e.g. altering data
structures or changing an iterative process into a recursive process) (Faidhi & Robinson,
1987) or translate code from one programming language to another (Arwin & Tahaghoghi,
2006).

2.1. Educational source code plagiarism detection
In this manuscript, we focus on plagiarism detection in a closed monolingual collection of
source files that students submit for a programming assignment. The collection contains both
the source files under investigation for plagiarism and the source files they could have
originated from (closed collection). All source files in the collection use the same
programming language (monolingual collection). Students typically submit solutions that
contain tens or hundreds of lines of code, but we do not expect that all solutions are
syntactically correct according to the grammar rules of the programming language. Before
reviewing some state-of-the-art software tools for detecting source code plagiarism in an

educational context, we first discuss the general workflow to perform plagiarism detection in
practice and touch upon some key concepts along the way.

The process starts with collecting, preparing and managing collections of source files and
their metadata as input for plagiarism detection tools. It involves file manipulations like
filtering, formatting, arranging and packaging files in the expected structure, concatenating
files of multi-file software projects (for plagiarism detection tools that expect a single file per
submission), and separating files per programming language (for monolingual plagiarism
detection tools). These preliminary data wrangling steps can be quite time-consuming if not
properly supported by online learning environments or custom scripts (Sheahen & Joyner,
2016). Unfortunately, none of the leading source code plagiarism detection tools has a strong
focus on interoperability with external software platforms, apart from providing a
non-standard command line interface.

What plagiarism detection tools then actually provide are fast algorithms to find similar code
fragments among the given collection of source files and support for reviewers to discern
whether the resemblance of these fragments is accidental or points to actual plagiarism.
Although a lot of research has gone into the algorithmic aspects of screening source code for
similar fragments (Roy, Cordy, & Koschke, 2009), all leading tools nowadays follow the same
two-step approach but their implementation details differ. The first step transforms each
source file into a list of tokens to mask local obfuscations. A token is a structural element in
the source code with a specific meaning in the programming language (e.g. a keyword,
variable or operator). Tokenization uses software components that are typically used in the
front end of a compiler: a lexer for lexical analysis, a parser for syntax analysis and a
semantic analyser (Aho, Lam, Sethi, & Ullman, 2006). The token stream does not represent
every detail in the source code, just its structural elements and some content-related details.
Constructs like whitespace, delimiters or grouping parentheses are typically stripped away,
and literal values, identifier names or comments are denoted as anonymous syntactic
constructs. The second step searches for similar code fragments by performing a pairwise
alignment on the lists of tokens of each pair of source files to accomodate for more global
obfuscations like insertions, deletions, substitutions and transpositions (Wise, 1993).

Alternative techniques for source code plagiarism detection that have been explored include
tree-based algorithms (Li & Zhong, 2010; Zhao, Xia, Fu, & Cui, 2015), graph-based
algorithms (Chae, Ha, Kim, Kang, & Im, 2013; Liu, Chen, Han, & Yu, 2006), Latent Semantic
Analysis information retrieval (Cosma & Joy, 2012), fuzzy-based matching (Acampora &
Cosma, 2015), program logic analysis (Cheers, Lin, & Smith, 2019), and program
behavioural analysis (Cheers, Lin, & Smith, 2021). However, while some yield promising
initial results, neither of these approaches have gone beyond the proof-of-concept stage and
resulted in tools that are applicable in practice to confirm the authors’ own conclusions.
Novak et. al. (2019) have put it this way: "In spite of the large production of tools in recent
years, most of the tools are not available to the public, they are used only by the authors that
developed them and are mentioned in only one article."

There is no standard format for reporting similarity analysis results, but all tools compute a
similarity score from each pairwise alignment of source files and report a (filtered and/or
sorted) list of scores. Pairwise similarities are expressed either as values between 0 and 1 or
as percentages, with higher scores for pairs with a higher likelihood of plagiarism. However,
different tools use different similarity measures, preventing a direct comparison. Some tools

assist reviewers to inspect high-similarity pairs or cluster source files into larger groups
based on similarity, but support for advanced plagiarism exploration is generally poor and
some tools do not even output analysis results in a machine-readable format for more
elaborate downstream processing.

2.2. State-of-the-art tools
Novak et al. (2019) found 120 tools for source code plagiarism detection in the scientific
literature, but most have never been publicly available or no longer are. We only
benchmarked Dolos against four tools these authors identified as leading the field today:
Moss (Schleimer, Wilkerson, & Aiken, 2003), Sherlock Warwick (Joy & Luck, 1999), JPlag
(Prechelt, Malpohl, & Philippsen, 2002), and Plaggie (Ahtiainen, Surakka, & Rahikainen,
2006). Relevant properties of these tools have been summarised in Table 1.

Dolos Moss Sherlock
Warwick

Sherlock
Sydney

JPlag Plaggie

initial release 2020 1997 1999 2011 1996 2002

university Ghent
Universit

y,
Belgium

Stanfor
d

Universi
ty, USA

Warwick
University

, UK

University
of Sydney,
Australia

Karlsruhe
Institute of
Technology,
Germany

Helsinki
University of
Technology,
Finland

under active
developmentb

Yes No No No Yes No

pairwise
inspectionc

Yes Yes Unknownd No Yes Yes

advanced
visualisationse

Yes No Yes No Yes No

open-source Yes No Yes Yes Yes Yes

local
executionf

Yes No Yes Yes Yes Yes

programming
language
parserg

Yes Yes Yes No Yes Yes

supported
programming
languagesh

41 25 1 (Java) 0 7 1 (Java)

data exporti CSV HTML Unknownd TXT CSV, HTML HTML

Table 1: Properties of plagiarism detection tools benchmarked in this study.

a: The source code of MOSS is not publicly available and thus it is uncertain in which
programming language it is developed. However, the CLI program users have to run is
written in Perl.

b: Whether last year there has been any development.

c: Whether visualising similar code fragments between two files is supported.

d: Property could not be discerned because we could not run Sherlock Warwick.

e: Whether advanced visualisations give deeper insights during plagiarism analysis beyond a
similarity score or a pairwise comparison (e.g. through a plagiarism graph or a similarity
score distribution).

f: Whether analysis can be run locally (offline).

g: Whether programming language parsers are used to process files. If not, plagiarism
detection is unaware of programming language semantics.

h: Number of programming languages (parsers) supported, excluding plain text analysis.

i: Supported data export formats. Colour-coded by ease of processing (green=easy,
yellow=hard).

Before we explain some of their inner workings, advantages and disadvantages, let us first
disentangle one issue. In the field of source code plagiarism detection, two unrelated tools
are named Sherlock but only one has an accompanying publication. Although they have
been developed in different programming languages and at different universities, we have
reasons to believe that some publications used one tool and referenced the other. To avoid
such confusion, we included both tools in our discussion and will consistently suffix them with
their originating university throughout this manuscript: Sherlock Warwick and Sherlock
Sydney.

Moss
Moss1 (Measure Of Software Similarity) was developed at Stanford University (USA). It is
provided as a web service that is free for non-commercial use. Its source code is not publicly
available, but the underlying winnowing algorithm was published by Schleimer et al. (2003).
Moss supports the following programming languages: C, C++, Java, C#, Python, Visual
Basic, JavaScript, FORTRAN, ML, Haskell, Lisp, Scheme, Pascal, Modula2, Ada, Perl, TCL,
Matlab, VHDL, Verilog, Spice, MIPS assembly, a8086 assembly, a8086 assembly, and HCL2.

According to modern standards, Moss has a rather archaic user interface. It comes with a
Perl script that bundles and uploads a collection of source files to the Moss server. The
server tokenizes source files, extracts fingerprints from the token streams, and computes
pairwise similarities from shared fingerprints. Results are reported as HTML pages that list
pairs of highly similar source files and highlight shared code snippets in a side-by-side view.
Moss has an active community of users that contributed submission scripts in other
programming languages, a graphical user interface (GUI), integrations with other web

1 http://theory.stanford.edu/~aiken/Moss/

http://theory.stanford.edu/~aiken/moss/

services, and scripts that extract raw data from HTML reports and convert them into
machine-readable formats.

Using Moss requires sending source code of students to an external server. This could raise
security concerns and might not be allowed by local privacy regulations. Occasionally, the
service is not responsive due to high demand or unscheduled outages. We found that Moss
can be especially unreliable during exam periods (January and June).

Sherlock Warwick
Sherlock Warwick2 was developed in Java at the University of Warwick (UK) and is released
open-source under the GPLv2 licence. This command line tool supports most programming
languages as plain text, but offers specific optimizations for Java (Joy & Luck, 1999).

Sherlock Warwick incrementally compares three versions of the source code: the original
text, a version with stripped comments and whitespace, and a tokenized version. The first
two comparisons work for all programming languages, but the last one is only supported for
Java. Pairwise similarities are based on longest common matches of characters/tokens with
a configurable number of insertions and deletions.

Despite our best efforts, we have not been able to compile and run Sherlock Warwick from
source. Its dependencies are no longer available online or require a specific version that we
could not pinpoint. There is also a compiled JAR file for Sherlock Warwick that we could
execute, but no results were reported in the graphical user interface. We could not extract
similarity values from generated reports due to unreadable formats and lack of
documentation. Both issues prevented us from including this tool in the validation
benchmark.

Sherlock Sydney
Sherlock Sydney3 was developed in C at the University of Sydney (Australia). It is a
command line tool that treats all source code as plain text and has no specific support for
programming languages.

Sherlock Sydney parses text files (including source code) into streams of words, hashes n
subsequent words and discards non-zero hashes after applying a bitmask. This winnowing
algorithm differs from the one used by Moss (Schleimer et al., 2003). The remaining hashes
are used as digital fingerprints, with pairwise similarity computed as the ratio of shared
fingerprints between text files. Similarities are reported in a text file or on the terminal.
Processing source code as plain text is simple and fast, but less effective against obfuscation
methods typically observed in educational source code plagiarism.

The source code of Sherlock Sydney originally appeared on the university’s website in 2011,
and was taken offline in 2018. Other developers recovered a snapshot from the Internet
Archive4 for further maintenance on GitHub5.

5 https://github.com/diogocabral/sherlock
4 https://web.archive.org/web/20170710071658/http://rp-www.cs.usyd.edu.au/~scilect/sherlock/
3 https://github.com/diogocabral/sherlock
2 https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/

https://github.com/diogocabral/sherlock
https://web.archive.org/web/20170710071658/http://rp-www.cs.usyd.edu.au/~scilect/sherlock/
https://github.com/diogocabral/sherlock
https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/

JPlag
JPlag6 is written in Java and it is still actively developed at the Karlsruhe Institute of
Technology (Germany). It is released open-source under the GPLv3 licence (Prechelt et al.,
2002). This command line tool mainly focuses on Java but also supports C, C++, C#, Python
3, and Scheme. JPlag was initially provided as a web service and a Moodle plugin, but is
now also available for download and executes locally.

JPlag tokenizes source files for supported programming languages, and otherwise processes
them as plain text. Pairwise string matching is done by greedy string tiling (Wise, 1993) and
similarities are computed as the fraction of characters/tokens covered by tiles. Results are
reported in CSV and HTML format.

Plaggie
Plaggie7 was developed in Java at the Helsinki University of Technology (Finland). It is
released open-source under the GPLv3 licence (Ahtiainen et al., 2006). It was developed at a
time when JPlag was only available as a web service with no publicly available source code.
It mimicked JPlag’s functionality and output, but could be downloaded and executed locally.

Plaggie only supports Java and uses the same greedy string tiling technique as JPlag.
Results are reported in HTML format.

3.Dolos
Dolos is a plagiarism detection tool written in TypeScript and developed at Ghent University
(Belgium). It is released under the permissive MIT open-source licence.

Dolos uses the tree-sitter parsing library (Brunsfeld et al., 2021) in combination with
state-of-the-art string-matching algorithms to detect similar code fragments for a wide range
of programming languages. It provides an intuitive user interface, raw data exports, an open
API for integration into online learning systems, and interactive data visualisations for
exploratory analysis. It is published as an npm package to ease local installation and
updates. Source code and documentation are available at dolos.ugent.be.

Although Dolos may process plain text files, it was especially designed to exploit the
structured grammar of programming languages. Supporting new programming languages
does not require any changes to Dolos itself. Instead, it relies on the availability of tree-sitter
parsers on the local system. All tree-sitter parsers produce a generic abstract syntax tree
representation that Dolos uses to perform its similarity detection. At the time of writing, official
tree-sitter parsers are available for Bash, C, C#, C++, CSS, Elm, Eno, ERB / EJS, Fennel,
Go, HTML, Java, JavaScript, Lua, Markdown, OCaml, PHP, Python, Ruby, Rust, R,
SystemRDL, TOML, TypeScript, Verilog, VHDL, Vue, YAML, and WASM. New parsers are
under development for Agda, Haskell, Julia, Nix, Scala, SPARQL, and Swift. Tree-sitter and
its official parsers are also released under the MIT licence.

7 https://www.cs.hut.fi/Software/Plaggie/
6 https://jplag.ipd.kit.edu/

https://dolos.ugent.be
https://www.cs.hut.fi/Software/Plaggie/
https://jplag.ipd.kit.edu/

Where a collection of source files is the only information needed for similarity analysis, Dolos
may use additional metadata to enhance its visualisations. For example, submission
timestamps are used to render plagiarism graphs as directed graphs, and labels can be used
to colour their nodes.

3.1 Algorithm
The similarity detection algorithm of Dolos has four main steps: tokenization, fingerprinting,
indexing and reporting. Where we omit implementation details in our discussion, we refer to
the source code and its documentation for more information.

Tokenization. Given a programming language and a monolingual collection of source files
for that language, Dolos uses the tree-sitter parsing library (Brunsfeld et al., 2021) to convert
each source file into an abstract syntax tree (AST): a tree representation of the abstract
syntactic structure of the source code where each node corresponds to a construct in the
code (Figure 1). Tree-sitter parsers are robust enough to generate ASTs even for source
code containing syntax errors, which is common for source code submitted by students.

Figure 1: Sample JavaScript code (top) and its AST (bottom) as generated by the tree-sitter parser for
JavaScript. Each AST token is on a separate line that describes the meaning of the construct, followed by its
location in the source code. Locations are given as start and stop positions between brackets, with positions given
as row and column indices between square brackets. Indentation reflects AST tree structure.

Each AST is then serialised into a list of tokens, resulting in a condensed representation of
the original source code. While preserving the structure of the code, it is deprived from many
degrees of freedom available to programmers, like formatting, variable names, delimiters,

comments, literal values, and so on. This makes similarity detection more robust against
many types of obfuscations that are commonly found in educational source code plagiarism.

Fingerprinting. Given the repetitive nature of source code, it is not very informative to find
individual tokens that are shared between source files. We will therefore search for common
sequences of k successive tokens, called k-grams. Ideally, k-grams are long enough to
capture local context, but short enough to bypass more structural obfuscations like adding,
splitting, merging or reordering lines of code.

In order to speed up the process of finding common k-grams, individual tokens and k-grams
are represented as integers. We first use a fast hashing function to convert the string
representation of each token into an integer. This hashing function was specifically designed
so that each integer is the unique representation of a token from a serialised AST. We then
use a windowed rolling hash function to reduce the integers for each k-gram into a single
integer that serves as a fingerprint. Note that the same fingerprint may appear multiple times
in the representation of a single source file if similar code constructs are reused.

Because k-grams are overlapping, the number of fingerprints roughly corresponds to the
number of tokens in the serialised AST for a source file. The Moss winnowing algorithm
(Schleimer et al., 2003) is used to reduce the number of fingerprints. This works by selecting
the smallest fingerprint from each overlapping window of w fingerprints, and only keeping the
selected fingerprint if it differs from the one selected from the previous window. As a result,
the number of fingerprints roughly decreases by a factor w, with no reduction if w is set to 1.
Less fingerprints yields faster processing with a smaller memory footprint, but lowers the
recall of the analysis.

Indexing. Previous steps converted each individual source file into a (filtered) list of
fingerprints. To speed up the process of finding common fingerprints, we build an index that
maps each fingerprint onto all its occurrences in the source files. For each fingerprint
occurrence, the index also stores the location of the corresponding k-gram in the source file.
As such, the index contains all information needed to compare files and visualise shared
fragments.

Reporting. Dolos relies on the fact that source files still have shared fingerprints, even when
students tried to obfuscate plagiarism. However, manual inspection of all source files sharing
at least one fingerprint would be extremely time consuming and yield many false positives.
As an alternative, Dolos computes three plagiarism metrics that represent different views on
which shared fingerprints are relevant and how to quantify them. Sorting file pairs according
to such a metric defines an order in which files can be inspected and helps to determine a
cutoff beyond which further inspection is deemed useless.

The similarity between two source files a and b is computed as

𝑠𝑖𝑚(𝑎, 𝑏) =
𝑆

𝑎
+𝑆

𝑏

𝑇
𝑎
+ 𝑇

𝑏

with Tx the total number of fingerprints in file x and Sx the number of fingerprints in file x that
also occur in the other file. It is a value between 0 and 1 that measures all shared fingerprints
relative to the total number of fingerprints in both files. Note that Sa and Sb are not
necessarily the same because a shared fingerprint might have a different number of
occurrences in files a and b.

Similarity is the primary metric to compare source files, but as a relative value it is highly
dependent on file size. It easily inflates for extremely small files with shared fingerprints.
Therefore it might be interesting to only look at the numerator of the similarity (Sa + Sb) as an
absolute measure for all shared fingerprints. We call this metric the total overlap.

The previous plagiarism metrics both treat fingerprints as independent features of source
files. However, when k-grams are shorter than code snippets that were copied and modified
between two source files, they may result in longer sequences of shared fingerprints. We
formally define a shared fragment (or fragment for short) as a maximal exact match
(Vyverman et al., 2012) between the lists of fingerprints of two files, and its length as the
number of matched fingerprints. Long fragments might be another signature for plagiarism,
that could be disguised by a global similarity measure when the fragments are hidden in
large chunks of otherwise dissimilar code. Dolos therefore also reports the longest fragment
as the length of the longest fragment shared between two files.

3.2. Usage
Dolos can be used as a standalone tool that processes a given collection of source files on
the local system. Detailed results are stored as a set of CSV files and can be explored in a
browser to find and inspect potential cases of plagiarism. As an alternative, Dolos can also
be used as a JavaScript/TypeScript library to embed plagiarism detection functionality into
online learning environments and other web applications.

Command line interface
Launching Dolos from the command line requires setting an option with the programming
language used by the source files under investigation. The tree-sitter parser for that language
needs to be installed on the local system. File paths of the source files must be passed either
as separate arguments or in a single CSV file.

Dolos has well-chosen default settings for plagiarism analysis (k-gram length 23 and window
size w=17) and reporting, which were determined by experiments we will describe later in
this paper. These settings can be overridden by command line options. By default, it reports
a summary table of highly similar source files to standard output, sorted by similarity. It also
creates a directory with a set of CSV files containing more detailed results from plagiarism
analysis. Users can instruct Dolos to start a local HTTP server that launches a graphical user
interface for exploring these results in a new browser window.

Web interface
Interpreting detailed results from plagiarism analysis might be tedious and challenging. Dolos
therefore provides a web interface to interactively explore the results in a browser window. All
pairwise source file comparisons are summarised in a list and a plagiarism graph, accessible
from the navigation drawer on the left. Manual inspection can be done by navigating between
the overview provided in the list and graph views, and more detailed information visualised in
the compare view.

We published the web interface for results obtained with Dolos default settings on the Java8

and C9 files from the SOCO benchmark (see validation section), for users that would like to
explore the results in their browser. Nodes in the plagiarism graphs are colour coded
according to expert plagiarism validation from the SOCO benchmark: orange nodes are
involved in at least one case of plagiarism and blue nodes are not involved in any confirmed
cases of plagiarism (Figure 2). Screenshots that illustrate the different views of the web
interface are taken from the same analyses.

List view
The list view shows a paginated table summarising all pairwise source file comparisons
(Figure 3). Each row represents a single pair of source files and displays their file paths and
plagiarism metrics. Clicking a row brings up the compare view for the corresponding pair of
source files. Table rows are initially sorted by decreasing similarity. Rows can be sorted in
ascending or descending order for each of the columns by clicking the corresponding column
header. Rows can be filtered by specifying search terms.

Figure 3: List view showing all pairwise comparisons of Java files in the SOCO benchmark, sorted by decreasing
similarity. Apart from pairs that are 100% identical after tokenization and fingerprinting, the first page also shows
pairs where only part of the source code may have been copied or where more elaborate obfuscations may have
been applied.

Compare view
The compare view supports teachers in finding evidence whether or not a given pair of
source files results from plagiarism. It shows the two files under review side-by-side in a
scrollable code listing, with syntax highlighting based on the given programming language
(Figure 4). Their plagiarism metrics are displayed at the top. As provenance for the metrics,
all shared fragments are highlighted with a yellow background colour in the code listings. A
schematic overview of the entire file is shown to the right of each code listing, highlighting

9 https://dolos.ugent.be/demo/soco/c/
8 https://dolos.ugent.be/demo/soco/java/

https://dolos.ugent.be/demo/soco/c/
https://dolos.ugent.be/demo/soco/java/

lines of code included in at least one shared fragment. These overviews are especially useful
when the source code is much longer than the screen size.

Figure 4: Compare view showing two Java files in the SOCO benchmark side-by-side. Shared fragments panel
displayed to the right. High plagiarism metrics and almost identical source code in shared fragments are evidence
for potential plagiarism. Expert annotations of the SOCO metadata confirm plagiarism for the two files.

A shared fragment can be selected by clicking one of its highlighted regions in the code
listings or in the overview panels next to the listings. Both regions of a selected fragment are
highlighted with a darker yellow background colour and are aligned next to each other in the
code listings. This eases manual inspection of the source code in both regions, whose
differences might have been masked by tokenization and fingerprinting. To the right of the
compare view, a collapsible sidebar shows a tabular overview of all shared fragments. If two
files have a lot of (overlapping) shared fragments, the list can be filtered by setting the
minimum fragment length. In addition, individual fragments can be hidden manually.

Graph view
The graph view visualises all pairwise source file comparisons as an interactive plagiarism
graph (Figure 2), rendered as a force-directed graph using the D3 visualisation library
(Bostock, Ogievetsky, & Heer, 2011). Nodes represent the given collection of source files and
can be assigned colours from metadata provided on the files. Pairs of nodes whose similarity
exceeds a given threshold are connected by an edge, with edge thickness corresponding to
similarity. If submission timestamps are provided as metadata on the source files, the graph
becomes directed with edges pointing from the oldest to the latest submission and the oldest
node in each cluster of three or more connected nodes is highlighted with a solid border as
the potential source of plagiarism. Clicking an edge brings up the compare view for the
corresponding pair of source files. The similarity threshold can be adjusted interactively using
a slider. A checkbox controls whether singletons should be displayed, i.e. nodes that are not
connected by an edge to any other node in the graph.

Figure 2: Plagiarism graphs for all Java (left) and C (right) files in the SOCO benchmark, with optimal similarity
threshold (0.54 for Java and 0.58 for C) and singletons included in the graph. Orange nodes are involved in at
least one case of plagiarism according to the metadata of the SOCO benchmark, whereas blue nodes are not
involved in any confirmed cases of plagiarism.

3.3. Validation
We ran a benchmark to evaluate how well Dolos performs in comparison to similar tools. The
benchmark quantitatively measures the predictive power of Dolos for plagiarism detection
and compares it to four state-of-the-art tools: Moss, Sherlock Sydney, JPlag and Plaggie.

Experimental design
In the field of educational source code plagiarism detection, most tools are either validated
using personal datasets of real students or generated datasets where an original program is
put through a series of modifications that try to simulate plagiarism (Novak et al., 2019).
These datasets are rarely available in the public domain because they are considered to
contain personal information, making it hard to replicate and interpret the results or to
evaluate different tools against each other.

Instead, we will use the publicly available SOCO benchmark containing 79 C files and 259
Java files (Arwin & Tahaghoghi, 2006; Flores et al., 2014). Its metadata includes expert
annotations of file pairs that are deemed to result from plagiarism. 26 of the 3081 C file pairs
(0.84%) are labelled as plagiarism, with 37 C files (46.84%) occurring in at least one
plagiarism pair. 84 of the 33 411 Java file pairs (0.25%) are labelled as plagiarism, with 115
Java files (41.97%) occurring in at least one plagiarism pair.

All tools under investigation compute a similarity value for each pair of source files, but use
different similarity measures. Direct comparison of similarity values is therefore not relevant.
Instead we evaluate how well the similarity measure of a tool can separate plagiarised from
non-plagiarized code using the optimal similarity threshold for that tool, as a surrogate for its
predictive power to detect plagiarism. Similarity values above the threshold are considered

as positive predictions for plagiarism, and similarity values below the threshold as negative
predictions. The expert annotations included in the metadata of the SOCO benchmark allow
us to determine whether these predictions are true or false (Figure 5).

Figure 5: Distribution of pairwise similarities computed with default settings in Dolos for all Java (top) and C
(bottom) files in the SOCO benchmark. True cases of plagiarism according to the SOCO metadata are shown in
orange and false cases in blue. Black vertical line indicates the similarity threshold (0.54 for Java and 0.58 for C)
that corresponds to the maximum F1-score (0.865 for Java and 0.6 for C). Positive predictions are to the right of
this line and negative predictions to its left. Because of the combinatorial explosion of pairs, the number of false
cases with similarity values below 0.40 greatly exceeds the maximum value shown on the graph.

We use the F1-score as a global measure for predictive accuracy of a plagiarism detection
tool. It is computed as the harmonic mean of precision and recall. Because the F1-score

depends on a similarity threshold, we determine the threshold that maximises the F1-score as
the best possible prediction for a given similarity analysis. The threshold that corresponds to
the maximum F1-score simultaneously minimises the number of false positives and true
negatives. This mimics how most teachers use plagiarism detection tools: sort file pairs
according to descending similarity and screen pairs in that order until the observed sequence
of non-plagiarized cases is long enough to expect no further cases of plagiarism to be found.

Each tool under investigation also has parameters that influence how its similarity values are
computed. Rather than simply computing the maximum F1-score for a single configuration of
parameter settings, e.g. the default settings of a tool, we repeat this process for a whole
range of configurations. Such a parameter sweep gives us additional insights about the
impact of parameter settings on the accuracy of predictions, if we observe differences
between programming languages, and if default settings are well-chosen. It also prevents us
from selecting poor configurations or cherry-picking good results for individual tools. These
configurations were evaluated for each tool:

● Dolos: k-gram lengths 10, 12, 15, 17, 20, 23 and 25 (option -k, default: 23), and
window sizes 17, 20, 25, 30, 35 and 40 (option -w, default: 17); 42 configurations in
total

● Moss: all integers in the range [1, 20] as the maximum number of files in which a
code fragment may appear before it is ignored (option -m, default: 10); 20
configurations in total

● Sherlock Sydney: all integers in the range [1, 5] as the number of zero bits (option -z,
default: 3) and the chain length (option -n, default: 4); 25 configurations in total

● JPlag: all integers in the range [5, 20] as the minimum number of matching tokens
(option -t, default: 9 for Java and 12 for C); smaller values increase sensitivity; 16
configurations in total

● Plaggie: all integers in the range [2, 22] as the minimum number of matching tokens
(option -m, default: 11); equivalent to the option -t of JPlag; 21 configurations in total

Most tools only report on pairs whose similarity exceeds a given threshold. To reliably
determine the threshold that yields a maximum F1-score, we have run each tool to report on
the maximum number of pairs that was possible.

Results and discussion
When plotting benchmark results for the Java and C datasets, it is clear that all tools perform
better at identifying plagiarism for Java than for C (Figure 6). Both the default configuration
(vertical black line) and the best configuration (rightmost circle) of each tool has far better
predictive power on the Java dataset than on the C dataset. This might be explained by the
difference in inter-annotator agreement between the C (κ=0.480) and Java (κ=0.668) files
(Flores et al., 2014). Variation in quality of expert annotations therefore seems a more
important factor than intrinsic differences between programming languages for the SOCO
benchmark.

Figure 6: Predictive accuracy of plagiarism detection tools on all Java (top) and C (bottom) files in the SOCO
benchmark. Circles indicate maximum F1-scores obtained with a particular configuration of a tool (parameter
sweep). Vertical black lines indicate maximum F1-scores obtained with the default configuration of a tool. Higher
F1-scores correspond to better predictive accuracy.

Looking at the performance on the Java dataset, we see that Dolos, JPlag, Moss, and
Plaggie all score well with a maximum F1-score between 0.8 and 0.9 for their default
configuration. The default configuration of Sherlock Sydney is also its best configuration, and
lags slightly behind with a maximum F1-score of 0.764. JPlag has the best scoring
configuration (0.871) when using a minimum number of 19 matching tokens, closely followed
by Dolos (0.865) with 23-grams and window size 17 (its default configuration). When we look
at the default configurations, however, JPlag drops to third place. This is because its default
configuration is one of the worse performing configurations. The performance of Moss is very
consistent and seems to be less dependent on the chosen configuration. Sherlock Sydney on
the other hand has a very wide range of scores between 0.234 and 0.764. Although JPlag
and Plaggie use a similar algorithm, there is a significant difference in the performance of
their default and best configurations.

Looking at the same graph for the C dataset, we see that the maximum F1-scores are
noticeably lower. The default configurations for Dolos and Moss have a similar score, just
under 0.6. The default configurations for JPlag and Sherlock Sydney score a lot lower with
0.4 and 0.421 respectively. Once again, the scores for the different Moss configurations are
very close to each other, while those of Sherlock Sydney span a very broad range. Overall,
Sherlock Sydney has the best performing configuration, which is somewhat surprising since it
treats all source code as plain text. The poor performance of JPlag can be explained by its
main focus on the Java programming language. Plaggie was excluded from this part of the
benchmark, because it does not support the C programming language.

Except for Moss, all tools show a large variation in maximum F1-scores and it is larger for C
than for Java. This underscores the importance of well-chosen parameter settings for
similarity analysis. In real life usage, it is not easy to validate which parameter settings score
best and we can not expect that users try various configurations. It is therefore important that

the default configuration consistently yields good results. The consistent results for Moss can
be explained by the nature of its configurable parameter that only changes the maximum
number of files in which a code fragment may appear before it is ignored (option -m).
Changing this option will only have a strong impact on similarity computations if many files
are plagiarised from the same source. This is the case for the Java dataset, but not for the C
dataset (Figure 2).

Moss and Dolos are the only tools that consistently yield good results for both the Java and C
datasets. Dolos has a slightly better overall predictive accuracy across the entire benchmark.
Its default configuration scores best for both programming languages and its optimal
configurations come second twice. We can thus conclude that Dolos is highly competitive
with current state-of-the-art tools across multiple programming languages.

Note that none of the tools achieved an F1-score above 0.9 for the SOCO benchmark,
meaning that each of their predictions yields mismatches with the expert annotations. This
underscores that source code plagiarism detection tools (and expert annotations) have their
limitations. The ultimate decision to classify cases as plagiarism should therefore never be
made automatically but requires human review (Weber-Wulff, 2019).

4.Case study
In this section, we discuss how we designed plagiarism prevention and detection strategies
for a programming course with a strong focus on online learning. In particular, we look into
the role plagiarism detection tools play in implementing these strategies and illustrate how
their features can be used in practice. We used Moss throughout the early editions of the
course, but in the last two years we switched to Dolos while the tool was also introduced in
other programming courses at Ghent University (Belgium).

We also report how we deal with cases of plagiarism detected at different stages of the
course. We applied the same plagiarism policy throughout many editions of this course, but
observed an increase of plagiarism in tests and exams taken remotely during the COVID-19
pandemic (2020-2021 edition). Those interested in more details will find a more elaborate
report in supplementary material, with coverage on how we found evidence for and followed
up specific cases of plagiarism detected during remote assessments.

4.1. Course structure

The introductory programming course at Ghent University runs once per academic year
across a 13-week semester (September-December). It is taken by a mix of undergraduate,
graduate and postgraduate students enrolled in various study programmes (mainly sciences,
but not computer science), with 440 students enrolled for the 2020-2021 edition. Throughout
the course, students submit solutions for programming exercises to the online learning
environment Dodona10. They immediately receive automated feedback upon each
submission, even during tests and exams. Based on that feedback, students can track
potential errors in their code, remedy them and submit an updated solution.

10 https://dodona.ugent.be

https://dodona.ugent.be

Each week, we cover one topic of the Python programming language and publish six
programming exercises that students must solve before a deadline one week later (Figure 7).
These mandatory exercises are automatically graded by unit tests evaluated in Dodona.
Students can work on mandatory exercises during weekly computer labs where they can
collaborate in small groups and ask help from teaching assistants. They can also submit
solutions outside lab sessions. There are two graded tests, one mid-term and one at the end
of the semester, where students get two hours to solve two programming exercises. During a
final exam after the semester, students get three hours and thirty minutes to solve three
programming exercises. Tests and exams are taken on-campus under human surveillance.
Students are allowed to complete tests and exams on their personal computers and may use
the Internet "read only": they can consult documentation, forum posts, exercise solutions,
and so on, but they are not allowed to communicate with someone else.

Figure 7: Outline of the Python Programming course that runs once per academic year across a 13-week
semester. Students submit solutions to Dodona for ten series with 6 mandatory exercises, two tests with 2
exercises and an exam with 3 exercises. Collaboration among small groups of students is expected for the
mandatory exercises, but no collaboration is allowed during tests and exams.

4.2. Plagiarism prevention

As a first line of defence against cheating on Dodona, students can check their solutions for
correctness as much as they want without negative repercussions, even after the submission
deadline has passed. This requires the number of possible solutions for exercises to be
large enough so they cannot be solved with guesswork. Students also have to authenticate
on the learning platform using their university account. While not completely flawless, this
reduces the chance of students using other accounts to try solutions, a technique known as
copying-using-multiple-accounts (Alexandron et al., 2019; Northcutt et al., 2016;
Ruiperez-Valiente et al., 2016) that is often applied for cheating in MOOCs.

We have several strategies to discourage students from copying and modifying source code
from someone else, and act differently when we suspect plagiarism among solutions for
mandatory, test or exam exercises. Ghent University considers committing plagiarism as a
form of fraud. As soon as invigilators or evaluators have reason to suspect a student has
committed plagiarism, teachers must start a formal procedure where an examination board
decides whether disciplinary measures should be imposed. Disciplinary measures may range
from an adjustment of the student’s score to exclusion for a period of no more than 10 years.
We strictly follow these rules for tests and exams, and touch upon this topic during the first
lecture. To organise “open book/open Internet” tests and exams that are valid and reliable,
we always create new exercises and avoid assignments where solutions or parts thereof are
readily available online.

The situation is less clear-cut for mandatory exercises, where we strongly believe that proper
collaboration among small groups of students might be beneficial for learning (Prince, 2004).
We even encourage students to collaborate. But we recommend them to work together in
groups of no more than three students, and to exchange and discuss ideas and strategies for
solving the exercises rather than sharing literal code with each other. Each edition of the
course uses a new selection of mandatory exercises that we compile from test and exam
exercises of the previous edition, newly created exercises, and exercises that were last used
four or more editions ago. By not re-using exercises from recent course editions, we reduce
the possibility of solutions being exchanged between students from one year to another. If
programming courses would not have a large enough collection of exercises, solutions of
previous years could be included in plagiarism analysis to detect this form of cheating.

We use Moss/Dolos to monitor submitted solutions for mandatory exercises, both before and
at the deadline. The number of possible solutions for the first few mandatory exercises is too
small for linking high similarity to plagiarism: submitted solutions only contain a few lines of
code and the diversity of implementation strategies is small. But at some point, as the
number of possible solutions increases, we start to see highly similar solutions that are
reliable signals of code exchange among larger groups of students. Strikingly this usually
happens among students enrolled in the same study programme (Figure 8). As soon as this
happens — typically in week 3 or 4 of the course — plagiarism is discussed with the students
during the next lecture. We use pseudonymized plagiarism graphs as evidence and stress
that the learning effect dramatically drops when working in groups of four or more students.
Typically, in such a group only one or two students make the effort to learn to code, while the
others piggyback by copying solutions. We address the students that share their solutions in
general by pointing out that they are probably good at programming and might want to
exchange their solutions with other students in a way to help their peers. But instead of really
helping them out, they actually take away learning opportunities from their fellow students by
giving away the solution. After this lecture, we usually notice a steep drop in the amount of
plagiarised solutions for mandatory exercises.

Figure 8: Dolos plagiarism graphs for the same Python programming exercise, created for a test of the
2018-2019 edition of the course (left) and reused as a mandatory exercise in the 2019-2020 edition (right). Graph
constructed for the last submission before the deadline of 162 and 311 students respectively. Node colours
indicate study programmes of students. Similarity threshold set to 0.5 (left) and 0.87 (right) respectively. Edge
directions based on submission timestamps in Dodona. Clusters of three or more connected submissions have

one node with a solid border, indicating the first correct submission among all submissions in that cluster. All
students submitted unique solutions during the exam. Submissions for the mandatory exercise show that most
students work either individually or in groups of 2 or 3 students, but we also observe some clusters of four or
more students that exchanged solutions and submitted them with hardly any modifications.

The goal of plagiarism detection at this stage is prevention rather than penalisation. We want
students to take responsibility over their learning. The combination of realising that teachers
can easily detect plagiarism and an upcoming test that evaluates if students can solve
programming challenges individually, usually has an immediate and persistent effect on
reducing cluster sizes in the plagiarism graphs to at most three students. At the same time,
the signal is given that plagiarism detection is one of the tools we have to detect fraud during
tests and exams. The entire group of students is only addressed once about plagiarism,
without going into detail about how plagiarism detection itself works, because we believe that
overemphasis on this topic is not very effective and explaining how it works might drive
students towards spending time thinking on how they could bypass the detection process.
Time they could better spend on learning to code. Every three or four years we see a
persistent cluster of students exchanging code for mandatory exercises over multiple weeks.
If this is the case, we individually address these students to point them again on their
responsibilities, differentiating between students that share their solution and students that
receive solutions from others.

Tests and exams have a well-delineated rule that verbal and digital communication is not
allowed. Under normal circumstances before the COVID-19 pandemic, students are
restricted in their communication because they take tests and exams on-campus under
surveillance of human invigilators, but otherwise can use the Internet to consult information
resources. After each test and exam, we use Moss/Dolos to detect and inspect highly similar
code snippets among submitted solutions and to find convincing evidence they result from
exchange of code or other forms of interpersonal communication. If we catalogue a case as
plagiarism beyond reasonable doubt, the examination board is informed. When exercises
that were initially created for tests or exams are reused as mandatory exercises, we
generally observe a clear difference: no high-similarity pairs among solutions submitted
during the test or exam and multiple high-similarity pairs found among solutions submitted for
the mandatory exercise (Figure 8). This proves that tracing high-similarity pairs is a powerful
way to monitor if students have been collaborating or communicating while working on
programming exercises.

4.3. Impact of COVID-19 pandemic

Where we only filed a single case of suspected plagiarism during all previous editions of the
course since its first first edition in 2006-2007, four cases of suspected plagiarism have been
filed to the examination board during the 2020-2021 edition alone. Two of these cases
occurred during tests and two during the exam. The evidence for each case was carefully
documented for the examination board and we found Dolos' visualisations extremely useful
for this purpose (see supplementary material for more details). The plagiarism graph
illustrates that there is a high number of possible solutions and helps to convince students
and board members that accidental high similarity is extremely unlikely. The compare view
helps to disclose that substantial amounts of source code are identical copies or have been
modified after copying as a deliberate act to obfuscate plagiarism.

When looking for explanations for this increase of plagiarism in tests and exams, the only
fundamental difference in the organisation of the course is that all students took the
2020-2021 edition remotely due to the COVID-19 pandemic, including tests and exams. We
switched to live Zoom sessions for lectures. Students could ask online help from teaching
assistants during lab sessions, primarily using the Dodona Q&A module for questions on
specific solutions or using MS Teams for general assistance. We also recommended MS
Teams as an online collaboration tool, in combination with collaborative coding and pair
programming services provided by modern Integrated Development Environments.
Throughout the 2020-2021 edition of the course, we did not observe any significant
differences in the occurrence of high-similarity pairs among solutions for the mandatory
exercises.

Lack of direct human supervision during tests and exams seems the only reason for
increased plagiarism. Apart from taking tests and exams remotely, the same rules applied
and they had the same online nature as in all previous editions of the course. We deliberately
refrained from using an online proctoring tool to remotely monitor the student's behaviour and
detect irregularities during tests and exams. Mainly to avoid extra stress that students
experience while following proctoring protocols for the first time, and because we believe that
current proctoring tools only create a false sense of security and are too invasive on student
privacy. We did introduce a sworn declaration that students had to digitally sign at the start of
each test and exam (Figure 9), following a best practice recommended by Ghent University
when taking remote exams. The document itself is not legally binding, but rather serves as a
reminder of regulations in the Education and Examination Code that students accept when
enrolling at the university. Having such an institutional honour code, actively informing
students of this code, and signing these honour pledges to remember them about the code,
has been observed to reduce the amount of cheating (LoSchiavo & Shatz, 2011; McCabe,
Trevino, & Butterfield, 2001).

Figure 9: Sworn declaration that students have to digitally sign in Dodona at the start of each test or exam,
together with a document describing the agreements for online exams. The contents of both documents are
shared with students at the start of the course. The sworn declaration was newly introduced with the organisation
of remote tests and exams during the COVID-19 pandemic.

In retrospect, we remain convinced that “trust, but verify” is a viable strategy for organising
trustworthy assessments in open and online learning environments. Even if high-stake tests
are taken remotely. On the one hand, the strategy builds on educating students about their
learning behaviour and making them aware about the importance of academic integrity. We
believe that four suspected cases in two tests and an exam for 440 students is acceptable.
But only if cheaters get caught and appropriate disciplinary measures are imposed for proven
cases of plagiarism beyond reasonable doubt. It definitely creates a ripple effect that helps to
prevent plagiarism if students know about disciplinary measures imposed in recent editions
of a course and about teachers having powerful tools to detect plagiarism. This brings us to
verification as the second pillar of the strategy. Solid plagiarism detection relies on robust and
user-friendly tools that support this otherwise tedious and challenging process. Tools also
support teachers in collecting strong evidence for suspected cases, especially if it leads to
students directly admitting they submitted solutions that are not their own. Otherwise proof
beyond reasonable doubt remains a grey zone. Assuming that no cases of plagiarism
remained unnoticed in our case study, we also dare to state that many more students were
discouraged to plagiarise in a remote examination setting due to the strategy we
implemented.

5.Conclusions
We strongly believe that a shift towards open and online learning and assessment
environments opens up interesting avenues for more effective learning and better
assessment. Risking to lower the barrier for plagiarism and cheating in digital settings does
not outweigh its opportunities. Especially because the possibilities for rich data collection in
online environments enable better monitoring of learning processes, including the detection
of plagiarism. We shared our experiences with designing courses that have a strong focus on
online learning. It enabled us to make a smooth transition to remote learning, forced by the
COVID-19 pandemic, with hardly any loss in quality for teaching and learning as witnessed
by formal university-wide surveys from students that have taken the courses. The reliability of
online assessments has definitely been challenged when students were taking high-stake
tests and exams remotely, but our “trust, but verify” approach stood well as a line of defence
against source code plagiarism. We are critical to adopt current technologies for online
proctoring because of privacy concerns and their impact on the assessment process itself.
We feel it exposes more trust in students to have plagiarism detection tools that can run in
the background, either real-time or after the fact.

With the development and validation of Dolos, we have demonstrated the feasibility of using
generic parser models to build source code plagiarism tools that support a broad range of
programming languages and are highly competitive with state-of-the-art tools in the accurate
detection of potential cases of plagiarism. As teachers of programming courses, we have
also experienced that preventing, discovering and proving plagiarism is a highly exploratory
process that is well supported by its user-friendly web interface and interactive visualisations.

Dolos can be used as a standalone tool that processes source files on the local system. We
plan to bundle Dolos and its dependencies into a Docker container that eases the setup for
running it as a local web service. We will also host a public instance of this web service for
users that are allowed to send source code to an external server. We also publish Dolos as
an npm package with an open API, to ease seamless integration into third party tools. We
plan to use this functionality to integrate Dolos into our own online learning system Dodona.
This will free teachers that want to perform plagiarism analysis from moving collections of
source files and metadata between applications, lowering the barrier even further. The
source code of Dolos is made publicly available on GitHub, where we welcome any bug
reports and feature requests documented as issues, user experiences shared as
discussions, and contributions submitted as pull requests.

Acknowledgement
Part of this work was supported by Research Foundation - Flanders (FWO) for ELIXIR
Belgium (I002819N).

References
Acampora, G., & Cosma, G. (2015). A Fuzzy-based approach to programming language

independent source-code plagiarism detection. 2015 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), 1–8.

https://doi.org/10.1109/FUZZ-IEEE.2015.7337935

Aho, A., Lam, M., Sethi, R., & Ullman, J. (2006). Compilers: Principles, Techniques, and

Tools (2nd edition). Boston: Addison Wesley.

Ahtiainen, A., Surakka, S., & Rahikainen, M. (2006). Plaggie: GNU-licensed source code

plagiarism detection engine for Java exercises. Proceedings of the 6th Baltic Sea

Conference on Computing Education Research: Koli Calling 2006, 141–142. New

York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/1315803.1315831

Alexandron, G., Ruipérez-Valiente, J. A., Chen, Z., Muñoz-Merino, P. J., & Pritchard, D. E.

(2017). Copying@Scale: Using Harvesting Accounts for Collecting Correct Answers

in a MOOC. Computers & Education, 108, 96–114.

https://doi.org/10.1016/j.compedu.2017.01.015

Alexandron, G., Valiente, J. A. R., & Pritchard, D. E. (2019). Towards a General Purpose

Anomaly Detection Method to Identify Cheaters in Massive Open Online Courses. In

Proceedings of The 12th International Conference on Educational Data Mining,

480–483. https://doi.org/10.35542/osf.io/wuqv5

Arwin, C., & Tahaghoghi, S. M. M. (2006). Plagiarism detection across programming

languages. Proceedings of the 29th Australasian Computer Science Conference, 48,

277–286. AUS: Australian Computer Society, Inc.

Batane, T. (2010). Turning to turnitin to fight plagiarism among university students. Journal of

Educational Technology & Society, 13(2), 1–12.

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 Data-Driven Documents. IEEE

Transactions on Visualization and Computer Graphics, 17(12), 2301–2309.

https://doi.org/10.1109/TVCG.2011.185

Brimble, M., & Stevenson-Clarke, P. (2005). Perceptions of the prevalence and seriousness

of academic dishonesty in Australian universities. The Australian Educational

Researcher, 32(3), 19–44. https://doi.org/10.1007/BF03216825

Brin, S., Davis, J., & García-Molina, H. (1995). Copy detection mechanisms for digital

documents. Proceedings of the 1995 ACM SIGMOD International Conference on

Management of Data, 398–409. New York, NY, USA: Association for Computing

Machinery. https://doi.org/10.1145/223784.223855

Brunsfeld, M., Thomson, P., Vera, J., Hlynskyi, A., Turnbull, P., Clem, T., … Muller, A. A.

(2021). tree-sitter/tree-sitter: V0.20.0. Zenodo.

https://doi.org/10.5281/zenodo.5044536

Chae, D.-K., Ha, J., Kim, S.-W., Kang, B., & Im, E. G. (2013). Software plagiarism detection:

A graph-based approach. Proceedings of the 22nd ACM International Conference on

Information & Knowledge Management, 1577–1580. New York, NY, USA: Association

for Computing Machinery. https://doi.org/10.1145/2505515.2507848

Cheers, H., Lin, Y., & Smith, S. P. (2019). A Novel Approach for Detecting Logic Similarity in

Plagiarised Source Code. 2019 IEEE 10th International Conference on Software

Engineering and Service Science (ICSESS), 1–6.

https://doi.org/10.1109/ICSESS47205.2019.9040752

Cheers, H., Lin, Y., & Smith, S. P. (2021). Academic Source Code Plagiarism Detection by

Measuring Program Behavioral Similarity. IEEE Access, 9, 50391–50412.

https://doi.org/10.1109/ACCESS.2021.3069367

Chuda, D., Navrat, P., Kovacova, B., & Humay, P. (2012). The Issue of (Software) Plagiarism:

A Student View. IEEE Transactions on Education, 55(1), 22–28.

https://doi.org/10.1109/TE.2011.2112768

Cosma, G., & Joy, M. (2012). An Approach to Source-Code Plagiarism Detection and

Investigation Using Latent Semantic Analysis. IEEE Transactions on Computers,

61(3), 379–394. https://doi.org/10.1109/TC.2011.223

Culwin, F., MacLeod, A., & Lancaster, T. (2001). Source code plagiarism in UK HE computing

schools. Proceedings of the 2nd Annual LTSN-ICS Conference, 1–7. London, United

Kingdom: LTSN Centre for Information and Computer Sciences.

Đurić, Z., & Gašević, D. (2013). A Source Code Similarity System for Plagiarism Detection.

The Computer Journal, 56(1), 70–86. https://doi.org/10.1093/comjnl/bxs018

Ercegovac, Z., & Richardson, J. V. (2004). Academic Dishonesty, Plagiarism Included, in the

Digital Age: A Literature Review. College & Research Libraries, 65(4), 301–318.

https://doi.org/10.5860/crl.65.4.301

Faidhi, J. A. W., & Robinson, S. K. (1987). An empirical approach for detecting program

similarity and plagiarism within a university programming environment. Computers &

Education, 11(1), 11–19. https://doi.org/10.1016/0360-1315(87)90042-X

Flores, E., Rosso, P., Moreno, L., & Villatoro-Tello, E. (2014). On the Detection of SOurce

COde Re-use. Proceedings of the Forum for Information Retrieval Evaluation, 21–30.

New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/2824864.2824878

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. ACM SIGACT News, 28(4), 41–60.

https://doi.org/10.1145/270563.571472

Hoad, T. C., & Zobel, J. (2003). Methods for identifying versioned and plagiarized documents.

Journal of the American Society for Information Science and Technology, 54(3),

203–215. https://doi.org/10.1002/asi.10170

Joy, M., & Luck, M. (1999). Plagiarism in programming assignments. IEEE Transactions on

Education, 42(2), 129–133. https://doi.org/10.1109/13.762946

Karabatsos, G. (2003). Comparing the Aberrant Response Detection Performance of

Thirty-Six Person-Fit Statistics. Applied Measurement in Education, 16(4), 277–298.

https://doi.org/10.1207/S15324818AME1604_2

Karnalim, O., Simon, & Chivers, W. (2020). Preprocessing for Source Code Similarity

Detection in Introductory Programming. Koli Calling ’20: Proceedings of the 20th Koli

Calling International Conference on Computing Education Research, 1–10. New York,

NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/3428029.3428065

Li, X., & Zhong, X. J. (2010). The Source Code Plagiarism Detection Using AST. 2010

International Symposium on Intelligence Information Processing and Trusted

Computing, 406–408. https://doi.org/10.1109/IPTC.2010.90

Liu, C., Chen, C., Han, J., & Yu, P. S. (2006). GPLAG: Detection of software plagiarism by

program dependence graph analysis. Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 872–881. New

York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/1150402.1150522

LoSchiavo, F. M., & Shatz, M. A. (2011). The Impact of an Honor Code on Cheating in Online

Courses. 7(2), 6.

Lupton, R. A., Chapman, K. J., & Weiss, J. E. (2000). International Perspective: A

Cross-National Exploration of Business Students’ Attitudes, Perceptions, and

Tendencies Toward Academic Dishonesty. Journal of Education for Business, 75(4),

231–235. https://doi.org/10.1080/08832320009599020

Mariani, L., & Micucci, D. (2012). AuDeNTES: Automatic Detection of teNtative plagiarism

according to a rEference Solution. ACM Transactions on Computing Education, 12(1),

2:1-2:26. https://doi.org/10.1145/2133797.2133799

McCabe, D. L., Butterfield, K. D., & Trevino, L. K. (2012). Cheating in College: Why Students

Do It and What Educators Can Do about It. JHU Press.

McCabe, D. L., Trevino, L. K., & Butterfield, K. D. (1999). Academic Integrity in Honor Code

and Non-Honor Code Environments: A Qualitative Investigation. The Journal of

Higher Education, 70(2), 211–234. https://doi.org/10.2307/2649128

McCabe, D. L., Trevino, L. K., & Butterfield, K. D. (2001). Cheating in Academic Institutions:

A Decade of Research. Ethics & Behavior, 11(3), 219–232.

https://doi.org/10.1207/S15327019EB1103_2

Northcutt, C. G., Ho, A. D., & Chuang, I. L. (2016). Detecting and preventing

“multiple-account” cheating in massive open online courses. Computers & Education,

100, 71–80. https://doi.org/10.1016/j.compedu.2016.04.008

Novak, M., Joy, M., & Kermek, D. (2019). Source-code Similarity Detection and Detection

Tools Used in Academia: A Systematic Review. ACM Transactions on Computing

Education, 19(3), 27:1-27:37. https://doi.org/10.1145/3313290

Palazzo, D. J., Lee, Y.-J., Warnakulasooriya, R., & Pritchard, D. E. (2010). Patterns,

correlates, and reduction of homework copying. Physical Review Special Topics -

Physics Education Research, 6(1), 010104.

https://doi.org/10.1103/PhysRevSTPER.6.010104

Prechelt, L., Malpohl, G., & Philippsen, M. (2002). Finding Plagiarisms among a Set of

Programs with JPlag. Journal of Universal Computer Science, 8(11), 1016–1038.

https://doi.org/10.3217/jucs-008-11-1016

Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of

Engineering Education, 93(3), 223–231.

https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Rahal, I., & Wielga, C. (2014). Source Code Plagiarism Detection Using Biological String

Similarity Algorithms. Journal of Information & Knowledge Management, 13(03),

1450028. https://doi.org/10.1142/S0219649214500282

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach. Science of Computer

Programming, 74(7), 470–495. https://doi.org/10.1016/j.scico.2009.02.007

Ruiperez-Valiente, J. A., Alexandron, G., Chen, Z., & Pritchard, D. E. (2016). Using Multiple

Accounts for Harvesting Solutions in MOOCs. Proceedings of the Third (2016) ACM

Conference on Learning @ Scale, 63–70. Edinburgh Scotland UK: ACM.

https://doi.org/10.1145/2876034.2876037

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local algorithms for

document fingerprinting. Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, 76–85. New York, NY, USA: Association for

Computing Machinery. https://doi.org/10.1145/872757.872770

Sheahen, D., & Joyner, D. (2016). TAPS: A MOSS Extension for Detecting Software

Plagiarism at Scale. Proceedings of the Third (2016) ACM Conference on Learning @

Scale, 285–288. New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/2876034.2893435

Sheard, J., Dick, M., Markham, S., Macdonald, I., & Walsh, M. (2002). Cheating and

plagiarism: Perceptions and practices of first year IT students. ACM SIGCSE Bulletin,

34(3), 183–187. https://doi.org/10.1145/637610.544468

Shivakumar, N., & Garcia-molina, H. (1995). SCAM: A Copy Detection Mechanism for Digital

Documents. Proceedings of the 2nd International Conference in Theory and Practice

of Digital Libraries (DL’95), 11–13. Austin, Texas.

Simon, Mason, R., Crick, T., Davenport, J. H., & Murphy, E. (2018). Language Choice in

Introductory Programming Courses at Australasian and UK Universities. Proceedings

of the 49th ACM Technical Symposium on Computer Science Education, 852–857.

New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/3159450.3159547

Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the

American Society for Information Science and Technology, 60(3), 538–556.

https://doi.org/10.1002/asi.21001

Vyverman, M., De Baets, B., Fack, V., & Dawyndt, P. (2012). Prospects and limitations of

full-text index structures in genome analysis. Nucleic Acids Research, 40(15),

6993–7015. https://doi.org/10.1093/nar/gks408

Weber-Wulff, D. (2019). Plagiarism detectors are a crutch, and a problem. Nature,

567(7749), 435–435. https://doi.org/10.1038/d41586-019-00893-5

Whale, G. (1990). Identification of program similarity in large populations. The Computer

Journal, 33(2), 140–146. https://doi.org/10.1093/comjnl/33.2.140

Wise, M. J. (1993). String Similarity via Greedy String Tiling and Running Karp−Rabin

Matching. Australia: Department of Computer Science, University of Sydney.

Zhao, J., Xia, K., Fu, Y., & Cui, B. (2015). An AST-based Code Plagiarism Detection

Algorithm. 2015 10th International Conference on Broadband and Wireless

Computing, Communication and Applications (BWCCA), 178–182.

https://doi.org/10.1109/BWCCA.2015.52

