In response to Schulz, we used risk factors for severe Covid-19 illness as defined by the Centers for Disease Control and Prevention. Severe illness included but was not limited to death. These patient characteristics do imply a risk for hospitalization, as evidenced by the 158 of 511 patients (30.9%) who reached the primary outcome — a rate much higher than the rates in other trials involving outpatients with Covid-19.

We agree that more study is required regarding the treatment of immunodeficient patients, including those with cancer. There remain many questions regarding dosing, pharmacokinetics, and patient selection that cannot be addressed in a single trial investigating the use of convalescent plasma in one particular outpatient population with Covid-19.

Finally, we are in the process of analyzing both baseline and subsequent antibody levels in the trial participants over 30 days. We hope that the trajectories of the antibody responses in individual patients will provide insight into disease progression and will help in the design of future studies.

Frederick K. Korley, M.D., Ph.D.
University of Michigan
Ann Arbor, MI
Valerie Durkalski-Mauldin, Ph.D.
Medical University of South Carolina
Charleston, SC
Clifton W. Callaway, M.D., Ph.D.
University of Pittsburgh
Pittsburgh, PA
callawaycw@upmc.edu

Since publication of their article, the authors report no further potential conflict of interest.

This letter was published on October 13, 2021, at NEJM.org.

DOI: 10.1056/NEJMct2114591

Triple Therapy for Cystic Fibrosis Phe508del–Gating and –Residual Function Genotypes

TO THE EDITOR: Given that the minimal clinically important difference in the percentage of predicted forced expiratory volume in 1 second (FEV₁) is considered to be 5 percentage points, the between-group difference of 3.5 percentage points in the percentage of predicted FEV₁ with elexacaftor–tezacaftor–ivacaftor, as compared with active control treatment, that is reported by Barry et al. (Aug. 26 issue) is unlikely to be clinically relevant. Changes of this magnitude, reported in previous studies, have aroused questions regarding whether the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies may be considered to be suboptimal. This hypothesis is supported by the finding that cystic fibrosis modulator therapy may have only a small effect on the need for therapies to address symptoms.

Against the background of modest therapeutic benefit and very high drug acquisition costs, it is not surprising that CFTR modulator therapies have been found not to be cost-effective. A colleague and I have found incremental cost-effectiveness ratios of approximately €400,000 ($460,000) per quality-adjusted life-year for ivacaftor and lumacaftor plus ivacaftor. The reality is that CFTR modulator therapy frequently offers poor value for the money and a very high opportunity cost of millions of dollars per year.

Michael Barry, M.B., Ph.D.
National Centre for Pharmacoeconomics
Dublin, Ireland
mbarry@stjames.ie

No potential conflict of interest relevant to this letter was reported.

N ENGL J MED 385;23 NEJM.ORG DECEMBER 2, 2021 2207
THE AUTHORS REPLY: Patients with cystic fibrosis heterozygous for the Phe508del mutation and a gating or residual function mutation who were treated with elexacaftor–tezacaftor–ivacaftor had lung-function improvement on top of standard care that included effective CFTR modulators. There is no generally accepted minimal clinically important difference for lung-function improvement in patients with cystic fibrosis. Because cystic fibrosis is characterized by progressive loss of lung function, even maintenance of lung function is a treatment goal. Previous CFTR modulator regimens yielding similar magnitudes of improvement in lung function have been associated with clinically meaningful improvements in rates of change in lung function, pulmonary exacerbations, and hospitalizations.

Whether estimates of quality-adjusted life-years can truly capture the systemic value of CFTR modulator therapy is debatable. With elexacaftor–tezacaftor–ivacaftor therapy, additional benefits are likely to be based on the degree of decrease in the sweat chloride concentration, a clear indicator that the basic defect has been addressed. A large natural history study of sweat chloride showed that concentrations in the range observed in response to elexacaftor–tezacaftor–ivacaftor therapy were associated with markedly lower risks of death, hospitalization, and complications.

Peter J. Barry, M.D.
Manchester University NHS Foundation Trust
Manchester, United Kingdom

Marcus A. Mall, M.D.
Charité–Universitätsmedizin Berlin
Berlin, Germany

Deepika Polineni, M.D., M.P.H.
University of Kansas Medical Center
Kansas City, KS
dpolineni@kumc.edu

for the VX18-445-104 Study Group

Since publication of their article, the authors report no further potential conflict of interest.

3. Cystic Fibrosis Foundation. CF Foundation leaders provide expertise during ICER public meeting. 2020 (https://www.cff.org/node/826).

DOI: 10.1056/NEJMc2115966

INSTRUCTIONS FOR LETTERS TO THE EDITOR

Letters to the Editor are considered for publication, subject to editing and abridgment, provided they do not contain material that has been submitted or published elsewhere.

Letters accepted for publication will appear in print, on our website at NEJM.org, or both.

Please note the following:

• Letters in reference to a Journal article must not exceed 175 words (excluding references) and must be received within 3 weeks after publication of the article.
• Letters not related to a Journal article must not exceed 400 words.
• A letter can have no more than five references and one figure or table.
• A letter can be signed by no more than three authors.
• Financial associations or other possible conflicts of interest must be disclosed. Disclosures will be published with the letters. (For authors of Journal articles who are responding to letters, we will only publish new relevant relationships that have developed since publication of the article.)
• Include your full mailing address, telephone number, fax number, and email address with your letter.
• All letters must be submitted through our online submission system at NEJM.org.

Letters that do not adhere to these instructions will not be considered. We will notify you when we have made a decision about possible publication. Letters regarding a recent Journal article may be shared with the authors of that article. We are unable to provide prepublication proofs. Submission of a letter constitutes permission for the Massachusetts Medical Society, its licensees, and its assignees to use it in the Journal’s various print and electronic publications and in collections, revisions, and any other form or medium.

THE JOURNAL’S WEB AND EMAIL ADDRESSES

To submit a letter to the Editor: authors.NEJM.org
For information about the status of a submitted manuscript: authors.NEJM.org
To submit a meeting notice: meetingnotices@NEJM.org
The Journal’s web pages: NEJM.org

CORRESPONDENCE

DOI: 10.1056/NEJMc2115966

The authors reply:

Since publication of their article, the authors report no further possible conflict of interest.