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Angela Bellini, PhD1,2,3; Ulrike Pötschger, PhD4,5; Virginie Bernard, PhD6; Eve Lapouble, PhD7; Sylvain Baulande, PhD6;

Peter F. Ambros, PhD5; Nathalie Auger, PhD8; Klaus Beiske, MD, PhD9; Marie Bernkopf, PhD5; David R. Betts, PhD10;

Jaydutt Bhalshankar, MSc1,2,3; Nick Bown, PhD11; Katleen de Preter, PhD12; Nathalie Clément, PhD1,2,3; Valérie Combaret, PhD13;

Jaime Font de Mora, PhD14; Sally L. George, MD, PhD15; Irene Jiménez, MD1,2,3; Marta Jeison, PhD16; Barbara Marques, PhD17;
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abstract

PURPOSE In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through
activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR)
patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and
prognostic impact.

MATERIALS AND METHODS Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to
determine ALK amplification status (n 5 330), ALK mutational profile (n 5 191), or both (n 5 571).

RESULTS Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with
MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS:
ALKa [n5 41] 28% [95% CI, 15 to 42]; no-ALKa [n5 860] 51% [95% CI, 47 to 54], [P, .001]), particularly in
cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (. 20% mutated allele
fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of
patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P, .001). Among
571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between
cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n5 19], 26%
[95%CI, 10 to 47], clonal ALKm [n5 65] 33% [95%CI, 21 to 44], subclonal ALKm (n5 22) 48% [95%CI, 26 to
67], and no alteration [n5 465], 51% [95% CI, 46 to 55], respectively; P5 .001). Importantly, in a multivariate
model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P , .001), ALKa (HR,
2.38; P 5 .004), and clonal ALKm (HR, 1.77; P 5 .001) were independent predictors of poor outcome.

CONCLUSION Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent
predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment
of HR-NB with ALK alterations.
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INTRODUCTION

Neuroblastoma (NB), the most frequent solid, extra-
cranial malignancy in children, exhibits wide clinical
and genetic heterogeneity. High-risk neuroblastoma
(HR-NB), defined asmetastatic disease over the age of
12 months or MYCN-amplified (MNA) disease at any
age, remains associated with long-term survival rates
of only 50%.1 Current treatment approaches consist of

intensive induction chemotherapy, surgical resection
of the primary tumor, consolidation with high-dose
chemotherapy (HDC), and autologous stem-cell res-
cue, and for minimal residual disease, isotretinoin in
combination with human or mouse chimeric anti-GD2

antibody, ch14.18.2-8

In NB, several recurrent genetic alterations have been
described. MNA is a strong biomarker associated with
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rapid tumor growth.9 Other copy-number alterations occur
over more extensive chromosome regions, with segmental
chromosome alterations being associated with a poor
outcome.10 Recurrent mutations have been described in
the RAS-MAPK pathway, chromatin remodeling genes
(ATRX and ARID1A), and TERT rearrangements.11-14

Activating anaplastic lymphoma kinase (ALK) mutations
are the most frequent mutations in NB, occurring in both
familial and sporadic cases, with somatically acquired ALK
mutations (ALKm) observed in 6%-12% of sporadic NBs in
all risk groups.15-18

These ALK activating mutations are localized most fre-
quently within the kinase domain at hotspots identified at
the F1174, R1275, and F1245 positions, with mutations
occurring both at clonal (. 20% mutated allele fraction
[MAF]) or subclonal levels (, 20% MAF).19-23

ALK can also be activated by genomic focal amplification,
described in 1%-2%ofNBs, almost exclusively withMNA,17,24

or, more rarely, following structural rearrangements.25 Ge-
netic alterations of ALK are associated with poorer survival
in the overall NB population.24,26 However, their prognostic
role in HR-NB has been less well studied.10,17,24 Altogether,
ALK alterations are an important molecular target, given
the role of ALK as a driver oncogene in NB and its ac-
tionability with small molecule therapies.27-29

To determine the frequency of ALK alterations (mutations
and amplifications), their correlation with clinical charac-
teristics, and their prognostic impact in HR-NB, we ana-
lyzed a large series of 1,092 diagnostic NB samples from
patients on the HR-NBL1/SIOPEN trial.

MATERIALS AND METHODS

Patients and Samples

Patients were treated within the HR-NBL1/SIOPEN Pro-
tocol (ClinicalTrials.gov: NCT01704716, EudraCT: 2006-

001489-17; Protocol [online only]), an international, ran-
domized, multiarm, open-label, phase III trial.2-5,30,31 Pa-
tients with International Neuroblastoma Staging System
stages 2, 3, 4, or 4S with MNA, or International Neuroblas-
toma Staging System stage 4 without MNA $ 12 months of
age at diagnosis were eligible for the trial up to 20 years of age.
Within the trial, several randomized treatment arms were
conducted over different periods (Appendix Fig A1, online
only). Induction random assignments included the fol-
lowing: R0—random assignment of prophylactic gran-
ulocyte colony-stimulating factor during rapid COJEC
induction31; R3—comparison of two induction regimens,
rapid-COJEC versus modified N7.32 HDC was evaluated in
the R1 random assignment: busulfan or melphalan versus
carboplatin or etoposide or melphalan.3 Anti-GD2 immu-
notherapy random assignments duringmaintenance phase
were explored in R2 (2009-2013) and R4 (2014-2017),
both comparing dinutuximab beta with oral isotretinoin to
dinutuximab beta and subcutaneous interleukin-2 with oral
isotretinoin, but with altered schedules.5,30 In the interim,
dinutuximab beta with oral isotretinoin was the recom-
mended standard.

Patients were enrolled on the HR-NBL1/SIOPEN trial after
approval by national regulatory authorities and by national,
and institutional, ethical committees or review boards in
participating countries. Parents or guardians and patients
according to age provided written informed consent for
treatment, data collection, and analysis.

The ALK analysis cohort consisted of patients for whom
a contributive tumor sample obtained at diagnosis
was available in a SIOPEN reference laboratory33 for
additional molecular analysis with available follow-up
data (Fig 1).

MYCN status and tumor genomic copy-number profiles
were determined in SIOPEN reference laboratories as
described previously.10,33-36 Samples were required to
contain at least 20% tumor cells on pathologic examination.

CONTEXT

Key Objective
High risk neuroblastoma (HR-NB) is one of the most difficult childhood cancers to cure. This study examined whether the

presence of an ALK alteration (amplification or mutation) was associated with a poor prognosis in a large patient series
treated on the prospective European high-risk neuroblastoma trial (HR-NBL1).

Knowledge Generated
We found that ALK amplification or clonal mutation was associated with inferior prognosis in patients with HR-NB and both

are independent prognostic variables on multivariate analysis. To our knowledge, this is the first study to report the highly
prognostic significance of ALK amplification in HR-NB.

Relevance
As ALK can be targeted therapeutically, this study convincingly argues for the introduction of ALK inhibitors for upfront

management of patients with HR-NB with ALK aberrations. Importantly, the prognostic significance of ALK alterations
included a subgroup of trial patients treated with the current standard of care for HR-NB including anti-GD2

immunotherapy.
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The ALK amplification (ALKa) status was evaluated using
either fluorescence in situ hybridization and/or multiplex
ligation polymerase chain reaction–dependent amplifica-
tion, array comparative genomic hybridization (aCGH),
and/or array single-nucleotide polymorphism according to
established guidelines.10,33,34,37 ALK gene amplification
was defined as more than fourfold increase of ALK signals
in relation to numbers of chromosome 2 by fluorescence
in situ hybridization, or as more than 10 copies of the gene
estimated by multiplex ligation–dependent amplification,
aCGH, or array single-nucleotide polymorphism.

The ALK mutational (ALKm) status was determined by
Sanger sequencing, next-generation sequencing (NGS)
techniques (coverage . 803), targeted deep sequencing
(TDS), or a combination of the latter techniques, covering
the ALK regions of interest (exon 23: chr2:29443647-
29443776; exon 24: chr2:29436830-29436935; exon
25: chr2:29432603-29432704; UCSC Genome Browser
Home,38 hg19) containing the ALK mutational hotspots

F1174 (exon 23), F1245 (exon 24), and R1275 (exon
25).20,22

MAF $ 20% were defined as clonal events and MAF
, 20% as subclonal events, as reported previously.20,22 No
correction for tumor cell content was undertaken when
reporting MAF. Mutations identified by Sanger sequencing
were considered clonal. All detected mutations were vali-
dated by a second independent experiment: for clonal
events, TDS data were validated by Sanger sequencing,
and for subclonal events, NGS or TDS was validated in an
independent second experiment.

Standard bioinformatics were used to detect mutations in
NGS experiments as previously reported. Mutations in TDS
experiments were determined as described previously.20,22 In
brief, to highlight mutations, in each NB sample, the fre-
quencies of each base at each position of the analyzed regions
were compared with those observed in all other samples and
controls. This approach enabled the identification of muta-
tions with a statistically significant increase in percentage of a
variant base, compared with background noise.

ALKm at F1174, F1245, and R1275
in 12.5% (n = 97 out of 762 patients),

clonala in 9.4% (n = 72 out of 762 patients),
subclonalb in 3.2% (n = 25 out of 762 patients)

ALK mutation (any) in 13.9% 
(n = 106 out of 762 patients)

Clonal in 9.9% (n = 76 out of 762 patients)
Subclonal in 3.9% (n = 30 out of 762 patients)

ALK amplification
4.5% (n = 41 out of 901 patients)

HR-NBL1/SIOPEN
Patients accrued at time of ALK project

analysis with FU (N = 3,334)

ALK Analysis Cohort
Patients with diagnostic tumor samples with

FU available (n = 1,092)

ALK amplification
status only

(n = 330 patients)

ALK amplification
status and mutational

profile
(n = 571 patients)

ALK mutational
profile only

(n = 191 patients)

Not included from ALK participating
sites (n = 577 patients)

(no diagnostic contributive tumor sample available)
Not included from ALK nonparticipating

sites (n = 1,665 patients)

FIG 1. Flow diagram of patient inclusion. A total of 3,334 patients with HR-NBwere enrolled in the HR-NBL1
trial from 188 centers. Among these, 2,350 patients were not included in this study, either because no
contributive tumor material was available, or because these was no FU data, or both. Thus, 1,092 patients
from 132 centers were included in this study. aClonal level:. 20%MAF. bSubclonal level: MAF 0.1%-20%.
FU, follow-up; HR-NB, high-risk neuroblastoma; MAF, mutated allele fraction.
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Statistical Analysis

Event-free survival (EFS) was calculated from diagnosis to
the first relapse, progressive disease, secondary malig-
nancy, or death from any cause, or until last patient contact.
Overall survival (OS) was calculated from diagnosis to death
from any cause, or until the last patient contact. EFS and OS
were estimated using the Kaplan-Meier method and

compared using the logrank test, and if indicated with
pseudo-value regression for 5-year OS.39-41 EFS and OS are
presented as 5-year point estimates together with 95% CIs
using log-log transformation.41 To adjust for established
risk-factors (age at diagnosis, stage, number of metastatic
compartments, and MYCN amplification), a Cox propor-
tional hazards regression model was used.

TABLE 1. Characteristics of Patients According to the ALK Amplification or ALK Mutation Status

Clinical Parameters

Known ALK Amplification Status (N 5 901) Known ALK Mutation Status (N 5 762)

No Yes

P

No Mutation
Clonal
Mutation

Subclonal
Mutation

Pn % n % n % n % n %

Total 860 100 41 100 656 100 76 100 30 100

Sex

Female 376 44 16 39 .553 278 42 38 50 11 37 .348

Male 484 56 25 61 378 58 38 50 19 63

Age, years

, 1 51 6 7 17 .005 38 6 5 7 0 0 .348

1-1.5 101 12 9 22 79 12 15 20 3 10

1.5-5 572 67 20 49 428 65 47 62 21 70

. 5 136 16 5 12 111 17 9 12 6 20

Stage

Loc, MNA1 83 10 13 32 , .001 63 10 9 12 4 13 .890

Stage 4 768 89 26 63 586 89 66 87 26 87

Stage 4s, MNA1 9 1 2 5 7 1 1 1 0 0

MYCN status

MNA2 466 54 1 2 , .001 365 56 26 34 9 30 , .001

MNA1 394 46 40 98 291 44 50 66 21 70

Primary tumor site

Unknown 20 1 .362 21 1 1 .278

Abdominal adrenal6 606 72 25 63 452 71 47 63 22 76

Abdominal other6 169 20 10 25 124 20 22 29 6 21

Other only 65 8 5 13 59 9 6 8 1 3

Stage 4: MYCN status

MNA2 466 61 1 4 , .001 365 62 26 39 9 35 , .001

MNA1 302 39 25 96 221 38 40 61 17 65

Stage 4: MC

1 MC 91 12 1 4 .091 70 13 11 17 4 17 .788

2 MC 231 32 12 52 177 32 19 29 9 38

. 2 MC 411 56 10 43 302 55 35 54 11 46

Overall response: end of induction

Evaluable 804 39 607 72 28

CR or VGPR or PR 628 78 31 79 .839 472 78 53 74 24 86 .421

MR or SD or PD 176 22 8 21 135 22 19 26 4 14

NOTE. Patients studied for ALK amplifications (n 5 901) and ALK mutations (n 5 762).
Abbreviations: CR, complete response; MC, metastatic compartments; MNA, MYCN amplification; MR, minor response; PD, progressive disease; PR,

partial response; SD, stable disease; VGPR, very good partial response.
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FIG 2. Genetic alterations of ALK in patients with HR-NB. (A) Copy-number profile of case 536. Genomic coamplification of MYCN and ALK
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30,309,749 bp (human genome assembly hg19; UCSC Genome Browser Home38). (B) Frequency distribution (continued on following page)
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Correlations between patient and disease characteristics
and ALK genetic alterations were explored using chi-square
tests.

To allow for sufficient follow-up time, only patients enrolled
until December 31, 2019, were considered. The data cutoff
for the final analysis was October 3, 2020. We calculated
median follow-up using the inverse Kaplan-Meier estimate.
Statistical analysis was performed using SAS (version 9.4).

RESULTS

Of 3,334 patients enrolled on the HR-NBL1/SIOPEN trial
between November 24, 2002, and December 31, 2019,
1,092 patients were included in the ALK analysis cohort
(Fig 1; Appendix Table A1, online only). Patients were
accrued from 132 SIOPENmember institutions or hospitals
in 19 countries (Appendix Table A2, online only). Among
these 1,092 patients, 81% (889 out of 1,092)
were . 18 months of age at diagnosis, 47% (521 out of
1,092) showed MNA, and 88% (966 out of 1,092) had
stage 4 disease, with no statistically significant difference in
EFS or OS between the ALK analysis cohort and the overall
HR-NBL1 cohort (Appendix Fig A2, online only).42 The
median follow-up period was 6.8 years (0.1-17.4 years).

ALK Alterations

Within the ALK cohort, the ALKm status was analyzed in
762 patients, the ALKa status in 901 cases, with both ALKm
and ALKa studied in 571 patients (Fig 1, Table 1).

ALK alterations were detected in 146 out of 1,092 patients
with ALKa occurring in 4.5% (41 out of 901 cases) and
ALKm in 13.9% (106 out of 762 cases). Only one case
showed ALKa and a concomitant ALK R1275Q mutation
with an MAF of 93%, suggesting that the mutated allele is
contained in the amplicon (Appendix Fig A3, online only).

ALK Amplification and Correlation With Risk Factors

High-level genomic amplification of the ALK gene was
found in 4.5% (41 out of 901) of cases (Fig 2A, Table 1). All
but one also had MNA. ALKa significantly correlated with
MNA (P, .001), non–stage 4 disease (P, .001), and age
at diagnosis , 18 months (P 5 .005). No correlation
between the presence of ALKa and response at the end of
induction treatment was observed.

A statistically significant poorer 5-year OS was observed in
patients whose tumors harbored ALKa (5-year OS: ALKa
28% [95% CI, 15 to 42] v non-ALKa 51% [95% CI, 47 to
54]; P, .0001; Fig 3A, Table 2) with a stronger prognostic
effect in patients with stage 4 or 4S MNA.

ALK Mutation and Correlation With Risk Factors

ALK mutational status was studied in 762 cases by Sanger
sequencing (n 5 163), by NGS techniques (n 5 13), or by
TDS (n 5 650, including 64 by TDS and Sanger). The
biologic data for 52 cases have been reported previously.22

Among these, 13.9% (106 out of 762) showed at least one
ALKmwithin the explored ALK regions of interest, with 10%
(76 out of 762) harboring mutations at a clonal level
(MAF. 20%) and 3.9% (30 out of 762) at a subclonal level
(MAF# 20%): nine cases—MAF 0.1% to, 1%, 10 cases
MAF 1% to, 5%, two cases MAF 5% to, 10%, and nine
cases MAF 10% to , 20% (Figs 1 and 2B; Table 1).

Concordance between results analyzed by two different
techniques was observed in 64 cases with clonal ALKm
(TDS and Sanger). Subclonal ALKm were validated by a
second independent TDS experiment, with an excellent
correlation of MAF between the two experiments
(R2 5 0.9924; P , .0001) (Appendix Fig A4, online only).

ALKm involved the common mutational hotspots (F1174,
F1245, and R1275) in 12.5% (97 out of 762) of cases,
comprising 91% (97 out of 106) of all detected ALKm (Fig
2B).

Interestingly, three cases harbored two or more distinct
mutations. In the first case, both F1174L and F1245L
mutations were observed (MAF 2% and 0.8%, respectively).
The second case showed three subclonalmutations F1174L,
R1275Q, and R1275L (MAF 2.9%, 8.9%, and 2.9%, re-
spectively). A third case harbored a mutation at the F1174
and R1275 hotspots (MAF 27% and 1.3%, respectively).

There were no statistically significant correlations between
ALKm and stage, age at diagnosis, or localization of the
primary tumor (adrenal, abdominal, or other) (Table 1).
However, a significant correlation was observed between
the presence of an ALKm and MNA (P , .001), with an
enrichment of ALKm F1174 in MNA tumors (P 5 .0005).

FIG 2. (Continued). of mutated ALK alleles at the studied chromosome regions, encompassing the AA positions F1174, L1190, L1196, R1245,
D1270, G1272, M1273, A1274, R1275, and Y1278 detected, in 762 samples. ALK mutations involved the common mutational hotspots (F1174,
F1245, and R1275) in 12.5% (97 out of 772) of cases, at a clonal level (MAF 20%-93%) in 72 cases, and at a subclonal level (MAF, 20%) in 25
cases. At the F1174 hotspot (chr2: 29,443,695-29,443,697), alterations were observed in 44 cases: 42 cases harbored a mutation leading to the AA
change F1174L, one case with F1174I, and one case with F1174S, withMAFs ranging from 0.12% to 78%. At the R1275 hotspot (chr2: 29,432,849-
29,430,139), mutations were detected in 43 cases: 38 cases harbored amutation leading to the AA changeR1275Q and five cases with R1275L, with
the MAFs ranging from 0.2% to 93%. Ten cases showed ALKmutations at the F1245 hotspot (chr2: 29,436,858-29,436,860) within exon 24. Three
samples showed the F1245L mutation, three cases carried the F1245C mutation, three showed the F1245I mutation, and one showed mutation
F1245V mutation (Fig 1 and Appendix Table A1). Other ALKmutations were detected at residues I1170, L1190 (two cases), L1196, D1270, G1272,
M1273, A1274, and Y1278 within the explored regions, leading to a nonsynonymous AA change with a predicted functional impact. All these
mutations were clonal (MAF . 20%) except for M1273I (MAF 0.2%) and I1170 (MAF 2.8%). AA, amino acid; aCGH, array comparative genomic
hybridization; bp, base pair; HR-NB, high-risk neuroblastoma; MAF, mutated allele fraction; UCSC, University of California, Santa Cruz.
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FIG 3. Survival in the ALK analysis cohort. (A) OS according to ALK amplification status in 901 patients: presence of ALK amplification (n 5 41),
5-year OS 28% (95%CI, 15 to 42) versus absence of ALK amplification (n5 860), 5-year OS 51% (95%CI, 47 to 54); P, .0001. (B) OS according
to ALK mutation status in 762 patients: presence of an ALK mutation (n 5 106), 5-year OS 41% (95% CI, 31 to 51) versus absence of an ALK
mutation (n 5 656), 5-year OS 49% (95% CI, 45 to 53); P 5 NS. (C) OS according to ALK clonal or subclonal (continued on following page)
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This was also observed when analyzing only stage 4 tumors.
No correlation between ALKm and response at the end of
induction treatment was observed.

No statistically significant difference in outcome was ob-
served between patients harboring any ALKm versus none
(Fig 3B, Table 2). However, when distinguishing clonal and
subclonal mutations, a poorer OS was observed only in
patients with clonal ALKm, as opposed to subclonal or no
mutations (5-year OS, clonal ALKm 34% [95% CI, 23 to
45], subclonal ALKm 59% [95% CI, 39 to 74], and no
ALKm49% [95% CI, 45 to 53]; P5 .018) (Fig 3C, Table 2).

Patients with metastatic disease (stage 4 or 4S MNA) and a
clonal ALKm showed a trend toward poorer OS. However, in
patients with localized disease, the presence of ALKm did
not confer poorer survival (Table 2).

Overall Prognostic Impact of ALK Genetic Alterations

To determine the overall prognostic impact of ALK genetic
alterations, we focused on the subgroup of 571 patients with
both known ALKa and ALKm status. In this subgroup of
patients, a statistically significant poorer OS was observed in
patients whose tumors harbored any ALK alteration (5-year
OS, any alteration 37% [95% CI, 29 to 45] v no alteration
51% [95% CI, 46 to 55]; P 5 .005; Fig 3D). ALKa or clonal
ALKm were associated with a poorer outcome (5-year OS,
ALKa 26% [95%CI, 10 to 47], clonalALKm33% [95%CI, 21
to 44], subclonal ALKm48% [95% CI, 26 to 67], and no ALK
alteration 51% [95%CI, 46 to 55];P5 .001; Fig 3E, Table 2).

Among the subgroup of patients with known ALK status, we
sought to determine the prognostic impact of ALK alter-
ations according to the different treatment arms of HR-
NBL1. Indeed, in the HR-NBL01/SIOPEN trial, the intro-
duction of busulfan and melphalan as standard for HDC,
and anti-GD2maintenance therapy as a new standard since
2010, has led to significantly improved survival (Appendix
Fig A5F, online only).3-5 Importantly, when considering
patients treated according to the SIOPEN standard with
busulfan and melphalan HDC and maintenance immu-
notherapy, the presence of an ALK alteration (ALKa or
clonal ALKm) remained associated with a poorer 5-year OS
of 48% (95% CI, 28 to 65), versus no ALK alteration 67%
(95% CI, 56 to 75); P 5 .03 (Fig 3F, Appendix Table A3,

online only), with a trend also observed when taking into
account all ALKm (clonal and subclonal, P 5 .059).

Based on univariate risk factor exploration of the whole ALK
analysis cohort (Appendix Fig A5), we developed a Cox model
for multivariate analysis including clinical and biologic pa-
rameters previously shown to be of prognostic impact (n5 571
patients). Involvement of two or more metastatic compart-
ments (OS: hazard ratio [HR], 2.87 [95% CI, 1.73 to 4.78];
P5 .001) and the presence of ALKa (OS: HR, 2.38 [95% CI,
1.32 to 4.27];P5 .004) and clonalALKm(OS:HR, 1.77 [95%
CI, 1.25 to 2.49]; P 5 .001) were of independent prognostic
significance, whereas MNA and age were not (Table 3).

DISCUSSION

In HR-NB, the identification of prognostic biomarkers is
crucial for the development of new treatment approaches.
Recent studies have shown that MNA is not associated with
poorer outcome among the overall cohort of patients with HR-
NB, but the presence of genomic amplifications other than
MYCNmight constitute a poor outcome biomarker.43 We now
show in this large ALK analysis cohort that the presence of
ALKa or clonal ALKm resulted in significantly worse outcome.

Given the oncogenic driver role of ALK activation, and the
prognostic impact of ALKa or clonal ALKm, the introduction
of frontline ALK-targeted treatment is now strongly supported
by the current study. Although early phase clinical trials of
first- and second-generation ALK inhibitors showed modest
efficacy of the first-generation inhibitor crizotinib in NB with
F1174 hotspot mutations being resistant,44 third-generation
ALK inhibitors such as lorlatinib exhibit improved efficacy
alone and when combined with chemotherapy.28,44-46 Cri-
zotinib is currently being administered with chemotherapy in
a phase III upfront trial for patients with HR-NB with ALK
alterations (ClinicalTrials.gov: NCT03126916).

Improvements in HR-NB patient survival have been
achieved with intensification of HDC and immunotherapy
with dinutuximab (ch14.18/Sp02 and ch14.18/CH0),3-5,7

and our results highlight the potential of ALK inhibition as
an attractive upfront precision-medicine strategy in patients
with ALK alterations to further improve survival. Importantly,
in patients reaching the maintenance treatment phase

FIG 3. (Continued). mutation status in 762 patients: no mutation (n5 656), 5-year OS 49% (95% CI, 45 to 53); clonal mutations (n5 76), 5-year
OS 34% (95% CI, 23 to 45); and subclonal mutations (n5 30), 5-year OS 59% (95% CI, 39 to 74), respectively; P5 .018. (D) OS according to the
presence of any ALK alterations in 611 patients with known ALK amplification and ALKmutation status: presence of an ALK alteration (n5 146),
5-year OS 37% (95% CI, 29 to 45); versus absence of ALK alterations (n5 465), 5-year OS 51% (95% CI, 46 to 55); P5 .005. (E) OS according to
the type of ALK alteration in the cohort of 571 patients with known ALK amplification and ALKmutation status: no alteration (n5 465), 5-year OS
51% (95% CI, 46 to 55); clonal mutations (n5 65), 5-year OS 33% (95% CI, 21 to 44); subclonal mutations (n5 12), 5-year OS 48% (95% CI, 26
to 67); and ALK amplification (n 5 19), 5-year OS 26% (95% CI, 10 to 47), respectively; P 5 .001. (F) OS according to ALK alterations (ALK
amplification or clonal ALK mutation) in patients who received immunotherapy (n 5 141): To evaluate the impact of ALK alterations (ALK
amplification or clonal ALKmutation) in patients who received dinutuximab beta, OS was calculated from the start of dinutuximab beta treatment
and evaluated using the same approaches as described in the Materials and Methods section. ALK alteration (ALK amplification or clonal ALK
mutation, n 5 29, 5-year OS 48% [95% CI, 28 to 65]) versus no ALK alteration (n 5 112) 67% (95% CI, 56 to 75); P 5 .034. Patient details:
Appendix Table A3. HR, hazard ratio; NS, not significant; OS, overall survival; ref, reference.
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TABLE 2. EFS and OS According to ALK Alterations

Parameters

OS EFS

Patients,
No.

Events,
No.

5-Year OS,
% (95% CI) HR (95% CI) P

Patients,
No.

Events,
No.

5-Year EFS,
% (95% CI) HR (95% CI) P

Total

ALKa

No 860 418 51 (47 to 54) Ref , .001 860 492 40 (36 to 43) Ref , .001

Yes 41 29 28 (15 to 42) 2.3 (1.6 to 3.4) 41 31 24 (13 to 38) 2.0 (1.4 to 2.9)

ALKm

Nonmutated 656 347 49 (45 to 53) Ref .018 656 395 38 (35 to 42) Ref .081

ALKm clonal 76 48 34 (23 to 45) 1.4 (1.1 to 2.0) 76 51 31 (21 to 42) 1.3 (1.0 to 1.7)

ALKm subclonal 30 13 59 (39 to 74) 0.7 (0.4 to 1.2) 30 16 49 (30 to 65) 0.8 (0.5 to 1.3)

Known ALK alteration
status

Nonmutated 465 241 51 (46 to 55) Ref .001 465 280 38 (33 to 43) Ref .057

ALKa 19 14 26 (10 to 47) 2.2 (1.3 to 3.8) 19 14 26 (10 to 47) 1.7 (1.0 to 2.9)

ALKm clonal 65 42 33 (21 to 44) 1.7 (1.2 to 2.3) 65 43 33 (22 to 44) 1.4 (1.0 to 1.9)

ALKm subclonal 22 12 48 (26 to 67) 1.0 (0.5 to 1.8) 22 14 39 (19 to 59) 1.0 (0.6 to 1.8)

Stage 4, 4s

ALKa

No 777 394 48 (44 to 52) Ref , .001 777 467 37 (33 to 40) Ref , .001

Yes 28 22 19 (7 to 35) 2.9 (1.8 to 4.6) . 28 23 18 (7 to 34) 2.9 (1.8 to 4.6)

ALKm

Nonmutated 593 328 47 (43 to 51) Ref .068 593 375 35 (31 to 39) Ref .216

ALKm clonal 67 43 33 (22 to 45) 1.4 (1.0 to 1.9) . 67 46 30 (19 to 41) 1.4 (1.0 to 1.9)

ALKm subclonal 26 13 52 (31 to 70) 0.8 (0.4 to 1.4) . 26 16 41 (22 to 59) 0.8 (0.4 to 1.4)

Known ALK alteration
status

Nonmutated 419 228 48 (43 to 53) Ref .000 419 266 35 (30 to 39) Ref .042

ALKa 15 12 20 (5 to 42) 2.6 (1.3 to 4.7) . 15 12 20 (5 to 42) 1.8 (1.0 to 3.4)

ALKm clonal 57 38 30 (18 to 43) 1.7 (1.2 to 2.4) . 57 39 30 (19 to 42) 1.4 (1.0 to 1.9)

ALKm subclonal 21 12 45 (23 to 65) 1.0 (0.5 to 1.8) . 21 14 36 (16 to 56) 1.0 (0.6 to 1.8)

Stage 4, MNA2

ALKa

No 466 236 49 (44 to 54) NA 466 292 33 (28 to 38) NA

Yes 1 1 NA NA 1 1 NA NA

ALKm

Nonmutated 365 202 49 (43 to 54) Ref .202 365 238 33 (28 to 38) Ref .245

ALKm clonal 26 18 28 (13 to 46) 1.5 (0.9 to 2.5) 26 20 23 (9 to 40) 1.5 (0.9 to 2.3)

ALKm subclonal 9 4 53 (18 to 80) 0.9 (0.3 to 2.3) 9 5 42 (11 to 71) 0.9 (0.4 to 2.3)

Known ALK alteration
status

Nonmutated 269 146 50 (43 to 56) Ref .010 269 174 32 (27 to 38) Ref .029

ALKa 1 1 NA NA 1 1 NA NA

ALKm clonal 20 15 22 (7 to 42) 2.1 (1.3 to 3.6) 20 16 20 (6 to 39) 1.8 (1.1 to 2.9)

ALKm subclonal 6 3 44 (7 to 78) 1.2 (0.4 to 3.7) 6 4 25 (1 to 65) 1.4 (0.5 to 3.9)

(continued on following page)
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with dinutuximab beta in the HR-NBL1/SIOPEN trial, the
presence of an ALK alteration was still associated with
poorer survival, thus strongly suggesting that integration of
ALK-targeted therapy is warranted throughout all treatment
phases of modern-era HR-NB therapy.

ALKa was observed in 4% of NB cases, accounting for
approximately 1 out of 3 of ALK-activated NB cases. To
date, co-occurrence of ALK hotspot mutations and geno-
mic amplification has rarely been reported in NB.17 In this
extensive cohort of patients, one case harboring both ALKa
and an R1275 ALKm was identified. This indicates that
these alterations are not fully mutually exclusive, although
co-occurrence is extremely rare.

ALKm were found in 13.9% of cases at the studied exonic
regions harboring known ALKmutational hotspots.17,24 This
is higher than previously reported frequencies of ALKm in
HR-NB of approximately 10%, most likely as previous
reports using Sanger sequencing or standard-resolution
NGS approaches.24,26 Sanger sensitivity is limited to the
detection of MAF . 15%-20%, but in NB, ALK mutations
with lower MAFs have been reported.14,19-21

Ultradeep sequencing used in this analysis has a sensi-
tivity limit of MAF of 0.1%.19,20 This approaches the
theoretical limit of detection based on the genomic DNA
input of 50 ng for one experiment, equivalent to 5,000
diploid genomes.

TABLE 2. EFS and OS According to ALK Alterations (continued)

Parameters

OS EFS

Patients,
No.

Events,
No.

5-Year OS,
% (95% CI) HR (95% CI) P

Patients,
No.

Events,
No.

5-Year EFS,
% (95% CI) HR (95% CI) P

Stage 4, 4s MNA1

ALKa

No 311 158 48 (42 to 54) Ref , .001 311 175 43 (37 to 48) Ref , .001

Yes 27 21 19 (7 to 36) 2.3 (1.4 to 3.7) 27 22 19 (7 to 35) 2.0 (1.3 to 3.3)

ALKm

Nonmutated 228 126 44 (38 to 51) Ref .453 228 137 40 (33 to 46) Ref .666

ALKm clonal 41 25 37 (22 to 51) 1.2 (0.8 to 1.8) 41 26 34 (20 to 49) 1.2 (0.8 to 1.8)

ALKm subclonal 17 9 52 (27 to 73) 0.8 (0.4 to 1.5) 17 11 41 (19 to 63) 0.9 (0.5 to 1.7)

Known ALK alteration
status

Nonmutated 150 82 46 (37 to 54) Ref .085 150 92 39 (31 to 47) Ref .372

ALKa 14 11 21 (5 to 45) 1.9 (1.0 to 3.7) 14 11 21 (5 to 45) 1.6 (0.8 to 3.0)

ALKm clonal 37 23 35 (20 to 51) 1.3 (0.8 to 2.1) 37 23 36 (20 to 51) 1.2 (0.7 to 1.9)

ALKm subclonal 15 9 46 (20 to 68) 0.9 (0.4 to 1.8) 15 10 40 (16 to 63) 1.0 (0.5 to 1.9)

Localized, MNA1

ALKa

No 83 24 71 (59 to 80) Ref .059 83 25 69 (57 to 78) Ref .015

Yes 13 7 46 (19 to 70) 2.2 (0.9 to 5.1) 13 8 38 (14 to 63) 2.6 (1.2 to 5.8)

ALKm

Nonmutated 63 19 70 (57 to 80) Ref .114 63 20 67 (54 to 77) Ref .098

ALKm clonal 9 5 42 (11 to 71) 2.2 (0.8 to 5.8) 9 5 42 (11 to 71) 2.2 (0.8 to 5.9)

ALKm subclonal 4 0 NA NA 4 0 NA

Known ALK alteration
status

Nonmutated 46 13 73 (57 to 83) Ref .440 46 14 68 (52 to 80) Ref .410

ALKa 4 2 50 (6 to 84) 2.0 (0.4 to 8.7) 4 2 50 (6 to 84) 1.8 (0.4 to 7.9)

ALKm clonal 8 4 50 (15 to 77) 2.1 (0.7 to 6.5) 8 4 50 (15 to 77) 2.2 (0.7 to 6.8)

ALKm subclonal 1 0 NA NA 1 0 NA

NOTE. EFS and OS in the ALK analysis cohort, according to different clinical parameters: complete summary of all risk-factor–based 5-year EFS and OS
rates in patients according to the ALK amplification status (ALKa, n5 901 patients), ALKmutational status (ALKm, n5 762 patients), or in patients for whom
both the ALKa status and ALKm status are known (known ALK alteration status, n 5 571).
Abbreviations: EFS, event-free survival; MNA, MYCN-amplified; NA, not available; OS, overall survival; ref, reference.
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This study demonstrates that use of higher-resolution tech-
niques enables a higher detection rate of ALKm. The MAF
distribution indicated amajority of clonal events (76 out of 106
cases). Importantly, clonal ALKmwere associated with poorer
outcome and were of independent prognostic significance,
but subclonal events were not. Subclonal events, defined in
this study by MAF, 20%, comprised 28% (30 out of 106) of
all ALKm, with a very low MAF (, 5%) observed in 19 cases.

However, when considering ALKm, the OS remains poor in
all patient subgroups (5-year OS , 62%). Furthermore,
although of different prognostic impact in this study, the
biomarker (ALKmutation) might not be of distinct predictive
impact, and even in patients with subclonal ALKmutations,
ALK inhibitor treatment might be effective in the targeted cell
population. Thus, future upfront trials should consider ALK-
targeted treatment based on clinically applicable reliable
detection limits (for instance MAF 5% for NGS techniques)
rather than the MAF defining prognostic subgroups.

As tumor samples harbored at least 20% tumor cells by
pathologic examination, with additional confirmation pro-
vided by a dynamic aCGH or SNPa profile in the majority of
cases, the observed low MAF is likely to correspond to
intratumoral heterogeneity. In NB, intratumor heterogeneity
has been reported for MNA and segmental chromosome
alterations.47-49 The coexistence of ALK nonmutated and
mutated cells within a single tumor suggests that these
different subclones might coexist in an advantageous

equilibrium, which might crucially affect the dynamics of
cancer progression.50,51 Correlation with pathologic findings,
single-cell RNA or DNA experiments, and in situ approaches
will elucidate how ALK-mutated cells are distributed
throughout an NB. A higher frequency of ALKm at NB re-
lapse has been demonstrated, suggesting clonal evolution of
a minor ALK-mutated subclone to a dominant ALK mutated
clone at relapse, but these cases might not represent clin-
ically unfavorable cases initially.23,52,53 Further studies fo-
cusing on serial blood samples for ctDNA studies will further
elucidate clonal evolution, also under targeted therapy.54

In HR-NB, mutations in the p53 or RAS-MAPK pathways,
including ALK, together with telomere maintenance caused
by induction of telomerase or ALT (alternative lengthening
of telomere) are thought to increase tumor aggressiveness,
resulting in even poorer survival among patients with HR-
NB.55,56 As MYCN leads to upregulation of TERT expres-
sion, MNA associated with any ALK alteration might lead to
inferior outcome. Cases with ALKa show both ALK pathway
activation and activation of telomere maintenance through
MNA, with a suggested additive effect of these genetic
events. The very poor survival of ALKa patients is con-
cordant with this observation. However, survival of patients
whose tumors harbored ALKm and MNA was not different
from those without MNA, suggesting that ALKm cases
constitute a more heterogeneous group with regards to the
mechanistic tumor classification.55

TABLE 3. Multivariate Analysis in 571 Patients With a Known ALK Amplification and ALK Mutation Status

Clinical Parameters

OS EFS

P HR 95% CL P HR 95% CL

Age, years

, 1 1.00 1.00

1-1.5 .269 0.72 0.40 to 1.30 .636 0.87 0.49 to 1.56

1.5-5 .265 0.75 0.45 to 1.24 .830 0.95 0.57 to 1.56

. 5 .662 0.88 0.50 to 1.55 .935 1.02 0.59 to 1.78

Metastatic compartments

Localized-none 1.00 1.00

1 MC .122 1.60 0.88 to 2.90 .096 1.63 0.92 to 2.88

2 MC .001 2.41 1.44 to 4.04 .001 2.38 1.44 to 3.94

. 2 MC , .0001 2.87 1.73 to 4.78 , .0001 2.88 1.76 to 4.72

MYCN amplification

MNA1 .135 1.23 0.94 to 1.62 .797 1.03 0.80 to 1.34

ALK alteration

No alteration 1.00 1.00

ALKa .004 2.38 1.32 to 4.27 .026 1.94 1.08 to 3.47

ALKm clonal .001 1.77 1.25 to 2.49 .017 1.50 1.08 to 2.10

ALKm subclonal .696 0.88 0.46 to 1.68 .934 1.02 0.58 to 1.81

Abbreviations: EFS, event-free survival; MC, metastatic compartments; MNA, MYCN-amplified; OS, overall survival.
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ALKa and ALK clonal mutation were both independent pre-
dictors of poor outcome in our multivariate Cox model. No-
tably, the end-of-induction response rate was not associated
with ALK genetic alterations, suggesting that ALK-altered tu-
mor cells are unlikely to be primarily chemotherapy resistant.

In summary, our data contribute to the rationale for fu-
ture clinical trials introducing ALK-targeted treatment in
the frontline setting together with chemotherapy and im-
munotherapy, and the distinct prognostic impact of different
ALK alterations (ALKa and ALKm) needs to be considered.
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APPENDIX
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FIG A1. Treatment flowchart of the HR-NBL1 Protocol (ClinicalTrials.gov: NCT01704716, EudraCT: 2006-001489-17) over the whole period. aInfants
and children with a body weight below 12 kg will be dosed at 0.67mg/kg/d. In infants weighing# 5 kg, a further 1/3 dose reduction is advised. AUC, area
under the curve; BUMEL, busulfan and melphalan; CAV, cyclophosphamide plus doxorubicin or vincristine; CEM, carboplatin, etoposide, and
melphalan; CH14.18/CHO, human-mouse chimeric monoclonal anti-disialoganglioside GD2 antibody ch14.18 produced in Chinese hamster ovary
(CHO) cells; COJEC, chemotherapy schedule COJEC defined below; GFR, glomerular filtration rate; IL-2, interleukin-2; IV, intravenous; P or E, cisplatin
or etoposide; R1, randomization 1; R2, randomization 2; R3, randomization 3; R4, randomization 4; RT, radiotherapy; SCR, stringent complete
response; TP, time period; TVD, topotecan-vincristine-doxorubicin. (continued on following page)
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FIG A1. (Continued).
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FIG A2. Comparison of patients in the ALK analysis cohort and patients not in the ALK analysis cohort. (A and B) EFS and OS of the ALK analysis
cohort and patients not in the ALK cohort. (A) No statistically significant difference in EFS and (B) OS was observed between patients included in
the ALK analysis cohort (n5 1,092, from 132 centers; red line), patients not included in this study from the same centers (n5 1,665, blue line)
and patients not included in this study from centers not participating in this study (n 5 577, green line) (5-year EFS: 40% [95% CI, 37 to 43] v
37% [95% CI, 35 to 40] v 33% [95% CI, 29 to 37]; 5-year OS: 49% [95% CI, 46 to 53] v 48% [95% CI, 46 to 51] v 44% [95% CI, 40 to 59];
P 5 NS). (C) Recruitment, by year (x-axis), in the ALK analysis cohort (% of patients: y-axis; absolute numbers: in the blue bars). The % and
number of patients not included in the ALK analysis cohort from centers participating, and from nonparticipating centers, are indicated in orange
and gray, respectively. EFS, event-free survival; NS, not significant; OS, overall survival.
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FIG A3. Double event of ALK amplification and ALK mutation detected in one case (case 15). The SNP array shows an amplified region
in chromosome 2 encompassing the ALK gene. Sanger sequencing profile shows R1275Q mutation (MAF 5 93.3%) in the same case. HD, high
definition; MAF, mutated allele fraction; SNP, single-nucleotide polymorphism.
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experiment. Red spots representing the MAF for each ALK mutation are plotted on the x-axis (first TDS
experiment) and y-axis (second TDS experiment), with a strong correlation between the two independent
experiments (r2 5 0.9924, P , .0001). Blue spots represent subclonal ALK mutations with a very low MAF
(, 0.1%) not confirmed in an independent experiment and not retained in the analysis (n5 6). MAF, mutated
allele fraction; TDS, targeted deep sequencing.
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FIG A5. Survival in the ALK analysis cohort (n5 1,092 patients) according to known prognostic factors. (A) EFS and OS in the ALK analysis
cohort population (n5 1,092 patients). Five-year EFS (blue line) 40% (95%CI, 37 to 43); 5-year OS (red line) 49% (95%CI, 46 to 53). (B) OS
according to age. Five-year OS in patients , 1 year of age at diagnosis (red line) 50% (95% CI, 37 to 61); in patients 1-1.5 years of age at
diagnosis (blue line) 58% (95% CI, 49 to 66); in patients 1.5-5 years of age at diagnosis (green line) 50% (95% CI, 46 to 53); and in
patients . 5 years of age at diagnosis (purple line) 43% (95% CI, 35 to 50); P 5 NS (pseudo-value regression). (continued on following page)
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FIG A5. (Continued). (C) OS according to number of involved MCs. Five-year OS in patients with localized disease (red line) 67% (95% CI, 58 to
75), in patients with involvement of one MC (blue line) 65% (95% CI, 55 to 73), two MCs (green line) 52% (95% CI, 46 to 58), or over two MCs
(purple line) 41% (95%CI, 36 to 46); P, .001. (D) OS according to stage. Five-year OS in patients with localized disease (red line) 67% (95%CI,
58 to 75), in patients with stage 4 disease (blue line) 47% (95% CI, 44 to 50), or stage 4s disease (green line) 54% (95% CI, 25 to 76); P, .001.
(E) OS according to MYCN amplification in stage 4 disease. Five-year OS in patients with MNA (blue line) 46% (95% CI, 41 to 51), in patients
without MNA (red line) 48% (95% CI, 44 to 53), NS (pseudo-value regression). (F) OS according to treatment period, before (,March 2010) or
after (. March 2010) the definition of HDC by BUMEL and immunotherapy maintenance as standard treatment. A significant improvement
survival because of BUMEL and GD2 standard therapy is observed. Five-year OS in patients having been treated before March 2010 (red line)
46% (95%CI, 41 to 51) versus after March 2010 (blue line) 51% (95%CI, 47 to 56); P5 .039.3-5 BUMEL, busulfan andmelphalan; cHR, crude
hazard ratio; EFS, event-free survival; HDC, high-dose chemotherapy; HR, hazard ratio; MC, metastatic compartment; MNA, MYCN-amplified;
NS, not significant; OS, overall survival; ref, reference.

TABLE A1. Clinical Characteristics of 1,092 Patients Included in the ALK Analysis Cohort

Localized MNA1

Stage 4
Stage 4s
MNA1 TotalTotal MNA2 MNA1

Total 113 966 571 395 13 1,092

Sex, No. (%)

Female 45 (40) 423 (44) 258 (45) 165 (42) 5 (38) 473 (43)

Male 68 (60) 543 (56) 313 (55) 230 (58) 8 (62) 619 (57)

Age at diagnosis, years

, 1, No. (%) 5 (4) 50 (5) 0 (0) 49 (12) 13 (100) 67 (6)

1-1.5, No. (%) 22 (19) 113 (12) 39 (7) 75 (19) 0 (0) 136 (12)

1.5-5, No. (%) 79 (70) 634 (66) 392 (69) 242 (61) 0 (0) 713 (65)

5-10, No. (%) 7 (6) 169 (17) 140 (25) 29 (7) 0 (0) 176 (16)

Median (min-max) 2.1 (0.6-8.3) 2.9 (0.12-20) 3.5 (1-20) 2 (0.12-12) 0.23 (0-0.65) 2.8 (0-20)

Primary tumor, No. (%)

No data 1 31 21 10 — 32

Cervical 5 (4) 54 (6) 37 (7) 17 (4) 0 (0) 59 (6)

Thoracic 4 (4) 157 (17) 108 (20) 49 (13) 0 (0) 161 (15)

Abdominal adrenal 85 (76) 655 (70) 341 (62) 314 (82) 13 (100) 753 (71)

Abdominal other 41 (37) 329 (35) 203 (37) 126 (33) 3 (23) 373 (35)

Pelvic 4 (4) 59 (6) 30 (5) 29 (8) 0 (0) 63 (6)

Metastatic sites, No. (%)

None 113 — — — 13 113

Not specified 55 26 29 2

1 MC 111 (12) 51 (9) 60 (16) 4 (36)

2 MC 299 (33) 180 (33) 119 (33) 3 (27)

. 2 MC 501 (55) 314 (58) 187 (51) 4 (36)

ALK alteration, No. (%)

Yes 25 (22) 118 (12) 36 (6) 82 (21) 3 (23) 146 (13)

No 88 (78) 848 (88) 535 (94) 313 (79) 10 (77) 946 (87)

ALK amplification, No. (%)

Yes 13 (12) 26 (3) 1 (0) 25 (6) 2 (15) 41 (4)

No 83 (73) 768 (80) 466 (82) 302 (76) 9 (69) 860 (79)

Missing data 17 (15) 172 (18) 104 (18) 68 (17) 2 (15) 191 (17)

ALK mutations, No. (%)

ALKm clonal 9 (8) 66 (7) 26 (5) 40 (10) 1 (8) 76 (7)

ALKm subclonal 4 (4) 26 (3) 9 (2) 17 (4) 0 (0) 30 (3)

No 63 (56) 586 (61) 365 (64) 221 (56) 7 (54) 656 (60)

Missing data 37 (33) 288 (30) 171 (30) 117 (30) 5 (38) 330 (30)

Abbreviations: MC, metastatic compartments; MNA, MYCN-amplified.
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and
Center
Country Center Patients, No.

Total 1,092

FR Total 344

Institut Curie 65

Center Léon Berard 34

Hopitaux de Marseille La Timone 30

Center Oscar Lambret de Lille 26

CHR de Nantes 23

Hopital Hautepierre-CHU Strasbourg 20

Hôpital Trousseau Paris 18

Institut Gustave Roussy 17

Hôpital D’Enfants de Toulouse 14

CHU de Grenoble 13

CHU de Nancy Brabois 11

CHU Montpellier Hôpital Arnaud Villeneuve 11

CHU Rouen 10

Hopital Jean Bernard La Miletrie Poitiers 8

CHR de Caen 8

CHU-Saint Etienne 6

Hôpital de L’Archet Nice 5

CHR Hôpital Sud de rennes 5

Center Hospitalier Angers 5

CHU Morvan de Brest 4

Hotel Dieu de Clermont-ferrand 4

CHRU Nord d’Amiens 4

Hopital d’Enfants Dijon 2

Hopital Americain de Reims 1

UK Total 292

Great Ormond Street Hospital 40

Royal Marsden Hospital Surrey 34

Newcastle: Royal Victoria Infirmary 29

Dublin: OLHSC 13

Oxford: John Radcliffe Hospital 20

Bristol Royal Hospital for Children 19

Glasgow Royal Hospital for Sick Children 19

Manchester: Royal Manchester Children’s Hospital 18

Southampton General Hospital 16

Cambridge: Addenbrooke’s NHS Trust 14

Liverpool: Alder Hey Children’s Hospital 14

Birmingham Children’s Hospital 11

Leeds: St James’s University Hospital 11

Belfast: Royal Belfast Hospital for Sick Children 9

Sheffield Children’s Hospital 7

Cardiff: Llandough Hospital 5

Aberdeen: Royal Aberdeen Children’s Hospital 4

Edinburgh Royal Hospital for Sick Children 4

Leicester Royal Infirmary 3

UCLH University College London Hospital 2

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and
Center (continued)
Country Center Patients, No.

ES Total 152

H Nino Jesus 15

Hospital Infantil La Fe 13

Carlos Haya 11

H Central de Asturias 10

Hospital Infantil La Paz 10

H. Virgen de la Arrixaca 8

Hospital de Cruces 7

Hospital materno infantil Virgen de las Nieves 7

Hospital Vall d`Hebron 6

H. Miguel Servet 6

Hospital Clinico 5

H. Virgen del Camino 4

H. Son Dureta 5

H. General de Galicia 4

Hospital Gregorio Maranon 4

Hospital 12 de Octubre 4

H. de Donostia Ntra. Sra. de Aranzazu. 4

Materno Infantil de Badajoz 3

H. General de Alicante 3

Virgen del Rocio 3

Hospital Germans Triasi Pujol 2

H Sant Pau 2

Hospital Universitario de Canarias 2

H. Torrecardenas 2

Hospital Reina Sofia 2

H. C. U. de Salamanca 2

H. Virgen de la Salud 1

H. Materno-Infantil Teresa Herrera 1

H. SanT Joan de Deu 1

H. Monteprincipe 1

Complejo Hospitalario de Jaen 1

H. Virgen de la Macarena 1

Hospital Universitario Nuestra Sra de la Candelaria 1

Hospital Xeral-Cı́es 1

AT Total 57

St Anna Kinderspital 23

Landes-Kinderklinik Linz 12

Univ.Klinik f. Kinder-u. Jugendheilkunde Innsbruck 10

Univ.-Klinik für Kinder- und Jugendheilkunde Graz 6

St Johanns Spital LKH Salzburg 6

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and
Center (continued)
Country Center Patients, No.

SE Total 44

Stockholm 14

Lund 11

Uppsala 8

Children’s Hospital Linkoping 5

Queen Silvia’s Children’s Hospital (Gothenburg) 5

Reykjavik 1

CZ Total 38

University Hospital Motol, Prague 5 38

IT All 29

Ospedale S. Orsola 7

Clinica di Oncoematologia Pediatrica Padova 5

Istituto per l’Infanzia Burlo Garofolo 3

Ospedale Bambino Gesu 3

Policlinico Universitario 2

Istituto Giannina Gaslini 2

Istituto Nazionale Tumori di Milano 2

Policlinico San Matteo 1

Ospedali Riuniti 1

Ospedale dei bambini, Palermo 1

Azienda Ospedaliera Universitaria di Parma-Oncoematologia
Pediatrica

1

Policlinico Borgo Roma 1

CH Total 25

CHUV 11

University Children’s Hospital (Geneva) 5

Inselspital Bern 3

Kantonspital Aarau 3

Ostschweizer Kinderspital 2

Luzerner Kantonspital - Kinderspital Luzern 1

PL Total 23

University Children’s Hospital Krakow 14

Wroclaw Medical University 3

Children’s Hospital in Chorzów 2

University of Medical Sciences Poznan 2

Medical University of Bydgoszcz 1

Medical University in Gdansk 1

BE Total 21

University Hospital Gent 9

UZ Gasthuisberg 8

Clinique de l’Espérance, 2

Cliniques universitaires St-Luc 1

CHR Citadelle 1

IL Total 18

Schneider Children’s Medical Center of Israel 17

Dana Children’s Hosp., Suraski Tel-Aviv Med. Cent. 1

(continued on following page)
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TABLE A2. Number of Patients Included in the ALK Analysis Cohort by Country and
Center (continued)
Country Center Patients, No.

PT Total 14

IPOFG-CRL 14

HK Total 10

University of Hong Kong 10

NO Total 10

Rikshospitalet 5

Haukeland University Hospital 4

St Olavs Hospital Trondheim 1

IE Total 7

Dublin: OLHSC 7

FI Total 4

University of Tampere 4

DK Total 2

Aarhus Universitetshospital 1

University Hospital of Odense 1

GR Total 1

Aghia Sophia Children’s Hospital, Athens 1

SI Total 1

University Children’s Hospital Ljubljana 1

Abbreviations: AT, Austria; BE, Belgium; CH, Switzerland; CZ, Czech Republic;
DK, Denmark; ES, Spain; FI, Finland; FR, France; GR, Greece; HK, Hong Kong; IE,
Ireland; IL, Israel; IT, Italy; NO, Norway; PL, Poland; PT, Portugal; SE, Sweden; SI,
Slovenia; UK, United Kingdom.
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TABLE A3. Clinical Characteristics of 35 Patients Treated by Immunotherapy Whose Tumors Harbored ALK Genetic Alterations

Patient
No. Sex

Age at
Diagnosis,

years
INSS
Stage

Induction
Treatment

Status Post
Induction HDC Relapse

Last
Status

MYCN
Status

ALK Amplification
Status

ALK
Mutations

Type of ALK
Mutation MAF, %

Technique Used to
Study ALK Mutations

1 M 2.0 4 Rapid COJEC CR CEM No Alive MN-NA ALK-NA Yes R1275Q 26.911 TDS and Sanger

2 M 2.2 4 Rapid COJEC PR BUMEL No Alive MNA ALK-A No NA NA TDS

3 F 4.9 Loc Rapid COJEC PR BUMEL No Alive MNA ALK-A No NA NA TDS

4 M 1.9 Loc Rapid COJEC PR BUMEL Yes Dead MNA ALK-A No NA NA TDS and Sanger

5 F 3.5 4 Rapid COJEC VGPR BUMEL Yes Dead MNA ALK-A No NA NA TDS

6 M 2.3 4 Rapid COJEC MR BUMEL Yes Dead MN-NA ALK-NA Yes R1275Q 30.584 TDS and Sanger

7 M 2.5 Loc Rapid COJEC SD BUMEL No Alive MNA ALK-NA Yes F1174L 50 TDS and Sanger

8 F 1.5 4 Rapid COJEC PR BUMEL Yes Dead MN-NA ALK-NA Yes F1245C 50 TDS and Sanger

9 F 2.0 4 Rapid COJEC VGPR CEM Yes Dead MNA ALK-NA Yes R1275Q 45.123 TDS and Sanger

10 M 2.6 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-NA Yes F1174L . 20 Sanger

11 M 2.3 4 Rapid COJEC PR BUMEL No Alive MNA ALK-A No NA NA TDS

12 F 1.2 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-A No NA NA TDS

13 M 2.6 4 Rapid COJEC VGPR BUMEL No Alive MNA ALK-NA Yes R1275Q 3.994 TDS

14 M 4.8 4 MOD. N7 PR BUMEL Yes Dead MNA ALK-NA Yes I1170S . 20 TDS and Sanger

15 F 1.3 4 Rapid COJEC PR BUMEL No Alive MNA ALK-NA Yes F1174L 0.135 TDS

16 F 2.0 4 MOD. N7 PR BUMEL No Alive MN-NA ALK-NA Yes R1275Q 45.986 TDS and Sanger

17 M 4.0 4 Rapid COJEC VGPR BUMEL Yes Alive MNA ALK-NA Yes A1274S/
G1272V/
G1272W

0.352/
0.302/
0.275

TDS

18 M 1.3 4 MOD. N7 PR BUMEL No Alive MNA ALK-NA Yes F1174L 32.382 TDS and Sanger

19 F 4.3 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-NA Yes F1174L . 20 Sanger

20 M 1.1 4 Rapid COJEC PR BUMEL No Alive MN-NA ALK-NA Yes F1174L . 20 Sanger

21 M 9.7 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-NA Yes F1174L 4.37 TDS

22 M 2.0 4 Rapid COJEC PR BUMEL No Alive MNA ALK-NA Yes F1174L 26.982 TDS and Sanger

23 F 1.6 4 Rapid COJEC VGPR BUMEL Yes Dead MNA ALK-NA Yes R1275Q 0.24 TDS

24 F 6.8 4 Rapid COJEC PR BUMEL No Alive MN-NA NA Yes I1170N 2.8 NGS

25 F 2.1 4 Rapid COJEC PR CEM Yes Dead MNA ALK-A No NA NA TDS

26 M 2.7 4 Rapid COJEC PR BUMEL Yes Dead MN-NA ALK-NA Yes F1174L 23.554 TDS and Sanger

27 M 1.7 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-A No NA NA TDS

28 M 1.7 4 Rapid COJEC VGPR BUMEL Yes Dead MNA ALK-NA Yes F1245L 38.402 TDS and Sanger

29 F 3.9 4 Rapid COJEC VGPR BUMEL No Alive MNA ALK-NA Yes F1245V . 20 Sanger

30 M 2.8 4 Rapid COJEC PR BUMEL No Alive MNA ALK-NA Yes F1174L . 20 Sanger

(continued on following page)
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TABLE A3. Clinical Characteristics of 35 Patients Treated by Immunotherapy Whose Tumors Harbored ALK Genetic Alterations (continued)

Patient
No. Sex

Age at
Diagnosis,

years
INSS
Stage

Induction
Treatment

Status Post
Induction HDC Relapse

Last
Status

MYCN
Status

ALK Amplification
Status

ALK
Mutations

Type of ALK
Mutation MAF, %

Technique Used to
Study ALK Mutations

31 M 2.1 4 Rapid COJEC PR BUMEL No Alive MNA ALK-NA Yes L1240V . 20 Sanger

32 F 2.2 4 Rapid COJEC VGPR BUMEL Yes Alive MN-NA ALK-NA Yes R1275L . 20 Sanger

33 F 2.2 4 Rapid COJEC PR BUMEL Yes Dead MNA ALK-NA Yes F1174L . 20 Sanger

34 M 1.9 Loc Rapid COJEC VGPR BUMEL No Alive MNA ALK-NA Yes F1174L . 20 Sanger

35 F 2.0 4 Rapid COJEC PR BUMEL No Alive MNA ALK-NA Yes L1190M . 20 Sanger

NOTE. Among these patients, ALK amplifications were detected in eight cases, and clonal ALK mutations were detected in 21 cases. In addition, six cases with subclonal mutations are also listed.
Abbreviations: ALK-A, ALK-amplified; ALK-NA, ALK not amplified; BUMEL, busulfan and melphalan; CEM, carboplatin, etoposide, and melphalan; COJEC, chemotherapy regimen, details in Figure A1;

CR, complete remission; F, female; HDC, high-dose chemotherapy; INSS, International Neuroblastoma Staging System; M, male; MAF, mutated allele fraction; MNA, MYCN-amplified; MN-NA, MYCN not
amplified; MR, minor response; NA, not applicable; NGS, next-generation sequencing; PR, partial remission; SD, stable disease; TDS, targeted deep sequencing; VGPR, very good partial response.
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