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Abstract 

Image based-corrosion detection has become a widespread practice for steel structures, but fine-

tuning their model parameters is time-consuming. Alternatively, convolutional neural networks 

(CNNs) can also be trained fast and automatically, but they demand a huge training dataset. In 

this paper, a corrosion detection approach based on an artificial neural network (ANN) whose 

training dataset size is less than 0.1% of that of typical CNNs is introduced. The input layer of 

the proposed ANN consists of textural and color properties. In the present work, different color 

spaces and textural properties are examined for their impact on the robustness of the ANN. 

Results reveal that the best color channels can be achieved by combining CIE L*u*v* and YUV 

color spaces. Moreover, energy is selected as the best texture feature with respect to the ANN 

robustness. The proposed ANN outperforms an available image processing algorithm from the 

perspective of both speed and accuracy. In conclusion, this ANN can be used for actual 

applications after a fast and straightforward training step. 



Keywords: Steel structures, Image-based corrosion detection, Artificial neural network, Deep 

hidden layers, Color space, Texture metric. 

1. Introduction 

NACE reports that the global annual cost of corrosion amounted approximately to US$2.5 

trillion in 2016 (Koch, Varney, Thopson, Moghissi, Gould, & Payer, 2016). Corrosion is also 

reported to be responsible for 42% of engineering components' failures (Petrovic, 2016). In 

these circumstances, timely corrosion detection can mitigate further damage, and prevent heavy 

casualties or environmental pollutions.  

Industry uses different methods for corrosion detection, including visual inspection (See, 

Drury, Speed, Williams, & Khalandi, 2017), electromechanical impedance method (Zhu, Luo, 

Ai, & Wang, 2016), ultrasonic inspection (Sharma & Mukherjee, 2015), thermography 

(Doshvarpassand, Wu, & Wang, 2019), eddy current technique (He, Tian, Zhang, Alamin, 

Simm, Jackson, 2012), radiography (McCrea, Chamberlain, & Navon, 2002) and acoustic 

emission technique (Cole & Watson, 2006).  

Visual inspection is more popular than the others because it is contactless and allows easy 

interpretation. However, in some specific cases it is executed at a huge cost, both from 

economic and time terms. For instance, corrosion monitoring of a giant crude carrier with a 

typical steel area of 600,000 m2 is time-consuming and demands scaffolding and/or presenting 

at hazardous zones (Ortiz, Bonnin-Pascual, Garcia-Fidalgo, & Company, 2016). Researchers 

proposed to use uncrewed aerial or underwater vehicles to solve this problem by capturing 

hundreds of images from infrastructures in a short time and at zero life risk conditions 

(Jahanshahi & Masri, 2013), (Khan, Ali, Anwer, Adil, & Meriaudeau, 2018).  

To facilitate the procedure even more, image processing algorithms like the adaptive ellipse 

approach (Chen, Yang, & Chang, 2009), rust defect recognition method (Shen, Chen, & Chang, 



2013), image restoration and enhancement algorithm (Khan et al., 2018) and weak classifier 

color based corrosion detector (Bonnin-Pascual & Ortiz, 2014) came into the picture to segment 

corrosion-like regions. However, fine-tuning their parameters is done by trial-and-error and 

thus time-consuming (Ahuja & Shukla, 2018). 

On the other hand, machine learning algorithms can be trained fast and automatically for 

pattern recognition. Hence, they are considered excellent alternatives for image-based corrosion 

detection algorithms. Several researchers developed a convolutional neural network (CNN) as 

a deep learner for analyzing imagery (Cha, Choi, & Büyüköztürk, 2017). Successful 

implementation of a CNN for corrosion detection has for example been reported in (Cha, Choi, 

Suh, Mahmoudkhani, & Büyüköztürk, 2018), (Bastian, N, Ranjith, & Jiji, 2019). As a 

drawback, it should be mentioned that a CNN requires a relatively large training dataset. For 

instance, Bastian et al. (2019) mentioned that 140,000 optical images of pipelines with different 

corrosion levels have been used for training their CNN. Although converting video records to 

thousands of individual shots as a handy alternative alleviates the situation, they are not always 

available.  

In these circumstances, an artificial neural network (ANN) is helpful since it requires less 

training data than a CNN. Moreover, an ANN can be applied at the pixel level; as such an image 

of m by n pixels provides m×n samples. Application of an ANN for corrosion detection dates 

back to 1955 when Furuta, Deguchi and Kushida used an ANN to determine threshold levels 

for the HSV (Hue-Saturation-Value) color space. Although it seems an attractive application, 

an image processing algorithm was used for the main corrosion detection. Livens et al. (1995) 

utilized a specific ANN case, i.e. a Learning Vector Quantization network, for corrosion 

detection. They classified corrosion based on textural properties only. Jahanshahi and Masri 

(2013) used color wavelet-based texture analysis and built an ANN for corrosion detection. 

They concluded that both color and textural properties should be used.  



Color images contain more data than greyscale ones, and therefore these are used primarily 

for corrosion detection. Naik, Sajid, Kiran and Chen (2020) constructed a multi-layer 

perceptron working based on the color properties only. They evaluated four different color 

spaces and concluded that the 'rgb' color space outperforms the others. They also mentioned 

that the lack of textural properties would lead to some limitations. Ortiz et al. (2016) optimized 

an ANN with one hidden layer for coating breakdown/corrosion detection by considering both 

color and textural properties. Although achieving good results, they neglected to mention the 

textural property used in their paper.  

As mentioned earlier, CNNs are powerful for analyzing visual imagery  but require a vast 

training dataset. Having multiple hidden layers is the common feature of CNNs. To combine 

this deep learning feature with the pixel-based nature of ANNs, this paper evaluates the 

potential of building a robust ANN with different numbers of hidden layers for corrosion 

detection. The entire study is established using open source software (Python 3.7, OpenCV and 

Pytorch). The proposed ANNs are trained using a small dataset that is only a fraction of what 

convolutional neural networks, commonly used in image-based classification tasks, would 

require.  

First, the pixel-level results of an ANN with one hidden layer are compared with those of an 

image processing-based algorithm described in (Khayatazad, De Pue & De Waele, 2020). This 

algorithm, presented in Figure 1, uses two weak classifiers based on color and texture features. 

It starts with reducing the smallest side of a given image to 256 pixels whilst conserving the 

aspect ratio. Then the roughness analysis is performed for each patch of the resized image. If 

the roughness of a patch is less than a threshold value, that patch - including all of its pixels - 

is considered non-corroded. If not, the color analysis is next performed on all pixels and pixels 

with a color belonging to the color spectrum of corrosion are eventually defined as corroded 

pixels and the rest as non-corroded. Obviously, several threshold parameters must be fine-tuned 



for this algorithm and consequently this procedure is time-consuming. Moreover, the optimized 

parameter values are case dependent and cannot be used for general purposes. Another 

limitation is that roughness and color analyses can only be performed sequentially and the 

performance of the algorithm depends for a large amount on the accuracy of the first step. On 

the contrary, the proposed ANN using identical color and texture features, considers both color 

and texture simultaneously and can be trained fast and automatically for any new case. 

 

Figure 1: Corrosion detection flowchart of the benchmark image processing algorithm 

(Khayatazad et al., 2020). 

 

Next, the ANN hyperparameters (number of neurons and hidden layers) are optimized. The 

features contrast, dissimilarity, homogeneity, energy and correlation are evaluated with respect 

to texture. Regarding color, seven color spaces are investigated. A grouping of two color spaces 

for the input feature is also investigated. 



This paper is organized as follows. Section 2 describes the input features, color and texture. 

Next, the details of the applied artificial neural network are explained in section 3. Section 4 

and 5 present step-by-step the evolution of the proposed ANN for the sake of robust corrosion 

detection. Eventually, the main conclusions of this paper are summarized in section 6. 

2. Input Features of the Artificial Neural Network 

In this paper, both color and textural features will be used as input to the proposed ANN. 

Details of these features are given in the following subsections. Hereunder some general notes 

are presented.  

Before extracting relevant features from the image, the Python cv2.resize() function 

resizes images to smaller dimensions to ensure efficient processing time. The smallest 

dimension of the image is resized to 256 pixels while keeping its aspect ratio. Color features 

are pixel-specific, whereas textural properties are attributed to a patch of pixels. Therefore, the 

proposed ANN takes as input the pixel's color components and the texture feature of the patch 

to which the pixel belongs. A patch size of 15 by 15 pixels is used to accurately represent the 

textural features (Khayatazad et al., 2020). Sola and Sevilla (1997) recommended normalizing 

input features before introducing them to an ANN for faster calculations and better results. 

Since color and textural features have different scales and consequently a different variation 

range, they are normalized using: 

 𝑥 =
𝑥𝑖𝑛𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

Where 𝑥𝑖𝑛𝑖, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the initial, minimum and maximum values of a specific input 

feature. It should be mentioned that these extreme values are determined in the training step of 

an ANN and are stored to be used for the test step.  

2.1. Texture 

When comparing the state of a piece of steel before and after corrosion, the surface texture 

of the corroded component appears rougher. Therefore this visual feature can be used for 



corrosion detection if it is quantified. In the present work, so-called Haralick textural features 

are used for roughness quantification (Haralick, Shanmugam, & Dinstein, 2007). Since these 

textural features demand greyscale images with a predefined number of grey levels 𝑁𝑔, the 

cv2.COLOR_BGR2GRAY function is used to convert color images to greyscale ones. The grey 

level indicates the brightness of a pixel. For instance, a grey level of zero means that the pixel 

absorbs all the light, and therefore it appears in black. Opposite, a grey level of 𝑁𝑔 − 1 means 

that the pixel is white and reflects all the light. Figure 2-a and b present a greyscale image and 

its corresponding grey matrix respectively, when the number of grey levels 𝑁𝑔 is 8.  

In the next step, the Grey-Level Co-occurrence Matrix (GLCM) is built using the 

greycomatrix function, Figure 2-c. The GLCM with a size equal to 𝑁𝑔 × 𝑁𝑔 determines the 

spatial relationship between greyscale values in an image. The matrix component 𝑃(𝑖, 𝑗) 

indicates how often a pixel with a grey value 𝑖 has a specific spatial relationship with a pixel 

with a grey value 𝑗, Figure 2-d. This spatial relationship is determined by distance and angle, 

Figure 2-e. The distance is expressed as the number of pixels and its minimum value is 1 (for 

adjacent pixels). The angle can be either 0°, 45°, 90° or 135°. After the initial calculation, the 

values 𝑃(𝑖, 𝑗) of the GLCM can be normalized to obtain ∑𝑃(𝑖, 𝑗) = 1. 



 

Figure 2: A greyscale patch (a), its corresponding grey levels (b) and grey level co-

occurrence matrix (c). (d) illustrates how the GLCM is constructed. (e) defines distance and 

direction around a pixel. 

Haralick extracted some features from the GLCM and argued that they can be linked to 

textural characteristics (Haralick et al., 2007). For instance, one way to evaluate the grey level 

distribution of a patch of pixels, is to calculate its uniformity:  

 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑃(𝑖, 𝑗)2

𝑁𝑔−1

𝑖,𝑗=0

 (2) 

An utterly uniform patch leads to a uniformity of 1 while the rest gets a value between 0 and 

1. Contrast is another feature measuring the intensity contrast between a pixel and its 

neighbor over the whole patch: 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑖,𝑗=0

 (3) 

Utterly uniform patches get a contrast of zero. Homogeneity measures the similarity of pixels 

in a patch:  

(a) (b)

(c)

(d) (e)



 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑃(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁𝑔−1

𝑖,𝑗=0

 (4) 

Homogeneity approaches one, its maximum value, when the local changes are minimum in a 

patch. Correlation is a measure for the grey-tone linear-dependencies in a patch: 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√𝜎𝑖
2𝜎𝑗

2

𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑖,𝑗=0

 (5) 

where 𝜇 and 𝜎 represent the mean and standard deviation, respectively. Dissimilarity is akin to 

contrast with measuring local variations, but has a linear dependency on off-diagonal entries 

of the GLCM: 

 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ |𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑖,𝑗=0

 (6) 

In the current work, Equation (2) to Equation (6) are evaluated as input features of the 

proposed ANN. 

As mentioned, textural properties are attributed to a patch of pixels, so the first calculation step 

is to form patches. The implemented algorithm for this purpose is presented as follows. After 

downsampling a given image so that its smallest dimension is 256 pixels, a patch with a size of 

15×15 pixels is assigned to the top left corner of the image. The next patch is located exactly 

at the right side of the previous one. In other words, pixels from the 16th to the 30th columns 

and the 1st to the 15th rows form the second patch. This approach is repeated for the next 

patches. In case the image width is not a multiplication of 15, a final patch of size 15×15 pixels 

is formed at the top right of the image, although it overlaps with the previously formed patch. 

The second row of patches is formed in an identical way, now starting from the 16th row of 

pixels. That procedure is continued for the entire image. If the image height is not a 

multiplication of 15 pixels, the last row of patches is situated at the bottom of the image and 

overlaps with the previous row of patches. After patch forming, the GLCM matrix of each patch 



is composed, and the texture feature is calculated. It is assumed that all pixels in a patch inherit 

the texture feature of the patch. Some pixels near the right and or bottom sides of the image 

might be attributed to more than one patch. The texture feature of the last attributed patch is 

then assigned to such pixel. 

 

2.2. Color  

While texture analysis techniques do not use the color information present in images, color 

can still be considered beneficial for corrosion detection. Although corrosion encompasses a 

characteristic color range, an immediate challenge for color detection is that it heavily depends 

on the illumination of the image. When looking at a structure that is partially in the shade, 

Figure 3, it is clear that shadow causes the corrosion colors to look darker than they actually 

are, while direct sunlight makes them look brighter. Chen et al. (2019) mentioned that choosing 

an adequate color space, i.e. having a channel that describes the illumination, could help 

alleviate this problem. In this work, seven different color spaces (six of them having a channel 

for illumination) are studied. The seventh color space, BGR, is included in this study because it 

is the default color space of OpenCV. The different color spaces are briefly described 

hereunder. 

 

Figure 3: Different levels of illumination, a challenge for corrosion detection. 

Color spaces HSL (hue, saturation, lightness) and HSV (hue, saturation, value) have been 

developed to simulate how humans perceive color. In contrast to BGR (blue, green, red), where 

blue, green and red coordinates can represent the full spectrum in a cube, both HSL and HSV 



values can be represented by coordinates in a cylinder, Figure 4. The Hue is the primary channel 

and takes a value between 0 and 360, representing the angle of rotation in the base plane of the 

cylinder. Saturation varies between 0 and 1 and indicates how intense the color is, with a low 

value for Saturation corresponding to grey color. Lastly, Value and Lightness indicate the 

relative lightness of the color (Brewer, 1999). While they both vary between 0 and 1, Lightness 

goes from black to white and has fully saturated colors at half the height of the outer ring of the 

cylinder, while Value goes from black to fully saturated colors at the outer ring. 

 

Figure 4: HSV and HSL color spaces. 

Both CIE L*a*b* and CIE L*u*v* are CIE uniform color spaces and have been derived from 

the CIE XYZ color space. While CIE L*u*v* (lightness, first chromaticity coordinate, second 

chromaticity coordinate) is used to characterize color displays, CIE L*a*b* (lightness, 

green/magenta chromatic axis, blue/yellow chromatic axis) is used for dyes and colored 

surfaces to emulate human vision. Both color spaces try to represent color so that a proportional 

change in visual importance occurs when a change in color values occurs. In these color spaces, 

L* indicates perceptual lightness (Alessi, Carter, & Fairchild, 2004). 

YUV (luminance, bandwidth, chrominance) is a color space that was used in analog 

televisions. The Y channel is the luminance and contains the greyscale information, while the 

U and V channels are added to contain the color information. In the same way, YUV is used for 

analog encoding, YCbCr (luminance, chroma: blue, chroma: red) is used for digital encoding 

(Podpora, Korbaś, & Kawala-Janik, 2014). 



3. Details of the Proposed Artificial Neural Network 

An ANN comprises different layers, clustering a certain amount of artificial neurons, Figure 

5-a. Neurons of subsequent layers are connected with each other by the use of weighted links, 

as shown in Figure 5-b. In a feed-forward neural network, the current layer only influences the 

next layer. 

 

Figure 5: (a) Typical architecture of a feed-forward ANN, (b) an artificial neuron. 

In this paper, the input layer contains the textural and color properties of the pixels of the 

inspection photographs. Since the goal is to detect corrosion regions in an image, the output 

layer classifies the individual pixels as either non-corroded or corroded. 

Referring to Figure 5-b, the value 𝑥𝑗𝑛 of the 𝑛𝑡ℎ neuron located in the 𝑗𝑡ℎ layer, is determined 

as follows:  

 𝑥𝑗𝑛
′ = ∑ 𝑤𝑖𝑗𝑚𝑛𝑥𝑖𝑚 + 𝜃𝑗𝑛

𝑀

𝑚=1

 (7) 

 𝑥𝑗𝑛 = 𝜑(𝑥𝑗𝑛
′ ) (8) 

Where 𝑥𝑖𝑚 is the value of the 𝑚𝑡ℎ neuron situated in the 𝑖𝑡ℎ layer with 𝑚 = 1,… ,𝑀 neurons, 

𝑤𝑖𝑗𝑚𝑛 is the inter-layer weight, 𝜃𝑗𝑛 is the bias and 𝜑 is the activation function that is applied on 

𝑥𝑗𝑛
′ . In this paper, the activation function for the hidden layers is the rectified linear unit 

(𝑅𝑒𝐿𝑈): 
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Output 

layer
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Non-Corroded
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 𝑥 = 𝑅𝑒𝐿𝑈(𝑥′) = max(0, 𝑥′) (9) 

This function allows a fast convergence while it is not computationally expensive (Szandała, 

2021). The softmax function, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑛) = 𝑒𝑥𝑛 (𝑒𝑥1 + 𝑒𝑥2)⁄  with 𝑛 = 1,2, is applied to 

both neurons of the output layer. The first and the second components of the output layer 

correspond to non-corroded and corroded probabilities that indicate how confident the network 

is that a pixel belongs to a class. A pixel can be classified based on the largest probability of 

the two. For example, values [0.19; 0.81] would result in the categorization of the pixel as 

corroded.  

When an ANN is first initialized, all inter-layer weights and biases get random values 

resulting in a non-sensical output that necessitates training of the ANN. An overview of the 

training step can be seen in Figure 6. This step takes a pixel as input together with its 

corresponding mask. A mask is a representation of the image, with "1" (or black) representing 

a non-corroded pixel and "2" (or white) representing a corroded pixel. This mask serves as the 

ground truth of what is considered corrosion or not and can be manually obtained using any 

photo editing software. Color and texture properties are extracted for each pixel. Then they are 

put in an array together with the value provided by the mask. How wrong the network is, or 

how much the predicted output differs from the desired one, can be determined using a loss 

function. Selecting the appropriate loss function depends on the neural network's task, i.e., 

classification or regression. Since the goal of the proposed ANN is to predict if a pixel is 

corroded or not, which is a classification task, the appropriate loss function is 

CrossEntropyLoss. This loss function minimizes the distance between the predicted 

probability and actual distributions (PyTorch, 2020):  



 

Figure 6: The training step of the proposed ANN. 

 𝑙𝑜𝑠𝑠(𝒙𝑜𝑢𝑡𝑝𝑢𝑡, 𝑚𝑎𝑠𝑘) = 𝑊[𝑚𝑎𝑠𝑘] (−𝒙𝑜𝑢𝑡𝑝𝑢𝑡[𝑚𝑎𝑠𝑘] + 𝑙𝑜𝑔 (∑𝑒𝒙𝑜𝑢𝑡𝑝𝑢𝑡[𝑘]
2

𝑘=1

)) (10) 

It is recommended to have a balanced training set, where each class occurs the same number 

of times. Since this is not practically possible in this work, a class weight W argument is used 

as mentioned in Equation (10).  

The main part of the training step is to update the network parameters (biases and interlayer 

weights) so that the final loss becomes minimum. The most popular approach for parameter 

updating is called mini-batch gradient descent, in which subsets of the whole dataset are 

selected randomly  and fed to the network one by one (Dey, Borra, Ashour, & Shi, 2019). Then 

the average loss function, 𝑙𝑜𝑠𝑠𝑎𝑣𝑔,  is calculated for all members of each subset: 

 𝑙𝑜𝑠𝑠𝑎𝑣𝑔 =∑𝑙𝑜𝑠𝑠(𝑖, 𝑐𝑙𝑎𝑠𝑠[𝑖])

𝑁

𝑘=1

∑𝑤𝑒𝑖𝑔ℎ𝑡[𝑐𝑙𝑎𝑠𝑠[𝑖]]

𝑁

𝑘=1

⁄  (11) 

Where 𝑁 is the number of samples in each subset. The next step is to select an optimization 

method for parameter updating. In this work, the momentum method is used to efficiently deal 

with the mini-batch gradient descent (Sutskever, Martens, Dahl, & Hinton, 2013). The 

momentum method updates the network's parameters using: 

 𝜐𝑡+1 = 𝜇𝜐𝑡 + ∇𝑡 (12) 
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 𝑝𝑡+1 =𝑝𝑡 − 𝑙𝑟𝜐𝑡+1 (13) 

Where 𝜐 is called velocity, 𝑡 denotes the 𝑡𝑡ℎ iteration, 𝑝 is the inter-layer weight or bias, 𝜇 is the 

momentum factor that is equal to 0.9 (Dey et al., 2019), ∇ is the gradient with respect to 

parameter 𝑝 and 𝑙𝑟 is the learning rate. Velocity is zero in the first iteration. The initial value of 

𝑙𝑟 is set to 0.05 and by proceeding the training step, the StepLR function decays the learning 

rate 𝑙𝑟 in a step-wise fashion by a factor of 0.1 after 10 epochs have passed. All data that are 

used for training an ANN comprise a package called an epoch. This epoch should be passed 

through the ANN several times in order to train it. How many times is enough to avoid over or 

under fitting depends on the diversity of the problem. This value proved to be 100 epochs for 

this work due to the combination of mini-batch gradient descent, momentum, and a decaying 

learning rate. 

After training, a test dataset and its corresponding masks are introduced to the ANN. The 

ANN predicts the corroded spots in the test dataset. Then a post-processing step is performed 

to compare the result of the ANN with that of a mask. Eventually, an indicator is used to 

evaluate the performance of the ANN. In this work, the F1-score is used as the performance 

indicator; it is calculated as follows:  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 

Where 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are true positive, false positive and false negative, respectively.  

4. Evaluation of the Proposed ANNs 

4.1. ANN With One Hidden Layer 

This section investigates whether an ANN merely has a benefit because of the automatic 

training or if it outperforms image processing algorithms for corrosion detection as well. For 

this purpose, an ANN with only one hidden layer is compared with a previously reported image 

processing algorithm (Khayatazad et al., 2020). This algorithm uses two weak classifiers based 

on color and texture features (see Table 1)  for corrosion detection.  



It should be mentioned that the ANN proposed in this subsection is also based on the 

parameters mentioned in Table 1. The parameters introduced in Table 1 for composing the 

GLCM matrix have been shown to ensure the best result from both computational cost and 

acceptable accuracy points of view when the image's smallest dimension is 256 pixels 

(Khayatazad et al., 2020).  

 

Table 1: Identical conditions used for both the proposed ANN and the benchmark image 

processing algorithm. 

Color features  

 HSV color channels  

Texture feature  

 Type: Uniformity Grey levels: 32 Distance: 7px Angle: 0° 

Though the image processing algorithm parameters are already fine-tuned, the ANN should 

be trained. The selected initial architecture of the ANN has one hidden layer consisting of 24=16 

neurons. The input layer contains 4 neurons, 3 of which are related to color features (Hue, 

Saturation and Value) and 1 is related to the texture feature uniformity. The network classifies 

a pixel as non-corroded or corroded in the output layer consisting of 2 neurons. Therefore this 

architecture is called the 4[HSV+uniformity]-24-2 architecture. The training dataset consisted 

of 42 images containing varying degrees of corrosion, see Appendix A. While this might seem 

like a meager amount of data, it must be noted that the training occurs on the pixel level, not on 

the image or patch level, which means that 42 images, after resizing, lead to 3,921,920 training 

pixels. The training dataset consists of miscellaneous images, covering: 

• different corrosion colors spanning from red to brown, 

• different corrosion textures from low to high roughness, 

• different backgrounds from the metal itself to the ambient environment including 

water channels, trees, sky, etc., 



• gradual and sudden change in the illumination level, 

• and different misleading objects like rust stain, handwriting in corrosion color on the 

metal surface. 

To compare the size of the required training database for the proposed ANN with that of a 

typical CNN, a conservative estimate is that the ANN needs 100 images instead of 42 for the 

training step. On the other hand, assume that a typical CNN optimistically requires 100,000 

images instead of 140,000 images mentioned in (Bastian et al., 2019) for the same purpose. A 

simple calculation shows that the proposed ANN only needs 0.1% of the CNN's required 

training database.  

After training the ANN, both methods are used to detect corrosion in not only simple images 

but also in images having non-uniform illumination and misleading colors. For this purpose, 

three different datasets are considered. The first one, dataset A, has 14 images in which the 

illumination is uniform and there is no misleading object, e.g. Figure7(a). Dataset B has 8 

images with non-uniform illumination, e.g. Figure 7(b). Finally, there are 8 images in dataset 

C having misleading colors, e.g. Figure 7(c). These 30 new images consisting of 2,762,752 

pixels cover different features already described for the training dataset. From a pixel point of 

view, the training and test datasets own 58.7% and 41.3% of the whole used dataset. Images of 

the test dataset are presented in Appendix A.  

 

Figure 7 presents the post-processing of the original images a-c, by the image processing 

algorithm (Khayatazad et al., 2020) (d-f) and the ANN (g-i). As can be visually observed, the 

ANN offers better results than the image processing algorithm for all images. 

Table 2: Different test image datasets. 

Type  Number  Explanation 

Dataset A  14  Uniform illumination and no misleading colors, e.g. Figure 7-a. 



Dataset B  8  Non-uniform illumination, e.g. Figure 7-b. 

Dataset C  8  Misleading colors, e.g. Figure 7-c. 

 

 

Figure 7: Images from different datasets: (a) uniform illumination and no misleading colors; 

(b) non-uniform illumination; (c) misleading colors. The red regions on images (d) to (f) and 

on images (g) to (i) show the corroded regions detected by the image processing algorithm  

and by the ANN with one hidden layer respectively. 

In the remainder of this paper, the performance of the ANNs and the image processing 

technique shall refer to the overall performance of each method, i.e. for the entire dataset,  

unless stated otherwise. Table 3 reports the F1-score and processing time of both algorithms. 

It can be seen that the performance of the 4[HSV+uniformity]-24-2 architecture surpasses that 

of the image processing algorithm while using the same input parameters. The most significant 

improvement can be seen for images in the presence of misleading colors (dataset C), but a 

considerably better result is also obtained in the presence of uneven illumination (dataset B). 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)



When comparing processing time per image, the ANN can analyze images 32% faster than the 

image processing algorithm. Both observations indicate that the use of an ANN can indeed form 

an improvement for corrosion detection. Figure 8 shows the loss function curve as a function 

of training epochs. The other ANNs that have been trained in this study showed similar loss 

function curves.  

Table 3: Comparing the F1-score and processing time of the 4[HSV+uniformity]-24-2 

ANN architecture and the benchmark image processing algorithm (Khayatazad et al., 2020). 

Images of  Image processing algorithm  4[HSV+uniformity]-24-2 

  Absolute value  Absolute value  Relative value1 

All datasets  0.6462  0.7080  +9.6% 

Dataset A  0.7739  0.8110  +4.8% 

Dataset B  0.6495  0.7037  +8.3% 

Dataset C  0.4196  0.5322  +26.8% 

Time/image [s]  0.33  0.25  -32.0% 

 

1 Relative value is calculated based on the corresponding absolute value of the image processing algorithm. 

 

Figure 8:  Loss function curve of ANN up to 100 training epochs. 

The reported time in Table 3 is the average required processing time for each image. This 

time accounts for reading and resizing an image, extracting the input features from it and 

eventually the binary classification of its pixels. A personal computer with the specifications 

mentioned in Table 4 has been used for running both algorithms.  



Table 4: PC specification. 

O.S.  Microsoft Windows 10 Home 

Processor  AMD Ryzen 7 2700X 

  8 cores @ 3.70 GHz base speed 

GPU  NVIDIA RTX 2060 

  Cores: 384 

  Clock speed: 1365 MHz 

  GPU RAM: 6GB 

RAM  16 GB @ 2999 MHz 

 

4.2. ANN With More Than One Hidden Layer 

In general, an ANN with one hidden layer performs better in memorizing the training data, 

while an ANN with two or more hidden layers can learn the hidden characteristics of the data 

and is, therefore, better in generalization. Hence, this sub-section evaluates the effect of the 

number of hidden layers on the performance of an ANN. Moreover, the influence of different 

input features is also discussed to further improve the ANN's performance.  

It is worth mentioning that both the number of hidden layers and the number of input features 

are considered as the ANN's hyperparameters. Generally, a hyperparameter is set beforehand 

and cannot be learned during training. On the other hand, color and texture features are the 

ANN parameters and are learned during training (Makwe & Rathore, 2021). 

Some ANN properties, e.g., inter-layer weights, take their initial values based on generated 

random numbers. These random numbers make a specific ANN to present slightly different 

results after each training session regardless of experiencing the same training data set. This 

behavior is not desirable when particular items, e.g. different color spaces, are evaluated. In the 

present work, a seed is assigned to avoid this random behavior. A seed is a number used to 



initialize a pseudorandom number generator that generates all random numbers demanded by 

an ANN. 

As mentioned earlier, this study is established on the Python platform. The scikit-image 

package of Python for GLCM calculation, uses a texture property called energy, which relates 

to the property uniformity as follows:  

 𝐸𝑛𝑒𝑟𝑔𝑦 = √𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 (15) 

Since the investigated image processing algorithm had been established based on uniformity, 

the same texture feature was deployed for the ANN proposed in section 4.1. Nevertheless for 

the rest of this paper, the energy texture feature  is used to be consistent with the scikit-image 

package. To ensure that this change does not significantly affect the results an ANN with 

4[HSV+energy]-24-2 architecture was trained and tested. The difference between the overall 

performance of 4[HSV+uniformity]-24-2 and 4[HSV+energy]-24-2 architectures is negligible 

(0.4%). The ANN with 4[HSV+energy]-24-2 architecture is considered as the baseline for the 

remainder of this paper.  

How well a network performs on a test dataset through generalization, is mainly dependent 

on its architecture. Therefore, in this sub-section, several networks with different numbers of 

layers and neurons are evaluated as follows: 

• The number of hidden layers varies between 2 and 6. 

• The number of neurons is equal in each hidden layer. 

• The number of neurons in a hidden layer can be 2n, with 𝑛 = 0, 1, 2, . . . , 8. 

• The performance of each architecture is calculated for 3 seeds (46, 200, 740), and their 

average value is reported as performance. 

After training all plausible architectures, the overall performance of each architecture has 

been calculated and is shown in Figure 9. As can be seen, a simultaneous increase of both 

hidden layers and neurons does not necessarily lead to better performance. The best performing 



architecture is the 4[HSV+energy]-5×24-2 architecture, consisting of 5 hidden layers 

containing 24 neurons in each. A comparison between the best multi-hidden-layer architecture 

with the baseline architecture, 4[HSV+energy]-24-2, can be found in Table 5. It can be seen 

that architecture optimization leads to an increase in overall performance (+3.9%). This is 

mainly attributed to its ability to better handle misleading colors; more than 16% improvement 

is reached for dataset C. A slight decrease (-1.7%) is observed in its ability to deal with uneven 

illumination, dataset B, but this can be compensated for as will be discussed later. There is no 

significant impact on processing time, which can be explained by the relatively low number of 

neurons in the hidden layers, while feature extraction accounts for most of the time. 

 

Figure 9: F1-score of all test data set for all combinations of hidden layers and neurons 

when the input feature consists of HSV color space channels and energy. 

Table 5: Comparing the F1-score and processing time of the 4[HSV+energy]-24-2 and 

4[HSV+energy]-5×24-2 architectures. 

Images of  4[HSV+energy]-24-2  4[HSV+energy]- 5×24-2 

  Absolute value  Absolute value  Relative value1 

All datasets  0.7110  0.7391  +3.9% 

Dataset A  0.8129  0.8304  +2.1% 

Dataset B  0.7033  0.6913  -1.7% 

Dataset C  0.5404  0.6273  +16.1% 



Time/image [s]  0.25  0.25  0.00% 

 

1 Relative value is calculated based on the corresponding absolute value of the 4[HSV+energy]-24-2 architecture. 

 

5. Optimisation of the proposed ANN architecture 

5.1. Color Space 

The seven color spaces introduced in section 2.2 are evaluated in this subsection, while 

energy is consistently used as the texture feature. Table 6 presents the F1-score of the different 

ANNs with an architecture of 4[color space +energy]-5×24-2.  

Table 6: F1-score of different ANNs with an architecture of 4[color space +energy]-5×24-2 

and seven different color spaces. Numbers in parentheses show the rank of the algorithm for 

each dataset. 

Images of 
4[color space +energy]-5×24-2 

 CIE L*u*v*  BGR  HSV  YUV 

All datasets  0.7426(1)  0.7410(2)  0.7391(3)  0.7368(4) 

Dataset A  0.8253(2)  0.8190(5)  0.8304(1)  0.8192(4) 

Dataset B  0.7026(2)  0.7066(1)  0.6913(6)  0.6932(4) 

Dataset C  0.6377(2)  0.6388(1)  0.6273(6)  0.6360(3) 

Time/image [s]  0.25(1)  0.25(1)  0.25(1)  0.25(1) 

         

  YCrCb  CIE L*a*b*  HSL   

All datasets  0.7354(5)  0.7351(6)  0.7103(7)   

Dataset A  0.8128(7)  0.8183(6)  0.8211(3)   

Dataset B  0.7006(3)  0.6921(5)  0.6578(7)   

Dataset C  0.6346(4)  0.6326(5)  0.5688(7)   

Time/image [s]  0.26(2)  0.25(1)  0.25(1)   

 



It is clear that whilst using the HSV color space for corrosion detection leads to relatively 

good results, it is not the best performing one overall. The only dataset for which it yields 

optimal results is dataset A, where no real difficulties encountered in real life have been 

introduced. Comparing all color spaces, CIE L*u*v*  has the best overall rank. Although the 

BGR color space has a better result than CIE L*u*v* for datasets B and C, it does not show a 

good result for dataset A (rank 5 out of 7). Therefore, CIE L*u*v* color space is considered the 

best choice for corrosion detection of the current test dataset. Changing the color space has no 

real influence on the processing time, except for a slight increase for the YCrCb color space.  

When comparing 4[CIE L*u*v*+energy]-5×24-2 with the values for the baseline 

architecture 4[HSV+energy]-24-2, Table 7, there is a clear improvement in overall performance 

(+4.4%) and a significant improvement for dataset  C (+18.0%). The performance of the 

previous architecture, 4[HSV+energy]-5×24-2, over dataset B was -1.7% of the corresponding 

performance of the baseline architecture, Table 5. The current architecture, 4[CIE 

L*u*v*+energy]-5×24-2, alleviates the situation and has a negligible performance reduction 

for dataset B (-0.1%). 

Table 7: Comparing the F1-score and processing time of the 4[HSV+energy]-24-2 and 

4[CIE L*u*v*+energy]-5×24-2 architectures. 

Images of  4[HSV+energy]-24-2  4[CIE L*u*v*+energy]- 5×24-2 

  Absolute value  Absolute value  Relative value1 

All datasets  0.7110  0.7426  +4.4% 

Dataset A  0.8129  0.8253  +1.5% 

Dataset B  0.7033  0.7026  -0.1% 

Dataset C  0.5404  0.6377  +18.0% 

Time/image [s]  0.25  0.25  0.00% 

 

1 Relative value is calculated based on the corresponding absolute value of the 4[HSV+energy]-24-2 architecture. 



 

Whilst only one color space is used in image processing techniques, nothing stands in the 

way of adding more color spaces to the input layer of the proposed ANN. This can be helpful 

since using multiple color spaces simultaneously can lead to a better color interpretation while 

it is not accompanied with a significant penalty in the processing time. To evaluate the potential 

of this idea, two color spaces are used simultaneously. This leads to 7 input features and thus 

an ANN with the format 7[color space-1 + color space-2 +energy]-5×24-2.  

After evaluating all possible combinations, the 7[CIE L*u*v*+YUV+energy]-5×24-2 

architecture presents the best overall performance. Table 8 shows the result of this optimal 

architecture as well as the baseline architecture 4[HSV+energy]-24-2. As can be seen, the ANN 

architecture 7[CIE L*u*v*+YUV+energy]-5×24-2 hits a slightly better overall performance 

compared to the architecture based on the CIE L*u*v* color space that was reported in Table 

7. The former and latter are respectively 4.8% and 4.4%  better than the reference architecture. 

The architecture with 7 input features shows not only a better result for dataset B compared to 

architecture 4[CIE L*u*v*+energy]-5×24-2, Table 7, but also outperforms the baseline 

architecture. ANN architecture 7[CIE L*u*v*+YUV+energy]-5×24-2 furthermore delivers 

significantly better results for those images containing misleading objects (+19.8%), database 

C, compared to the reference architecture. Lastly, using two color spaces causes a mere 4% 

increase in processing time, which can be considered an insignificant disadvantage compared 

to the significant performance improvement.  

Table 8: Comparing the F1-score and processing time of the 4[HSV+energy]-24-2 and 7[CIE 

L*u*v*+YUV+energy]-5×24-2 architectures.  

Images of  4[HSV+energy]-24-2  7[CIE L*u*v*+YUV+energy]- 5×24-2 

  Absolute value  Absolute value  Relative value1 

All datasets  0.7110  0.7450  +4.8% 



Dataset A  0.8129  0.8241  +1.4% 

Dataset B  0.7033  0.7042  +0.1% 

Dataset C  0.5404  0.6472  +19.8% 

Time/image [s]  0.25  0.26  +4.0% 

 

1 Relative value is calculated based on the corresponding absolute value of the 4[HSV+energy]-24-2 architecture. 

 

5.2. Texture Features 

Considering the ANN architecture 7[CIE L*u*v*+YUV + texture feature]-5×24-2, the 

texture features of Equations (3) to (6) are evaluated in order to determine the most appropriate 

one. Table 9 presents the F1-score of these architectures. The dissimilarity and homogeneity 

texture features present the best performance regarding the datasets B and C, respectively. 

However, the architecture with the energy texture feature has the best overall performance. 

Moreover, the results of this architecture show a minimum deviation in rank for different 

datasets, indicating the robustness of this texture feature for corrosion detection. 

Table 9: Performance evaluation of 7[CIE L*u*v*+YUV + texture feature]-5×24-2 

architecture considering different texture features. Numbers in parentheses show the rank of 

the algorithm for each dataset. 

Images of 

 7[CIE L*u*v*+YUV + Texture feature]-5×24-2 

 Energy  Contrast  Homogeneity  Correlation  Dissimilarity 

All datasets  0.7450(1)  0.7287(4)  0.7400(2)  0.7206(5)  0.7371(3) 

Dataset A  0.8241(1)  0.8213(3)  0.8171(4)  0.7926(5)  0.8235(2) 

Dataset B  0.7042(2)  0.6891(5)  0.6976(4)  0.7017(3)  0.7061(1) 

Dataset C  0.6472(2)  0.6063(5)  0.6475(1)  0.6137(4)  0.6168(3) 

Time/image [s]  0.26(1)  0.26(1)  0.26(1)  0.26(1)  0.26(1) 



6. Discussion 

Figure 10 presents a summary of the best architecture in each step of this study. As shown, 

all evaluated ANNs outperformed the image processing algorithm for all investigated datasets 

(i.e., uniform illumination, non-uniform illumination, misleading objects).  

The capability of architectures with multiple hidden layers for better corrosion detection has 

been investigated. Results reveal that such architectures can yield better results for the overall 

dataset as compared to an architecture with a single hidden layer (increase of 3.9%)As shown 

on Figure 10, the improvement is most pronounced for the subset of images with misleading 

objects (dataset C), but negligible or slightly worse for the subset containing images with 

different levels of illumination (dataset B).  

Based on an evaluation of different color spaces, it was shown that using the CIE L*u*v* 

color space instead of HSV led to a 1.6% increase in the relative performance for the subset of 

images with different levels of illumination (dataset B), Figure 10. This proves that using a 

color space with a channel that better describes illumination, can help alleviate the challenges 

encountered with images containing different illumination levels. Using two color spaces, and 

thus almost doubling the number of input features, increased computing time with not more 

than 4%. In return, the architecture's performance is slightly improved when CIE L*u*v* and 

YUV color spaces are used in combination, Figure 10. Different texture features have also been 

evaluated. Results show that when the energy texture feature is incorporated in the architecture, 

the best overall result can be achieved. Figure 10 shows a deterioration for the subset containing 

non-challenging images (dataset A). This slight deterioration is considered insignificant since 

dataset A typically gets a very high hit rate, ensuring a desirable margin of safety. 



 

Figure 10: F1-score of the different ANNs studied in this paper.  

 

7. Conclusions 

This paper has proven the outstanding merit of artificial neural networks compared to a 

previously developed image processing algorithm for corrosion detection. As stated, the 

required size of the proposed ANN's training dataset is a few orders of magnitude of that of a 

typical CNN, demonstrating its practical relevance. The paper's findings prove that combining 

the deep learning feature of CNNs with the pixel-based nature of ANNs builds a robust ANN 

for corrosion detection. 

The presence of different levels of illumination and misleading objects in an image are 

considered as two major challenges in image-based corrosion detection techniques. Different 

inputs to the ANN architecture, including color and textural features, have been investigated to 

address these issues. First, different color spaces were investigated. Results showed CIE L*u*v* 
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color space works better than the others for corrosion detection. Then, the idea of having two 

color spaces was examined. Although a slight increase occurred in the computing time, 

combining CIE L*u*v* and YUV color spaces yielded better results than an architecture with 

one color space. Different texture features were also studied, but the preselected texture feature, 

energy, worked better than the others.  

Eventually, a feed-forward neural network with an architecture of 7[CIE L*u*v*+YUV+ 

energy]-5×24-2 having 7 input features and 5 hidden layers containing 16 neurons in each is 

considered as the best ANN for image-based corrosion detection, based on the tested 

architectures and datasets used in this work.   

Appendix A 

All of the investigated architectures have been trained by the training dataset shown in Figure 

A.1. The test dataset is shown in Figure A.2. 



 

Figure A.1:  Training dataset. 



 

Figure A.2:  Test dataset. 
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