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One-dimensional symmetric phases protected by frieze symmetries
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We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the
presence of the frieze space groups in one dimension using matrix product states. Here, the spatial symmetries
of the one-dimensional lattice are considered together with an additional “vertical reflection,” which we take
to be an on-site Z2 symmetry. We identify seventeen distinct non-trivial phases, define canonical forms, and
compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
We furthermore construct explicit renormalization group fixed-point wave functions for symmetry-protected
topological phases with global on-site symmetries, possibly combined with time reversal and parity symmetry.
En route, we demonstrate how group cohomology can be computed using the Smith normal form.
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I. INTRODUCTION

Even though there is no intrinsic topological order in
gapped one-dimensional quantum spin chains, the phase di-
agram becomes nontrivial when symmetry constraints are
taken into account [1–9]. This gives rise to the well-known
paradigm of symmetry-protected topological (SPT) order. The
lack of topological order in 1D can be understood as follows.
Starting from the ground state of a gapped local Hamiltonian,
subsequent renormalization group (RG) coarse graining steps
do not alter the phase of the system [10]. After sufficiently
many steps, the number of which is independent of system
size, the state flows towards an RG fixed point exhibiting a
valence bond structure [5,9,10]. A tensor product of unitaries
on the state then turns this state in a trivial product state, ulti-
mately proving that the state we started from is adiabatically
connected to a product state with no topological order. This
procedure can be made explicit by writing the state as a matrix
product state (MPS) [11,12]. In this formalism, one RG step is
equivalent to blocking two sites and acting with an isometry
on the blocked site that maximally removes local entangle-
ment inside the block while retaining the entanglement with
the rest of the system [10]. When symmetries are taken into
account, the RG flow should not break the symmetry. The
picture that arises is that the phase diagram, which in the ab-
sence of symmetries is simply connected, falls apart in distinct
classes that cannot be connected by adiabatic transformations
due to topological obstructions.

Chen et al. showed that the topological obstructions that
prohibit connecting different such SPT phases originate from
the fact that physical symmetries can be implemented by
projective representations of the symmetry group acting on the
entanglement degrees of freedom [5–7]. This crucial insight
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led Chen et al. to a classification of SPT phases in terms of
group cohomology [13]. More specifically, the SPT classifica-
tion corresponds to the second cohomology group H2

β (G, U1),
where G denotes the symmetry group and can contain a global
on-site symmetry subgroup, time reversal, parity, or combina-
tions thereof. Here, β denotes the nontrivial action of G on the
U1 module in case of time reversal or parity symmetry.

A folklore example is one where the global on-site symme-
try group is Z2 × Z2. Since the second cohomology group of
Z2 × Z2 is H2(Z2 × Z2, U1) = Z2, Z2 × Z2 can protect one
nontrivial symmetry-protected phase known as the Haldane
phase [2,3,14,15]. In translationally invariant systems, the
classification is refined to H1

α (G, U1) × H2
β (G, U1), where H1

denotes the first cohomology group [5].
In this paper, we demonstrate that SPT phases can also be

protected by quasi-one-dimensional lattice symmetries. The
symmetry groups we consider are the seven so-called frieze
groups [16]. These are defined as being the infinite discrete
subgroups of the isometries of a strip, Isom([0, 1] × R).
Apart from translations, the generators of the frieze groups are
reflections in the horizontal or vertical direction, π rotations
(equivalent to the composition of a horizontal and vertical
reflection) and glide reflections. The seven distinct frieze
groups these generators give rise to are denoted by F0 (only
translation), FV (translation + vertical reflection), FH (transla-
tion + horizontal reflection), FR (translation + π -rotation), FG

(translation + glide reflection), FRG (translation + π -rotation
+ glide reflection), and FV H (translation + two reflections).
In case of a glide reflection, acting with this glide reflection
twice is equivalent to the action of the translation generator.

We derive the SPT classification corresponding to these
symmetries by imposing the symmetry on a general injective
MPS and identifying topologically distinct ways in which this
symmetry can be implemented [17]. Here, any on-site Z2

symmetry of the system could play the role of the vertical
reflection in the frieze groups. However, we preserve the
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geometrical interpretation and represent the vertical reflection
as a swap of the two physical degrees of freedom associated
with every site (and thus, with every local MPS tensor). The
physical models for which this analysis is relevant include
ladder systems, systems with two flavors of particles and,
notably, the transfer matrix of PEPS. Ultimately, we obtain
seventeen nontrivial phases. Furthermore, by imposing the
spatial symmetries directly on a generic MPS, the resulting
phases are put in one-to-one correspondence with the struc-
ture of the local tensors, in particular, their transformation
behavior. This structure can in turn be imposed in numerical
algorithms. Indeed, by making full use of spatial symmetries
and imposing the adequate transformation behavior on the
local tensors, for which this paper provides a dictionary, the
number of variational degrees of freedom in numerical simu-
lations can be significantly reduced, thus allowing for higher
resolution simulations.

A. Outline

In Sec. II, we begin by providing a review of matrix product
states, recapitulating the concepts of MPS injectivity, gauge
transformations, the transfer matrix and the fundamental the-
orem of MPS. After reconsidering the implementation of
symmetries in MPS and how this leads to the SPT classifi-
cation of Chen et al. in Sec. III, we present in Sec. III A a
method to compute group cohomology and explicit cocyles
from the Smith normal form of the coboundary map1 and
in Sec. III B construct explicit correlation length zero MPS
tensors transforming according to given cohomology classes
characterizing an SPT phase. We explicitly construct our
ansatz from the nontrivial 2-cocycle of Z2 × Z2 in Sec. III B 1
and find that it reduces to the fixed point cluster state dressed
with a trivial dimer state. In Sec. III C, we generalize our
ansatz and argue how an MPS transforming on the physical
level in some arbitrary representation of a finite symmetry
group can be constructed in such a way that the virtual bond
dimension is as small as possible. In Sec. IV, we address the
main question of this paper, namely we construct the SPT
classification for frieze symmetric MPS and construct canon-
ical forms for most of these phases. Finally, to illustrate the
generality of our approach, in Sec. V, we reconsider the prob-
lem of imposing time reversal symmetry in MPS and combine
time reversal with shifts over one site. Some technical details
are relegated to Appendix A, and in Appendix B, we demon-
strate our algorithm to compute cocycles of H2

βP
(ZP

2 , U(1)),
the second cohomology of Z2 with nontrivial group action
originating from parity symmetry.

B. Summary of results

In Table I, below we give an overview of the symme-
try groups we consider and the SPT classification they give
rise to.

Translation symmetry in itself does not give rise to non-
trivial SPT phases. It can be shown that every translationally

1After completion of this manuscript we came to understand that
this algorithm appeared previously in Ref. [18].

TABLE I. Overview of the SPT classification of frieze group
symmetries as well as of time reversal. F T

1 : independently symmetric
under translations over one site and time reversal, F T

2 : translation
invariance over two sites and invariance under combined action of
translation over one site and time reversal.

Symmetry SPT classification

F0 /

FV Z2

FH (parity) Z×2
2

FR Z×2
2

FG /

FRG Z×2
2

FV H Z×4
2

F T
1 Z2

F T
2 /

invariant MPS admits a uniform representation, as was shown
in Ref. [12]. The reflection in the FV symmetry group can be
thought of as an on-site Z2 symmetry. We rederive that FV

protects one nontrivial SPT phase, and provide an explicit
MPS representation in which the local MPS tensors have
definite V -parity. The reflection in FH is equivalent to the
parity considered in Ref. [5]. Three nontrivial SPT phases are
found, in accordance with [5], and a canonical MPS is con-
structed in which the tensors have definite H-parity, possibly
at the cost of introducing nontrivial bond tensors [19]. The
same classification is found for FR symmetry, not previously
considered elsewhere. FG symmetry admits only the trivial
phase and we show that every FG-symmetric MPS can be
brought in a manifestly FG-invariant form. In case of the larger
symmetry groups FRG and FV H there are respectively three and
seven nontrivial phases. To our knowledge, also the symmetry
groups FG, FRG, and FV H have not previously been considered
in the literature.

MPS with independent translation symmetry over one site
and time reversal symmetry can protect one nontrivial SPT
phase as demonstrated in Ref. [5], if time reversal is imple-
mented linearly. We rederive this result and show that in the
nontrivial phase the MPS tensors transform according to a
quaternionic representation of ZT

2 . It is argued that injective
MPS cannot be invariant under a projective implementation
of time reversal symmetry, an MPS interpretation of the Lieb-
Schultz-Mattis theorem. Finally, to demonstrate the generality
of our approach we also consider MPS which are symmetric
under translations over two lattice sites and the combined
action of a one-site translation and time reversal, denoted by
the symmetry group F T

2 . We find that in this case no nontrivial
phases are retained.

II. REVIEW OF MATRIX PRODUCT STATES

In this section, we present a brief review of injective matrix
product states. We focus on some key aspects that are used to
derive the frieze classification below.

In this paper, we consider bosonic spin systems. The
Hilbert space is simply the tensor product of the local d-
dimensional Hilbert spaces of the constituent spins, H ∼=
(Cd )⊗N . A matrix product representation of a state in H with
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periodic boundary conditions is of the form

|ψ〉 =
∑
{ik}

Tr
(
Ai1

1 Ai2
2 . . . AiN

N

) |i1〉 |i2〉 . . . |iN 〉 . (1)

Such a periodic MPS can be pictorially represented as

(2)

The variational degrees of freedom are contained in the lo-
cal tensors (Ai

n)αβ ∈ CD ⊗ CD ⊗ Cd , where D is called the
bond dimension. Every state in H can be represented with a
bond dimension that scales exponentially in the system size,
but the power of MPS lies in the fact that ground states
of gapped local Hamiltonians can be well approximated by
MPS with a bond dimension that scales polynomially in the
number of spins [11]. An MPS representation of a state |ψ〉
is never unique: a gauge transformation Ai

n �→ X −1
n Ai

nXn+1

clearly leaves the state invariant because the gauge tensors Xi

cancel on the bonds.
In case of translation invariance, it can be shown that one

can always carry out a gauge transformation that brings the
translationally invariant MPS in a canonical uniform form in
which An ≡ A, ∀n [12]:

(3)

Gauge transformations can furthermore be used to bring the
MPS parametrization in a left- or right-canonical form, char-
acterized respectively by

(4)

(5)

We define the transfer matrix E as

(6)

The transfer matrix captures all the relevant information about
the entanglement and correlations of the state. Moreover, the
transfer matrix determines the MPS uniquely up to a local
change in basis. This follows from the observation that the
transfer matrix defines a completely positive (CP) map where
the local MPS tensors play the role of Kraus operators, com-
bined with the fact that a Kraus decomposition of a CP map is
unique up to unitary equivalence [20].

If the matrices {Ai|i = 1, . . . , d} generate (via linear com-
binations and products) the entire D × D matrix algebra, the
MPS is said to be injective. In that case, the transfer matrix
(interpreted as an D2 × D2 matrix from the left pair of indices
to the right pair) has a unique eigenvalue of largest magnitude
that in an appropriate normalization of the MPS tensors can be

taken to be one. Moreover, when the MPS is in a left or right
canonical form, the corresponding eigenvector is 1 as follows
from (4) and (5).

By far the most important property of injective MPS is
that it satisfies the requirements of the fundamental theorem
of MPS: two injective uniform MPS defined by local tensors
Ai and Bi describe the same state |ψ (A)〉 ∼ |ψ (B)〉 if and
only if there is a gauge transformation X and a phase θ that
intertwines the two tensors: Ai = eiθ X −1BiX . If A and B are
simultaneously in left (or right) canonical form, then X can
be chosen to be unitary. Furthermore, eiθ is uniquely defined,
whereas X is only defined up to an overall scaling. Put differ-
ently, for Bi = Ai, the relation Ai = eiθ X −1AiX implies θ = 0
mod 2π and X = c1 for some c ∈ C, as follows readily from
the definition of injectivity.

III. EXPLICIT SYMMETRIC TENSORS

In this section, we review how symmetries are imple-
mented in the tensor network language and discuss how the
SPT classification arises from the projective representation
of the underlying symmetry group. We present an algorithm
to compute group cohomology and explicit cocycles using
the Smith normal form and give an MPS ansatz that realizes
the SPT phases classified by a given 1- and 2-cocycle. We
work out this ansatz for the nontrivial 2-cocycle of Z2 × Z2

and demonstrate that this representative MPS is the tensor
product of the correlation length zero cluster state and a trivial
dimer state. We then discuss how an MPS can be constructed
for every possible physical representation of a given finite
symmetry group such that the bond dimension is minimal.

If an injective translationally invariant MPS |ψ (A)〉 is
invariant under the action of a unitary on-site symmetry trans-
formation, i.e., U ⊗N

g |ψ (A)〉 ∼ |ψ (A)〉 for all g ∈ G, there
must exist, for every g ∈ G, a phase ϕ(g) and a gauge trans-
formation Xg such that∑

j

(Ug)i jA
j = eiϕ(g)X −1

g AiXg. (7)

This equation can only admit solutions if Ug forms a linear
unitary representation of the on-site symmetry group G. If
the MPS is in either left or right canonical form, the gauge
matrices Xg can be chosen to be unitary. Because of the overall
scale freedom in how they are determined, it follows that they
only need to constitute a projective representation of G, i.e.,
they form a representation of G up to phase:

XgXh = eiω(g,h)Xgh. (8)

Here, the ω(g, h)′s satisfy the well-known 2-cocycle equations

ω(g, h) + ω(gh, k) = ω(g, hk) + ω(h, k) mod 2π, (9)

expressing associativity of the multiplication of the gauge ma-
trices Xg. Solutions to this constraint are called 2-cocyles. The
phase ϕ(g), on the other hand, constitutes a one-dimensional
linear representation of the symmetry group:

ϕ(g) + ϕ(h) = ϕ(gh) mod 2π. (10)

The scale freedom in determining gauge transformations im-
plies that the matrices Xg can be replaced with an equivalent
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choice of the form Xg �→ eiγ (g)Xg. Under such a redefinition
the cocycles transform according to

ω(g, h) �→ ω(g, h) + γ (g) + γ (h) − γ (gh). (11)

Hence, in the classification of projective representa-
tions labeled by 2-cocycles, these redefinitions have
to be modded out, giving rise to equivalence classes
of projective representations. Cocycles ω of the form
ω(g, h) = γ (g) + γ (h) − γ (gh), which are equivalent to the
choice ω(g, h) = 1, are called coboundaries. The equiva-
lence classes [ω], defined by [ω] = [ω′] ⇐⇒ ω(g, h) =
ω′(g, h) + γ (g) + γ (h) − γ (gh), are exactly classified by
the second cohomology group of G with respect to U1,
H2(G, U1). In the context of group cohomology, the one-
dimensional linear representation ϕ(g) is referred to as a
1-cocycle and is correspondingly characterized by H1(G, U1).
Chen et al. showed that every choice of a 1-cocycle ϕ ∈
H1(G, U1) and cohomology class [ω] ∈ H2(G, U1) gives rise
to a distinct SPT phase [5].

In case of a finite symmetry group, the second cohomol-
ogy group is always Zd1 × Zd2 × · · · × ZdN for topological
indices d1, d2, . . . , dN , giving rise to a finite number of SPT
phases. Explicit representative 2-cocycles can be obtained by
writing the 2-cocycle condition as a linear system modulo
2π and solving it using the Smith normal form, as explained
below in Sec. III A.

In case the symmetry group contains time reversal or par-
ity transformations, the above picture has to be modified as
follows.

Since the ZT
2 time reversal is implemented antiunitarily

[21], the time reversal operator can be written as a T = UK ,
where K denotes complex conjugation in the basis with re-
spect to which the MPS tensors Aj are defined, and U is
a unitary satisfying UU = ±1 depending on whether time
reversal is implemented linearly or projectively (Sec. V A).
Hence, on the MPS tensors, a symmetry g ∈ G = H � ZT

2 , H
denoting the global on-site symmetry group, acts according to∑

j

(Ug)i jCg(Aj ) = eiϕ(g)X −1
g AiXg. (12)

The action of Cg on Ai is taking the complex conjugate only if
g contains a time reversal.

From acting with time reversal twice on the MPS tensor,
it follows that in this case the matrices Xg form a generalized
projective representation of the symmetry group, as their mul-
tiplication also contains the action Cg:

XgCg(Xh) = eiω(g,h)Xgh, (13)

whereas the phases exp(iϕ(g)) obey

eiϕ(g)Cg(eiϕ(h) ) = eiϕ(gh). (14)

Hence, ϕ(g) and ω(g, h) satisfy the 1- and 2-cocycle
constraints with a nontrivial group action that takes the condi-
tioned complex conjugation Cg into account. The 1-cocycles
constraint reads

ϕ(g) + αT
g (ϕ(h)) = ϕ(gh) mod 2π, (15)

whereas 2-cocycles satisfy

ω(g, h) + ω(gh, k) = ω(g, hk) + βT
g (ω(h, k)) mod 2π,

(16)
where the group actions αT

g and βT
g are multiplication by −1 if

g contains time reversal. The SPT classification in this case is
given by H1

αT (G, U1) × H2
βT (G, U1). The equivalence classes

of H2
βT are given by [ω] = [ω′] ⇐⇒ ω(g, h) = ω′(g, h) +

γ (g) + βT
g (γ (h)) − γ (gh), whereas H1

αT classifies 1-cocycles
up to equivalence of the form ϕ(g) �→ ϕ(g) + αT

g (c) − c for
an arbitrary constant c ∈ [0, 2π ) as coboundaries of the form
αT

g (c) − c trivially solve the 1-cocycle condition (15).
In case the symmetry group contains global on-site sym-

metries combined with parity, G = H � ZP
2 , we have that∑

j

(Ug)i jTg(Aj ) = eiϕ(g)X −1
g AiXg, (17)

where Tg denotes taking the transpose if g contains the parity
transformation. Similarly as in the case of time reversal, the
gauge matrices multiply according to a generalized projective
representation:

XgPg(Xh) = eiω(g,h)Xgh, (18)

where Pg is taking the inverse transpose if g contains parity.
Note, however, that if g contains the parity transformation,
Xg can in general not be chosen unitary. As the conditioned
transpose does not affect the phases ϕ, they form a one-
dimensional linear representation. The SPT classification for
H � ZP

2 is thus in terms of H1(G, U1) × H2
βP (G, U1). The

2-cocycles are given by

ω(g, h) + ω(gh, k) = ω(g, hk) + βP
g (ω(h, k)) mod 2π,

(19)
where, similarly as in the case of time reversal, the group
action βP

g is a multiplication with −1 whenever g contains
a parity transformation. The equivalence classes in the sec-
ond cohomology group are then [ω] = [ω′] ⇐⇒ ω(g, h) =
ω′(g, h) + γ (g) + βP

g (γ (h)) − γ (gh).

A. Computing group cohomology using the Smith normal form

The problem of finding all (generalized) projective repre-
sentations of a given finite symmetry group G or, equivalently,
computing its second cohomology group H2

β (G, U1) can be
reduced to a problem in linear algebra that can be solved using
the Smith normal form [18,22], as we now demonstrate. Our
approach works for both trivial and nontrivial group actions β

and the same method can be used to compute other cohomol-
ogy groups.

First note that the 2-cocycle equation (9) or its generaliza-
tions with nontrivial group actions (16) and (19) can be written
as the linear system∑

j



(2,β )
i j ω j = 0, mod 2π, (20)

which has to be solved modulo 2π . 
(2,β ) is called the 2-
coboundary map, where β again refers to the group action.
Every solution 
ω to this linear system of equations constitutes
a valid 2-cocycle.

115123-4



ONE-DIMENSIONAL SYMMETRIC PHASES PROTECTED BY … PHYSICAL REVIEW B 107, 115123 (2023)

Since 
(2,β ) only has entries in Z, which forms a principal
ideal domain, 
(2,β ) can be written in Smith normal form as
follows [23]:

P�R = 
(2,β ). (21)

In this decomposition, P and R are respectively |G|3 × |G|3
and |G|2 × |G|2 matrices that only contain integers and have
determinant one (and thus have integer-valued inverses). �

also only contains integers, is |G|3 × |G|2-dimensional and is
of the form

� =
(

diag(d1, d2, . . . , dr ) 0
0 0

)
, (22)

in which the nonzero elements d1, . . . , dr along the diago-
nal, some of which might be one, are in increasing order,
d1 � d2 � . . . , and every element is a divisor of the next,
di|di+1. The Smith normal form � is unique. Inserting this
decomposition in the system of equations (20) gives rise to
the solution


ω = 2πR−1�+
ν. (23)

�+ denotes the (unique) Moore-Penrose pseudoinverse of �

that satisfies ��+� = � and which is found to be

�+ =
(

diag
(
d−1

1 , d−1
2 , . . . , d−1

r

)
0

0 0

)
. (24)


ν is an arbitrary vector that only contains integers.
Writing the solution (23) in components yields

ωi =
r∑

j=1

2π (R−1)i j
ν j

d j
. (25)

Because 
ν can be chosen freely, one can choose subsequently
νi = δ1,i, δ2,i, . . . , δr,i to obtain a basis of the solution space
that can be written as

(
ω j )i = 2π

d j
(R−1)i j, ∀ j ∈ {1, . . . , r}. (26)

Hence, the 2-cocycles 
ω are found to be the columns of R−1.
Since R is full rank, all the solutions 
ω are linearly indepen-
dent. In particular, the nontrivial cocycles (below) can not
be related by a coboundary, 
ω′ = 
ω + 
(1,β ) 
ϕ, where 
(1,β )

denotes the 1-coboundary map and 
ϕ is a |G|-dimensional
vector containing arbitrary real numbers. To classify all pos-
sible solutions, we now consider the diagonal entries of �.

From (26) and the fact that R−1 contains only integers, it
follows that for every diagonal entry di = 1, a trivial solu-
tion ωi = 0 mod 2π is obtained. The nontrivial solutions are
those that correspond to entries di > 1. From (26) and the fact
that the solution space is Z-linear, it follows that the cocycle

ω j corresponding to some d j generates a cyclic group. Now
note that not all elements of 
ω j can be divisible by d j (or any
of its prime factors) as this would be in contradiction with the
fact that R−1 has determinant one. Hence, the cyclic group
generated by 
ω j is Zd j . Finally, the zero entries of � can also
be discarded in the cohomology as these correspond to trivial
solutions of the cocycle equation that can be multiplied by
arbitrary phases and thus correspond to coboundaries.

In conclusion following picture arises. Given some group
G one can write down the coboundary map 


(2,β )
i j that can

be brought in Smith normal form P�R. The diagonal entries
of �, d1, d2, . . . , dr , determine the second cohomology group
which is then of the form Zd1 × Zd2 × · · · × Zdr , with the
understanding that Z1 = {e} denotes the trivial group and
that all zero diagonal entries can be discarded. The nontrivial
2-cocycles in some arbitrary gauge correspond then to the
columns of R−1, weighted by the appropriate factor 2π/d j .

B. Zero correlation length SPT ansatz

Given some SPT phase characterized by ([ϕ], [ω]) ∈
H1

α (G, U1) × H2
β (G, U1), it is possible to explicitly construct

zero-correlation-length MPS tensors that transform according
to (7), (12) or (17). Firstly, a projective representation Xg in
the class [ω] and with trivial 1-cocycle can be constructed
with virtual dimension |G|, by taking the Xg to form the ω-
projective regular representation of G (27). The dimension of
the local physical Hilbert space is then |G|2. Concretely, this
representative state and the regular representation are given by

(Xg)g1,g2 = δg1,gg2 eiω(g,g2 ) (27)

(V h1,h2 )g1,g2 = 1

|G|δh1,g1δh2,g2 eiω(h2,h
−1
2 h1 ). (28)

Furthermore, the physical group action Ug is given by Lg ⊗
Lg, with Lg the linear left regular representation. Hence,
(Ug)k1k2,h1h2 = δk1,gh1δk2,gh2 . Pictorially:

(29)

Note that the Kronecker deltas in the definition of the MPS
tensor indicate its valence bond structure, which is modified
only by a unitary diagonal transformation. Hence, it fol-
lows readily that the transfer matrix E = ∑

h1,h2
(V h1,h2 )g1,g2 ⊗

(V h1,h2 )g′
1,g

′
2

is idempotent, E2 = E, implying that the ansatz
(28) has zero correlation length and thus defines an RG fixed
point [10].

Similarly, in case of a nontrivial 1-cocycle ϕ, the ansatz
is readily modified to also include this cocycle by adding
diagonal matrices to the two physical legs:

(30)

where (
√

ϕ)g1,g2 = δg1,g2 e
i
2 ϕ(g).

The ansatz can also capture the case of time reversal and
parity symmetry. In the first case, we take the physical ac-
tion to be Lg ⊗ Lg combined with the conditioned complex
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conjugation:

(31)
were we still have (Xg)g1,g2 = δg1,gg2 eiω(g,g2 ).

The ansatz in case of parity symmetry and parity + time
reversal requires following conditioned “swap” tensor

(32)

The ansatz in this case then amounts to

(33)
where Pg acts according to

(34)

1. Example: Z2 × Z2

The smallest finite group with a nontrivial 2-cocycle is
Z2 × Z2 as H2(Z2 × Z2, U1) = Z2. Z2 × Z2 is exactly the
on-site symmetry group of the AKLT model and the cluster
state [10,24–26]. The latter admits a description as an injective
bond dimension two MPS [27]:

A0 = |+)(0| (35)

A1 = |−)(1|, (36)

where |±) = 1√
2
(|0) ± |1)). This MPS description can be de-

rived from the fact that the cluster state is obtained starting
from the product state |+〉⊗N , acting on pairs of neighboring
spins with controlled Z gates and projecting onto the physical
degrees of freedom with the projector |0〉〈00| + |1〉〈11|. The
cluster state is no RG fixed point but the fixed point is obtained

after blocking only two sites [10]. The MPS description of this
RG fixed point is then given by

A00 = 1√
2
|+)(0| (37)

A01 = 1√
2
|+)(1| (38)

A10 = 1√
2
|−)(0| (39)

A11 = −1√
2
|−)(1|. (40)

The normalization of the state is chosen in such a way that
the unique nonzero eigenvalue of the transfer matrix is 1.
This state is in the nontrivial SPT class with on-site Z2 × Z2

symmetry. Z2 × Z2 acts linearly on the physical level as
S((0, 1)) = σX ⊗ σX , S((1, 0)) = 1 ⊗ σX , and the symmetry
is represented projectively on the virtual level by X ((0, 1)) =
iσY , X ((1, 0)) = σX , X ((1, 1)) = σZ .

Since our correlation length zero ansatz (28) that is con-
structed from a given nontrivial 2-cocycle of Z2 × Z2 is in
the same SPT phase as the cluster state, we can expect that
our ansatz is up to a basis transformation and gauge trans-
formations the product of the cluster state fixed point and a
trivial state. We now show that our ansatz indeed reduces to
the product of the RG fixed point cluster state dressed with a
trivial dimer state and demonstrate how to construct this basis
transformation and gauge transformation explicitly.

The linear regular representation of Z2 × Z2 acting on the
physical level of our ansatz reads

L(0,1) = 1 ⊗ σX (41)

L(1,0) = σX ⊗ 1 (42)

L(1,1) = σX ⊗ σX . (43)

A nontrivial 2-cocycle of Z2 × Z2 in a particular gauge is
given by

ω(g, h) =

⎛⎜⎜⎜⎜⎜⎝

(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) 1 1 1 1

(1, 0) 1 1 1 1

(0, 1) 1 −1 −1 1

(1, 1) 1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎠, (44)

where g labels the rows. The projective regular representation
corresponding to this cocycle (27) reduces to

U †X(0,1)U = 1 ⊗ iσY (45)

U †X(1,0)U = 1 ⊗ −σX (46)

U †X(1,1)U = 1 ⊗ σZ , (47)

in the basis U given by

U = 1√
2

⎛⎜⎜⎝
0 1 1 0
1 0 0 −1

−1 0 0 −1
0 −1 1 0

⎞⎟⎟⎠. (48)
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We then take this unitary U as a gauge transformation of
our representative MPS ansatz. This gauge transformation
then intertwines between the projective regular representation
of Z2 × Z2 and the block diagonal projective representation
given in (45)–(47). Similarly as in the case of linear rep-
resentation theory, this illustrates how the projective regular
representation of Z2 × Z2 falls apart in projective irreps,
given by the Pauli matrices, where each irrep appears with
multiplicity equal to its dimension [28].

The physical basis transformation W that brings the repre-
sentative MPS V in the form of the cluster state fixed point
dressed with a trivial dimer state,

(49)

is then immediately found by considering the QR decomposi-
tion of our ansatz and the dressed cluster state interpreted as
matrix from the physical to virtual level, QR = V (U ⊗ U ),
Q̃DD†R̃ = 1 ⊗ A ⊗ 1, where D is a diagonal matrix con-
taining only phases that fixes the gauge freedom of the QR
decomposition in such a way that D†R̃ = R. The basis trans-
formation then reads W = Q̃DQ†. It can then be checked that
this W intertwines the physical representation of the Z2 × Z2

symmetry group acting on the dressed cluster state and our
ansatz:

W †(1 ⊗ σX ⊗ σX ⊗ 1)W = L(0,1) ⊗ L(0,1) (50)

W †(1 ⊗ 1 ⊗ σX ⊗ 1)W = L(1,0) ⊗ L(1,0) (51)

W †(1 ⊗ σX ⊗ 1 ⊗ 1)W = L(1,1) ⊗ L(1,1). (52)

Notice that in this example we were required to choose the
symmetry group of the dimer to be trivial to match the sym-
metry of our ansatz, even though the dimer has the full U2

symmetry.

C. A generalized ansatz

As we have demonstrated, given a 1- and 2-cocycle of
some finite symmetry group G, one can explicitly construct a
bond dimension |G| injective correlation length zero MPS that
belongs to the SPT class corresponding to the cohomology
classes represented by these cocycles. However, as shown for
the explicit example of Z2 × Z2, our ansatz could be written
as a cluster state fixed point and a completely disentangled
trivial dimer state that doubles the dimension of the virtual
Hilbert space. This redundancy is a consequence of the fact
that the physical symmetry action is fixed as being the ten-
sor product of two regular representations of G. Hence, the
question rises if an MPS can be constructed for any given
representation of the symmetry on the physical level such that
the bond dimension is as small as possible. This can in prin-
ciple be done as follows, possibly at the cost of introducing
a correlation length. We restrict to the case of unitary on-site
symmetries.

We first note that every projective representation of a finite
group G can be lifted to a linear representation of a larger

finite covering group G̃ [29]. This covering group fits in fol-
lowing central exact sequence:

1 −→ A −→ G̃ −→ G −→ 1, (53)

where A = H2(G, U1) � Z (G̃) [30]. It should be noted that
the covering group is generically not unique. Consider, for
example, the case of Z2 × Z2. Two distinct covering groups
of Z2 × Z2 are the dihedral group D4 = 〈r, s|r4 = s2 =
(rs)2 = 1〉 and the quaternion group Q = 〈a, b|a4 = 1, a2 =
b2, b−1ab = a−1〉, both of which are of order 8. Indeed,
the two-dimensional projective irrep of Z2 × Z2 correspond-
ing to the nontrivial class of H2(Z2 × Z2, U1) = Z2 given
by {σX , iσY , σZ} is lifted to the faithful two-dimensional
irrep of D4 by taking iσY = r and σZ = s as generators,
whereas a gauge transformation of this projective represen-
tation, {σX , iσY , σZ} �→ {iσX , iσY , iσZ}, yields an equivalent
projective representation which is lifted to the faithful two-
dimensional irrep of Q by identifying the generators of the
quaternion group as a = iσY , b = iσZ .

The classification and construction of the projective ir-
reps of a finite group thus reduces in this way to the linear
representation theory of its covering group. To construct the
aforementioned MPS that transforms according to a given
physical representation � of the symmetry group G, one
chooses the smallest irrep � of G̃, which projects down to a
projective irrep of G belonging to a certain cohomology class
[ω], such that � is contained in the tensor product � ⊗ �. The
explicit MPS tensor is then chosen as the projector of � ⊗ �

on the �-sector, and the virtual symmetry action is �.
Consider as example again Z2 × Z2 and its covering group

Q. The irreps of Q are the trivial representation 1, three
nontrivial one-dimensional sign representations, �1, �2, �3,
and the two-dimensional faithful representation given by the
Pauli matrices, �. Choosing then a sign representation of
Z2 × Z2 as physical symmetry, this representation can be
lifted to a one-dimensional sign representation �i of Q. From
the fact that � ⊗ � ∼= 1 ⊕ �1 ⊕ �2 ⊕ �3, it follows that the
MPS with the smallest bond dimension which transforms ac-
cording to a sign representation of Z2 × Z2 is exactly one that
projects � ⊗ � onto �i. Since the virtual representation � is
exactly the projective irrep of Z2 × Z2, one can immediately
conclude that such a state is in the same SPT phase as the
cluster state.

This construction also applies to the case of Lie groups.
Consider, for example, the symmetry group SO3. Choosing
the physical symmetry representation to be the 1 of SO3, one
can choose the virtual representation to be the 1

2 . The projector
of 1

2 ⊗ 1
2

∼= 0 ⊕ 1 on the 1 subspace then exactly results in
the MPS description of the AKLT state which belongs to the
nontrivial SPT class of H2(SO3, U1) = Z2.

Notice that this constructing generically does not give rise
to correlation length zero states due to the projection on the
correct physical symmetry sector.

IV. FRIEZE SYMMETRIC MPS

In this section, we derive the SPT classification of MPS
invariant under frieze symmetries. We do so from starting
from a general injective MPS and invoking the symmetry,
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which ultimately leads to topological indices that cannot be
changed by a symmetry-preserving constant depth quantum
circuit.

We introduce following notation:

1n,m := 1n ⊕ −1m. (54)

This matrix satisfies 1n,m = 1�
n,m = 1−1

n,m. Furthermore,

� := 1n ⊗
(

0 1
−1 0

)
= −�� = −�−1. (55)

And finally,

√
� = 1n ⊗ 1√

2

(
1 1

−1 1

)
,

√
�

� =
√

�
−1

. (56)

(1) F0. As mentioned in the introduction, every translation-
ally invariant MPS can be brought in a uniform form by an
appropriate gauge transformation [12]. There are no topologi-
cal obstructions to do so and hence there are no nontrivial SPT
phases.

(2) FV. Reflection around the horizontal axis can be
thought of as an internal Z2 transformation of the MPS ten-
sors. In order to impose such a reflection, we consider a
uniform MPS with two physical legs that mimic an internal
structure of the local degrees of freedom,

(57)

Under the reflection the tensor A transforms according to

Aji = eiθ X −1Ai jX. (58)

After applying this symmetry transformation twice we obtain

Ai j = e2iθ X −2Ai jX 2. (59)

From the fundamental theorem it follows that θ is a topolog-
ical index, θ = 0, π mod 2π , and X 2 = eiχ1, however, this
phase can be absorbed in X such that X squares to the identity.
FV can thus protect one nontrivial SPT phase characterized by
θ = π .

If the MPS is in left canonical form, it can be shown that X
is unitary, which together with X 2 = 1 implies that X can be
written as X = U †1n,mU for some unitary U and n + m = D.
With the gauge transformation Ai j �→ Ãi j = UAi jU † the MPS
tensors Ã have definite V -parity:

Ã ji = ±1n,mÃi j1n,m, (60)

thus tremendously reducing the number of variational degrees
of freedom. The signature of 1n,m is irrelevant for the classi-
fication of SPT orders. Indeed, notice that the FV symmetry
can be thought of as an on-site Z2 symmetry acting on the
physical level that is implemented by

∑
( j1, j2 )(U1)(i1,i2 )

( j1, j2 )A
j1, j2

with (U1)(i1,i2 )
( j1, j2 ) = δ

i1
j2
δ

i2
j1

and 1 denoting the nontrivial element
in Z2. This unitary acting on the physical level than translates
to the 1n,m, also a (reducible) representation of Z2, acting
on the virtual level. It was shown in Refs. [5,6] that every
such representation of Z2 at the virtual level gives rise to the
same SPT phase because the 1k,l for all k, l belong to the
same (trivial) second cohomology class of H2(Z2, U1) = {e}.

In particular, the MPS is in the same phase as the MPS that
transforms according to

Ã ji = ±Ãi j . (61)

This result fits within the well understood SPT classification
in terms of group cohomology for the case of an on-site
Z2 symmetry [4–8]. Indeed, we could have implemented the
vertical reflection more generally as

Ai �→
∑

j

Ri jA
j, (62)

where Ri j is a (linear) representation of Z2, R2 = 1. As
mentioned above H2(Z2, U1) = {e} meaning there are no
nontrivial projective representations of Z2 that can protect
the phase; however H1(Z2, U1) = Z2, which is reflected in
the fact that eiθ = ±1 and as such can be understood as the
distinction between V -odd/even tensors Ãi j .

(3) FH. FH contains apart from a translation generator a
reflection in the horizontal direction and as such corresponds
to the parity transformation previously considered in Ref. [5].
Without loss of generality we can start from a uniform MPS
(3) generated by a tensor Ai. Imposing the Z2 H-parity sym-
metry, we can write∑

j

Ri j (A
j )� = eiθ X −1AiX, (63)

R being an involutory unitary matrix. Doing the transforma-
tion twice results in

Ai = e2iθ X �X −1AiXX −�, (64)

from which it follows that

θ = 0, π mod 2π

X � = eiχ X. (65)

From the last equation, we conclude that χ = 0, π mod 2π .
Together with the first equation, this leads to a Z2 × Z2

classification. We now show that every FH symmetric MPS
can be brought in a form in which the local tensors are
(skew-)symmetric under H-parity, possibly at the cost of in-
troducing extra bond tensors [19].

First consider the case that X is symmetric. Using the
Autonne-Takagi decomposition, we can write X = CC� for
some complex matrix C. From substitution in (63) it im-
mediately follows that defining Ai �→ Ãi = C−1AiC yields a
uniform MPS generated by Ãi in which the tensors Ãi have a
definite H-parity given by the topological index θ .

Now assume that X is skew-symmetric, which together
with its invertibility requires that D = 2n is even. In that case
we similarly can write X = C�C� using the Youla normal
form [31]. Again substituting this in (63), we can identify
Ai �→ Ãi = √

�C−1AiC
√

� as the transformation to construct
local tensors with a well-defined H-parity. However, this
transformation is not an actual gauge transformation in the
aforementioned sense since, in order to bring the MPS in the
desired form, we should insert 1 = C

√
���√

�C−1 between
the A-tensors, which after making the transformation Ai �→ Ãi
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leaves us with residual bond tensors ��:

(66)

The SPT classification for FH corresponds to H1(ZP
2 , U1) ×

H2
βP (ZP

2 , U1) = Z2 × Z2, where the first Z2 factor corre-
sponds to θ = 0, π and the second Z2 corresponds to the
phase appearing in the generalized projective representation
X of the parity symmetry group ZP

2 .
(4) FG. The FG symmetry group contains a generator of

translations T and a glide reflection G which are related
through G2 = T . Therefore we will consider an MPS ansatz
which is translationally invariant under shifts over two sites.
The glide reflection will then be implemented as a shift over
one site followed by a reflection around the horizontal axis.
Hence, without loss of generality we can take this MPS ansatz
to be

(67)

Invariance under glide reflections relates the tensors A and B
up to a gauge transformation which can in general be different
on the A-B and B-A bonds:

Aji = eiθA X −1Bi jY

B ji = eiθBY −1Ai jX. (68)

Carrying out this transformation twice then results in

Ai j = ei(θA+θB )X −1Y −1Ai jXY

Bi j = ei(θA+θB )Y −1X −1Bi jY X. (69)

Blocking two sites and using the fundamental theorem of MPS
yields following conditions on the phases and gauge matrices:

2(θA + θB) = 0 mod 2π

X = eiχY −1. (70)

By absorbing a phase factor e−i χ

2 in both X and Y , X and Y are
each other inverses. Substituting 2(θA + θB) = 0 mod 2π

in (69) shows that only the case θA + θB = 0 mod 2π can
survive. We are free to choose, e.g., θA = 0. From this, it then
follows that B ji = XAi jX such that after redefining Ai j �→
Ãi j = Ai jX , the MPS can be brought in following canonical
form:

(71)

In case of glide reflection symmetry there are thus no nontriv-
ial SPT phases. This is again in line with the cohomological
classification. Since the glide reflection should really be
thought of as a generalized, dressed translation operator, the
group cohomology classifying the SPT classes of glide reflec-
tion symmetry is that of the trivial group, which is trivial.2

2There are two distinct consistent ways in which a two-site unit cell
structure can be compatible with a Z2 action. These are classified by
H 1(Z2,Z2) = Z2, corresponding to a global Z2 symmetry and to a
glide reflection.

(5) FR. Starting from a two-legged uniform MPS ansatz
(57), we impose the rotation symmetry as

(Aji )� = eiθ X −1Ai jX. (72)

Applying this symmetry twice and using the fundamental
theorem, it immediately follows that θ = 0, π mod 2π and
X � = eiχ X , exactly what was found in case of FH symmetry.
The canonical form of an FR invariant MPS is thus again one
in which the tensors have definite R-parity, again at the cost of
introducing extra bond tensors between neighboring sites if X
is skew-symmetric.

(6) FRG. Different FRG-symmetric SPT phases ought to
be classified by H1(ZP

2 , U1) × H2
βP (ZP

2 , U1) = Z2 × Z2, as
again the glide reflection should be thought of as a generalized
translation. To obtain this classification we first impose glide
reflection as in (68) on the ansatz (67), and again we find that
under glide reflection the two tensors transform according to

Aji = XBi jX

B ji = X −1Ai jX −1. (73)

We obtain no topological indices from the glide reflection
symmetry alone.

The rotation now acts on the tensors as

(Aji )� = eiψAW −1Bi jY

(B ji )� = eiψBY −1Ai jW, (74)

where the reflection center lies on an A-B bond.
We then impose R2 = 1 and RGRG = 1, and after some

lengthy algebra we ultimately find the transformation rules

(Aji )� = e−iσ X �Y −1XBi jY

(B ji )� = eiσY −1Ai jX −1Y X −�

Y � = eiχY, (75)

where χ, σ = 0, π mod 2π , hence giving rise to the three
anticipated nontrivial SPT phases. Here, the phase χ can be
identified with the H2

βP (ZP
2 , U1) = Z2, whereas σ corresponds

to H1(ZP
2 , U1). It should be noted that the topological index χ

arises purely from the rotational ZP
2 symmetry and that σ finds

its origin in the nontrivial constraint RGRG = 1 interlocking
the glide reflection and the rotation symmetry.

(7) FVH. We consider again the two-legged uniform ansatz
(57). First imposing reflection around the horizontal axis
yields

Aji = eiθV X −1Ai jX. (76)

Carrying out this symmetry operation twice results in the
same conditions on θV and X as in the case of FV : θV = 0, π

mod 2π , X 2 = 1. X is again unitary and again we can write
X = U †1n,mU for some unitary U . As was explained, the
signature of 1n,m is irrelevant.

Imposing the second reflection, one obtains

(Ai j )� = eiθH Y −1Ai jY, (77)

which implies that θH = 0, π mod 2π , Y = ±Y �. Finally
we impose that the horizontal and vertical reflection commute
on the physical level. Using (76) and (77), we conclude that
Y X −� = eiψXY . Using X 2 = 1, it follows that ψ = 0, π . In
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this way a Z×2
2 × Z×2

2 classification is obtained, exactly in line
with the cohomological classification H1(Z2 � ZP

2 , U1) ×
H2

βP (Z2 � ZP
2 , U1) = Z×2

2 × Z×2
2 . The first factors Z×2

2 origi-
nating from the first cohomology group correspond to θV and
θH and the last factors Z×2

2 correspond to the gauge matrix Y
being (anti)symmetric and the generalized (anti)commutation
relation among X and Y , Y X −� = ±XY . The correspondance
between the 2-cocycles of H2

βP (Z2 � ZP
2 , U1) = Z×2

2 and the
topological indices obtained from the MPS picture can be
made a bit more explicit as follows. One can show that there
always exists a gauge in which the cocycles of H2

βP (Z2 �

ZP
2 , U1) = Z×2

2 are of the form

ω(g, h) =

⎛⎜⎜⎜⎜⎜⎝

(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) 1 1 1 1

(1, 0) 1 1 1 1

(0, 1) 1 ζ1 ζ2 ζ1ζ2

(1, 1) 1 ζ1 ζ2 ζ1ζ2

⎞⎟⎟⎟⎟⎟⎠, (78)

where rows are labeled by g and ζ1, ζ2 = ±1. These signs
ζ1, ζ2 then exactly correspond to the topological indices ob-
tained from the MPS computation above since it follows from
(18) that

Y X −� = eiω((0,1),(1,0))Y X = ζ1XY (79)

YY −� = eiω((0,1),(0,1))1 = ζ21. (80)

Note that the results H2
βP (ZP

2 , U1) = Z2 and H2(Z2 ×
Z2, U1) = Z2 are well known, corresponding to the existence
of one nontrivial SPT phase under either parity or under an
on-site Z2 × Z2 symmetry. The fact that an a single on-site
Z2 symmetry (which in itself does not exhibit nontrivial pro-
jective representations) combined with the parity ZP

2 leads to
a richer structure of SPT phases, as expressed by H2

βP (Z2 �

ZP
2 , U1) = Z×2

2 is interesting. Using the choice of cocycles in
Eq. (78) and the construction from Sec. III B, explicit exam-
ples can be constructed for these different phases.

V. TIME REVERSAL AND LATTICE SYMMETRIES

In this section, we study time reversal symmetry and time
reversal combined with translations over one site [21]. The
most important feature of time reversal is that it is an antiu-
nitary transformation and can hence be written as T = UK,

where U is a unitary and K denotes complex conjugation in
a certain basis. T can be represented linearly or projectively,
depending on whether UU = ±1.

We revisit the work by Chen et al. on the linear implemen-
tation of time reversal in MPS and identify the corresponding
SPT classification [5]. We demonstrate that injective MPS

can not be invariant under the projective representation of
T , a tensor network manifestation of the Lieb-Schultz-Mattis
theorem [32]. Finally we prove that time reversal combined
with a shift over one lattice site does not give rise to nontrivial
SPT order and construct a canonical form for the trivial phase.

A. FT
1 : time reversal in TI systems

We consider MPS which are independently symmetric un-
der shifts over one lattice site and ZT

2 implemented through
T = UK, where U is a unitary satisfying UU = ±1 and K
denotes complex conjugation in the basis of the MPS tensors.
Together, these symmetries correspond to the group denoted
by F T

1 mentioned above in the summary of results.
(1) T2 = 1 and UU = 1. Consider the uniform ansatz (3).

Time-reversal symmetry can then be implemented as∑
j

Ui jA
j = X −1AiX. (81)

Note that without loss of generality we do not need to consider
a phase in this transformation because such a phase can be
consistently absorbed in the MPS tensor Ai. For an MPS
tensor in left canonical form, X can furthermore be chosen
unitary. Doing a second time reversal results in

Ai = X
−1

X −1AiXX . (82)

By virtue of the fundamental theorem we have that XX =
eiχ1, which, combined with unitarity of X , results in eiχ = ±1
and thus X = ±X �.

If X is symmetric, writing X = VV � (where V is unitary
because X is) allows us to bring the MPS in a canonical form
by means of the gauge transformation Ai �→ Ãi = V †AiV ,
which now transforms according to∑

j

Ui j Ã
j = Ãi. (83)

For a skew-symmetric X , we write X = V �V �, V again being
unitary, from which it follows that Ãi = V †AiV transforms
according to a quaternionic representation under T , up to
multiplication by Ui j

3:∑
j

Ui j Ã j = �−1Ãi�. (84)

The cohomological classification corresponds to
H1

αT (ZT
2 , U1) × H2

βT (ZT
2 , U1) = {e} × Z2, as follows from

the Smith normal form (Sec. III A). The Z2 is understood as
X being (skew-)symmetric.

We can now also show that the entanglement spectrum in
case of the nontrivial SPT phase for which X = −X � is at
least doubly degenerate [2]. Consider therefore the unique

3Consider A transforming in a quaternionic representation accord-
ing to A = X −1AX , X being skew-symmetric and unitary. X can be
brought in a skew-symmetric tridiagonal form W by an orthogonal
transformation. Unitarity of W implies that X can be written as
X = Q̃�Q̃� for an orthogonal Q̃, showing that Q̃�AQ̃ transforms as
Q̃�AQ̃ �→ �−1Q̃�AQ̃�.
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leading right eigenvector ρ of the transfer matrix E. In that
case, ρ interpreted as a D × D matrix is (Hermitian) posi-
tive semidefinite by virtue of the quantum Perron-Frobenius
theorem [33,34]. Consider some eigenvector x of ρ with
positive eigenvalue λ, then by virtue of XρX † = ρ (proven
in Appendix A), x�X † is a left eigenvector of ρ with the
same eigenvalue λ. However, using X � = −X it follows that
Tr(X †(x ⊗ x)) = 0, or in other words that x�X † and x are
orthogonal eigenvectors belonging to the same eigenvalue λ.

(2) T2 = −1 and UU = −1. This case is relevant for, e.g.,
U = σY , which comes into play in the implementation of
time reversal symmetry on spin 1/2 particles [21]. Let us
not restrict to this particular example and consider a general
unitary U satisfying the aforementioned property UU = −1.
Starting again from the uniform ansatz (3), considering a pro-
jective implementation of time reversal and applying it twice
leads to

Ai T�→
∑

j

Ui jA
j T�→ −Ai != Ai, (85)

from which we conclude that translationally invariant injec-
tive MPS cannot transform projectively under time reversal
symmetry. This can be understood as a tensor network inter-
pretation of the celebrated Lieb-Schultz-Mattis theorem [32]
that dictates that the ground state of a system of half-integer
spins—in which case time reversal acts projectively—should
be either symmetry broken (in contradiction with the assump-
tion that the MPS is symmetric under time reversal) or gapless
(in which case the matrix product ansatz does not provide a
good description).

B. FT
2 : time reversal combined with a one site shift

We can now break translation invariance over one lattice
site to translation invariance over two sites by considering
following ansatz:

(86)

The symmetry group we impose, F T
2 , contains translations

over two lattice sites, and the combined action of translations
over one site and time reversal, implemented via complex
conjugation together with a multiplication with a unitary U
satisfying UU = 1. The transformation of the tensors under
the latter then reads∑

j

Ui jA
j = X −1BiW,

(87)∑
j

Ui jB
j = W −1AiX,

where UU = 1. Note that all phases can be absorbed in the
tensors and gauge transformations.

A second transformation results in

Ai = X
−1

W −1AiXW

Bi = W
−1

X −1BiW X . (88)

From blocking two tensors, we conclude that W X = eiχ1.
Hence, we can absorb a factor eiχ/2 in both X and W such
that they become inverses. In conclusion, there is no nontrivial
SPT phase and a canonical form is obtained by writing

Bi =
∑

j

Ui jXA
j
X (89)

and defining Ci = X Ai:

(90)

VI. CONCLUSIONS AND OUTLOOK

In this work, we showed that quasi-one-dimensional spatial
symmetries can protect nontrivial SPT phases in quantum
spin chains represented by matrix product states, a complete
survey of which was lacking in the literature. We identified
each of these phases by invoking the symmetries on injective
MPS and identifying the topologically distinct ways in which
these symmetries can be represented by the local tensors. For
most of these phases, we constructed canonical MPS ansätze
that are manifestly invariant under the considered symmetries.
Finally, we revisited the SPT classification in case of time
reversal symmetry and showed that time reversal combined
with a translation over one lattice site does not give rise to
nontrivial phases.

An important application of the classification is in the
simulation of 1 + 1D quantum materials. As we have shown,
all frieze SPT phases can be put in one-to-one correspondence
with transformation properties of the local MPS tensors, up
to the appropriate gauge transformations on the virtual level.
This demonstrates that taking into account the spatial sym-
metries of the spin chains at hand, one can tremendously
reduce the number of variational parameters characteriz-
ing the state, allowing for simulations with higher bond
dimensions.

A natural extension of this work would be to consider the
classification of two-dimensional SPT phases protected by
space group symmetries. The two-dimensional space groups
are known as the wallpaper groups, of which there are sev-
enteen. In this case, the relevant tensor network states are
the projected entangled-pair states (PEPS), which form the
natural two-dimensional generalization of the MPS consid-
ered here. We expect that similarly as in the one-dimensional
case, imposing the spatial symmetries directly on the local
tensors will also reveal topological obstructions. For each
of these phases, canonical ansätze could be constructed that
might again prove very useful in numerical simulations of
physical systems and materials in which these spatial sym-
metries are ubiquitous. The framework to investigate these
spatial symmetries was laid out in Ref. [35], where it was
called the crystalline equivalence principle. This principle
states that the classification of phases protected by a spatial
symmetry group G is the same as that of the SPT phases with

115123-11



BRAM VANCRAEYNEST-DE CUIPER et al. PHYSICAL REVIEW B 107, 115123 (2023)

G as global on-site symmetry but acting in a “twisted” way,
where orientation-reversing symmetry actions correspond to
antiunitary operators and thus to nontrivial group actions. In
the tensor network framework, this result was also obtained in
Refs. [19,36].

In particular, it would be interesting to investigate whether
some of the symmetry transformations in 2D admit an im-
plementation on the virtual level as string-like matrix product
operators (MPOs). The physical application of the symmetry
is then “gauged away” by pulling these MPOs through the
lattice. Similarly, it might be interesting to demonstrate that
also time reversal, which, because of the complex conjugation,
contains a priori a very nonlocal symmetry, can be imple-
mented using an MPO of finite bond dimension. In this case,
we expect that the consistency equation governing such an
SPT phase corresponds to the 3-cocycle equation with a non-
trivial group action, which can readily be solved numerically
using the algorithm proposed in Sec. III A. Time-reversal in
itself gives rise to only trivial 3-cocycles, H3

βT (ZT
2 , U1) = 0.

The smallest group containing time reversal ZT
2 as a direct

summand which gives rise to nontrivial 3-cocycles is Z2 × ZT
2

since H3
βT (Z2 × ZT

2 , U1) = Z×2
2 . With the crystalline equiva-

lence principle in mind, another example to consider is Z4 �

ZT
2 , H3

βT (Z4 � ZT
2 ,C×) = Z×2

2 , as the SPT classification of
this group is expected to coincide with that of the space group
D4. We plan to investigate this in future work.
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APPENDIX A: PROOF OF XρX † = ρ

In this Appendix, we prove the identity XρX † = ρ which
was used in Sec. V A. Hereto we start from the fact that ρ was
defined as the unique right eigenvector of the transfer matrix E
(6) corresponding to the eigenvalue one. Taking the complex
conjugate of the eigenvalue equation and exploiting unitarity
of U , we can show that X †ρX is also a right eigenvector with
eigenvalue one which because of injectivity and thus nonde-
generacy of this eigenvalue has to be equal to ρ: XρX † = ρ.
Pictorially

(A1)

(A2)

(A3)

(A4)

(A5)

APPENDIX B: EXAMPLE: 2-COCYCLES OF ZP
2

In this Appendix, we briefly illuminate the algorithm laid
out in Sec. III A for computing explicit cocycle representa-
tives. We focus on one of the smallest interesting examples,
H2

βP (ZP
2 , U1), which has a nontrivial group action. The cocy-

cle equations to be solved thus read

ω(g, h) + ω(gh, k) = ω(g, hk) + βP
g (ω(h, k)) mod 2π,

(B1)
where βP

g is multiplying with −1 when g is the nontrivial
element of ZP

2 and the identity otherwise.
The first step of the algorithm consists of filling up the


(2,βP )-matrix (20), taking into account the nontrivial group
action. Denoting the group elements of ZP

2 by {0, 1}, we
obtain


(2,βP ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0; 0) (0; 1) (1; 0) (1; 1)

(0; 0; 0) 0 0 0 0

(0; 0; 1) −1 1 0 0

(0; 1; 0) 0 0 0 0

(0; 1; 1) 1 −1 0 0

(1; 0; 0) −1 0 −1 0

(1; 0; 1) 0 −1 −1 0

(1; 1; 0) −1 0 −1 0

(1; 1; 1) 0 −1 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B2)

This matrix is then written in Smith normal form as
P
(2,βP )R = �. The basis transformation P contains only in-
tegers and can be discarded in solving the cocycle equations as
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these are solved modulo 2π . The R matrix reads

R =

⎛⎜⎜⎜⎜⎜⎝

(0; 0) (0; 1) (1; 0) (1; 1)

1 0 1 0

0 1 1 0

0 0 1 −1

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠. (B3)

From the � matrix,

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B4)

the group cohomology is immediately found to be
H2

βP (ZP
2 , U1) = Z2: the 1 diagonal entries corresponds

to trivial cocycles, whereas the entry 2 corresponds to a
nontrivial cocycle. We then compute

R−1�+
ν =

⎛⎜⎜⎜⎜⎜⎝
(0; 0) ν1 − ν3

2

(0; 1) ν2 − ν3
2

(1; 0) ν3
2

(1; 1) 0

⎞⎟⎟⎟⎟⎟⎠, (B5)

where 
ν is an arbitrary integer vector. The nontrivial cocycle
valued in U1 that generates the Z2 cohomology group is then
found from (B5) by choosing ν3 = 1 and reads


ω =

⎛⎜⎜⎜⎜⎜⎝
(0; 0) −1

(0; 1) −1

(1; 0) −1

(1; 1) 1

⎞⎟⎟⎟⎟⎟⎠. (B6)
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