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ABSTRACT: A user-friendly and highly efficient mechanochemical strategy for the synthesis of 

a number of well defined, catalytically relevant N-heterocyclic carbene-metal complexes under 

aerobic conditions is reported. This protocol proceeds in good to excellent yields and limits solvent 

usage to the purification step, which can be carried out, after judicious selection, using minimal 

amounts of environmentally benign solvents. 
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INTRODUCTION 

Under the pressing need for safer, cleaner and more sustainable synthetic transformations, the last 

two decades have witnessed a rapid expansion of methodologies that implement the use of 

mechanical energy (prevalently in the form of grinding and milling) as means to initiate and carry 

out chemical transformations.1,2 The reason behind this large interest prompted by such approaches 

is that they provide a solvent-free (or solvent-minimized) environment in order to perform 

synthesis.3 Indeed, from a sustainability perspective, the ability to operate under the partial or 

complete absence of solvent is highly desirable4 as, in many cases, solvent use is what contributes 

most in defining the environmental performance of any chemical and/or pharmaceutical process.5 

With consumption levels having reached the alarming pace of approximately 20 million tons 

annually, our current solvent usage is indeed becoming increasingly unsustainable in both 

economic and environmental terms.6,7 On the basis of these considerations, many researchers have 

begun implementing the use of ball mills, shaker mill and similar automated devices in different 

areas of chemical sciences in an attempt to deliver a more sustainable approach to synthesis.8-14 In 

many instances though, mechanochemical methods have shown to be more than just a mere tool 

to improve the environmental footprint of any synthetic process: decreased reaction times, higher 

yields15 and the opportunity to explore uncharted chemical space by unlocking reactivities 

otherwise inaccessible in solution,16 are some of the advantages that the synthetic chemists have 

uncovered. Nevertheless, mechanochemical methods for the synthesis of important discrete 

organometallic complexes remain largely unexplored.17-26 Considering the importance of such 

compounds as pre-catalysts and that their preparation seldomly relies on sustainable routes, 

synthetic approaches that would allow their access in a few steps, minimal generation of waste and 

in an operationally simple manner are highly desirable. This is not only important from an 
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environmental and economic perspective, but also has real practical impact. Among the arsenal of 

well-defined organometallic complexes that are used in both academia and industry, transition 

metal complexes bearing N-heterocyclic carbene (NHC) ligands play indisputably a prominent 

role.27 From the isolation of the first “bottleable” carbene by Arduengo and co-workers in 1991,28 

N-heterocyclic carbene ligands have progressively evolved from being an academic curiosity to 

their current role as an ubiquitous ligand family in the design of novel catalysts.29 Indeed, with 

their extraordinary ability to stabilize highly reactive metal centers and with their highly tunable 

steric and electronic properties, the use of NHC ligands has enabled numerous and previously 

unimagined synthetic methodologies.27 With the exception of a few reports,30-42 synthetic 

procedures that allow the introduction of NHC ligands to a metal center all revolve around 

traditional solution chemistry and can be roughly summarized to occur via: the free carbene route, 

the built-in base route, the transmetallation route, and the weak base route (Scheme 1).  



 4 

 

Scheme 1. Synthetic access to transition metal-N-heterocyclic carbene (NHC) complexes. 

The free carbene approach is the synthetic route most frequently encountered, and it involves the 

treatment of azolium salts with a strong base, such as NaH, NaOtBu, KHMDS, LiHMDS or n-

BuLi, in the presence of/or followed by the addition of a metal precursor (Scheme 1a). The major 

drawbacks of such strategy are the high moisture and thermal sensitivity of the free carbene 

species, which require the use of anhydrous and degassed solvents and operational handling under 

an inert atmosphere. Although, part of the environmental and operational burden that such 

approach carries can be alleviated under solvent-free conditions, as shown by Grela and co-

workers for the assembly of various Ru-olefin metathesis catalysts,30 even the ball-milling variant 
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of this route requires the use of a dry setup and the use of an inert atmosphere. An alternative that 

does not require the use of an expensive strong base, is the so-called built-in approach (Scheme 

1b). Treatment of an azolium salt, generally under aerobic conditions and using green solvents, 

with a suitable metal precursor which already contains a base embedded, such as Pd(acac)2,43 

Cu2O,44 or Ag2O45 as examples, leads to the corresponding carbene-metal complex and protonated 

moiety as sole by-product. In the solid state, Lamaty and co-workers were first to successfully 

translate this solution-base methodology into a reliable mechanochemical approach for the 

assembly of various N,N-dialkyl,31 and N,N-diaryl,32,33 NHC-Ag(I) chloride complexes, as well as 

a series of homoleptic N,N-diaryl NHC-Ag(I) cationic complexes.34 Following the same synthetic 

approach, the mechanochemical assembly of a small number of N,N-diaryl NHC-Cu(I) chloride 

complexes,35 as well as on the use of Pd(OAc)2 for the synthesis of a benzimidazolin-2-ylidene 

Pd(II) complex, were reported.36 Another very popular synthetic methodology used to affix NHC 

ligand onto a metal center is the transmetallation route (Scheme 1c). This methodology consists 

in transferring a carbene fragment starting usually from NHC-Ag(I) complexes,45 or as we have 

recently reported using less expensive and more stable NHC-Cu(I) systems,46-49 to a metal center 

of interest. This strategy was shown to be applicable also under solvent-free conditions: Lamaty 

and co-workers provided the first example of such mechanochemical transmetallation in a 2017 

report,32 using complexes of the type [Ag(Cl)(NHC)], they were able to successfully transfer the 

NHC ligand from Ag onto Au(I), Cu(I) and Pd(II) centers, as well as to deploy this route for the 

synthesis of various NHC-Ru(II) complexes.37 A more recent advance in the synthetic access to 

transition metal-NHC complexes is the weak base approach (Scheme 1d).50 Over the course of 

recent years, several groups, including ours,51-53 have reported the use of a weak base, such as 

K2CO3, NEt3 or NaOAc, in solution for reactions involving the azolium salt and metallic precursor. 
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This approach has been shown to be effective for various NHC ligand salts and numerous Late 

Transition metals.50 We have recently established the first mechanochemical synthetic route that 

makes use of a weak base, e.g. K2CO3, for the synthesis of complexes of the type [Cu(Cl)(NHC)].38 

Concomitantly, the same approach was used by Udvardy, Czégéni and co-workers in the 

mechanochemical assembly of poly-NHC Rh(I)-complexes of the type [{Rh(Cl)(1,5-cod)}2(µ-di-

NHC)].39 In light of these exciting results, we pondered about the extent with which the weak base 

method could be deployed for the assembly of well-defined NHC-transition metal complexes 

under mechanochemical conditions (Scheme 1e). Herein, we describe a general, operationally 

simple and easily scalable mechanochemical approach for the synthesis of well-defined NHC-

transition metal complexes. The versatility of the synthetic method was exemplified with a series 

of commonly encountered NHCs, namely: N,N’-bis-[2,6-(di-iso-propyl)phenyl]imidazol-2-

ylidene or IPr (1), N,N’-bis-[2,6-(di-iso-propyl)phenyl]imidazolidin-2-ylidene or SIPr (2), N,N’-

bis-[2,4,6-(trimethyl)phenyl]imidazol-2-ylidene or IMes (3), N,N’-bis-[2,4,6-

(trimethyl)phenyl]imidazolidin-2-ylidene or SIMes (4), N,N’-bis-[2,6-bis(diphenylmethyl)-4-

methylphenyl]imidazol-2-ylidene or IPr* (5), N,N’-bis-(cyclohexyl) imidazol-2-ylidene or ICy 

(6), N,N’-bis(methyl)imidazol-2-ylidene or IMe2 (7), N,N’-bis-(benzyl)benzimidazol-2-ylidene or 

Bn2-BIm (8) (Figure 1).  
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Figure 1. N-heterocyclic carbene ligands used in this study. 

Under the conditions that we hereby report, we were able to access the following classes of 

complexes (Figure 2): [Ag(Cl)(NHC)], [Au(Cl)(NHC)], [Pd(h3-R-allyl)(Cl)(NHC)], and[Rh(1,5-

cod)(Cl)(NHC)] (1,5-cod = 1,5-cyclooctadiene). Linear dicoordinated silver(I) complexes, such as 

[Ag(Cl)(NHC)], represent an extensively studied class of compounds that own part of their 

popularity to their ability to act as carbene transfer reagents.54 In addition, many research reports 

have provided evidence that NHC-Ag(I) complexes could be effectively used as broad-spectrum 

antimicrobials and antitumoral agents.55,56 Gold(I) complexes of the type [Au(Cl)(NHC)] are 

established reliable pre-catalysts for many organic transformations, including alkyne hydration,57 

enyne cycloisomerization,58 rearrangement of allylic acetates,59 just to name a few.60 NHC-Au(I) 

complexes have also found applications as luminescent materials,61 and in medicinal chemistry, 

with reports highlighting their antimicrobial and anticancer properties.56,62 NHC-Pd(II) complexes 
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of the type [Pd(h3-R-allyl)(Cl)(NHC)] are another popular class of air-stable complexes that have 

found applications as a reliable pre-catalysts for many synthetic transformations:63,64 E.g. α-

arylations,65 Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions.66 The family of 

NHC-Rh(I) complexes, such as [Rh(1,5-cod)(Cl)(NHC)], have found applications mainly in 

homogenous catalysis, demonstrating their utility in hydrosilylation,67 and hydroformylation 

reactions.68 

 

Figure 2. N-heterocyclic carbene-metal complexes accessed in this study. 
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of azolium salts with Ag2O, although in 2013, Gimeno and co-workers developed an alternative 

solution-phase strategy, which involves the treatment of the azolium salt in the presence of a 

cheaper metal salt precursor (e.g. AgNO3) and K2CO3 at room temperature, in technical grade 

dichloromethane.69 We decided, therefore, to test the mechanochemical assembly of such 

[Ag(Cl)(NHC)] complexes in a planetary ball mill using the azolium chloride salt of IPr (1), an 

inexpensive metal precursor (AgCl), in the presence of an excess of K2CO3 (Scheme 2). Using the 

maximum operational speed available (400 rpm), the reaction yielded [Ag(Cl)(IPr)] (1a) in 77% 

after only 30 min of milling. Treating the azolium chloride salts of 2-7 under the same conditions 

lead to the formation of complexes 2a-7a in good to excellent yields with no particular restriction 

with respect to the steric bulk of the NHC ligand salt used. Unfortunately, no formation of the 

desired [Ag(Cl)(NHC)] complex was observed when the chloride salt of Bn2-BIm (8) was 

subjected to the same reaction conditions or when the base was doubled up to 6 equivalents. As 

for the case of Cu(I)51 and Au(I),70 given the inability of the operational base to deprotonate the 

azolium salt, we suspect the involvement of an argentate intermediate in the formation of the final 

product (Scheme 2). 
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Scheme 2. Mechanosynthesis of [Ag(Cl)(NHC)] complexes. Reaction conditions: NHC×HCl (100 

mg), AgCl (1 equiv.), K2CO3 (3 equiv.), 400 rpm, 30 min. 
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with the observations reported for the solution reactions, we suppose that the reaction involves the 

formation of an aurate species as intermediate, which is converted to the final complex in presence 

of K2CO3. We must mention here that, for the synthesis of [Au(Cl)(SIMes)] (4b), 6 equiv. of 

K2CO3 were necessary, and the use of only 3 equiv. leads to the isolation of the corresponding 

aurate intermediate [AuCl2][IMes×H] as major product. Concerning the workup, although 

throughout the first synthetic campaign was conducted with non-environmentally friendly solvents 

(e.g. CH2Cl2, n-pentane), this methodology offers a good entryway to further improve the process 

sustainability by making an appropriate solvent selection for the workup phase. Indeed, we found 

that similar results can be obtained for the synthesis of the [M(Cl)(NHC)] complexes (with M = 

Ag, Au) here reported, when CH2Cl2 is replaced by greener solvent such as acetone, and n-heptane 

is used in placed of n-pentane (an “acceptable” replacement according to many solvent selection 

guides).71 In any case, for many of the syntheses here reported, even when non-green solvents are 

used for the workup phase (CH2Cl2, n-pentane, Et2O, etc.), a rapid assessment of the E-factor 

shows that the mechanochemical variant significantly reduces the overall environmental footprint 

of the synthetic process with respect to the solution variant chemistry (see experimental details 

and E-factor calculations in ESI). 
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Scheme 3. Mechanosynthesis of [Au(Cl)(NHC)] complexes. Reaction conditions: NHC×HCl (100 

mg), [Au(Cl)(DMS)] (1 equiv.), K2CO3 (3 equiv.), 400 rpm, 30 min. aK2CO3 (6 equiv.). 
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operational simplicity of the mechanochemical approach, the use of the metal precursor [Pd(h3-

allyl)(µ-Cl)]2 leads to the formation of 1c-5c and 7c-8c in high yields, in short reaction time, and 

this regardless of the steric properties of the ligand precursor. This is in contrast to the solution-

phase chemistry, where long reaction times are necessary for the more sterically hindered 

ligands.52 The reaction presumably proceeds through the formation of a palladate intermediate, 

which can be isolated by carrying out the reaction in absence of K2CO3. 
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Scheme 4. Mechanosynthesis of [Pd(h3-allyl)(Cl)(NHC)] complexes. Reaction conditions: 

NHC×HCl (100 mg), [Pd((h3-allyl)(µ-Cl)]2 (0.5 equiv.), K2CO3 (3 equiv.), 400 rpm, 30 min. 
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To further highlight the versatility of the methodology, the nature of the allyl moiety was varied 

(Scheme 5). Treatment of the azolium chloride salt of SIPr (2) with [Pd(h3-cin)(µ-Cl)]2 (cin = 

cinnamyl) leads to the formation of [Pd(h3-cin)(Cl)(SIPr)] (2d) in 89% yield. 

 

Scheme 5. Mechanosynthesis of [Pd(h3-cin)(Cl)(SIPr)] complex. Reaction conditions: SIPr×HCl 

(100 mg), [Pd((h3-cin)(µ-Cl)]2 (0.5 equiv.), K2CO3 (3 equiv.), 400 rpm, 30 min. 
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Scheme 6. Large-scale mechanosynthesis of [Pd(h3-allyl)(Cl)(IPr)] complex. Reaction conditions: 
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equiv., 4.9 g, 35.3 mmol), 400 rpm, 30 min. 
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We next turned our attention to the mechanosynthesis of complexes of a Group 9 metal, namely 

the [Rh(1,5-cod)(Cl)(NHC)] complexes. Using the weak base approach, this type of complexes 

can be accessed, in solutions, by treatment of the NHC chloride salts with [Rh(1,5-cod)(µ-Cl)]2 

dimer and an excess of K2CO3 in refluxed acetone for 16-20 h, as showed by Plenio and co-

workers.72 The use of K2CO3 as operational base was proven to be also effective for the cleavage 

of the [Rh(1,5-cod)(µ-Cl)]2 dimer using our mechanosynthetic approach (Scheme 7), enabling the 

isolation of complexes 1f-5f and 7f-8f in excellent yields and after only 30 min of milling. 
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Scheme 7. Mechanosynthesis of [Rh(1,5-cod)(Cl)(NHC)] complexes. Reaction conditions: 

NHC×HCl (100 mg), [Rh(1,5-cod)(µ-Cl)]2 (0.5 equiv.), K2CO3 (3 equiv.), 400 rpm, 30 min. 
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procedure involves the use of an environmentally benign and inexpensive base (K2CO3) and it 

proved to be an efficient and reliable method for the synthesis of both saturated and unsaturated 

NHC complexes, as well as for sterically encumbered ligands, with good to excellent yields in 

very short reaction times for congeners of Group 9, 10, and 11 metals. This versatile method should 

encourage the use of solvent-less strategies and mechanochemical synthetic routes to easily access 

valuable organometallic complexes and catalysts. 
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