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Abstract.8

Over time, the visual quality of the paintings deteriorates. Cracks and loss of paint are the main types of damages9

that worsen the visual component of the painting. One of the ways to return the authentic appearance of paintings10

is a virtual restoration. Virtual restoration consists of two main stages: detecting deterioration and their removal. In11

this research, we investigate the possibility of applying deep learning-based methods for virtual restoration. To detect12

cracks we use a combination of convolutional (MCN) and autoencoder neural networks based on U-NET architecture,13

and to remove them, an adaptive adversarial network (aGAN). Also, in this work, we propose an original way of train-14

ing an adversarial neural network, which allows us to apply it more successfully in practice. A series of experiments15

shows encouraging results compared to known methods and confirms the high efficiency of deep learning.16

Keywords: Virtual restoration of paintings, crack detection, segmentation, deep learning, convolutional neural net-17

work, U-Net, adaptive adversarial neural networks.18

1 Introduction19

Virtual restoration is often the only plausible way to restore the original appearance of master20

paintings. Over time, aging and various kinds of deterioration dominantly crack, and paint losses21

become inevitably affected. In physical restoration treatments, painting cracks are typically left22

untouched unless at places where more severe painting losses are present. Although this conserva-23

tion practice secures the authenticity of paintings, the aging cracks still reduce the overall quality24

of visual perception and may hinder full appreciation of the artist’s original content.25

In this paper, we will focus on detecting and virtually inpainting cracks. Accurate automatic26

crack detection can provide invaluable support to art restorers, facilitating an objective insight into27

the current state of the painting and the evolution of deteriorations over time. Moreover, virtual28

inpainting serves as a simulation to support the decisions that need to be made during the actual29

restoration process.30

This paper focuses on the problems associated with the virtual restoration of paintings using31

adaptive adversarial neural networks. The primary contributions of our paper include a novelty:32
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1) The method for virtual restoration of paintings using deep learning to detect cracks and their33

removal.34

2) Fusion of two neural network models for cracks detection: convolutional and U-Net seg-35

mentation neural network.36

3) The adaptive feedback through the trend estimation coefficient for the adversarial network37

for a higher-quality reconstruction result of sharpness and the global structure. The coefficient38

allows for the dynamic evaluation of the loss function trend in the learning process for adaptive39

balancing of the loss function.40

The paper is organized in the following manner: Section II presents the image processing of the41

painting’s background information. Section III defines a virtual restoration of paintings algorithm42

using deep learning. Section IV presents some experimental results of crack detection and removal.43

Finally, Section V gives some concluding comments.44

2 Related work45

The earlier cracks detection methods are based on simple thresholding.1 In this case, the thresh-46

old value is chosen using a histogram to divide pixels belonging to the defected region from the47

undamaged pixels. In papers,2 a modification of the thresholding method was proposed based48

on an adaptation of the threshold value. The main drawback of the threshold-based methods is a49

dependence of correct detection on a threshold value.50

Crack detection methods often employ morphological filtering as top-hat transform, region-51

growing algorithm, erosion, and dilation with the pre-selected structural element3, 4 due to its low52

computational complexity and high “Recall” metric. However, the detected crack maps typically53

contain many false positives, and therefore morphological filtering is rarely used as an indepen-54

dent crack detection method but rather as a preprocessing step. The computational complexity55

of more advanced techniques can be significantly reduced with a practical preprocessing step that56

eliminates large areas where painting cracks are absent.57

Some of the methods are based on a combination of texture analysis (Gabor filtering, Markov58

random field) and morphological processing.5 These methods require a priori information about59

the threshold value and parameters of algorithms.60
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a) b) c)
Fig 1: Part of Annunciation to virgin Mary panel from the Ghent Altarpiece, a) Color

image, b) Infrared image, c) X-Ray image

Another group of crack detection methods is based on the processing in the frequency domain.661

There are still some unsolved problems in this group of methods, such as properly selecting a62

system of basis functions and detecting a crack on a texture having a similar brightness.63

Most of the current crack detection methods are based on machine learning. A Bayesian ap-64

proach7, 8 form feature vectors from the available image modalities and applies Bayesian Condi-65

tional Tensor Factorizations (BCTF) classifier .9 The functional imaging modalities often include66

optical macrophotography, infrared macrophotography, infrared reflectography, and X-ray images67

(Figure 1). Other modalities, like macro-X-ray fluorescence or hyperspectral images, are worked68

in some cases, but these are still relatively rare as they require expensive equipment. The avail-69

able imaging modalities are sometimes expanded artificially, creating virtual modalities, e.g., by70

applying various filters. The corresponding set of filters is typically optimized for each processed71

painting, which poses limitations in practice.72

In general, the main problem with the existing multimodal crack detection approaches is their73

low resistance to inter-modal shifts, which leads to an increase in false-positive responses. The dif-74

ficulties arising from intermodal shifts can be alleviated by using patch-based convolutional neural75

networks (CNN).10, 11 By operating on small image patches, the convolutional neural network can76

effectively use both spatial and intermodal correlation to improve the crack detection accuracy and77

improve the robustness to intermodal shifts. Most importantly, as with all deep learning methods,78

we now enjoy the advantage of not having to hand-engineer any filters. The feature maps are now79

automatically synthesized inside the network during the training process. However, these methods80

yield excessive thickening of the actual crack boundaries.12–14 A possible solution to this problem81

is a combination of patch-based and vector-based techniques.15 However, this approach does not82
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permanently eliminate the problem of false crack thickening. Additionally, there is uncertainty83

with the choice of the patch size, which must be selected for each processed painting individually.84

More precise classification (with pixel-level precision) can be achieved with segmentation con-85

volutional autoencoders and modifications.16–19 Such neural network architectures receive an entire86

image as input data and output a segmentation map with pixel-level precision. During the training87

process, the filters of such an autoencoder adapt to texture features that can be linked/combined88

into a local group, for example, by color or texture features. Those texture areas of the image89

that cannot be linked/combined into a local group are smoothed. In the expansion process (de-90

convolution), they are ignored on the resulting segmentation map. The main disadvantage of such91

networks is a complex learning process requiring many labeled training samples. Also, in some92

cases, this type of neural network may require a significant amount of time for training or may not93

converge at all due to poor-quality labeling of training data.94

In the case of virtual restoration, the detection of cracks is only the first stage. The second stage95

is virtual restoration (inpainting) of the areas detected in the first stage. The simplest way to fill96

in the damaged areas is the usual polynomial interpolation of undamaged boundary pixels. This97

group of methods includes the work in which the Navier-Stokes equations are used as an interpo-98

lating function.20 This method can be helpful if the fill rate is a priority requirement. However, if99

the area to fill is extensive, the absence of texturing of the filled area can be a significant disadvan-100

tage. Methods based on the search of self-similar patches on an entire area of the image cope with101

this problem more successfully. After that, the found patches are used to reconstruct the damaged102

area.21–23 The most difficult cases for this group of methods are cases when the lost area includes103

a semantically important object in the image. Semantically important areas can include, for exam-104

ple, the wheels of a car, the windows of a house, or the mouth and eyes on the face. Such areas105

cannot be restored using this group of methods because undamaged areas may not contain du-106

plicates of such semantically important objects. Reconstructing variational autoencoders (VAE)24
107

and adversarial neural networks (GAN)25–27 can partially and in some cases completely solve this108

problem. The main advantage of generating neural networks is restoring areas containing impor-109

tant semantic information, even if duplicates of such areas are partially or completely absent in110

undamaged areas of the image. The ability to restore such image areas is achieved during training111

(“memorization”), using training images. Subsequently, these neural networks use parts of these112
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“memorized” training images to fill in the damaged areas in the reconstruction model. The main113

disadvantage of VAE generating methods is the blurriness of the reconstructed area, while GANs114

suffer from an unstable training process.115

In this research, we investigate the possibility of virtual restoration of paintings using a combi-116

nation of convolutional (MCN) and autoencoded neural network based on U-NET architecture for117

detecting cracks, as well as a novel adaptive adversarial network (aGAN) for removing detected118

cracks.119

3 Proposed method120

Cracks in the paintings are dark or light elongated curves with a complex shape. The main difficulty121

for detecting cracks is their similarity to some textural features found in paintings, for example:122

brush strokes, hair, complex painted patterns, etc. Due to the impossibility to distinguish such123

objects from cracks, often even with visual analysis, in the tasks of virtual restoration, images in124

the infrared, X-ray and other wave ranges are used as an addition to the main color image. In our125

work, we use multimodal acquisitions of the Ghent Altarpiece281.126

The challenge of detecting cracks is to construct a binary map on which the cracks are marked127

with value 1, and the undamaged areas are marked with 0. The input image Yh,v can be represented128

as:129

Yh,v = (1− dh,v) · Sh,v + dh,v · ch,v (1)

where h, v are the spatial coordinates, Sh,v is the undamaged content, dh,v ∈ {0, 1} a binary crack130

map of defects, and ch,v is the crack color.131

3.1 Crack detection132

To create a crack map, we combine the results from two different neural network models: a seg-133

menting autoencoder U-Net based17 and a convolutional neural network MCN.11 The architecture134

of this hybrid network is illustrated in Figure 2.135

1Image Gallery: Closer to Van Eyck, Rediscovering the Ghent Altarpiece, http://closertovaneyck.kikirpa.be/
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Fig 2: The proposed architecture of the combining segmenting autoencoder and
convolutional neural network.

All convolutional layer for autoencoder and convolutional network are based on the operation136

of N-dimensional convolution of input data and filters. Equation for this operation can be defined137

as:138

xl,ch,v = f(
∑
h

∑
v

∑
c

xl−1,ch+m,v+n · k
l,c
h,v + b), (2)

where xl,ch,v is the feature map at layer l from modality c, kl,ch,v is the corresponding convolution139

kernel, xl−1,ch+m,v+n is the feature map from the previous layer, f is the activation function of the140

hidden layer, and b is a bias.141

The training process consists in setting up the filters for convolution so that when the input data142

passes through all the layers of the neural network, the loss function is minimal. For convolutional143

neural network we use the binary cross-entropy function, defined as:144

Loss(yκ, y
′
κ) = −

1

K

K∑
κ=1

[
yκ · log(y′κ) + (1− yk) · log(1− y′κ)

]
(3)

where y′ is the label predicted by our classifier, and y is the ground truth label.145

For autoencoder we use Sörensen–Dice coefficient29, 30 for loss estimation, which shows the146
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measure of the area of correctly marked segments and can be defined as:147

Loss =
2|x ∩ d|
x+ d

(4)

where x and d - is estimated and ground truth crack maps, respectively.148

The architecture of autoencoder has following parameters: C05, C132, C232, C332, C432,149

MP 5, C664, C764, C864, C964, MP 10, C11128, C12128, C12128, C14128, MP 15, C16256,150

C17256, C18256, C19256, MP 20, C21512, C22512, C23512, C24512, US25, C26256, C27256,151

C28256, C29256, US30, C31128, C32128, C33128, C34128, US35, C3664, C3764, C3864, C3964,152

US40, C4132, C4232, C4332, C4432, C45(sigm)3 where Ch - denotes a convolutional layer with153

index h, digit after Ch denotes a number of feature maps for current layer, MP h - Max-pooling154

operation, USh - Up-sampling operation and (sigm) is denote logistic sigmoid activation function.155

All other layers use the exponentially linear unit (ELU)31 as activation function, which is a more156

efficient version of the activation function ReLU32, 33 and Leaky ReLU,34 and allows to achieve157

convergence of the neural network faster and higher accuracy, as well as exclude the process of158

batch normalization.35 The equation can be written as:159

f(x) =

x if x > 0

a(ex − 1) if x ≤ 0,

(5)

where a > 0 is a hyperparameter that controls the value at which the ELU saturates for negative160

inputs.161

Convolutional network has following layer parameters: C05, C1100, MP 2, C3200, MP 4,162

C5300, FC6300, FC7(softmax), where FC - denotes a fully connected layer. In final layer has163

used “softmax” activation function:164

y(zι) =
ezι∑
κ e

zκ
, (6)

All convolutional layers for both networks have a spatial filter size of 3×3 pixels. For training,165

the optimization of Adam36 was used with a learning rate of 0.00002. Additionally, it should be166

noted that the convolutional network has the spatial size of the input tensor 8× 8× 5 pixel, while167
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Fig 3: The proposed GAN-based model for virtual restoration.

the autoencoder uses the tensor 20 × 20 × 5 pixels as input. The resulting crack map is formed168

using the logical operator “and”, which combines predictions from two neural networks.169

3.2 Crack removal170

For the virtual restoration of paintings, we use a generative adversarial neural network.37 This171

network usually includes at least 2 neural networks: a generative network based on an auto-encoder172

and a discriminative network based on a convolutional neural network. The two networks are set173

up in an adversarial style. This means that with the improvement of the results of one network, the174

opposing network will receive more losses, and vice versa. The key advantage of such a network is175

sharper generated images, in comparison with an autoencoder that uses pixel-by-pixel difference176

as a loss function. The disadvantages of such an architecture include an unstable training process.177

This means that the network may not converge if one of the networks included in the GAN learns178

earlier than the opposing one. The architecture of proposed the adaptive generating adversarial179

neural network that we use is illustrated in Figure 3.180

The reconstructing network has the following architecture: C04, C164, C264, C364, C464,181

MP 5, C6128, C7128, C8128, C9128, MP 10, C11256, C12256, C12256, C14256, US15, C16128,182

C17128, C18128, C19128, US20, C2164, C2264, C2364, C2464, C25(sigm)3 and global discrim-183

inator: C04, C164, C264, C364, MP 4, C5128, C6128, C7128, MP 8, C9256, C10256, C11256,184

FC12(sigm)3, where FCh - denotes a fully connected layer with logistic sigmoid activation func-185

tion. As input data for the layer C04, a color image with a randomly deleted area is used together186
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with a binary mask of the deleted area 2. All convolutional layers of the generating and discrimi-187

nating networks use an exponentially linear unit (ELU) as an activation function.188

The loss function for reconstructing network is determined according to the equation:189

LossG = Ladv + λLabs · |α|, (7)

Labs = |xtrn −G(xdef )|, (8)

Ladv = E[log(1−D(G(xdef )))] (9)

α, β = LS(LossG) (10)

where xtrn - undamaged image for training, G(xdef ) - reconstructed image, λ - coefficients of190

proportionality, which is used to align the loss order, α and β - is approximation coefficient for191

first-oder polynomial obtained by lest squares method.192

At this stage, we introduce the tilt coefficient of the approximating curve α, which allows us to193

estimate the trend dynamics of the loss function. Depending on the value of this curve, we adjust194

the weight of the pixel-by-pixel loss to make the restored area a more sharp. This coefficient makes195

it possible to achieve a tradeoff between sharpness and structural accuracy of the reconstructed196

area. Figure 4(a) and 4(b) show two cases of trend estimation, for starting and finising moment of197

training.198

The figures show that at the initial moment of training, the red curve has a significant slope, so199

the losses from the pixel-by-pixel difference have a significant weight, while at the final stage of200

training, the slope of the curve tends to zero, which in turn leads to a decrease in the impact of the201

pixel-by-pixel loss. The Ladv error allows to achieve a higher sharpness of the reconstructed area202

and the Labs loss allows to achieve a more stable learning process.203

2To form a binary mask, a random section from the full map of cracks obtained at the crack detection stage is used
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a) b)
Fig 4: Example of loss function trend estimation using first-oder approximation,

a)Trend estimation for the starting moment of training, b)Trend estimation for the
finising moment of training

The task of the discriminator is to determine which of the images is the original and which is204

reconstructed. Loss function for discriminator are calculated according to the equation:205

LossD = E[log(D(xtrn) + log(1−D(G(xdef )))] (11)

where x - source image, the size of which depends on what discriminator is used.206

This configuration of loss functions leads to a adversary between two neural networks. Since207

the generator has a larger number of layers, one iteration of the training includes two steps of208

the generator and one step of the discriminator. Additionally we use RMSProp optimization with a209

different learning rate of 0.0002 and 0.0001, generator and discriminator, respectively. The training210

batch includes 100 samples with the size of 24× 24 pixels for Annunciation virgin Mary panel and211

12× 12 pixels for Singing Angels panel.212

Due to the fact that in our work we apply a generating adversarial network to small patches213

independently, there is a problem of their incoherence at the edges, when combined into a full214

restored image. This problem is shown in Figure 5.215

To solve this problem, we process the full image several times using a small shift of 3 pixels for216

each iteration of the restoration. For example, if the first time the starting position for processing217

was the upper-left corner with the beginning of [0,0], then at the second iteration of processing,218

the starting position will be the value [3,3]. Example of such shift for 0,9 and 18 pixels illustrate219

in Figure 5(a,b,c) respectively.220
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a) b) c) d)
Fig 5: An example of the edge coherence problem in the independent processing of
small patches of a large image. a,b,c) An example of removing cracks, provided that
each subsequent processing begins with a shift of 0, 9 and 18 pixels, respectively, d)

The result of combining all the images into one using the median filter.

a)
Fig 6: Example of training dataset for crack detection

Since we use the patch size of 24×24, we have 8 versions of the restored images in total. After221

that, the 8 versions of the reconstructed images are combined into one using the median filter.222

As a result, the final image contains only the pixels that received the highest probability among223

the 8 images, while the abnormal pixel values are rejected. The result of this operation shown in224

Figure 5(d)225

For form training dataset in this work, we use intact areas between cracks as training data. This226

decision is explained by the fact that fragments for training are highly correlated with damaged227

areas that will need to be removed in the future.228

4 Experimental results229

To assess the quality of the restoration of paintings, we use two paintings Annunciation virgin230

Mary and Singing Angels from Ghent Altarpiece.28 These paintings have high resolution and231

are presented in three modalities: color macrophotograph, infrared macrophotograph and X-ray232

macrophotograph. Such rich visualization is extremely useful for virtual crack detection, as it233

allows to get more useful information for classification.234
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This section is divided into two parts: crack detection and crack removal subsections. To obtain235

numerical results in the first subsection, we use the following metrics:236

FA =
FP

AlPx−DfPx
, FM =

FN

AlPx− UdPx
(12)

237

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2 · P ·R
P +R

(13)

where FA - probability of false alarm, FM - probability of false missing pixels containing cracks,238

P - precision, R - recall, F1 - F1-measure, TP - true positive, FP - false positive, FN - false239

negative, DfPx - total amount of pixels belonging to a crack, UdPx - total amount of pixels not240

belonging to a crack, and AlPx - total amount of pixels in the image.241

Additionally, as well-known methods for comparison, we use: MCNC method with improved242

crack boundary localization,11 Bayesian Conditional Tensor Factorization method (BCTF),7 CNN-243

based method that was proposed for crack detection in roads10 and a deep feature fusion network244

(DFFN) classifer from.38 All methods use the same set of training data that is used in the works245

[Cornelis B. et al.]7 and [Sizyakin R. et al.]11 An example of data with label from this set is246

illustrated in Figure 6(a) for Singing angels panel.247

For the second subsection, as well-known methods for comparison, we use: exemplar based248

method (EBM)21 and context-aware image inpainting using MRF.22 Since the paintings Virgin An-249

nunciate and Singing Angels currently have no intact versions, numerical metrics are not provided.250

4.1 Crack detection251

The use of crack detection methods based on the U-Net architecture has both advantages and252

disadvantages. From our previous research, we can note the following advantages of such an253

architecture: high accuracy of crack localization without excessive expansion of their boundaries,254

high speed of network learning. The disadvantages we can attribute to the high demands on the255

quality of the markup of training data. So if the cracks in the training set are not completely256

marked or inaccurately, then the network may not converge or have a low accuracy of localization257

of cracks. To solve this problem and also to make the model more applicable in practice, we use258

an input tensor with a small spatial size of 20×20×5 pixels. Where 5 corresponds to 3 modalities259
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a) b) c)

d) e)
Fig 7: Example of crack detection: a) Part of Annunciation virgin Mary panel, b)

Crack map of BCTF, c) Crack map of MCNC, d) Crack map of UNET, e) Crack map
of UMCNC

Table 1: Comparison of different methods for crack detection on a panel from the
Ghent Altarpiece.

Annunciation virgin Mary panel
Method Recall False alar. False miss. Precision F1-m.
CNN10 0.8481 0.0777 0.1519 0.5989 0.7020
DFFN38 0.7488 0.0422 0.2512 0.7081 0.7279
BCTF7 0.7896 0.0535 0.2104 0.6686 0.7241
MCN11 0.8161 0.0540 0.1839 0.6741 0.7383
MCNC11 0.7673 0.0375 0.2327 0.7365 0.7516
UNET 0.8356 0.1109 0.1644 0.5076 0.6315
UMCN 0.7928 0.0436 0.2072 0.7134 0.7510
UMCNC 0.7541 0.0320 0.2459 0.7630 0.7585

of the color and 2 modality from infrared and X-ray photograph. Obviously, marking up a tensor260

with a spatial size of 20 × 20 is easier to mark up than, for example, a 256 × 256 patch. And261

due to the fact that the training data set should include as many textural features of the painting as262
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a) b) c)

d) e)
Fig 8: Example of crack detection: a) Part of Singing Angels panel, b) Crack map of
BCTF, c) Crack map of MCNC, d) Crack map of UNET, e) Crack map of UMCNC

Table 2: Comparison of crack detection methods on a second selected panel from the
Ghent Altarpiece, where ∗ denotes an extended dataset and +C the use of a technique

for suppressing excessive thickening of the crack boundaries.11

Singing angels panel
Method Recall False alar. False miss. Precision F1-m.
CNN10 0.6119 0.0999 0.3881 0.4680 0.5304
DFFN38 0.6242 0.0966 0.3758 0.4814 0.5436
BCTF7 0.6150 0.0905 0.3850 0.4941 0.5479
MCN11 0.6340 0.0894 0.3660 0.5048 0.5621
MCNC11 0.6083 0.0681 0.3917 0.5622 0.5843
UNET 0.7412 0.2089 0.2588 0.3376 0.4639
UMCN 0.6080 0.0655 0.3920 0.5713 0.5891
UMCNC 0.5833 0.0528 0.4167 0.6134 0.5980

possible, the number of tensors can increase significantly, which ultimately may call into question263

the reasonableness of automatic crack detection.264

Further, in addition to the completeness of the tensor marking for training (i.e., all cracks in265

the tensor must be marked), the UNet architecture strongly depends on the accuracy of the crack266
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Fig 9: Example of removing detected cracks. First row: images with cracks, Second
row: images with mask, Third row: removed cracks by proposed aGAN

covering. So an inaccurate coating can lead to excessive thinning or thickening of the actual crack267

boundaries. Therefore, in order to improve the quality of crack detection, we use the technique pro-268

posed in work.11 This technique allows to deal with excessive thickening of the crack boundaries269

on the resulting map.270

Based on the analysis of the results obtained, it can be seen that the UMCN/UMCNC hybrid271

network is superior to known crack detection methods. The combination of a convolutional net-272

work and an autoencoder based on the U-Net network can significantly reduce the probability of273

a false positive, which leads to an increase in the F1 metric. It is also clear from the results that274

the pure U-Net network has a large number of false positives. These errors are mainly related to275

inaccurate descriptions of the actual crack boundaries. This is due to the fact that the training data276

set was created with an emphasis on user convenience, and did not take into account the limitations277

that may arise when using the U-Net model. That is, when marking cracks to form a training set,278

the user did not cover the whole crack, but only its central part. Additionally, it can be seen from279

the results that the technique of improving the boundaries of cracks confirms its effectiveness.280

4.2 Crack removal281

In this section we present the result of virtual restoration of two paintings: Annunciation virgin282

Mary and Singing Angels. As well-known methods, we use exemplar based method (EBM)21 and283

a context-aware method based on Markov Random Fields (MRF),22 both of which proved to be284
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a) b)

c) d)
Fig 10: Example of removing detected cracks of the panel Annunciation virgin Mary
a) Parts of the original painting, b) The result of EBM, c) The result of context-aware

MRF, d) The proposed aGAN technique.

successful in virtual restoration of paintings.8 These methods are based on searching for patches285

on undamaged areas of the image and then filling in the damaged area with them. The main286

challenge for such methods are cases when an undamaged area does not contain a semantically287

connected object to an object that has been deleted. This can occur when the lost area is large.288

Nevertheless, in the problems of crack removal, such situations are rare, so such methods can be289
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a) b)

c) d)
Fig 11: Example of removing detected cracks of the panel Singing Angels a) Parts of
the original painting, b) The result of EBM, c) The result of context-aware MRF, d)

The proposed aGAN technique.

successfully applied.290

An example of crack removal for the proposed adaptive adversarial network (aGAN) illustrated291

on Figure 9. Figure 10 shows the result of removing cracks in the Annunciation virgin Mary paint-292

ing. Figure 10 shows that the EBM method has some spikes that degrade the overall perception of293
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the restored image. The painting restored using the context-aware method based on Markov Ran-294

dom Fields method looks much better. However, upon closer looks, some objects are visible that295

have been inpainted in areas where they should not be. The restoration result using the proposed296

aGAN approach has no such drawbacks. However, some areas of the restoration do not look sharp297

enough.298

Figure 11 shows the result of removing cracks in the Singing Angels painting. The analysis of299

the results confirms the effectiveness of restoration methods based on adversarial neural networks.300

As before, the EBM and CA-MRF methods have a certain amount of structurally incorrectly re-301

constructed regions. This is especially visible in the pearl area as well as in areas of swift contrast302

changes.303

5 Conclusion304

In this paper, a study was performed aimed at investigating the possibility of virtual restoration of305

paintings using deep learning. This study consists of two parts: the detection of cracks and their306

removal. To detect cracks, we use a combination of two neural network models: a convolutional307

neural network and a segmenting neural network based on the U-Net architecture. This combina-308

tion has a number of advantages that are presented for crack detection methods for their successful309

application in practice. This includes easy creation of a training set without the need for exces-310

sively painstaking and accurate labeling of cracks, the ability to use an online training model when311

new training data becomes available, high speed of training and creating a crack map, as well312

as the absence of the need for hand-engineering texture descriptors. Additionally, the proposed313

architecture provides significant accuracy of crack localization, which is confirmed by numerical314

results. The second part of this paper is dedicated to the problem of removing detected cracks. To315

do this, we use an adaptive adversarial network. The key novelty is the coefficient that allows to316

dynamically evaluate the trend of the loss function in the learning process. In our work, we use317

this coefficient for adaptive balancing of the loss function and finding a tradeoff between sharp-318

ness and the global structure of the restored area. The results obtained show encouraging results in319

comparison with known methods.320

Generally based on the results obtained, it can be concluded that combining different neural321

network architectures can improve the result if compared with the result from each architecture322
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separately. Also, the use of adaptive feedback through the trend estimation coefficient for the323

generative network has the potential for further study to obtain a higher-quality reconstruction324

result. Therefore, further work will be carried out in these directions.325
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