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ABSTRACT
Over time, crack pattern (craquelure) inevitably develops in paintings as a sign of their ageing, sometimes accompanied
by larger losses of paint (lacunas). In restoration treatments, cracks are typically not filled in, and virtual restoration
is often the only option to “reverse” the ageing of paintings, simulating their original appearance. Moreover, virtual
restoration can serve as an important supporting step in decision making during the physical restoration. In this research,
we investigate the possibility of applying deep learning-based methods for virtual restoration. In particular, our crack
detection method is based on a convolutional autoencoder (U-Net), and we employ a generative adversarial neural network
(GAN) to virtually inpaint the detected cracks. We propose an original way of training the GAN model for painting
restoration, which improves its practical performance. A series of experiments shows encouraging results in comparison
with known methods, and indicates huge potential of deep learning for virtual painting restoratin.

Keywords: Virtual restoration of paintings, deep learning, crack detection, convolutional autoencoder (U-Net), generative
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1. INTRODUCTION
Virtual restoration is often the only plausible way to restore the original appearance of master paintings, which over time
become inevitably affected by ageing and various kinds of deterioration, dominantly cracks and paint losses. In physical
restoration treatments, painting cracks are typically left untouched unless at places where more severe painting losses are
present. Although this conservation practice secures the authenticity of paintings, the ageing cracks still reduce the overall
quality of visual perception and may hinder full appreciation of the original content laid down by the artist.

In this paper, we will focus on detecting and virtually inpainting cracks. Faithful automatic crack detection can provide
invaluable support to art restorers, facilitating an objective insight into the current state of the painting and the evolution of
deteriorations over time. Moreover, virtual inpainting serves in some cases as simulation to support the decisions that need
to be made during the actual restoration process.

Crack detection methods often employ morphological filtering [1] due to its low computational complexity and high
“Recall” metric. However, the detected crack maps typically contain many false-positives, and therefore morphological
filtering is rarely used as an independent crack detection method but rather as a preprocessing step. The computational
complexity of more advanced methods can be significantly reduced with such an effective preprocessing step that eliminates
safely large areas where painting cracks are not present.

Most of the current crack detection methods are based on machine learning. A Bayesian approach [2, 3] forms feature
vectors from the available image modalities and applies Bayesian Conditional Tensor Factorizations (BCTF) classifier [4].
The available set of imaging modalities often includes optical macrophotography, infrared macrophotography, infrared
reflectography and X-ray images. Other modalities, like macro X-ray fluorescence or hyperspectral images are acquired in
some cases as well, but these are still rather rare as require expensive equipment. The set of available imaging modalities
is sometimes expanded artificially, creating virtual modalities, e.g., by applying various filters. The corresponding set of
filters is typically optimized for each processed painting, which poses limitations in practice.

In general, the main problem with the existing multimodal crack detection approaches is their low resistance to inter-
modal shifts, which leads to an increase in false-positive responses. The problems arising from intermodal shifts can be
alleviated by using patch-based convolutional neural networks (CNN) [5, 6]. By operating on small image patches, the
convolutional neural network can effectively use both spatial and intermodal correlation to improve the crack detection
accuracy and to improve the robustness to intermodal shifts. Most importantly, as with all deep learning methods, we
now enjoy the advantage of not having to hand-engineer any filters, as the feature maps are now automatically synthesized
inside the network during the training process. However, these methods yield excessive thickening of the actual crack
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Figure 1: Part of Annunciation to virgin Mary panel from the Ghent Altarpiece, a) Color image, b) Infrared

image, c) X-Ray image

boundaries [7–9]. A possible solution to this problem is a combination of patch-based and vector-based techniques [10].
However, this approach does not always completely eliminate the problem of false crack thickening. Additionally, there is
uncertainty with the choice of the patch size, which must be selected for each processed painting individually.

More precise classification (with pixel-level precision) can be achieved with segmentational convolutional autoencoders
and their modifications [11–14]. Such neural network architectures receive a full image as input data, and output a seg-
mentation map, with pixel-level precision. During the training process, the filters of such an autoencoder adapt to texture
features that can be linked/combined into a local group, for example, by color or texture features. Those texture areas of
the image that cannot be linked/combined into a local group are smoothed, and in the process of expansion (deconvolution)
are ignored on the resulting segmentation map. The main disadvantage of such networks is a complex learning process
that requires a large number of labelled training samples. Also, in some cases, this type of neural networks may require a
significant amount of time for training or may not converge at all, due to poor-quality labelling of training data.

In the case of virtual restoration, the detection of cracks is only the first stage. The second stage is virtual restoration
(inpainting) of the areas detected in the first stage. The simplest way to fill in the damaged areas is the usual polynomial
interpolation of the boundary undamaged pixels. This group of methods includes the work in which the Navier-Stokes
equations are used as an interpolating function [15]. This type of method can be useful if the fill rate is a priority require-
ment. However, if the area to fill is extensive, the absence of texturing of the filled area can be a significant disadvantage.
Methods based on the search of self-similar patches on an undamaged area of the image cope with this problem more suc-
cessfully. After that, the found patches are used to reconstruct the damaged area [16–18]. The most difficult cases for this
group of methods are cases when the lost area includes a semantically important object in the image. Semantically impor-
tant areas can include, for example: the wheels of a car, the windows of a house, or the mouth and eyes on the face. Such
areas cannot be restored using this group of methods due to the fact that undamaged areas may not contain duplicates of
such semantically important objects. Reconstructing variational autoencoders (VAE) [19] and adversarial neural networks
(GAN) [20–22] can partially and in some cases completely solve this problem. The main advantage of generating neural
networks is the ability to restore areas containing important semantic information, even if duplicates of such areas are
partially or completely absent in undamaged areas of the image. The ability to restore such areas of the image is achieved
during training (“memorization”), using training images. Subsequently, in the reconstruction mode, these neural networks
use parts of these “memorized” training images to fill in the damaged areas. The main disadvantage of VAE generating
methods is blurriness of the reconstructed area, while GANs suffer from an unstable training process.

In this paper, we investigate the possibility of virtual restoration of paintings using a segmenting convolutional neural
network (U-Net) for detecting cracks, as well as a generating adversarial network (GAN) for removing detected cracks.

2. PROPOSED METHOD
Cracks in paintings can have extremely varying appearance: as dark or bright lines of various elongation and curvatures.
Moreover their thickness can very from fine, hair-like lines to very thick ones flowing into regions of missing paint. The
main difficulty for detecting cracks in master paintings is a complex background and similarity of crack patterns with
various painted features (line-like structures like eye lashes, hair, parts of inscriptions), and various textures. Due to the
impossibility to visually distinguish such objects from cracks, it is important to combine the optical macrophotographs
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Figure 2: The proposed architecture of the segmenting autoencoder.

with other imaging modalities, such as infrared and X-ray images. In our work, we use multimodal acquisitions of the
Ghent Altarpiece [23]*.

The challenge of detecting cracks is to construct a binary map on which the cracks are marked with value 1, and the
undamaged areas are marked with 0. The input image Yh,v can be represented as:

Yh,v = (1− dh,v) · Sh,v + dh,v · ch,v (1)

where h, v are the spatial coordinates, Sh,v is the undamaged content, dh,v ∈ {0, 1} a binary crack map of defects, and
ch,v is the crack color.

2.1 Crack detection
In our work, to detect cracks, we use an extended version of the segmenting autoencoder (U-Net), which was originally
proposed for the segmentation of medical images [12]. The network architecture is illustrated in Figure 2.

All convolutional autoencoders, both segmenting and generating, are based on the operation of N-dimensional convo-
lution of input data and filters. Equation for this operation can be defined as:

xl,ch,v = f(
∑
h

∑
v

∑
c

xl−1,c
h+m,v+n · k

l,c
h,v + b), (2)

where xl,ch,v is the feature map at layer l from modality c, kl,ch,v is the corresponding convolution kernel, xl−1,c
h+m,v+n is the

feature map from the previous layer, f is the activation function of the hidden layer, and b is a bias.

The training process consists in setting up the filters for convolution so that when the input data passes through all
the layers of the neural network, the loss function is minimal. Here we use Sörensen–Dice coefficient [24, 25] for loss
estimation, which shows the measure of the area of correctly marked segments and can be defined as:

Loss =
2|x ∩ d|
x+ d

(3)

where x and d - is estimated and ground truth crack maps, respectively.

Next, the proposed architecture has following layers parameter: C05, C132, C232, C332, C432, MP 5, C664, C764,
C864, C964, MP 10, C11128, C12128, C12128, C14128, MP 15, C16256, C17256, C18256, C19256, MP 20, C21512,
C22512, C23512, C24512, US25, C26256, C27256, C28256, C29256, US30, C31128, C32128, C33128, C34128, US35,
C3664, C3764, C3864, C3964, US40, C4132, C4232, C4332, C4432, C45(sigm)3 where Ch - denotes a convolutional
layer with index h, digit after Ch denotes a number of feature maps for current layer, MPh - Max-pooling operation, USh

- Up-sampling operation and (sigm) is denote logistic sigmoid activation function. All other layers use the exponentially

*Image Gallery: Closer to Van Eyck, Rediscovering the Ghent Altarpiece, http://closertovaneyck.kikirpa.be/



linear unit (ELU) [26] as activation function, which is a more efficient version of the activation function ReLU [27,28] and
Leaky ReLU [29], and allows to achieve convergence of the neural network faster and higher accuracy, as well as exclude
the process of batch normalization [30]. The equation can be written as:

f(x) =

{
x if x > 0

a(ex − 1) if x ≤ 0,
(4)

where a > 0 is a hyperparameter that controls the value at which the ELU saturates for negative inputs.

All convolutional layers have a spatial filter size of 3 × 3 pixels. For training we use Adam optimization [31], with
a learning rate of 0.00005. The training process took in average 5000-10000 iteration, with a batch size of 3 pair im-
ages/masks with spatial size of 256× 256 pixels.

2.2 Crack removal
For virtual crack inpainting, we employ a generative adversarial neural network (GAN) [32]. The main feature of this
type of deep learning models is the use of the classification results from the convolutional neural network within the loss
function of the generating autoencoder. As a result, the GAN model can include several networks. The most common
case is the use of one autoencoder and two discriminators: local and global †. A local discriminator is needed to evaluate
the quality of the directly restored area, and a global discriminator is needed to evaluate the semantic quality of the whole
image, including the reconstructed and undamaged parts. This architecture allows to achieve a sharper generated image in
comparison with a standard autoencoder.

The main difficulty in using this type of generating networks in practice comes from two main limitations: The first
is the high probability of collapse of the training process, and the second is the lack of sufficient training data. So the
first constraint is solved by independently adjusting the learning rates and the number of iterations for each of the neural
networks that are part of the generating adversarial network, adding a stabilizing error (for example, MSE) that reduces the
likelihood of an explosive growth of the loss function, or using more stable activation functions, etc. The second limitation
can be solved if the image that needs to be restored is semantically related to images from the training set. Most well-known
works follow this approach. However, in practice, this condition is difficult to achieve: the images may contain semantically
different content. For example, one painting may include people with different types of clothing, and other some mythical
creatures and/or nature and various objects. A partial solution may be to combine a large number of semantically different
data sets, however, in this case, the training process of the adversarial network may take an exceptionally long period of
time, which may completely exclude the possibility of their application in practice. Therefore, in our work, we propose
to use the remaining undamaged parts of the painting as a training data set. This is possible due to the fact that usually
panel paintings have extremely high resolution and undamaged areas between the cracks can be used to form a training
set. For our case, using a patch with a spatial size of 24× 24 pixels is optimal in terms of the total number of samples and
their textural variability. Additionally, we reject the local discriminator and keep only the global one. The architecture of
proposed the generating adversarial neural network that we use is illustrated in Figure 3.

The reconstructing network has the following architecture: C04, C164, C264, C364, C464, MP 5, C6128, C7128,
C8128, C9128, MP 10, C11256, C12256, C12256, C14256, US15, C16128, C17128, C18128, C19128, US20, C2164,
C2264, C2364, C2464, C25(sigm)3 and global discriminator: C04, C164, C264, C364, MP 4, C5128, C6128, C7128,
MP 8, C9256, C10256, C11256, FC12(sigm)3, where FCh - denotes a fully connected layer with logistic sigmoid acti-
vation function. As input data for the layer C04, a color image with a randomly deleted area is used together with a binary
mask of the deleted area ‡. All convolutional layers of the generating and discriminating networks use an exponentially
linear unit (ELU) as an activation function.

The loss function for reconstructing network is determined according to the equation:

LossG = λLabs + Ladv, (5)
†Usually standard convolutional neural networks are used as discriminators
‡To form a binary mask, a random section from the full map of cracks obtained at the crack detection stage is used
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Figure 3: The proposed GAN-based model for virtual restoration.
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Figure 4: An example of the edge coherence problem in the independent processing of small patches of a

large image. a,b,c) An example of removing cracks, provided that each subsequent processing begins with a
shift of 0, 9 and 18 pixels, respectively, d) The result of combining all the images into one using the median

filter.

Labs = |xtrn −G(xdef )|, (6)

Ladv = E[log(1−D(G(xdef )))] (7)

where xtrn - undamaged image for training, G(xdef ) - reconstructed image, λ - coefficients of proportionality, which is
used to align the loss order.

The Ladv error allows to achieve a higher sharpness of the reconstructed area and the Labs loss allows to achieve a
more stable learning process.

The task of the discriminator is to determine which of the images is the original and which is reconstructed. Loss
function for discriminator are calculated according to the equation:

LossD = E[log(D(xtrn) + log(1−D(G(xdef )))] (8)

where x - source image, the size of which depends on what discriminator is used.

This configuration of loss functions leads to a adversary between two neural networks. Since the generator has a
larger number of layers, one iteration of the training includes two steps of the generator and one step of the discriminator.
Additionally we use Adam optimization with a different learning rate of 00008 and 00004, generator and discriminator,
respectively. The training batch includes 200 samples with the size of 24× 24 pixels.

Due to the fact that in our work we apply a generating adversarial network to small patches of the size of 24 × 24
independently, there is a problem of their incoherence at the edges, when combined into a full restored image. This
problem is shown in Figure 4.



a) b)
Figure 5: Example of training dataset for crack detection:a) Source dataset for Singing angels panel, b)

Extended dataset for Singing angels panel

To solve this problem, we process the full image several times using a small shift of 3 pixels for each iteration of the
restoration. For example, if the first time the starting position for processing was the upper-left corner with the beginning
of [0,0], then at the second iteration of processing, the starting position will be the value [3,3]. Example of such shift for
0,9 and 18 pixels illustrate in Figure 4(a,b,c) respectively.

Since we use the patch size of 24 × 24, we have 8 versions of the restored images in total. After that, the 8 versions
of the reconstructed images are combined into one using the median filter. As a result, the final image contains only the
pixels that received the highest probability among the 8 images, while the abnormal pixel values are rejected. The result of
this operation shown in Figure 4(d)

3. EXPERIMENTAL RESULTS
To evaluate the effectiveness of crack detection and crack removal, we will use two digitized multimodal panel paintings
from the Ghent Altarpiece [23]: Virgin Annunciate and Singing Angels. These images have extremely high resolution, so
only small parts of them are shown here.

For comparison, we use the following well-known techniques for detecting cracks: MCNC method with improved
crack boundary localization [6], Bayesian Conditional Tensor Factorization method (BCTF) [2], CNN-based method that
was proposed for crack detection in roads [5] and a deep feature fusion network (DFFN) classifer from [33].

To test the effectiveness of the reconstructing adversarial neural network, we use two patch-based methods: exemplar
based method (EBM) [16] and context-aware image inpainting using MRF [17].

To evaluate quantitative measures, we use the following metrics:

FA =
FP

AlPx−DfPx
, FM =

FN

AlPx− UdPx
(9)

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2 · P ·R
P +R

(10)

where FA - probability of false alarm, FM - probability of false missing pixels containing cracks, P - precision,R - recall,
F1 - F1-measure, TP - true positive, FP - false positive, FN - false negative, DfPx - total amount of pixels belonging
to a crack, UdPx - total amount of pixels not belonging to a crack, and AlPx - total amount of pixels in the image.

3.1 Crack detection
In the first part of the crack detection experiment, we use a training data set the same as in [Cornelis B. et al.] [2] and
[Sizyakin R. et al.] [6]. An example of data with label from this set is illustrated in Figure 5(a) for Singing angels panel.

The main challenge for the proposed architecture (mUNET), based on the convolutional autoecoder (U-Net), is due
to the fact that the data in this set is not fully marked, that is, some cracks were left without marking. The result of
such an incomplete markup was that the proposed network architecture did not converge when cracks were detected on
the Singing Angels panel. To solve this problem, we have marked up the training data as shown in Figure 5(b). There was
no convergence problem for the Virgin Annunciate panel, since the data set was initially marked up almost completely for
it.
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Figure 6: Example of crack detection: a) Part of Virgin Annunciate panel, b) Crack map of BCTF, c) Crack

map of MCNC, d) Crack map of mUNET+C

a) b) c) d)
Figure 7: Example of crack detection: a) Part of Singing Angels panel, b) Crack map of BCTF, c) Crack

map of MCNC, d) Crack map of mUNET+C

In addition to convergence problems, this segmenting network architecture has a high sensitivity to the accuracy and
completeness of crack marking. That is, all the cracks from the training set should be completely painted up, which is very
difficult to realize in practice. Failing to satisfy this condition results in imprecise detection of the thickness of the cracks:
in the resulting map, all the detected cracks have approximately the same thickness. To solve this problem, we use the
technique proposed in our earlier work [6], which allows us to reduce the number of false positives caused by excessive
thickening of the crack boundaries. The essence of the technique is to apply a shift coefficient, which imposes a penalty on
pixels that are beyond the actual boundaries of cracks on the binary map. In the tables 1 and 2, this approach, is denoted
as (mUNET+C).

It is important to note that vector-based and patch-based machine learning methods do not suffer from such limitations,
and it is enough to mark up only the pixels belonging to the center of the crack, without the need for full painting. These
two limitations are fundamental in the application of segmenting autoencoders in practice. Since the process of complete
marking of training data with high accuracy can take a significant period of time, which in some cases may call into
question the reasonableness of using this method.

Table 1: Comparison of different methods for crack detection on a panel from the Ghent Altarpiece.

Annunciation virgin Mary panel
Method Recall False alar. False miss. Precision F1-m.
CNN [5] 0.8481 0.0777 0.1519 0.5989 0.7020
DFFN [33] 0.7488 0.0422 0.2512 0.7081 0.7279
BCTF [2] 0.7896 0.0535 0.2104 0.6686 0.7241
MCN 0.8161 0.0540 0.1839 0.6741 0.7383
MCNC 0.7673 0.0375 0.2327 0.7365 0.7516
mUNET 0.8034 0.0702 0.1966 0.6101 0.6935
mUNET+C 0.7437 0.0417 0.2563 0.7090 0.7259



Table 2: Comparison of crack detection methods on a second selected panel from the Ghent Altarpiece,
where ∗ denotes an extended dataset and +C the use of a technique for suppressing excessive thickening of

the crack boundaries [6].

Singing angels panel
Method Recall False alar. False miss. Precision F1-m.
CNN [5] 0.6119 0.0999 0.3881 0.4680 0.5304
DFFN [33] 0.6242 0.0966 0.3758 0.4814 0.5436
BCTF [2] 0.6150 0.0905 0.3850 0.4941 0.5479
MCN 0.6340 0.0894 0.3660 0.5048 0.5621
MCNC 0.6083 0.0681 0.3917 0.5622 0.5843
mUNET - - - - -
mUNET∗ 0.6441 0.1104 0.3559 0.4559 0.5339
mUNET+C∗ 0.6140 0.0916 0.3860 0.4905 0.5454

The analysis of the obtained results confirmed the assumption that incomplete marking of training samples can sig-
nificantly reduce the performance of convolutional segmentation networks and in some cases lead to non-convergence.
Among the advantages, we can note a high resistance to false positives, as well as the absence of a problem of excessive
thickening of the actual boundaries of the detected cracks, under the condition of very high accuracy of the training data
markup, which is found in patch-based methods. Patch-based methods, although they lead to excessive thickening of the
boundaries, have balanced characteristics between classification accuracy and the complexity of training data preparation.
Among the advantages of vector-based methods, we can note the simplicity of preparing a training set, high accuracy of de-
scribing cracks and their boundaries, as well as the ability to quickly apply the trained model to other pictures. Among the
disadvantages of vector-based methods, we should note the low resistance to intermodal shifts, low resistance to noise-like
texture objects, as well as in most cases the need to use hand-crafted descriptors.

3.2 Crack removal
The results of recent studies show that generative adversarial networks can reconstruct large lost areas of images better
than methods that search for self-similar patches. Their key advantage is the correct recovery of the semantic information
of the lost area, which in general cannot be achieved by conventional patch-based inpainting methods. The larger the
missing area is, the more pronounced is the advantage of the GAN-based methods. However, patch-based methods are
quite successful in crack removal. Therefore, we evaluate the quality of the restoration with adversarial networks in areas
where patch-based methods are also effective. In particular, we compare the proposed GAN-based restoration method with
an exemplar based method (EBM) [16] and a context-aware method based on Markov Random Fields (MRF) [17], both of
which proved to be successful in virtual restoration of paintings [3]. The results of the restoration are shown in Figure 8.

The obtained results confirm the effectiveness of all methods in relation to the problem of crack removal. Nevertheless,
the EBM method has a certain number of contextually incorrectly filled areas, which makes the resulting image look noisy
and rough. The result of the context-aware image inpainting using MRF method looks much better: the restored areas
appear consistent and without visually disturbing artefacts. However, some of the restored areas are not filled in exactly,
some of the borders of the drawn objects are torn, and in some places the filling occurs with incorrect patches. The most
visually appealing is the result of the proposed generating adversarial neural network. Since there are no color-inconsistent
fillings on it, the filled objects are contextually correct. The disadvantages include some smoothness of the filled areas. As
a conclusion, it can be noted that the generative network only removes cracks, while patch-based methods remove cracks
and also paint semantically unrelated objects that did not exist before.

4. CONCLUSION
In this work, we investigate the problem of virtual restoration of paintings. To detect cracks in this work, we use an extended
version of the segmenting autoencoder (U-Net). The analysis of the obtained results shows that most of the actual cracks
are correctly detected, while very few false positives are introduced. An important advantage with respect to earlier crack
detection methods based on deep learning is that there is no excessive, false thickening of the boundaries of the detected
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Figure 8: Example of removing detected cracks on two parts of the panel Annunciation virgin Mary a,e)

Parts of the original painting, b,f) The results of EBM inpainting method, c,g) The results of context-aware
MRF method, d,h) The proposed GAN technique.

cracks. This way, we overcome an important limitation of earlier deep learning based crack detection methods, including
our previous work and most of the other current state-of-the-art methods in this field. However, this requires a training
set with high accuracy of data markup. If such a high-quality training data set is not available it is still necessary to use
techniques to refine the boundaries of the detected cracks. The second stage of our work was to investigate the possibility
of using a generative adversarial neural network to remove the detected cracks. Due to the fact that a large set of training
data is required for successful training of such a network, which is not always possible to have in practice, we propose to
form such a data set using the remaining undamaged parts of the image. The obtained results confirm the high efficiency
of the designed architecture of the GAN-based network and the proposed training method. The results of inpainting appear
visually consistent and better than the results of patch-based methods that were earlier used to restore digitized paintings.
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