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Network control by a constrained 
external agent as a continuous 
optimization problem
Jannes Nys1,2, Milan van den Heuvel3*, Koen Schoors3 & Bruno Merlevede3

Social science studies dealing with control in networks typically resort to heuristics or solely describing 
the control distribution. Optimal policies, however, require interventions that optimize control over a 
socioeconomic network subject to real-world constraints. We integrate optimisation tools from deep-
learning with network science into a framework that is able to optimize such interventions in real-
world networks. We demonstrate the framework in the context of corporate control, where it allows 
to characterize the vulnerability of strategically important corporate networks to sensitive takeovers, 
an important contemporaneous policy challenge. The framework produces insights that are relevant 
for governing real-world socioeconomic networks, and opens up new research avenues for improving 
our understanding and control of such complex systems.

Networks are ubiquitous in modern society. The interconnectedness of networks has the potential to magnify the 
impact of a local event or intervention on the system as a whole. Such impact has been shown across multiple 
fields, from cascades in financial  systems1, to service adoption in social  networks2. This raises the question how 
(a set of) nodes can gain influence or control over certain states in socioeconomic networks (e.g. decisions in 
companies, opinions of people). Across a wide range of systems (e.g. financial systems, governmental systems), 
insights into this process of gaining influence/control would improve our understanding of system stability, 
facilitate the design of optimal interventions to stabilize these systems or steer them in desirable directions. What 
is the optimal targeting strategy to maximize adoption of products or services in a socioeconomic network? How 
vulnerable is the control over strategic sectors to hostile takeovers? In this paper, we present a framework that 
reformulates these questions as a continuous optimization problem. This allows us to combine network science 
with state-of-the-art optimisation methods from deep learning to analyze the control of complex networks in a 
scalable and flexible manner.

Related literature. In the social sciences, and especially the field of social influence analysis, control is 
often viewed as a property that (instantly) flows through the system from node to node, like influence on product 
adoption in social networks, or corporate control through share holdings in ownership  networks2–4. In social 
influence analysis, influence refers to the ability of an entity to change the probabilities of states of other entities 
in the network, (e.g. influencers that make their followers buy items). Here, we use the term control in a broad 
sense to refer to influence over the distribution of states in the system, unless explicitly mentioned otherwise.

Information diffusion models model how information flows through the  network5. The literature uses algo-
rithms on these networks to solve the social influence maximization (SIM)  problem6, defined as: the problem of 
finding the minimal subset of nodes, the seed nodes, in a socioeconomic network that could maximize the spread of 
influence, which is NP-hard. This has caused the literature to mostly focus on solutions that are either approximate 
or use heuristics. These solutions do not scale well for large  networks4.

Another domain where the topic of network control has been studied is (structural) network controllability. 
Herein, the goal is to find a optimal set of nodes, the driver nodes, that have the potential to independently control 
all states (on the nodes or edges) in the network in finite  time7–9, or to independently control a target subset of 
these  states10,11. The control is exerted by injecting an external signal into the driver nodes, which then propagates 
throughout the network, as dictated by a set of linear differential equations. In this literature the driver nodes are 
said to have control if they are capable of independently steering the states of all  (target10) nodes, or  edges12 in the 
network to any desired final state in finite time. Control in this strict sense seems a useful concept for designing 
policy interventions in socioeconomic networks, and the method has been demonstrated on such networks in 
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the  past13–15. Controllability, however, holds implicit communication assumptions which cause the results to have 
little meaning in socioeconomic  networks15. The assumption originates from the independence condition that 
is imposed on the  control16 and entails that, for node controllability, nodes are only able to send a single linearly 
independent signal to all their neighbors, which in most socioeconomic contexts does not make sense. In the 
context of corporate control, a widely used example in both the node and edge controllability  literature7,8, this 
would unrealistically imply that a company can only give a single instruction to all owned subsidiaries.

A sub-field of the network controllability literature, called synchronizability or pinning  control17, also focuses 
on controlling the states on the network. In contrast to (structural) controllability, pinning control looks to 
achieve spatio-temporal symmetries in the states and thus only looks at a small section of the phase space at any 
given time. This approach is often used in consensus and epidemiology(-like) dynamics where the goal is for 
everyone to end up in the same state (e.g. reaching consensus, eradicating diseases, adopting a policy). Note that 
this goal is fundamentally different from (structural) controllability’s goal of enabling access to any configura-
tion in the state space.

Lastly, there exists a growing literature around estimating the treatment effect of an intervention in a net-
work. This literature sets itself apart from the classic treatment effect estimation  literature18, which looks at the 
treatment effect at the individual level, by taking into account the connectedness of the entities. Herein, they try 
to estimate the true treatment effect of an observed intervention in a network by accounting for the spillover 
 effects19 that propagate from the individuals through the network, and the potential changes to the network 
 itself20 caused by this intervention. Alternatively, such estimations have also been achieved through simulating 
potential interventions and trying to approximate the whole propagation dynamics of these  interventions2,21.

The current literature around network interventions thus focuses on either figuring out if and by whom the 
states on the network could be maximally influenced (or controlled)—typically imposing strong assumptions 
or using heuristics—or estimating the effect of an observed intervention in a network. In practice, however, 
policymakers are often faced with the added difficulty of highly non-linear dynamics, as well as real-world con-
straints when designing intervention strategies (e.g. legal restrictions on which entities can be targeted, budget 
restrictions). To the best of our knowledge, no research currently exists that addresses these different aspects 
simultaneously in a single framework. This paper fills this gap by integrating insights from literature and deep-
learning optimization tools into a scalable and flexible optimization framework for network interventions.

Reformulating the control question. Taking inspiration from the external signal perspective in control-
lability (where an external node is connected to the driver nodes to steer the system), and the flow of control in 
social influence analysis (where models are utilised that describe the diffusion of control), we reformulate the 
question of optimal (static) control as the continuous optimisation of an objective function of a constrained 
external agent. This allows us to construct a framework that, given a differentiable control objective, leverages 
scalable automatic differentiation and gradient-based optimization strategies to compute the optimal (or most 
efficient) intervention an external agent can perform on the network to maximize its control. The objective 
function to be optimized consists of two parts: a first term capturing the agent’s control in a given network con-
figuration, and a second term capturing the cost (e.g. effort, monetary value) to obtain this control. Optimizing 
this objective function then essentially boils down to maximizing the control at minimal cost. The external agent 
perspective does not limit the scope of our approach, as one can let the external agent coincide with an internal 
node and initialize it with its edges as a starting point of the optimisation.

Traditionally, techniques for optimizing an objective function can be classified into three categories (1) sym-
bolic differentiation, (2) numerical differentiation through the finite difference approximation of gradients, and 
(3) automatic differentiation. However, in network science applications, symbolic differentiation becomes intrac-
table, and numerical differentiation becomes unstable, due to the many variables and interacting components. 
In deep learning, the literature was faced with a similar challenge in the analysis of large  systems22, which has 
been tackled by automatic differentiation. While automatic differentiation has received little attention in network 
science, we show its usefulness by demonstrating that, under the condition that the objective function is continu-
ous and differentiable almost everywhere (the proof  in23 holds for our method as well), automatic differentiation 
and gradient-based optimization strategies can be used to find an optimum in the context of network control.

Given the many challenges to empirically measuring control in real-world socioeconomic  networks24 we will, 
as a first step, demonstrate our framework in the context of corporate ownership networks, where direct bilateral 
control can be defined through (partial) ownership of companies.

The challenge of global corporate ownership. The decrease in communication and information costs 
has made businesses more interdependent in global value  chains25. The associated globalisation of the corporate 
control market has resulted in more complex and internationalized corporate ownership. This has prompted 
several developed countries, including the EU and the US, to introduce or sharpen foreign investment screen-
ing mechanisms on the grounds of security or national  interest26. At the same time governing such networks 
has become more cumbersome. Establishing who has controlling power in a company has become a nontrivial 
task, further complicated by different accounting rules and company structures across  countries27. Individuals 
may control a holding company that acts as a store of ownership of other companies. Companies may control 
other companies indirectly through intermediary  subsidiaries3. A network approach has therefore become pre-
requisite for obtaining a deeper understanding of corporate control problems. To account for indirect control 
along longer paths, ownership has to be propagated and consolidated throughout the different ownership paths 
between firms. Vitali et al.28 proposed an adequate algorithm that summarizes the control of a given company on 
the network (how many subsidiaries a company controls, how much monetary value they represent, etc.). Using 
our framework we leverage this bilateral control matrix between companies and the cost of control, here the cost 
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of buying shares, to find the optimal intervention by an external agent (company, government, etc.) to maximize 
its control over (part) of the network. Our ownership data is drawn from the Orbis dataset by Bureau van Dijk-
A Moody’s Company. This data has been used widely to study various aspects of business networks, such as 
their role in the international transmission of  shocks29, the relationship between group structure and subsidiary 
 autonomy30, the effect of contracting institutions on subsidiary location and ownership  share31, ownership con-
centration and types of  control32, and hierarchical differentiation across business  groups33. While these papers 
study various aspects of business group networks, they all restrict themselves to static analyses of network char-
acteristics or their implications. By consequence, none of these works yield methods that can be directly applied 
to finding optimal intervention strategies in corporate networks. We are therefore the first to provide an scalable 
optimization framework that enables the study of a new class of problems revolving around optimal interven-
tions to control networks, such as vulnerability of strategic companies or sectors to hostile takeovers.

The remainder of the paper is structured as follows. First, we present our framework to optimize interven-
tions in a network to gain optimal control. We detail the construction and optimisation of the objective function 
and show how we can account for real-world constraints on interventions such as budgets and target groups. 
Second, we illustrate the power of our framework by applying it in the context of the corporate ownership net-
work. We start by explaining the intervention problem in this context and applying our framework to a simple 
synthetic graph to gain insights into the algorithm. We end this section by using data from Orbis Europe on 
Great Britain’s biotech research sector to show how the framework can be used to gain crucial insights into the 
vulnerability of this sector to hostile takeovers in different policy environments. In the final part of this paper 
we discuss new research opportunities that can be explored with our framework, potential future extensions, 
and broader applicability.

Optimal control framework
In most use cases, the focus is explicitly on obtaining control over the nodes in a network (rather than e.g. over 
the edges). We therefore introduce our methodology in this context. A more general introduction to our core 
method, and an extension for constrained optimization, and pseudocode for the implementation of the different 
routines is given in the “Methods” section.

Node control optimization. We are interested in optimizing the control over nodes (individuals, compa-
nies, etc.) in the network. For this reason, we focus on how and to what extent a single external agent (or node), 
representing, for instance, a hostile company, can take control of a network. Consider a network G of N nodes 
ni ∈ V with corresponding node values vi , and edges eij ∈ E . The weighted edges E between the nodes in V 
are represented by the weighted adjacency matrix A =

[

aij
]

 , with aij the weight of the edge eij from node ni to 
node nj . To represent the agent (whose intervention on the network we aim to optimize), we add an additional 
node x to the network, which is attached to G through a set of edges exi ∈ O that point to a selection of nodes 
ni ∈ S ⊆ V . G′ denotes the extended graph with nodes V ∪ {x} and edges E ∪ O . A schematic example is 
shown in Fig. 1. To differentiate between edges within G and edges originating from x, we use edge weight oj 
to represent the direct control of x on node nj ∈ S , with o = [o1, . . . , o|S |]

T ∈ [0, 1]|S | . We assume the exist-
ence of a backbone algorithm (BB) that can propagate the (indirect) control through the network. Propagation 
of control refers to the fact that the control of node ni over node nj also indirectly introduces control of ni over 
the children of nj , and more generally, all of its descendants. The latter, however, requires a careful definition of 
how control is computed, e.g. in the case of  cycles28, and depends strongly on the chosen BB. The result of the 
BB must be a vector c = [c1, . . . , cN ]

T ∈ [0, 1]N that determines the total control (direct + indirect) of x into all 
(reachable) nodes (see Fig. 1). A node nj is reachable from another node ni if there is a directed path from ni to 
nj . For any node nj that is unreachable from the external node x, cj = 0 . The BB algorithm must be continuous 
and differentiable in the edge weights oj . Any method that meets the mentioned requirements (continuous, dif-
ferentiable and producing a control vector) can be used as a backbone in our method.

Our goal is to optimize the (indirect) control over a targeted set of nodes T ⊆ V , by optimizing the direct 
control weights oj over a subset of nodes S ⊆ V . Note that when S ⊂ V or T ⊂ V are strict subsets, we use 
the terms source and target restricted control. Gaining control in node nj also comes with a cost, which is deter-
mined by the associated node’s value vj . The trade-off between cost and control can be tuned with the parameter � , 
which gives preference to solutions with a lower cost. Hence, our optimization boils down to finding o∗ for which

As control-loss function, we define (assuming cj ∈ [0, 1])

which describes the lack of control. Since we minimize the loss, this maximizes the control of x over T . For most 
use cases the complexity and non-linearity are dictated by the functional dependence of cj(o) . For example, as 
we will show in the next section for the case of corporate control, the intervention of an external agent (given 
by o ) will change the adjacency matrix A, i.e. A(o) , which in turn affects the control: cj(A(o), o) . In general, 
our framework does not impose linearity constraints on this functional dependence, and can handle nonlinear 
intervention effects on the network properties. The details of the loss function depend strongly on the use case. 
One may, for example, simply impose a cost that penalizes the number of takeovers

(1)o∗ = argmin
o

Lcontrol(o)+ �Lcost(o).

(2)
Lcontrol(o) =

∑

nj∈T

1− cj(o)
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where p = 1, 2 and ‖ ‖p indicates the lp-norm, thereby inducing sparseness in o . To relate the problem to SIM 
and (exact) controllability: this optimization aims at maximizing the control, with as few takeovers as possible, 
while ignoring the node values. By defining a cutoff Ccut for ci or using proximal gradient descent, we can obtain 
a proxy for the size of the typical control set. Another useful loss function may be

which represents the cost of the direct control in the set S , weighted by the node values.
We have explicitly introduced an external agent for clarity. In practice, this node might coincide with an 

internal node, be more connected, or contain an alliance of nodes. Our framework, however, is generic, and 
can be easily extended to these specific cases. While � effectively constrains the budget, it might not be evident 
from its value what the budget exactly is. To accommodate situations where the optimisation needs to be run 
for a specific monetary value for the budget, we also implemented a constrained optimisation version of our 
framework (see “Methods” section).

Results
To show the power of our optimal control framework, we apply it to the corporate control problem and dem-
onstrate its ability to provide actionable insights which were hitherto intractable to calculate. First, we explain 
the data and the relevant processing and modelling choices, definitions, and assumptions. Second, we apply the 
method together with the assumptions within a simple synthetic graph to demonstrate the inner workings and 
interpretation of the output of the algorithm. Lastly, we apply the method to a real-world example, Great Britain’s 
biotech research sector, where we show how the application of our framework can lead to policy relevant insights.

The global corporate ownership network. In the context of global corporate control, information on 
the corporate ownership and corporate financials is typically available from government mandated financial 
reports that must be filed periodically. Companies like Bureau van Dijk collect these data and compile them into 
databases, such as the Orbis Europe database used in this paper. Using such data, Vitali et al.28 have designed 
an algorithm to calculate the global control of companies by propagating and consolidating direct and indirect 
ownership throughout the ownership network. Their algorithm essentially assumes a multiplicative process of 
control along the paths in the networks and allows one to compute the control distribution of a snapshot of a 
network. It does not, however, provide an answer to governance questions relevant to investment screening 
mechanisms like“How vulnerable is a given sector to takeovers?”, or “Which policy limits the sector’s vulnerabil-

(3)Lcost(o) = �o�p

(4)
Lcost(o) =

∑

nj∈S

ojvj

Figure 1.  High-level illustration of the proposed framework. We show an example of a network G with nodes 
ni ∈ V (green) with values vi , and edges eij (grey) with their weights determined by the weighted adjacency 
matrix A =

[

aij
]

 . We also show the extended network G′ with the external node x (red), which is connected to 
the nodes of G by the edges exj (red) with weights oj . Here, the directly controlled nodes are S = {n1, n3, n4} . 
After applying the backbone algorithm to propagate control, we obtain the total indirect control cj (blue edges) 
of x in all reachable nodes. Hence, even though n2 /∈ S is not directly controlled by x, it can be indirectly 
controlled, e.g. through n1.
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ity to takeovers most effectively?”. Answering such questions requires inferring the optimal perturbation of the 
edge weights in the network, which can be achieved with our methodological framework.

In the context of corporate control, the edge weights aij represent the direct control of company ni over com-
pany nj , while the node value vi represents the total value of company ni . These edge weights give an indication 
of how easy it is for company ni to influence the decisions made in company nj . While multiple voting systems 
exist within the corporate world (e.g. one share one vote, majority votes with different cut-offs), we maximize the 
total control. We thus view a higher percentage of control to equal more influence over decisions in the company, 
with 100% control meaning no restrictions on what decisions it can influence. Other approaches can be easily 
implemented by transforming the ownership values in the network. In the applications that follow, we use the 
algorithm in Vitali et al.28 (see “Methods” section for technical details) as the BB in our framework to compute 
control in corporate ownership networks.

Given a trial external control/ownership vector o , the network properties are affected by this external owner-
ship. We therefore adjust the ownership matrix A using the following Assumptions: 

1. x obtains a fraction oj of ownership in a company nj by uniformly buying stock from all companies ni that 
have ownership in nj : aij → (1− oj)aij (maximum entropy method). We define A(o) as the adjusted owner-
ship matrix for a given o . To obtain ownership in root nodes of G, A remains unaffected.

2. we assume that x can only obtain as much ownership in a node nj as explained by G: omax
j =

∑

ni∈V
aij 

(except for root nodes of G, where we artificially set omax
j = 1 in our examples).

Assumption 1 introduces non-linearities in our external agent optimization problem, since we introduce o
-dependence into the non-linear BB algorithm by adjusting the adjacency matrix (B in (5)). In other words, 
non-linearities are introduced due to the fact that the agent’s interventions affect the properties of the network 
which it is trying to control.

Application to a synthetic graph. We first walk through the simple synthetic example of an extended 
star graph. This kind of topology appears frequently in corporate networks due to mergers and acquisitions 
between star networks consisting of companies and their subsidiaries. An example of this is Microsoft Corp, 
which owns Xbox, Skype, Linkedin, which in turn own other subsidiaries. For details see Fig. 1 in Rungi et al.3. 
The ownership weights are sampled from a uniform distribution U (0, 1) . The node values follow the simple rule 
that the central nodes (root nodes) have the highest value, while the value of other nodes declines with their 
distance from these root nodes. We implement this feature using vi = 2D−di+1 (in €1M), where di and D are the 
depth of node ni and the star (tree) respectively.

To study the vulnerability of the network to external control, we optimize Eq. (1) for several values of � , the 
results are shown in Fig. 2. The �-curve in Fig. 2 demonstrates exactly how expensive it is to obtain control over 
the network. Its changing slope, which reflects the changing trade-off between cost vs control, gives us an indi-
cation of vulnerability or susceptibility of the network to external control (e.g. hostile takeovers). We visualise 
the strategy of the external agent along the curve in insets A and B for � = 1 and 0.5 respectively. The external 
agent prefers to take over companies closer to the root node up to the point where the budget is large enough 
to take over the root node itself, resulting in maximum control over the network. Note that not necessarily all 
shares of every company are available in the network (e.g. restricted shares). For this reason, the upper bound 
for external control might be less than 100%.

Figure 2.  Control and cost loss as a function of �-representing the importance of the budget in the control 
optimization—for the synthetic extended star graph. Control shows the % of total shares of the target nodes 
that the external agent controls. Cost is the monetary value that the agent spends to acquire a given control (by 
buying source nodes). The insets A, and B show the intervention strategy of the external agent for � = 1 and 
� = 0.5 (in units of control per €1M). The color of the node represents the cost the external agent invests in that 
specific company, while the size represents the control the external agent acquires.
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In this network the preference for proximity to the root node reflects that nodes closer to the root node offer 
a more significant amount of indirect control (see Fig. S1). We can conclude that for the extended star graph it 
quickly becomes very expensive to gain control over the network. However, once the budget allows to gain control 
over the root node, maximum control is quickly reached. More detailed investigation on the exact distribution 
of costs over the nodes is possible with our methodological framework but falls outside the scope of this article. 
Still, we provide an example in Fig. S2 and Fig. S3 in the SI.

This simple example shows how the framework can be used to perform a detailed analysis of both network 
features such as susceptibility to control, and node-specific features such as the centrality of the nodes that offer 
maximal control.

Application to the Great Britain (GB) biotech research sector. To demonstrate the method in a real-
world setting, we study GB’s biotech sector. We extract the corporate ownership network from the Orbis Europe 
database provided by Bureau van Dijk, a private publisher of business information. We retrieve all the biotech-
nology research centers registered in GB and their in-component, which are all the nodes that can reach them 
through a directed path, from the 2017 ownership snapshot of the European corporate network (see “Methods” 
section for details). For simplicity we focus on the largest subgraph in which each pair of nodes is connected 
with each other via at least one path. The resulting network consists of 1109 nodes and 1506 edges, of which 114 
biotechnology research companies from GB. We take the biotech research centers as the target nodes ( T ) over 
which we want to maximize control with a given budget. We simulate different restrictions on the source nodes 
( S ), reflecting different GB policies with respect to foreign takeovers, to evaluate these policies’ impact on the 
vulnerability of the biotechnology sector. We study three policy options: 

1. GB constraint: the external agent cannot buy a company registered in GB directly but can buy any other 
European company in the network. In this case the nodes in S contain no GB companies.

2. GB biotech constraint: the external agent cannot buy a biotech research center registered in GB directly 
but can buy any other European or GB company in the network. In this case the nodes in S contain no GB 
biotech research centres.

3. Unconstrained: the external agent can buy any company in the network. In this case the nodes in S contain 
all companies.

We first show the �-curves for these policy environments in Fig. 3. The unconstrained case can be viewed as 
an upper limit. Here the external agent is allowed to take over all available shares of the target companies directly, 
provided sufficient budget is available. From this unconstrained case, we see that just below 80% represents the 
upper bound for control an external company can achieve in the GB biotech research centers. Because buying 
direct control in the biotech research centers is not allowed in the GB and GB biotech constraint cases, control 
over the target companies can only be obtained indirectly through other companies. The optimal strategy to 
gain control over the target set in these cases is thus to leverage the ownership network and consolidate indirect 
ownership into control, a strategy that is often not accounted for in policy because of the complexity of owner-
ship networks. Even for the relatively small network surrounding the biotech research centres, indirect control 
is non-trivial to account for (see Fig. S2 for a snapshot of the network). Being able to do so highlights one of the 
main benefits of our optimal control framework.

For the GB biotech constraint, i.e. GB specifically protects their biotech research centers from direct foreign 
investments. We, however, find that a foreign investor can still obtain up to 30% control over the sector. Most of 

Figure 3.  Control and cost for the target restricted control optimization. GB constraint (no GB, in orange), for 
the GB biotech constraint (no GB biotech, in blue), and for the unconstrained case (all, in green). Control shows 
the % of total shares of the target nodes that the external agent controls. Note that not necessarily all shares of 
every company are available in the network (e.g. restricted shares). Cost is the monetary value that the agent 
spends to acquire a given control (in €1M).
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this indirect control can be realized through non-biotech companies in GB (see Fig. 4), who thus seem to be more 
closely connected to the biotech research centres than (biotech) companies in the EU. If the constraint is extended 
to restrict investments in all GB companies (GB constraint), we find that only 4% of the sector is exposed to 
foreign control through EU companies. Note that these exposures represent lower bounds since we currently do 
not allow the external investor to change the outgoing edge weights (ownership) of the companies it invests in.

To fully protect the target set from unwanted external control, it is thus clear that policy should take into 
account the complete network of ownership and especially the large indirect exposure of the network.

Discussion
Controlling the many socioeconomic networks that greatly influence our daily lives has been a longstanding chal-
lenge in network science and across many fields. To go from observing and describing towards governing, there is 
a need to calculate optimal interventions while accounting for real-world constraints. Inspired by building blocks 
from network controllability and social influence analysis, we reformulate the problem of optimal interventions 
in networks into an optimization of an external agent’s objective function. Herein, a first term captures the 
control objective, and the second term the cost of the control. This objective function is subsequently optimized 
using automatic differentiation and gradient-based optimization strategies. To the best of our knowledge, our 
framework represents the first occasion where automatic differentiation and gradient-based optimisation are 
integrated into a coherent framework for interventions in the context of (social) networks. Probably closest to 
our work are Fan et al.34 who use deep reinforcement learning to find key nodes in tasks such as network destruc-
tion. While they search for optimal strategies to alter network connectivity (network property), our work allows 
to optimize a property on the network (node properties). We also point out that in machine learning, a similar 
reformulation of learning causal interactions as a continuous optimization problem gave rise to an entirely new 
field of causal deep learning and causal representation  learning35.

By building on a well-established backbone algorithm to calculate corporate  control28, we show that our 
framework is capable of characterizing the vulnerability of corporate networks in strategic sectors to sensitive 
takeovers, an important policy challenge for many countries (e.g. the EU framework for screening foreign direct 
investment started October 2020). Insights derived from our method could facilitate the protection of strategic 
sectors from unwanted foreign control.

Though we restricted the demonstration of our framework to the specific context of corporate control, it is 
directly applicable with the same BB algorithm by Vitali et al.28 to a wide class of problems that require maximiz-
ing the diffusion of control, information, or influence throughout a network. This is because Vitali et al.28 is valid 
in any context with a multiplicative process along the edges of a network (e.g. probability-based propagation). 
For example, re-imagining the synthetic graph in Fig. 2 as a specific socioeconomic network, the insights can 
then be reinterpreted for use in a marketing or information strategy. Further, any other propagation algorithm 
that is continuous and differentiable can be leveraged in the proposed framework, making it flexible to different 
use cases where propagation might not be multiplicative.

Our research shows that combining state-of-the-art gradient-based optimisation techniques and differentia-
tion tools (that are mainly used in deep learning) with network theory opens up new opportunities for complex 
systems research to better understand, design, and govern networks. The present work represents an important 
first step in exploring these opportunities. In future work, we plan to extend the framework to calculate optimal 
interventions in a multi-agent context, where the different agents can have competing objectives in a shared 
environment. This will further broaden the applicability of the framework to more complicated scenarios, like 
in the case of foreign entities and the government as two separate agents competing for control. We expect that 
in the future, our method can be used to increasingly larger networks, where the current development of tools 
(such as PyTorch) for sparse matrices is of primary importance.

Figure 4.  Distribution of the source of control over the GB biotech research sector along the various countries 
for a budget-restricted optimization. The budget is chosen to be B = €901M, which equals the total value of 
the target set of GB-biotech firms. The horizontal line indicate the total control achieved in the different policy 
environments.
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Methods
Vitali backbone algorithm for corporate control. As an example backbone algorithm to compute the 
indirect control in corporate networks, we use the corporate control algorithm by Vitali et al.28. We briefly out-
line their methodology. We first discuss how to compute corporate control between any pair of nodes nj , ni ∈ V 
within a network G (see e.g. Fig. 1), and then show how to obtain the control of the external agent.

Corporate control is approximated through corporate ownership. We assume we have a corporate owner-
ship network, where the adjacency matrix A = [aij] quantifies the factional ownership of company or node ni 
in company nj . When company nk owns a fraction aki of company ni , it is common to assume in the corporate 
control literature that nk indirectly owns akiaij shares of firm nj through the path nk → ni → nj.

We now aim to compute the total control of a node ni over any other node in the network. We introduce the 
matrix B, which is obtained by selecting the rows and columns from (the direct control matrix) A that correspond 
to nodes that are reachable from ni , after removing incoming links in ni . The corresponding direct control of 
ni into any nj is given by a row of B, corresponding to paths of length l = 1 : Cl=1 = [B]ij . Next, we consider all 
directed paths of length 2 starting from ni . Proceeding as in the previous example, the corresponding control 
of ni in nj is given by Cl=2 = [B2]ij . Continuing this way, and taking into account all possible path lengths, we 
find that the propagated control cij of any node ni ∈ V in any other node nj ∈ V  via the network G is given by 
the matrix C = [cij] as

For a more in-depth discussion, we refer to Vitali et al.28.
By attaching the external party x to node ni ∈ S with an edge oj , x obtains control in a company vj through 

all paths connecting ni to nj . The control Cij is weighted by the edge control oj of x in ni , which corresponds to 
Cl=1 = o in the discussion above. Hence, the total control of x over nodes V is given by

One main difficulty in strongly connected corporate control networks is the presence of cycles, which the 
method of Vitali et al.28 solves correctly. Nodes that are not reachable from x are of course not controllable by x: 
cj = 0 . We point out that the form of (5) can be used in a more general context than corporate control, since it 
accumulates the total signal by tracing all paths of all lengths between two nodes in the network.

Core method. In general, we take a network G, with node set V and edge set E , to which we associate a set 
of (continuous-valued) node and edge property vectors: V = {vi|ni ∈ V } and A = {aij|eij ∈ E } . In the specific 
case of node control in corporate networks, vi ∈ R is the company value and aij ∈ R is fraction of company nj 
that is owned by company ni . We point out, however, that both vi and eij can be vectors. Furthermore, their val-
ues can be fixed for some i, j. In our case of node control with an external agent, only a subset of the eij is varied 
directly, namely those that are outgoing of the external agent. The other eij are adjusted deterministically based 
on the latter, as discussed in Assumption 1. Depending on the application, we define a cost function with two 
terms. A first term is a control loss function Lcontrol(V ,E;G) representing the amount of control a set of nodes 
has over the network, for a given V and E. A second term Lcost(V ,E;G) penalizes domains of the phase space 
(V, E) that carry a high cost. Given that the total loss function, Lcontrol + �Lcost (with � a constant factor that 
balances the importance of control and cost) is continuous and differentiable (almost everywhere) in the node 
and/or edge properties that we aim to optimize for, we determine the optimum via automatic differentiation and 
gradient descent.

In the above � quantifies importance of cost versus control and enables us to gain insights into the general 
cost to control the system (by varying � ). In many applications the optimisation will involve a monetary budget 
constraint instead of a relative importance measure. In this case, the total cost that corresponds to a given set of 
properties V, E is subject to the constraint of a (maximum) budget M. We then need to optimize

where Hbudget(V ,E;G) = Lcost(V ,E;G)−M (the above may also be an inequality constraint). To solve the latter 
problem, we use the augmented Lagrangian  approach35,36, which uses an unconstrained optimization problem 
(with a quadratic penalty for the constraint) to solve the constraint optimization task. To account for budget 
constraints, we can thus optimize the dual loss function with Langrange multiplier α:

Optimization procedure. In practice, we parametrize the optimization problem with a set of unbounded 
variables pu ∈ R|S | and use the sigmoid function ( σ ) to obtain an ownership fraction p = σ(pu) ∈ [0, 1]|S | . 
Furthermore, Assumption 2 suggests that oj ∈ [0, omax

j ] . Therefore, we parametrize oj = omax
j pj to remain within 

these bounds. Hence, oj represents to total fraction of company nj owned by x, while pj represents the fraction 
of the available stock owned by x. By implementing the procedure in deep-learning toolboxes such as PyTorch, 
one can perform network optimization use-cases efficiently using autograd. More specifically, the gradients are 

(5)C =

+∞
∑

l=1

Cl = B(I − B)−1

(6)cT = oT (I − B)−1

(7)
min
o

Lcontrol(V ,E;G)

s.t. Hbudget(V ,E;G) = 0

(8)Laugm(V ,E;G) = Lcontrol(V ,E;G)+
ρ

2
Hbudget(V ,E;G)2 + α

∣

∣Hbudget(V ,E;G)
∣

∣.
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computed through a reverse-mode gradient accumulation  scheme37. We use learning rates η ∈ {1, 0.1, 0.001} and 
the Adam optimizer with default parameters in the PyTorch implementation. Notice that PyTorch also offers the 
possibility for sparse matrices, which would allow to scale the approach to large networks. The parameters puj 
are initialized by generating random values from a normal distribution N(µ = −7, σ = 10−4) , or by estimating 
the values of o by the fraction of a company value with respect to the available total budget. The optimization 
stops when the loss changes by less than 10−8 in 5 subsequent optimization steps, or after a maximum of 3k steps, 
whichever occurs first. As an example, a complete single optimization, for a given value of � , takes about 10 min 
for the Orbis Europe dataset of 1048 nodes on a laptop with a 1.4 GHz Quad-Core Intel Core i5 processor. For 
the constrained optimization, we optimize the augmented Lagrangian in (8) with ρ = 1 and α = 0 . We itera-
tively increase the value of α by adding ρ|Hbudget | and re-optimize. We then increase ρ by scaling it with a factor 
of 10, whenever we obtain a new value for the constraint |Hbudget | larger than 0.25 times the last optimal value of 
|Hbudget | . This process is repeated until |Hbudget | is below a given tolerance threshold. Part of the procedure has 
been outlined in more detail in the pseudocode of the algorithm, see Algorithms 1–4.

Orbis Europe biotech data. The Orbis Europe database is compiled by Bureau van Dijk-A Moody’s Com-
pany, a private publisher of business information who collects ownership structure and financial information on 
almost 20 million companies in Europe. This database provides for each company information on all its share-
holders, corporate or non-corporate, and identifies direct and indirect voting rights. Widely held small share-
holdership in listed firms is not identified separately but indicated as a separate category. Reference shareholders 
are indicated separately. If a company (or other type of shareholder) outside of the EU owns part of a European 
company, this information is also included in the data, while detailed financial information is not available for 
such a non-EU owner. From this database we extract all European and British companies for which total assets 
are reported and take this as our base network. From this network, we select the companies registered in Great 
Britain with NACE-code (standard European industrial classification code) 7211, whose activities are defined 
as: “Research and experimental development on biotechnology”. This resulted in 260 companies. Taking the in-
component of all these companies (the companies that via some ownership path can reach any of the 260 biotech 
companies) resulted in a network of 1381 nodes and 1695 edges. From this we only take nodes with a known 
NACE-code so that we only extract the corporate network and drop for instance the individual owners. In line 
with international definitions used e.g. by the OECD, Eurostat, or UNCTAD, we focus on the corporate share-
holder network through which control can be obtained of the network. For simplicity and plotting purposes, we 
further only keep the largest connected component in this network. This final selection resulted in a network of 
1109 edges and 1506 nodes, with 114 of them being biotech research centres in Great Britain.

Pseudocode
A simplified and high-level overview of the budget-constrained optimization procedure is outlined in Algo-
rithm 4 for a budget M. The core of our method is outlined in Algorithm 1, where we show how to compute 
the loss functions and its gradient. Helper sub routines are defined in Algorithms 2 and 3. The same notation 
is used as in the main text, and we refer the reader to the definitions therein, rather than recapitulating their 
definition. The gradients are computed using an automatic differentiation implementation (such as  Pytorch37, 
where one calls torch.grad) and therefore must not be computed analytically or through finite differen-
tiation. The function BackBone returns the control vector for a given intervention. AdamOptimizerUpdate 
computes a new parameter vector based on the previous trial parameters with the Adam  optimizer38 with the 
default parameters in  PyTorch37.
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Data availability
All data analysed in this paper, including synthetic graphs and real-world networks, are anonymised according 
to the conditions of the data provider (Bureau van Dijk) and included in the GitHub repository.

Code availability
The code of the Optimal Network Control framework and for the reproduction of the figures is detailed and 
available in the following GitHub repository: https:// github. com/ CSI- ADS/ Optim Contr ol.

https://github.com/CSI-ADS/OptimControl
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