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Abstract

Clar’s aromatic π-sextet rule is a widely used qualitative method for assessing the
electronic structure of polycyclic benzenoid hydrocarbons. Unfortunately, many of the
quantum chemical concordances for this rule have a limited range of applicability. Here,
we show that the fundamental probabilities associated with a distribution of electrons
over domain partitions support Clar’s rule in both mean-field and static correlation
regimes. In particular, domain partitions that maximize those probabilities reflect the
dominance of Clar structures in the electronic structure of these molecules. These
findings suggest that extending methods that aim to maximize probabilities by deform-
ing domain partitions could lead to novel quantum chemical underpinnings for many
chemical concepts.
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Construct Clar 
domain partition Ω 

Distribute electrons
according to Clar in ν

p(ν,Ω)’s are maximal 
and

support Clar’s rule
Based on the statistical interpretation of the wavefunction, MPDPs reveal optimal partitions
of space into domains for which the probability to find ν and only ν electrons in each domain
is maximal. Using this novel approach, we provide a concordance to Clar’s aromatic π-sextet
rule in both mean-field solutions and situations where electron correlation plays an important
role.
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INTRODUCTION

Armit and Robinson introduced the “aromatic sextet” as a circle inside the structure of

benzene aimed at describing “groups of six electrons that resist disruption”, merging1 the

concept of “six aromatic electrons” by Crocker2 and the circle notation of Armstrong3 (see

fig. 1).

Figure 1: Armit and Robinson’s representation of benzene.

Thirty years later, Clar put forward that in polycyclic benzenoid hydrocarbons (PBHs),

the structures with the largest number of non-adjacent aromatic sextets best characterize

their properties4–6. The structures that satisfy this rule are labelled as “Clar valence struc-

tures” and are constructed by drawing the highest possible number of circles (i.e. aromatic

sextets) in the hexagons of the benzenoid system, provided these circles are not placed ad-

jacent to one another. For instance, according to Clar’s rule, the class of Kekulé structures

that best characterizes the properties of phenanthrene is given by structure b in fig. 2 and

one should expect the outer rings to be more benzene-like than the inner ring7,8. In an-

thracene, the application of Clar’s rule leads to a “migrating sextet”, i.e. a superposition of

three classes of structures that are of equal importance (see fig. 3).

a b

Figure 2: Phenanthrene has five Kekulé structures, divided into two classes a and b. Ac-

cording to Clar’s rule, structure b is the most important, as it contains the largest number

of disjoint aromatic sextets.
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Figure 3: The Kekulé structures of anthracene can be divided into classes c, d and e. As

Clar’s rule assigns equal importance to each of these classes, the resulting Clar structure f

is a superposition of these and is called a “migrating sextet”.

These Clar structures have proven important for gaining qualitative insight in the lo-

cal reactivity and other properties of PBHs9 and have been supported by experimental

findings4,5,10–12. Although several attempts have been made to reframe this rule quantum

theoretically, finding a unique quantum chemical concordance has proven difficult. Among

others, Polansky and Derflinger13 measured the ‘benzene character’ of a ring based on the

similarity of the Hückel molecular orbitals (HMOs) between those regions where the Clar

structure contains an aromatic sextet and benzene itself. Later on, Bultinck et al.14 general-

ized it to an ab initio level of theory based on ideas of molecular quantum similarity. Herndon

and Ellzey, Randic and Aihara proposed to analyse the relative weights of valence bond (VB)

resonance structures15–18. In turn, Aida and Hosoya19 proposed the complementary use of

HMOs and VB resonance structures in order to describe PBHs. However, as these analyses

are directly based on method-specific quantities, their range of applicability is limited to

those systems for which the level of theory used leads to sufficiently accurate descriptions.

Hence, interpretations that are not based on those quantities are highly desirable.

The Maximum Probability Domains (MPDs) approach devised by Savin et al.20,21 pro-

vides a unique way of directly assigning chemical meaning to Born’s formulation22 of the

probability density function |Ψ|2. Using small atomic systems, Savin showed that there is

chemical utility in finding those domains Ω in spin-position space for which the probability

of finding ν and only ν electrons inside is maximal20. Unfortunately, optimizing such do-
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mains in spin-position space has proven difficult and has thusfar in most applications only

been routinely possible for single-determinant wave functions21 using numerically inaccurate

optimization procedures23,24, which clouds the properties of MPDs.

Recently, however, we showed25 that in the special case of the Hubbard model26, the

theory of MPDs can be mapped to numerically accurate and efficient optimization procedures

that can be applied to the exact (i.e. Full Configuration Interaction (FCI)) wave function,

as well as, any approximate wave function expressed in Fock space. Furthermore, by tuning

the parameters of the Hubbard model, the behavior of the MPDs in both the mean-field as

well as the static correlation regime can be explored. As such, by determining the MPDs for

two electrons we could show that the Kekulé and Dewar structures of benzene emerge from

Hubbard model wave functions25.

In this study, we extend the MPD framework to take the simultaneous optimization of

multiple domains into account, leading to the more general theory of “Maximum Proba-

bility Domains Partitions” or MPDPs. We show that for prototypical 14-site, 14-electron

(14s, 14e-) systems (i.e. Hubbard anthracene and phenanthrene) MPDPs provide unique

quantum chemical support for Clar’s rule for both mean-field solutions and situations where

static correlation is important.

THEORY

The theory of Maximum Probability Domain-Partitions (MPDPs) is based on four concepts:

(i) domains, (ii) partitions of domains, (iii) probability measures associated with a partition

of electrons over the domain partition and (iv) methods to deform the domains in order to

maximize the associated probability measure. The following theory applies to the specific

case of the Hubbard model site space, but can be generalized to spin-position space27.

The Hubbard model

The Hubbard model Hamiltonian is defined in an abstract ‘site’ basis that depends on a

semi-empirical parameter tij, that allows for intersite hopping between pairs of sites i and j,
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and a site-dependent on-site energetic penalty term Ui, associated with on-site electrostatic

repulsion

ĤHubbard = −
L∑

i,j=1

∑
σ=↑,↓

tij â
†
iσâjσ +

L∑
i=1

Uin̂i↑n̂i↓ , (1)

with L the number of sites and n̂iσ the number operator counting the number of particles

with spin σ on site i

n̂iσ = â†iσâiσ . (2)

Although the hopping matrix t = {tij} allows for hopping between any two sites, owing to

the exponential decay of the on-site orbitals it usually suffices to follow the geometry of the

lattice and restrict to nearest neighbor hopping. Considering phenanthrene and anthracene

do not contain any heteroatoms, t is further simplified to

t = tA (3)

with t a constant value and A the adjacency matrix reflecting the geometry of the lattice.

It consists of all zeroes, except ones for all elements (i, j) if sites i and j are adjacent. In

the same spirit, the on-site repulsion is regarded as site-independent. The eigenstates of the

Hubbard Hamiltonian ĤHubbard can be expanded in the orthonormal basis spanned by the

eigenstates of the number operator n̂iσ

|Ψ〉 =
∑
[n]

c[n] |[n]〉 , (4)

with c[n] the coefficient belonging to a basis state |[n]〉 labelled by the partitioning [n] =

[[n↑], [n↓]] = [[n1↑, . . . , nL↑], [n1↓, . . . , nL↓]]. Depending on the problem at hand, we can rep-

resent [nσ] in three ways: as (i) an occupation number vector (ONV)28 to derive theoretical

expressions, (ii) a bitstring representation for computational algorithms and (iii) a graphical

representation for explanatory purposes. For instance, ONV |[1, 1, 0, 0, 0, 1], [0, 1, 0, 1, 1, 0]〉

with L = 6 sites at half-filling, i.e. with L electrons and
〈
Ŝz

〉
= 0, can be represented

graphically as

↑ ↑↓ ↓ ↓ ↑ ,
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and as a bitstring as

“110001” for the ↑-component

“010110” for the ↓-component.

The values of the expansion coefficients c[n] are obtained by diagonalization of the Hamil-

tonian in eq. (1) in a Fock (sub)space and depend on the relative interaction strength U/t

and the number of spin-resolved electrons Nα and Nβ. At the mean-field regime U/t ≈ 0,

the Hubbard Hamiltonian leads to an idempotent density matrix and the wave function

corresponds to a single Slater determinant wave function. In case of U/t � 1, static corre-

lation breaks the idempotency of the density matrix and the wave function holds multiple

quasi-degenerate states.

Domains in the Hubbard model

In the context of the Hubbard model, a domain Ωa of size Ma is a subset of the total set

of L sites. For instance, we can represent a domain Ωa of size Ma = 3, consisting of the

second, third and fifth site for a minimal Hubbard model of 1,3,5-hexatriene with L = 6 sites

graphically as

,

where the collection of gray blocks represents domain Ωa. A shorthand notation Ωa =

{2, 3, 5}, where we only specify the positions of the Ma sites within the domain, is often

more convenient and employed throughout later sections. For computational purposes, we

prefer a slightly different notation mimicking bitstrings

Ωa = [ωa] = [ωa1, . . . , ωaL] = [0, 1, 1, 0, 1, 0] , (5)

with the constraints ∀i : ωai ∈ {0, 1} and
∑L

i=1 ωai = Ma. For each domain size Ma, there

are
(
L
Ma

)
domains if we do not impose any constraints on the allowed topologies of those

domains.
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Partitions of domains

The abstract site space can be partitioned into a collection of d non-overlapping domains

Ω = (Ω1, . . . ,Ωa, . . . ,Ωd) . (6)

As such, a possible domain partition with three distinct domains Ω1, Ω2 and Ω3 for 1,3,5-

hexatriene can be represented graphically as

site space
,

or can equivalently be written down as ({1}, {2, 3, 5}, {4, 6}).

Probability measures associated with a partition of electrons over

domain partitions

The number of σ-electrons within domain Ωa is given by overlap between the domain defined

in eq. (5) and the spin-σ component of the basis state |[n]〉

∀1 ≤ a ≤ d : nσ(Ωa) =
L∑
i=1

δ(i ∈ Ωa)niσ =
L∑
i=1

ωainiσ , (7)

where the logical delta29–31 δ(i ∈ Ωa) = 1 if site i is an element of domain Ωa and zero

otherwise. The total number of electrons in domain Ωa is then the sum of ↑- and ↓-electrons

in that domain.

n(Ωa) =
∑
σ

nσ(Ωa) (8)

E.g. for the given basis state above

↑ ↑↓ ↓ ↓ ↑ ,

the electron partition corresponding to the domain partition introduced above is given by

↑ ↑↓ ↓ ↓ ↑ ,

where there is one ↑-electron in domain Ω1, one ↑- and two ↓-electrons in domain Ω2 and

one ↑- and one ↓-electron in domain Ω3.
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We can determine the probability of finding νa and only νa electrons in each domain Ωa

by projecting out those coefficients c[n] of the Hubbard wavefunction in which exactly νa

electrons occupy the sites of Ωa. Since the number operator n̂iσ is diagonal in the site basis,

each basis state contributes with a factor |c[n]|2 to the probability25,32.

P (νa,Ωa) =
∑
[n]

|c[n]|2 δ(νa = n(Ωa)) (9)

For the generalization to an electron partition accompanying a d-domain partition

ν =[n(Ω1), . . . , n(Ωa), . . . , n(Ωd)] , (10)

the associated probability of finding spin-independent electron partition ν in Ω, i.e. the

spin-integrated probability, is

P (ν,Ω) =
∑
[n]

|c[n]|2
(

d∏
a

δ(νa = n(Ωa))

)
. (11)

In this paper, we will focus on spin-integrated probabilities in order to mimic Lewis’ idea of

the electron pair33 as closely as possible.

Deforming domain partitions to attain maximality in the probability

measure

An MPDP(ν) is a domain partition for which the probability of finding a given electron

partition ν is maximized25

P (ν,Ω∗) = max P (ν,Ω) . (12)

As the definition of MPDPs in eq. (12) allows for local maxima, we can define the set of

MPDPs for electron partition ν in the present context as follows25:

MPDPs(ν) = {Ω∗|∀Ω ∈ εΩ∗ : P (ν,Ω∗) ≥ P (ν,Ω)} , (13)

where εΩ∗ defines the set of domain partitions which are within a certain distance ε from

domain partition Ω∗

εΩ∗ = {Ω|‖Ω∗ −Ω‖ ≤ ε} . (14)
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For the Hubbard model, we can use the number of sites in which two partitions differ as a

distance measure. If we set ε = 2, this reduces to a single-site flip stability criterion, which

means that the optimization allows for single sites to dissociate from one domain and merge

with an other. All single-site flips for a given domain partition must preserve the number of

domains to prevent loss of meaning of the electron partition associated with the probability

measure. Only the domain partitions that are stable in their probability with respect to the

single-site flip criterion can then be called MPDPs. For example, the above 3-domain parti-

tion ({1}, {2, 3, 5}, {4, 6}) with associated probability P ({1}, {2, 3, 5}, {4, 6}) can be flipped

on site 2 to domain partition ({1, 2}, {3, 5}, {4, 6}) with probability P ({1, 2}, {3, 5}, {4, 6}).

P ({1}, {2, 3, 5}, {4, 6}) P ({1, 2}, {3, 5}, {4, 6})

Provided that P ({1}, {2, 3, 5}, {4, 6}) is greater than or equal to P ({1, 2}, {3, 5}, {4, 6}) and

the probabilities of all other possible single-site flips, the domain partition may be called an

MPDP.

METHODOLOGY

We use two systems that illustrate Clar’s rule in a prototypical way: Hubbard anthracene

and phenanthrene, each at half-filling (14s, 14e-). To distinguish mean-field from static

correlation regimes, we vary the interaction strength U/t of the given Hubbard model from

0 to 20 in steps of 0.1 by modifying U during the whole range while t remains constant.

For each value of U/t, the corresponding Hamiltonian eigenvalue problem for each value

is solved using the Davidson diagonalization method34 in the Fock subspace of dimension(
14
7

)(
14
7

)
using our open-source software package GQCP35. We then define the complete set

of multi-domain partitions in the site basis and each domain d in the respective partitions

is then stored as a bitstring with size L. The probabilities associated with a given electron

partition over all possible domain partitions are calculated using eq. (11) and tested for the

single-site flip stability criterion according to eq. (14).

We note that by using ‘exact solutions’ (i.e. at the FCI level) our analysis is not obscured
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b

Figure 4: Pictorial representations of the domain partitions that can be associated with the

structures of phenanthrene.

by possible artifacts of approximate solution methods. Unfortunately, the exponential scaling

of the FCI method renders larger systems well out of reach. For example, a 16s, 16e- system

leads to a diagonalization that is approximately 200 times computationally more expensive

than the Clar prototypical systems in this study.

RESULTS AND DISCUSSION

MPDPs that correspond to the highest number of disjoint sextets

have higher probabilities

As is illustrated in fig. 4, we represent the classes of structures for phenanthrene as Hubbard

site domain partitions. Here, the aromatic sextets are represented by domains containing

6 sites while the remaining π-electron pairs are represented by domains of size 2. As such,

class a is represented by a 5-domain partition, consisting of a 6-ring domain and four 2-site

domains. The Clar structure b is a 3-domain partition, with two 6-ring domains and a 2-site

domain.

For a range of U/t values, we can determine the probability to find ν and only ν electrons

in each of those domains containing ν sites (see fig. 5). The results of our shape optimization
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algorithm show that all possible single-site flips reduce the associated probabilities. As such,

the associated probabilities are also maximal and the domain partitions are MPDPs for the

entire range of U/t.

In the mean-field regime (i.e. small U/t), partition a has a significantly lower probability

than the Clar domain partition b. This difference in probability remains significant during

the entire transition to the strongly correlated regime, where both partitions eventually

converge to the same probability due to the localized anti-ferromagnetic character of the

wave function. These results offer an attractive physical interpretation of Clar’s sextet rule:

Clar structures have a higher probability of occuring. As these structures have a higher

probability, they influence the chemical properties of the system under study to a greater

extent. At very high U/t, the large on-site repulsion forces one electron per site. As such,

the probabilistic difference between both structures is strongly reduced. Figure 5 shows that

Clar structures remain the most important throughout the entire U/t range and determines

the range of applicability of Clar’s rule. Although this rule no longer applies at very high

U/t, it does apply during the entire transition to highly correlated regimes.

We note that our interpretation of structures in terms of domain partitions does not im-

ply that “chemical bonds” are present between the sites in the domain. Indeed, all acceptable

electron configurations (i.e. configurations that partition ν electrons over a domain partition

Ω) will contribute to the associated probability P (ν,Ω). The extent to which these config-

urations contribute to that probability is determined by the underlying wavefunction, which

in turn captures the dynamics of the Hamiltonian. As such, even electron configurations

where the electrons in a given domain do not interact directly according to the underlying

Hamiltonian can contribute to the associated probability.

MPDPs that correspond to migrating sextets have similar probabili-

ties

We can represent the classes of structures for anthracene as Hubbard site domains as illus-

trated in fig. 6. As such, each structure translates to a 5-domain partition, consisting of a

6-ring domain and four 2-site domains. The probability to find ν and only ν electrons in each

12
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Figure 5: MPDPs in terms of aromatic sextets for a 2D Hubbard of phenanthrene at half-

filling for different U/t values.
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Figure 6: Pictorial representations of the domain partitions that can be associated with the

structures of anthracene.

of those domains containing ν sites is maximized for a range of U/t values (see fig. 7). Again,

most importantly, all partitions are MPDPs for the entire range of U/t as their probabilities

remain maximal for each U/t. In the mean-field regime, partition d only has a (slightly)

higher probability than the other partitions c and e. This slight difference becomes even

smaller with rising U/t and becomes negligible at very high U/t. These results offer a phys-

ical interpretation of Clar’s migrating sextet: as all partitions have the same probability of

occuring they influence the chemical properties of the system to an equal extent. Again, this

rule applies to the entire U/t range, although it is trivially satisfied at very high U/t as one

electron is forced on each site.

Intriguingly, Clar was forced to propose an additional non-Kekulé structure6 for an-

thracene with two aromatic sextets and the localization of two electrons at the 1,4-region

of the inner ring (fig. 8) to account for the chemical reactivity at its 9,10-positions. Fol-

lowing Clar’s idea as closely as possible, we construct the corresponding 3-domain partition

f by two 6-ring domains and a 2-site domain at the para positions of the inner ring. A

similar analysis as above shows that the corresponding MPDP in fig. 9 has a higher prob-
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Figure 7: MPDPs portraying the migrating aromatic sextet for a 2D Hubbard of anthracene

at half-filling for different U/t values.
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f

Figure 8: Clar structure for anthracene with two aromatic sextets separated by a localization

of two electrons at the 1,4-region of the inner ring, along with its pictorial representation of

the domain partition.

ability than each of the MPDPs associated with the migrating sextet. As such, this result

provides probabilistic support for Clar’s proposal to augment the description of anthracene

with a non-Kekulé structure: this structure has a high probability of occuring and therefore

influences the reactivity of this system.

We note that the theoretical reasons why MPDPs exhibit the above concordances lie

hidden within the vast amount of information in the FCI wavefunction. On the other hand,

Clar based his rule on Lewis structures, which are defined within Lewis theory. As such,

MPDPs offer a “road that connects two sciences (quantum chemistry and Lewis theory) that

are not visible from the viewpoint of one science alone” 36.

CONCLUSIONS

In this study, we show that MPDP analyses of two prototypical systems lead to chemically

meaningful domains that concord with Clar structures and that the associated probabilities

quantitatively favor the same structures as Clar’s rule. As MPDPs do not directly depend

on method-specific quantities that often have a limited range of applicability, we could show

that in the Hubbard model Clar’s rule remains valid both in the mean-field and in the

statically correlated regime.

These results indicate that methods where domains are deformed to maximize proba-

bilities have great potential to deliver novel interpretational tools for extracting important

chemical concepts from quantum chemical wave functions. As such, porting these tech-

niques from the realm of model Hamiltonians to quantum chemical spin-position space is
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Figure 9: MPDP characterizing two aromatic sextets separated by a localization of two

electrons at the 1,4-region of the inner ring for a 2D Hubbard of anthracene at half-filling

for different U/t values.
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particularly worth exploring further.
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