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Abstract—We present a new floor number detection algorithm

for use in smartphone-based indoor localisation systems. It is
designed to complement any pedestrian dead reckoning (PDR)
algorithm able to detect steps and estimate a 2D trajectory from
data of the smartphone’s inertial measurement unit.
Our proposed method is based on the Viterbi algorithm, fusing
data from an off-the-shelf smartphone’s accelerometer, barometer
and wifi received signal strength (RSS) measurements. The
accelerometer is used to detect accelerating elevators, while the
barometer is used to detect stair climbing. This is combined
with model-based wifi RSS fingerprinting, enabling accurate floor
number detection. Our system is tested in an office environment
with 7 41 m x 27 m floors, each of which has 2 pre-existing
wifi access points. The algorithm is evaluated with a total of 116
minutes of recorded data, in which the floor number changed 76
times and a distance of 4.8 km was travelled. Since the Viterbi
algorithm allows to easily correct past states (i.e. floor numbers)
based on new information, it is evaluated in real-time and batch
mode. Our proposed algorithm achieves a floor number detection
accuracy of 99.1% (real-time) and 99.7% (batch), while using
only RSS measurements resulted in 91% accuracy.

Index Terms—indoor localisation, fingerprinting, wifi, received
signal strength, barometer, accelerometer, Viterbi, activity recog-
nition

I. INTRODUCTION

While satellite navigation (e.g. GPS) is the standard for
outdoor localisation, signal blockage by buildings makes
these systems unusable indoors. Dedicated indoor localisation
systems have been developed in recent years [1f], [2]. These
systems make use of wireless technologies, such as ultra-
wideband (UWB) [3]], [4], visible light communication [5]],
[6] or wifi [7], [8]]. Generally, a human or object is equipped
with a tag that is localized relative to a fixed infrastructure
of anchor nodes. A drawback is dependency on the anchor
nodes [2]], which are expensive, require manual work to
setup and their placement and quantity affects the accuracy.
Furthermore, these systems have to deal with challenges
which depend on the environment, e.g. non-line-of-sight

2" Wout Joseph
Dept. of Information Technology
imec-WAVES/Ghent University
Ghent, Belgium
wout.joseph@ugent.be

3" Luc Martens
Dept. of Information Technology
imec-WAVES/Ghent University
Ghent, Belgium
lucl.martens @ugent.be

(NLOS), multipath, human body effects, ...

Alternatively, Inertial Navigation Systems (INS) [9] use
inertial measurement units (IMU) to enable localisation
without any dedicated infrastructure. However, an INS does
not provide absolute positioning and is prone to drift. Hybrid
systems fuse both methods which combines their advantages
[10]. Most smartphones are equipped with an IMU and can be
used for Pedestrian Dead Reckoning (PDR). In this method,
data of the IMU’s sensors (i.e. accelerometers, gyroscopes
and/or magnetometers) are fused to detect steps and estimate
their length and heading. While dedicated IMU’s strapped
to the leg provide higher accuracy [11], smartphone-based
PDR requires no additional hardware and offers good user
comfort since people already carry their phone with them.
Smartphones are also equipped with WiFi and Bluetooth
chipsets, which allows fusion with WiFi/Bluetooth localisation
systems [[10], [12], [[13].

A challenge in smartphone-based PDR is the extension
to multi-floor localisation. One approach is using WiFi
fingerprinting, but the detection accuracy depends on the
environment and the amount of APs [[14]. Another approach
is to detect the floor transitions and estimate the height
change using the on-board sensors. Since the pedestrian
is either on a staircase or in an elevator during a floor
transition, detecting these transition intervals is also useful
for improving 2D localisation [15[]. Classifiers have been
designed to detect floor transitions in accelerometer and
gyroscope data [16], [17]]. Also, the pressure measured by
the barometer can be converted to height [18]. [[19], [20] use
the first pressure measurement as a reference to estimate the
height difference during the rest of the trajectory. However,
these methods require the initial floor to be known and are
prone to drift caused by false detections or changing pressure
due to the weather, opening doors/windows, ... [20]], [21].
Fusion of both approaches allows absolute floor detection
and accurate floor transition detection [12], [22], [23]. In
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Fig. 1. High level flowgraph of the floor number detection algorithm. This algorithm consists of three phases. First, stairs and elevator usage are detected
and the height change is estimated. Then, RSS measurements are matched with the model-based radiomaps and finally, the output of the first 2 phases is

combined to estimate the floor number.

[23]], a probabilistic model decides if recent pressure change
was caused by a floor change. Therefore, a floor number
change was only detected when the transition was (almost)
finished. Reference [22] used a moving average to detect
floor transitions. However, the floor number is detected with
a pressure look-up table, which needs frequent recalibration
during which the user has to stand still. Reference [|12]
used WiFi and Bluetooth fingerprinting and detected floor
transitions with the barometer and gyroscope. However, their
method depends on the placement of many APs (i.e., 42
beacons). Lastly, a reference barometer at a known floor is
used in [21], [24] to compensate for pressure drift.

Because many systems depend on prior knowledge, refer-
ence devices, dedicated infrastructure and/or do not incorpo-
rate elevator usage, we have designed and implemented an
accurate smartphone-based floor detection algorithm, which
detects both stairs and elevator usage and corresponding height
change. It is based on the Viterbi algorithm and does not
need additional/dedicated hardware. The only requirement is
that some wifi APs are present, which is the case for public
buildings and office environments.

II. METHOD

Figure [T] shows a flowgraph of the proposed floor number
detection algorithm. This three-phase algorithm performs floor
number detection with model-based fingerprinting (MBF) of
wifi RSS and floor transition detection with accelerometer
and barometer data. In the first phase, the accelerometer and
barometer data are used to detect elevator and stair usage.
In the second phase, available RSS values from the wifi APs
are matched to the model-based fingerprint databases of each
floor separately, using the Euclidean distance metric. In the
third phase an algorithm based on the Viterbi-algorithm [25]
is proposed that fuses the output of the previous phases to
estimate the most likely floor number. The algorithm’s purpose
is to complement PDR algorithms, thus an output is calculated
after each step detection. The step detection algorithm used

for this paper is reproduced from [26]]. In real-time mode, this
algorithm estimates the most likely floor based on all previous
transition detections and fingerprint matches. In batch mode,
it incorporates all detections and matches of the trajectory
to estimate the most likely sequence of floors at once by
backtracking with a Trellis diagram. Lastly, both the step
detection and proposed algorithms are independent of the
orientation and carrying mode of the smartphone.

A. Elevator detection with accelerometer

The elevator detection algorithm is based on the elevator
acceleration sensing principle of [27].
In [27], a 1 second wide window’ is moved over the acceler-
ation norm after filtering out the DC-component (i.e. gravity).
An accelerating elevator is detected if the values within the
window are all positive (hill) or all negative (valley) and
the absolute values lie within a specified interval. A valley
following a hill means a rising elevator and vice versa. Our
algorithm adds a low-pass (LP) filter with cut-off frequency
of 1.5 Hz to the acceleration norm to remove high frequency
noise and reduce the influence of hand trembling. A maximum
time offset between a candidate hill and valley is set by
measuring the time the elevator needs to traverse all floors. In
case of an elevator detection, the latest step is labeled elevator
(algorithm 1). The height change can be estimated by double
integration of acceleration, but this is not reliable [27]]. Instead,
the floor change n is estimated with eq.

elev elev
Umaz * (Ttotal — Tacce)

n = )
hfloo’r

Tteolf;l is the time interval of the whole elevator transition and

I f100r the estimated floor height. We estimated the maximum

speed V4, and acceleration/deceleration time interval of
l > .

the elevator T by averaging these two parameters from

detected elevator transitions in the training data.



B. Stair detection with barometer

The pressure is first converted to a height change [18],
but no initial height is assumed (i.e. initial height is Om).
Stair transitions are detected by thresholding the height change
within a long window of W; and a short window of W, < W,
past step detections. Slow height changes (long window)
indicate stair usage, while fast height changes (short window)
indicate either elevator usage or noise. The latter can be caused
by opening/closing doors or windows [21].

The current step is labeled noise when fast height change is
detected and none of the steps in the short window have been
labeled elevator (II-A). The current step is labeled stairs when
slow height change is detected and none of the steps in the
long window are labeled elevator or as noise. This prevents
simultaneous elevator and stair detections, and false stair or
elevator detections due to sudden pressure changes not caused
by a floor transition. If the stair transition is initially detected,
the height difference over the whole window is estimated. If
there was a stair detection during one or more steps of the
detection window, the height change until the previous stair
detection is added to the change between the previous and
current stair detection.

The algorithm uses three parameters, i.e. the length of the
long window W; and short window W, and the height change
threshold thy,. thy, and W, are adapted to the device, because
different devices produces different amounts of noise. Assum-
ing the barometer sensor noise is Gaussian and the height
measurements (converted from pressure measurements) have
a standard deviation oy, height difference is also Gaussian:
N(Ah,0%,) with Ah the real height difference and oap =
V203, We impose |Ah| = 30a;, and assuming a stair rise
of 0.15m [28]], the stair detection window should be at least
200 Ap steps long. We choose thy, = oap, which makes false
positives more likely than false negatives. However, a false
positive stair detection is not as bad as a false negative in this
context, because the detected height change must be at least
50% of the height between two floors to trigger a floor number
change.

C. Model-based fingerprinting

RSS measurements since the previous step are used as one
RSS vector when a new step is detected. The RSS values are
calibrated and then compared to model-based radiomaps with
eq. 2} .

. dt,z

di"ilSS = n—I?SSf j

> j—o diss
d%’ggs is the smallest Euclidean distance between the RSS
vector of the t¢-th step and the fingerprints of the j-th of n
floors. A seperate KD-tree of the radiomaps for each floor is
used to quickly find the smallest distance. Only radiomaps for
pre-existing wifi APs are used, because the intention is to be
independent of a dedicated localisation infrastructure.
The radiomaps are made with the WiCA Heuristic Indoor
Propagation Prediction (WHIPP) tool [29]]. The user can draw
the floorplan and enter the building materials of each wall as

(@)

well as the location and other parameters of the wifi AP. The
path loss (PL) for each AP is estimated for each coordinate
on a grid, by a PL. model which incorporates the distance to
the AP and the cumulated losses due to wall penetrations and
direction changes of the signal [30].

The RSS values are finally calculated by subtracting the PL
(in dB) from the transmitted power P. P also accounts for the
antenna gains of the AP and smartphone, which are often not
known exactly. This causes a bias of several dB between the
predicted and the real RSS values. The bias is compensated
with self-calibration per AP. This method estimates the bias
by mapping the cumulative distribution functions (CDFs) of
measured RSS values to CDFs of estimated RSS values and
is fully explained in [31].

D. Viterbi-based floor number detection

Finally, we propose a Viterbi based algorithm to combine
the detected stairs and elevator transitions with wifi RSS-MBF,
to enable more accurate floor number detection. The original
Viterbi algorithm [32]] uses transition and emission probability
matrices to calculate the probability of transitioning to a
certain state at a given time and finds the sequence with highest
probability. Contrary, our algorithm uses a cost function (eq.
EI) to calculate the cost of transitioning between two states, i.e.
two floors, and finds the sequence with lowest cost.

C(SiIS_y) = C(S7_y)
+ Crans-|i — J + acc_transition[S]_,] — ny|

i
+ Cobs~dRSS

3)

S¢ is the i-th floor during the ¢-th step detection and C(S;)
is the cost up until the current step, given that the pedestrian
is at the i-th floor. C(SY) is calculated with eq.

Min[C(S{|S]_)Vj€0,n—1], t>0

t—0 “)

o(si) - {

Tt
Cobs-dRSSa

The initial cost for each floor is zero, i.e. no assumptions
about the initial floor are made. n; is the number of floor
changes detected at step t. type; is the transition type at step
t. acc_transition[S]_,] is the floor change accumulated by
the Viterbi algorithm during a stair transition for the j-th floor
up until the previous step. If the measured RSS vector does
not contain a value for a certain AP, then a default value
of —100 dBm is inserted for that AP. If there are no RSS
measurements available at step ¢, then dﬁéjs g 1s set to zero
for all floors. The transition cost ¢;rqns and observation cost
cops are coefficients that depend on accuracy of the transition
detection and fingerprint matching respectively. Finally, the
sequence with the smallest cost is chosen as the most likely
sequence for batch processing. For real-time processing, the
floor with the smallest cost is chosen at each iteration.



TABLE I
CONFUSION MATRIX FOR BATCH FLOOR TRANSITION DETECTION.
THE NUMBERS ARE PERCENTAGES.

True Activity

z W SS;U [ SD | E-U E-D

& W 89 5 7 3 6

& S-U 6 95 0 0 0

= S-D 3 0 92 0 0

£ [ EU T 0 0 97 0

< E-D I 0 0 0 94

=] W: Walking, S: Stairs, E: Elevator, U: Up, D: Down

E. Evaluation configurations

The proposed algorithm is evaluated with data from real
measurements. The considered environment is located at floors
4-11 of a 41 m x 27 m (1107m?) office building. Figure
shows a floorplan of the 5th floor of this building, where most
of the measurements were performed. The office floors have
three elevators (E), three staircases (S) and two wifi APs, and
are 3.5 m high. The APs are indicated with blue dots. The
PL model of section incorporates all elements of Figure
except for the open staircase (S3) when predicting the RSS
fingerprints. Note that the center of the floor consists of thick
concrete walls, where the smartphones often can’t detect the
APs’ signals. Plots of the other floors are omitted because they
are almost identical.

The smartphones used for evaluation are a Samsung Galaxy
S5 (2014) and a Samsung Galaxy S7 (2016). Both have a
9-DOF IMU, barometer and wifi chipset. Random trajec-
tories were travelled on each floor using both phones, for
RSS self-calibration and to determine the barometer
noise parameter o), for each device (II-B). To calibrate the
elevator detection algorithm, the elevator was used several
times, rising/descending a different amount of floors each time.
Similarly, a staircase was climbed several times to choose the
coefficients ¢4qns and cops, Which are chosen to be 4 and 1
respectively. W; is 10 (Galaxy S7) and 16 (Galaxy S5).

Almost two hours (116 minutes) of evaluation data were
recorded while roaming through the building, of which twelve
minutes were spent using the elevator and 23 minutes climbing
the stairs. 76 floor transition events were performed, of which
28 were elevator transitions. The smartphone was held in
front of the body as if the user were watching the screen.
The data were logged with the GetSensorDataApp [33]]. The
interface of this app has a button which saves a timestamp.
The user presses the button each time when entering or leaving
a staircase or elevator during a pre-defined trajectory, in order
to correctly evaluate the floor (transition) detection algorithm.

III. RESULTS

Tables [l and [l show confusion matrices of the classification
results for batch and real-time floor transition detection. The
global detection accuracy of these intervals is 90.9% (table
for batch and 84.6% (table [[I) for real-time mode. These
results are biased, since most of the evaluation data consists

TABLE 11
CONFUSION MATRIX FOR REAL-TIME FLOOR TRANSITION DETECTION.
THE NUMBERS ARE PERCENTAGES.

True Activity

,E‘ W S-U | S-D | E-U E-D

= W 89 35 33 3 6

é S-U 6 65 0 0 0

= S-D 3 0 67 0 0

£ [ EU T 0 0 97 0

£ [ ED I 0 0 0 94

/2  W: Walking, S: Stairs, E: Elevator, U: Up, D: Down
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Fig. 2. Floorplan of the fifth floor of the office building. E1-3 are elevators
and S1-2 are closed concrete staircases which connect all other floors. S3 is
an open metal staircase which connects to the sixth floor. The two blue dots
in the corridors are access points. The other floors are almost identical.

of regular walking and always choosing walking would result
in 69.5% accuracy. The unbiased global accuracies are 92.6%
(batch) and 81.6% (realtime). In real-time, most errors are
false negative stair detections at the start of a stair transition.
The first steps are labeled as regular walking due the length
of the stair detection window. This is a design choice: the
long detection window allows the algorithm to ignore noisy
measurements. Indeed, the amount of false negative stair
detections is drastically reduced in batch mode, because we
know at the start of a stair transition that the past steps in
the detection window happened on a staircase too. Of the
remaining stair detection errors, all false negatives and most
of the false positives happen when the user is entering or
leaving a staircase, because of the delay introduced by the
LP filter on the barometer data. These errors have no impact
on the floor number detection or localisation algorithms. Some
false stair detections happened when the user was not near a
staircase. Most of these did not cause a floor number change,
since the detected height change must be at least 50% of the
floor height to trigger a floor number change. However, false
floor transitions can still be disadvantageous if they are used
to improve 2D localisation [17]. When a false detection did
trigger a floor number change, the algorithm added an extra



TABLE III
FLOOR DETECTION ERRORS FOR DIFFERENT CONFIGURATIONS AS DISTANCE IN FLOOR NUMBERS TO THE TRUE FLOOR.
THE NUMBERS ARE PERCENTAGES.

Algorithm configuration Floor number distance
0 1 2 314 5 6 7
RSS only (Euclidean distance metric) 916 | 6.8 | 02 | 0| 1O [ 0.1 | 03 | 0.1
Viterbi: RSS (realtime) 853 [ 84 | 350|210 0.5 | 0.2
Viterbi: RSS (batch) 941 [ 38 [ 1.0 |0 |07 | O 04 0
Viterbi: RSS Floor transition detection (realtime) | 99.1 | 0.9 | 0 01]0 0 0 0
Viterbi: RSS Floor transition detection (batch) 997 | 03| 0 01]0 0 0 0

=mmm True floor sequence

RSS only

Viterbi with RSS

—-~ Viterbi with RSS and transitions

floor number
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Fig. 3. Plots of the estimated floor number in function of the detected step
index for variations of the floor number detection algorithm for a slice of the
evaluation data, in real-time (a) and batch (b) mode.

transition back to the correct floor after a few seconds, because
the RSS measurements favoured the correct floor.

Table |1} lists a comparison of variations of the floor number
detection algorithm. These variations include pure RSS match-
ing with the Euclidean distance metric, Viterbi with only WiFi
RSS, and fusion of both WiFi RSS and floor transitions with
Viterbi, in realtime and batch. Only the intervals where the real
activity is walking are used for evaluation of the floor number

detection. As expected, the highest accuracy is achieved by
(f)using both transition detection and RSS measurements, with
batch (99.7%) providing slightly better accuracy than real-
time mode (99.1%). Surprisingly, RSS only (91.6%) performs
better than Viterbi with RSS in realtime (85.3%), while Viterbi
with RSS in batch mode (94.1%) lies in the middle.

Figure [3] (a) shows the real-time output for a slice of the
evaluation data. The user started at the fifth floor and went
to the sixth floor by stairs. He then returned to the fifth floor
by stairs after some roaming. While the output of the Viterbi
algorithm is always an integer floor number, the floor number
is interpolated during transitions for visualisation of these
intervals. Figure [3] (b) shows the batch output for the same
evaluation data. These plots confirm the explained results. The
wrong floor number changes caused by bad RSS matching
(grey) are correctly ignored when RSS measurements are fused
with floor transition detections, even in realtime. However, the
stair detection is delayed in real-time mode because of the long
detection window.

With over 99% floor detection accuracy, our algorithm is
comparable to other recent works [19], [20]. However, these
require the initial floor to be known. The floor transition
detection in [20]] was designed for a specific type of staircase,
where each floor transition consists of “two staircases and
a transition area between them” (p. 8). 100% accuracy was
achieved in [19]], but a newer high-end smartphone (Iphone
X) provides a clear advantage in detecting the correct floor
number. Other systems, e.g. [[12]], [17]], are difficult to compare
because the floor number detection is part of a complete PDR
system and is not seperately evaluated.

IV. DISCUSSION AND FUTURE WORK

We proposed a new smartphone-based floor transition and
floor number detection algorithm, which fuses data from the
accelerometer, barometer and WiFi RSS. We first implemented
an elevator detection algorithm based on the work in [27].
Then, we proposed a new adaptive stair detection algorithm,
which adapts its parameters according to the noise produced
by the barometer sensor. Our stair detection algorithm handles
the pressure drift problem and is able to ignore fast pressure
changes, which can be caused by opening/closing doors or
windows [21]]. RSS fingerprinting provides absolute floor num-
ber estimation and is fused with floor transitions for accurate
floor number detection. The purpose of this algorithm is to
complement PDR algorithms, in two ways. First, detecting



the floor number enables tracking a pedestrian across multiple
floors of a building. Second, recognition of activities such as
climbing stairs and taking an elevator can also improve 2D
localisation.

The evaluation dataset consists of 116 minutes of recorded
data, during which the actors changed floors 76 times. The
proposed algorithm achieves 99.1% accuracy in real-time and
99.7% in batch mode. Only pre-existing APs were used,
of which two were available on each 41 m x 27 m floor.
Since the radiomaps are model-based, expensive measurement
campaigns are not needed. Combined with the small and easily
obtained amount of necessary training data, this algorithm
can be easily deployed and is independent of a dedicated
localisation infrastructure.

When the pedestrian is walking regularly (i.e. not climbing
stairs), 8% of the time the activity is labeled as climbing
the stairs. While most of these wrong classifications happen
when the user is leaving a staircase, some happen when the
pedestrian is nowhere near a staircase. Future work will consist
of reducing these false stair detections by incorporating data
from both the accelerometer and gyroscope, as proposed in
other works [12], [34]. Consequently, more accurate stair
detection (and using a more modern smartphone) will allow
us to shorten the detection window, reducing the delay in real-
time mode.
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