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Abstract
Trajectory inference methods have emerged as a novel class
of single-cell bioinformatics tools to study cellular dynamics at
unprecedented resolution. Initial development focused on
adapting methods based on clustering or graph traversal, but
recent advances extend the field in different directions. A first
class of methods includes novel probabilistic methods that
report uncertainties about their outputs, and new methods that
consider complementary knowledge, such as unspliced
mRNA, time point information, or other types of omics data to
construct the trajectory. A second class of methods uses the
obtained trajectories as a starting point for novel analyses,
such as visualization approaches, new types of statistical an-
alyses, and the possibility to render static analyses more dy-
namic, such as dynamic gene regulatory network inference.
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Introduction
Single-cell technologies have emerged as the next-
generation microscopes, allowing to characterize tis-
sues and organisms in ever greater detail. While tracking
www.sciencedirect.com
the transcriptomic profile of a single cell over time is
challenging, studying large amounts of single cells
sampled from a dynamic cellular process allows
computationally reconstructing cell developmental
processes. Trajectory inference (TI) methods have

emerged as a novel subfield within computational
biology to better study the underlying dynamics of a
biological process of interest, such as cellular develop-
ment, differentiation, or immune responses [1]. These
methods aim to infer a graph-like structure underlying
the dynamic process from which the cells are sampled.
By mapping the cells to this inferred structure, their
properties can be compared over pseudotime, an ab-
stract unit of progress through the dynamic process [2].
TI thus allows studying how cells evolve from one cell
state to another, and subsequently when and how cell

fate decisions are made. While TI methods can be in
principle applied to any dynamical process that is
sampled, the bulk of the methods have been developed
specifically for single-cell transcriptomics data. Howev-
er, as this field is evolving very rapidly, so is the field of
TI method development, adapting to a wide variety of
novel technological possibilities.

To study cell developmental dynamics using TI, several
general as well as method-specific assumptions should
be checked. General assumptions include that (1) the

biological process of interest is dynamic, and the
appropriate cells are sampled; (2) the biological data are
sampled to sufficient depth, so that the entire devel-
opmental process, including very transient states is
presented; and (3) the changes in gene expression are
gradual during the developmental process. Further as-
sumptions are specific to the methods used, such as
confinement to particular trajectory types (e.g. linear or
branching) or additional prior knowledge needed (e.g. a
starting cell that is representative of the starting state of
the dynamic process). In addition, many tools implicitly

assume that all cells in the data set belong to the tra-
jectory, calling for rigorous preprocessing to make sure
noise or outlier cells that should not be used to construct
the trajectory are removed. TI is generally performed
after clustering and annotation of the data. An overview
of general single-cell analyses, and where TI methods fit
in, can be found in Luecken and Theis, who compiled a
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comprehensive overview of the single-cell analysis
pipeline [3].
Trajectory topologies
As different TI methods make different assumptions
about the data, a first choice to make is based on which
biological process is to be expected: not all TI methods
are designed to infer all kinds of biological processes. To
categorize the TI methods with regard to this ability, we
use the model proposed by Saelens et al. [4]. A trajec-
tory is modeled by a graph-based network topology,
consisting of connected milestones and cells placed on
the connections between these milestones. A graphical

overview of the different types can be found in Figure 1.
The simplest processes can be represented using linear
trajectories, for example, representing an ordering from
immature cells, through intermediary stages, finally
ending up in a terminal state. Methods specific to linear
trajectories include the pioneering method Wanderlust
[5], as well as more recent methods such as MATCHER
[6] and SCORPIUS [7]. Similarly, cyclical trajectories,
for example, modeling the cell cycle, can be inferred
using tools such as ElPiGraph [8] and reCAT [9].
However, developmental processes are often not linear,

and may include branching points, where cells make a
commitment to follow one of a few possible routes.
Slingshot [10] and Monocle [2] allow the modeling of
these kinds of processes as bifurcating or tree-shaped
topologies. Finally, methods such as PAGA [11],
Figure 1
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The most common trajectory topologies vary from simple linear and
branching, to tree like and cyclical ones. Graph-like structures are a
possibility as well. Not all TI methods can correctly infer all possible
topologies.
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RaceID/StemID [12], and TinGa [13] are among the
methods able to extend the modeling of trajectory to-
pologies toward general graphs and allow the inclusion of
loops or even multiple separated trajectories. As often
the true underlying process is unknown, current best
practices include comparing multiple methods to
confirm the general topology structure [4]. To that end,
methods that predetermine a certain topology (linear,

bifurcating) can be used in combination with ones that
do not. For more information about which particular TI
method will suit a certain use case best we refer to
Saelens et al. (Saelens et al., 2019), who give detailed
information about both the accuracy, memory re-
quirements, runtime, and prior information needed for a
wide variety of methods and bundled these guidelines in
an interactive tool (dynguidelines; URL: https://github.
com/dynverse/dynguidelines; Figure 2).
Computational approaches for trajectory
inference
To approach the problem of trajectory inference, a wide
variety of computational approaches is used. A unifying
framework to characterize TI methods has been pro-
posed by Cannoodt et al. [1]. In a first step, most

methods apply some sort of dimensionality reduction
method to reduce the high-dimensional gene space.
Subsequently, several approaches can be considered to
reconstruct the trajectory. These can be largely divided
into clustering- and graph-based approaches.
Clustering-based approaches first identify cell states
(clusters) and subsequently connect these clusters into
trajectory structures. Graph-based approaches construct
a similarity graph, and subsequently apply graph-based
methods to find connected components and organize
them into trajectories. Many methods also combine el-
ements from both approaches. An overview of these

methods and subsequent analysis can be found in
Figure 3.

Current approaches
The most common types of TI methods start by
performing a dimensionality reduction, a necessary step
due to the inherent high dimensionality of the gene
space. PCA is commonly used [14,11,15], but diffusion
maps [16,17] and local linear embedding [18] are some
of the other options. These methods try to represent the
true dimensionality of the data, by attempting to pre-
serve a combination of the local and global structure
found in the data.

In this reduced space, the trajectory will be recon-
structed. Clustering-based approaches first try to find
stable cell states in the data and afterward connect these
states to form a trajectory andmap the cells to the formed
graph structure. Many clustering approaches are used,
such as soft K-means clustering [19], Louvain clustering
[20], non-negative matrix factorization [18], or
www.sciencedirect.com

https://github.com/dynverse/dynguidelines
https://github.com/dynverse/dynguidelines
www.sciencedirect.com/science/journal/24523100


Figure 2

An interactive tool that helps the user decide which TI method suits a particular use case best.
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hierarchical clustering [21]. In some cases, the method
requires clusters as input and is agnostic to the actual
clustering method used [22]. To connect the clusters to
each other, usually a minimum weight spanning tree
(MST) is constructed or edges are selected so that the
most similar clusters are connected. MSTs are guaran-

teed to be unique if each edge in the graph has a distinct
weight. Owing to the inherent heterogeneity of the cells
in this kind of data, this is generally the case.

Graph-based approaches construct a graph representa-
tion of the cells and either use graph decomposition to
reveal connected and disconnected components, or
graph diffusion or traversal methods to construct the
trajectory topology. Most methods start by building a k-
nearest neighbors (kNN) graph using the Euclidean
distance. PAGA [11] uses Louvain clustering to parti-

tion the graph and uses a statistical model to determine
the strength between the different clusters to reveal
connected and disconnected regions at the chosen res-
olution. DPT [23] calculates the probability of cells
www.sciencedirect.com
transitioning into each other using random walks from a
user-provided root cell and uses the differences be-
tween these probabilities as pseudotime. Wanderlust
[5] infers pseudotime for each cell based on the distance
from a user-provided root cell.

Other methods use manifold learning-based approaches
such as principal curves and graphs to infer the trajec-
tory structure. In addition to the previous methods that
use an MST to model the trajectory structure, SCOR-
PIUS [7] and Slingshot [10] use principal curves to
obtain smooth trajectories. They both still cluster and
construct a trajectory by connecting the closest clusters
or computing an MST as previous steps. Cells can then
be conveniently projected onto the smoothed trajectory
obtained by principal curves.

Novel probabilistic approaches
Several methods that try to model the developmental

process in a probabilistic way have been recently intro-
duced. Instead of single point pseudotime estimates,
Current Opinion in Systems Biology 2021, 27:100344
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Figure 3
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Input data can consist of a single-cell RNA-seq data set, splicing information or a time-series experiment comprising of multiple single-cell RNA-seq data
sets. The computational methods that actually perform the trajectory inference always include a dimensionality reduction. The following steps differ:
clustering and MST construction, possibly in combination with principal curves is an option. Another approach is graph traversal on the individual cells.
Probabilistic methods use a variety of techniques such as a Hidden Markov Model, a Markov chain, or a Gaussian Process Latent Variable Model. RNA
velocity information can also be added to improve the TI. Downstream analyses consist of visualization, trajectory-based differential expression, align-
ment between multiple data sets, or gene regulatory network inference.
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Trajectory inference from single-cell omics data Deconinck et al. 5
they can also provide uncertainty about the pseudotime
or uncertainty of a cell belonging to a certain branch of
the trajectory. Some of these methods build further on
certain elements used in early TI research, such as
neighborhood graphs and diffusion components in
addition to a probabilistic model.

Palantir [17] models the trajectory as a Markov process.

First, a nearest neighbor graph is constructed using
diffusion maps. Each cell’s pseudotime is iteratively
computed. First, the shortest path from the user-
defined root cell is used. Then this value is refined
using the distance from certain waypoints, sampled to
encompass the whole differentiation trajectory. This
neighborhood graph and the associated pseudotime
values are then used to construct a Markov chain in
which each node represents a cell. The pseudotime
provides directionality between the edges connecting
the nodes. This chain is used to calculate the transition

probabilities of each cell to reach a neighboring cell in
one step. After determining which states are terminal, a
pseudotime value and a branch probability are assigned
to each cell.

A different method, CSHMM [24], uses a continuous
state Hidden Markov Model to infer a trajectory. This
allows for an infinite number of states, allowing cells to
be assigned to a fine-grained trajectory, based on both
the inferred pseudotime and cell state. The method
works well with the integration of time-series RNA-Seq

data. GPseudoRank [25] uses Markov Chain Monte
Carlo methods to sample from a posterior distribution
of cell orderings. They do, at first, not infer a contin-
uous pseudotime value for the cells, but they infer a
discrete ordering of the cells. This avoids exploring
pseudotime assignments that map to the same
ordering. The continuous pseudotime values assigned
to the cells are then derived using a deterministic
transformation.

Ouija [26] uses a Bayesian latent variable model to learn
pseudotime from a small set of known or suspected

marker genes. It also explicitly models the expression
peaks and the on/off switching of these genes during the
developmental process. This allows determining easily
which of these genes are involved in the regulation of
certain parts of the trajectory.

Grandprix [27] uses the Gaussian Process Latent Vari-
able Model (GPLVM) to estimate pseudotime values.
The main contribution of the work is the implementa-
tion of a more efficient model, which allows the GPLVM
to be used with larger data sets. As is often the case with

probabilistic models, these are computationally inten-
sive models to run, making them less scalable to large-
scale datasets [4].
www.sciencedirect.com
Extensions of trajectory inference
Integration of other data sources
To improve the biological relevance of the inferred tra-
jectories, several methods use new sources of informa-
tion instead of, or in addition to, the gene expression
counts. By far the most popular source of information to
add is RNA velocity [28]. RNA velocity methods esti-
mate the future state of a single cell captured in a static
snapshot by looking at the ratios between spliced
mRNA, unspliced mRNA, and mRNA degradation.
scVelo [29] and CellRank [30] use this extra velocity
information to construct a directed k-nearest neighbor
graph, as a starting step for the TI method. This has the

advantage that root cell specification is not necessary,
and adds directional information to the trajectory.

The dynamics of the cellular state is not only repre-
sented in the transcriptome but also in other modalities
such as the epigenome and the proteome. Given that
these modalities are often related, for example, with a
time delay, it is of great interest to profile and infer
trajectories from multiple modalities. MATCHER [6]
is a TI method integrating both transcriptomic and
epigenetic information, of different samples belonging

to the same type, using manifold learning. Other
methods that do not infer trajectories, but embed
multimodal data in a common space are also of interest.
UnionCom [31] constructs distance matrices of each
modality and matches them before embedding in a
common feature space. Seurat v4 [32] uses weighted
nearest neighbor analysis and shows that the inclusion of
protein information can improve trajectory character-
ization. TI methods specifically leveraging multimodal
information can thus uncover a more accurate picture of
the developmental process.

Some methods focus on combining data sets from time-
series experiments. Multiple single-cell transcriptomics
experiments are sequentially combined, so that a pro-
cess can be studied over time. Tempora [33] constructs
a network of cell clusters and uses ARACNE [34] to find
vertices between clusters based on the pathway
enrichment profiles of each cluster. To determine the
directionality of these vertices, the time-series labels are
used.

Quality control and benchmarking
Owing to the scarcity of large benchmarking data sets
during the advent of scRNA-seq technologies, early

computational methods were developed in the context
of a specific single-cell data set so that generalization
beyond this data set was rarely assessed. The lack of
consensus guidelines regarding how trajectory informa-
tion should be stored and which metrics should be used
to compare studies rendered the evaluation of TI
methods particularly challenging.
Current Opinion in Systems Biology 2021, 27:100344
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A comprehensive benchmark of TI methods was
performed in Ref. [4], using multiple metrics to not only
assess the accuracy on multiple different simulated and
real data sets but also the stability, scalability, and us-
ability of each method. Several of the metrics proposed
in this study could be used to quantitatively evaluate TI
methods. Guidelines for selecting the most appropriate
method for a particular data set were also provided.

Novel single-cell simulation engines have been devel-
oped, allowing to generate ground truth models that can
be used to benchmark TI methods [35e37].
Downstream analysis of inferred
trajectories
Inferring trajectories from single-cell omics data allows
to extract dynamics, typically from a single snapshot of a
biological system. However, the topological structure
and its associated pseudotime offer an additional time
dimension that allows a temporal mapping of every
cell. This novel time component subsequently allows
applying many proven techniques derived from time
series analysis, as well as developing interesting novel
approaches, as the resulting trajectory can be inter-
preted as a very granular time-course experiment.

Visualization
Some methods provide a dedicated way to visualize the

trajectory, but these are mostly very simple visualiza-
tions: the pseudotime values are added as a color scale
onto a common visualization method such as t-SNE or
UMAP, where sometimes nodes and edges are drawn as
well to visualize the backbone of the trajectory.
STREAM [38] implemented multiple visualizations for
linear and branching trajectories that facilitate visual-
izing cell density, proportions of cell states, and
expression of a single gene across the trajectory. dyno
(dyno; URL: https://github.com/dynverse/dyno) pre-
sents an entire TI pipeline, including a variety of visu-

alization options for any trajectory type.

Trajectory differential expression
Inferring trajectories from single-cell data offers novel
ways to extract developmental information, such as
finding out which transcription factors drive and regu-
late the developmental process. It is possible to perform
a differential expression analysis along these trajec-
tories: some TI methods, such as Monocle, incorporate
this in their workflows. Generic approaches have also
been proposed that work with different TI methods in a
common statistical framework: switchde [39] allows
testing for differential expression along a single-cell

trajectory, whereas tradeSeq [40] can test for differen-
tial expression within a particular branch of a trajectory,
but also provides a framework to test differential
expression of genes between different branches of a
trajectory, which can be particularly useful to compare
trajectories resulting from different conditions.
Current Opinion in Systems Biology 2021, 27:100344
However, a concern with this kind of analysis is circu-
larity, as the same data points and features are used to
perform the TI and the differential expression analysis.
The TI step enforces a certain optimized ordering upon
the cells, potentially enhancing expression differences
along trajectories, leading to artificially low p-values and
an inflated number of false positives. This is an issue
present in other steps of the single-cell analysis pipeline

and has gained attention in the field of cluster-based
differential expression [41]. One possible solution is
to incorporate the uncertainty of the inferred trajectory
within the differential expression to correct the
p-values. Another possible solution is to use separate
data sets for each, for example, by means of multimodal
data such as CITESeq estimate the trajectory on
gene expression data and test for differential protein
expression.

Trajectory alignment and comparison
It can be insightful to compare trajectories inferred from
samples belonging to certain conditions, for example,
healthy versus diseased patients. PhenoPath [42] uses a

Bayesian statistical model capable of inferring different
pseudo temporal trajectories for different patient sub-
groups. A different method to compare existing pseudo
temporal trajectories of different patient groups, or even
species, is Dynamic Time Warping [43,44]. This
method aligns the trajectories to a similar timescale so
that comparisons can be made easier. A dedicated
method, cellAlign [45], was developed to compare linear
non-branching single-cell trajectories.

Dynamic gene regulatory network inference
The expression level of a single gene is determined by a
complex regulatory network, detailing which gene and

molecule interactions influence the expression level of
that gene. Uncovering this regulatory network can be
performed using gene regulatory network (GRN)
inference methods [46]. Typically, GRN inference
methods are applied on gene expression data to yield a
static network. By combining GRN inference methods
with the additional time dimension uncovered by TI
methods dynamic gene regulatory networks can be
reconstructed, where the transcription factor d target
predictions are not static, but can evolve during the
course of the trajectory [47e49]. However, pseudotime

information might not work as well as true time-series
data [50].
A future outlook for trajectory inference
methods
TI methods have emerged as a novel set of computa-
tional techniques to study cellular dynamical processes.
By allowing modeling gradual transitions between cell
states, these methods generalize the concept of clus-
tering, resulting in a topological map of the dynamic
process of interest, where cells are assigned to different
www.sciencedirect.com
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Trajectory inference from single-cell omics data Deconinck et al. 7
branches in this topology and mapped to their progress
along this dynamic process. Although methods in the
past mostly tried to accommodate increasing levels of
complexity of the underlying topology, current tech-
niques diversify the landscape of TI methods. Recently
introduced methods focus more on providing uncer-
tainty estimates about their predictions, and try to
incorporate complementary information to construct the

trajectory. This includes directional information, as, for
example, obtained from RNA velocity estimates, prior
information (e.g. known time point information) or
multiple complementary data sources (e.g. single-cell
multi-omics). As the field is moving toward measuring
more complementary information at the single-cell
level, a novel wave of multimodal TI methods can be
anticipated. New benchmarking studies can be ex-
pected to help quantify the importance of these addi-
tional sources of information on the resulting trajectory.
Similarly, the creation of an unsupervised metric

measuring how well a trajectory fits the dataset used
could serve as a quality control before performing
downstream analyses based on these inferred trajec-
tories. As different data sources might shed light on
different dynamical aspects of a biological process, there
is a high need for methods that are able to better extract
multiple parallel aspects of a dynamic biological process
(e.g. differentiation combined with cell cycle status and
cell migration). Finally, it can be expected that many
more downstream analysis methods will be developed,
taking advantage of the time component returned by TI

methods. The inferred trajectory can be regarded as a
very granular time series, transforming many static gene
expression-based tools into their dynamic counterpart,
an example being dynamic gene regulatory network
inference.
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