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Abstract

We construct examples and families of locally Hermitian ovoids of the gener-
alized quadrangle H(3,q?). We also obtain a computer classification of all locally
Hermitian ovoids of H(3,¢?) for ¢ < 4, and compare the obtained classification
for ¢ = 3 with the classification of all ovoids of H(3,9) which is also obtained by
computer.
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1 Introduction

Consider the finite field F,2 of order ¢?, where ¢ is some prime power. A map f : F 2 — Fp
is said to be an I-map if %’;(I) g F, for all 7,y € Fp2 with  # y. Every I-map must
be bijective. A polynomial p(z) € Fp[z]| for which the map = — p(z) defines an I-
permutation of F2 is called an I-polynomial. Having an I-map f : Fp2 — F2, we can
construct several others:

(C1) 2+ f(2? )¢ for every automorphism ¢ of Fp;

(C2) & — f(z + k) for every k € Fpe;

(C3) & — f(z) + k for every k € Fpe;

(C4) z — ¢ f(kx) for every k € Fry i=TFp \ {0}
(C5) x — f(z) + kx for every k € F;

(C6) x — kf(x) for every k € F} :=TF, \ {0};

(cn)
Two I-permutations of Fp. are called equivalent if one of them can be obtained from
the other by successively applying the constructions mentioned in (C1)—(C7). Two I-
polynomials are called equivalent when their associated [-permutations are.

The reason why the above maps are called I-maps is because of their connection
with Indicator sets of AG(2,¢*). Suppose AG(2,¢?) is the affine plane obtained from the
projective plane PG(2, ¢*) by removing a line L.,. Let B be a Baer subline of L,,. Then a
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set X of ¢* points of AG(2, ¢?) is called an indicator set (with respect to B) [4,[13,14] if any
line of PG(2, ¢%) containing two distinct points of X is disjoint from B. Two indicator sets
X, and X, are called equivalent if there exists an automorphism of PG(2, ¢*) stabilizing
B and mapping X; to Xo.

The coordinates of a generic point of PG(2, ¢?) will be denoted by (X1, X5, X3). We
will assume L., has equation X; = 0 and that the Baer subline B of L., consists of all
points of the form (0, ky, ko), where (ky, k2) € F, x F, with (ky,k2) # (0,0). Any map
f:Fp2 — Fp defines a set Oy := {(1,z, f(z)) |z € Fpe} of ¢* points in AG(2,4?). It is
straightforward to verify that Oy is an indicator set if and only if f is an /-permutation
([5, Section 6]). The following is the first result of this paper.

Theorem 1.1. If fi and fy are two I-permutations of F, then the indicator sets Oy,
and Oy, of AG(2,¢?) are equivalent if and only if the maps f1 and fy are equivalent.

With the aid of the computer algebra systems GAP [17] and SageMath [12], we have
classified all indicator sets of AG(2,¢?) for ¢ € {2,3,4}. We found that there are up to
equivalence one, three or seven such indicator sets depending on whether ¢ is equal to 2, 3
or 4. For each indicator set O we found with the computer search, we can use (Lagrange)
interpolation to find a polynomial p(z) € Fp[x] such that O = {(1,z,p(x)) |z € F,2}.
Our results are summarised in the following theorem.

Theorem 1.2. (1) Up to equivalence, Fy has only one I-permutation. Any such per-
mutation 1s equivalent with x — ax, where a is a root of the irreducible polynomial
2+ x+ 1€ Fyfz].

(2) Up to equivalence, Fy has three I-permutations. Any such permutation is equivalent
with either v — Bx, x — B3 or x — B%x°, where B is a root of the irreducible
polynomial x*> —x — 1 € F3lx].

(3) Up to equivalence, F1g has seven I-permutations. Any such permutation is equivalent
with either v — vz, x +— 2* +yx, v — 2 + 25 + 2, = 28 + 722, 2 —
2042 ¥t 3y, 2 = o 02 atyx or 2o oy 8480 a2,
where 7y is a root of the irreducible polynomaial rHar+1¢e Fylx].

There are two standard examples of indicator sets ([5]):

(1) The lines of AG(2,¢*) whose points at infinity do not belong to B. These are called
the classical indicator sets.

(2) The sets of the form B\ L, where B is a Baer subplane of PG(2, ¢?) intersecting L
in a Baer subline disjoint from B. These are called the semiclassical indicator sets.

The I-permutations of 2 corresponding to classical indicator sets have the form x — bx+
c where b,c € Fp2 with b & F,. All I-permutations of F,. corresponding to semiclassical
indicator sets have a description of the form = — ax?+bx+c, where a, b, c € F 2 with a # 0.
Up to the construction (C3), these I-permutations are all additive, a map f : Fp2 — Fp
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being called additive if f(u + v) = f(u) + f(v) for all u,v € Fp. Obviously, such an
additive map is an I-map if and only if @ ¢ Iy for all x € Fs.

Now, let H be a nonsingular Hermitian variety in PG(3, ¢?) with associated polarity ¢
([8]). Let z be a point of #. Then there are ¢ + 1 lines K, Ko, ..., K, of H through
2 which all lie in the tangent plane II, = 2¢. Consider the quotient projective space
P, = PG(2,¢*) whose points and lines are the lines and planes of PG(3,¢?) through z.
The plane II, is a line of P, and B = {K, Ks,..., K 1} is a Baer subline of this line.
Suppose A, = AG(2,¢?) is the affine plane that arises from P, by considering II, as line
at infinity.

The points and lines of PG(3,¢?) contained in H define a generalized quadrangle
H(3,¢%), see [11]. An ovoid of a point-line geometry is a set of points meeting each line
in a singleton. An ovoid O of H(3,¢?) is said to be a translation ovoid with respect to
a point y € O if there exists a group G of automorphisms of H(3,¢?) fixing each line of
H (3, ¢?) through y and acting regularly on O\ {y}. An ovoid of H(3, ¢*) is called classical
if it is obtained by intersecting H with a nontangent plane.

Suppose L is an indicator set of A, (with respect to the Baer subline B of the line at
infinity I, of A,). By [14, Section 1.1.3], the set O := |J, (L NH) is then an ovoid of
H(3,4?). Any ovoid of H(3,¢*) that arises in this way is called locally Hermitian. If L is
a classical indicator set, then O is a classical ovoid of H(3,¢?). The ovoids of H(3,q¢*)
arising from semiclassical indicator sets are called semiclassical ovoids. Every ovoid of
H (3, ¢*) associated with an indicator set that is described by an additive I-polynomial is
a translation ovoid, see [B, Section 6]. By [0, Theorem 3.2], two locally Hermitian ovoids
of H(3,¢*) are isomorphic if and only if their associated indicator sets are equivalent,
i.e. if and only if the associated I[-maps are equivalent. This fact in combination with

Theorem [I.2] gives the following result.

Corollary 1.3. Up to isomorphism, H(3,q*) has one, three or seven locally Hermitian
ovoids depending on whether q is equal to 2, 3 or 4.

In Section , we compare the classification of the locally Hermitian ovoids of H(3,9) with
the (computer) classification of all ovoids of H(3,9).

In this paper, we construct several examples and families of indicator sets of AG(2, ¢?)
which we didn’t find in the literature. Certain of these indicator sets are associated with
I-monomials of F2[x]. We denote by E(q?) the set of all e € {1,2,...,¢* — 1} for which
there exists an A € 2 such that Az® is an /-polynomial. Regarding /-monomials, the
following can be proved.

Theorem 1.4. (1) If q is odd, then q € E(¢*). In fact, x — X% with X € Fp is an
I-permutation of Fp if and only if X\ is a nonsquare, and any two such maps are
always equivalent.

(2) If ¢ = p" with p an odd prime and h € N* := N\ {0}, then p' € E(¢?) for any
ie{1,2,....2h—1}.



(3) If ¢ = 2" with h € N*, then 2" with i € {1,2,...,2h — 1} belongs to F(¢*) if and
only if the largest power of 2 dividing i is bigger than the largest power of 2 dividing
h.

(4) If q is an odd prime power, then (1274-1 € E(¢%).

(5) Suppose ¢ = 3 (mod 6), ¢ = 5 (mod 6) or ¢ = 22T for some e € N*. Ther[]
¢+2,(¢+2)7" € E(¢*).

Parts (1), (2) and (3) of Theorem [1.4] are all consequences of the treatment that we will
give in Section[d] Among these results, Theorem[1.4[2) was already proved in [4, Theorem
3.1] (see also Proposition 4.5 of [5] for a special case of that result). It could be that parts
(1) and (2) are also known, but we found no mentioning of them in the literature.

Parts (4) and (5) of Theorem [1.4] will respectively be proved in Sections[5 and [l The
indicator sets arising from the examples mentioned in (4) can also be found in Section
2 of [5] (using another description). We found no mentioning of Theorem [1.4]5) in the
literature, nor of the associated ovoids of H (3, ¢?).

Based on computer computations, we would also like to propose the following open prob-
lem (which is confirmed by computer computations for ¢ < 100).

Open Problem Is it true that (2¢+3), (2¢+3)~! € E(¢*) whenever ¢ # 1 (mod 5) and
q#4 (mod 5)7?

Remark: If e € {1,2,...,¢° — 1} with ged(e,¢* —1) =1 and f:Fpe — Fpe:z— \a° is
an /-map, then the inverse of f is equal to f' : Fp2 = Fpe: 2 — Nz¢, where ¢ = e~ ! and
N = (X)L, Hence, if e € E(¢?), then also e~! € E(¢?). If ¢ is an odd prime power, then

2 . 2
(=g

2 Proof of Theorem 1.1l

Suppose f is an /-permutation of Fp2. In (G1)-(G7) below, we describe automorphisms
of PG(2,¢*) which all together generatdﬂ the group of all automorphisms of PG(2, ¢?)
stabilizing B. Each of these automorphisms 6 maps the indicator set O; of AG(2,¢?)
to another indicator set O, of AG(2,¢?). For the automorphism 6 described under (Gi),
i€ {1,2,...,7}, we show that the permutation g of F,2 can be obtained from f in the
way as described in construction (Ci). This then allows to conclude that two indicator
sets are equivalent if and only if their corresponding I-permutations of F. are.

(G1) Suppose 6 : (z1, 29, x3) — (27,25, 2%) for some automorphism ¢ of Fp. Since

(1,z, f(2))? = (1,22, f(x)?), we see that g(z) = f(z? " )? for every x € Fp.

'If ged(a, ¢> — 1), then a~! denotes the inverse of a modulo ¢? — 1.
ZNote that the group generated by the automorphisms mentioned under (G1), (G5), (G6), (GT7)
induces the full group of automorphisms of L stabilizing B.



(G2)-(G3)-(G4) Suppose 0 fixes each point of L. Then there exist a,b,c € Fp with a # 0
such that (z1, 29, 23)? = (a1, by + 29, 1 +a3). Since (1,z, f(2))? = (a,b+z,c+ f(z)) =
(L,2+2 ¢4 @), we have g(x) = £+ % f(az —b) for every 2 € F2. We can consider the

following three special cases of this.
(G2) Suppose a =1, b= —k € F2 and ¢ = 0. Then g(z) = f(z + k) for every x € F .
G3) Suppose a =1, b=0 and ¢ = k € F2. Then g(z) = f(x) + k for every z € F.

G4) Suppose a =k € F}: and b = ¢ = 0. Then g(z) = %f(kx) for every x € IF .

.z, f(x) + kx), we have g(x) = f(x) + kz for every x € Fp.

G6) Suppose 0 : (21, T, x3) + (71, 72, kxz) where k € F}. Since (1, 7, f(@)? =, 2, kf(x)),
we have g(z) = kf(x) for every x € F .

(

(

(G5) Suppose 8 : (1,29, 23) + (71,72, 73 + kxg) where k € F,. Since (1,z, f(z))? =
(1

(

(G7) Suppose 0 : (z1,12,73) — (1,23, 72). Since (1,2, f(2))? = (1, f(z),z), we have
g(x) = f~1(z) for every z € F .

We have completed the proof of Theorem [I.1]

3 Proof of Theorem 1.2

Continuing with the notation of Section |1, we define a point-line geometry S, whose
points are the points of AG(2,¢?) and whose lines are all the lines of AG(2,¢?) whose
corresponding points at infinity belong to B, with incidence being the one derived from
AG(2,¢?). The point-line geometry S, has order (¢* — 1, ¢) and is an example of a net (in
the sense of Bruck [3]). If L is a line of AG(2,4?) whose corresponding point at infinity
does not belong to B, then L is also called an imaginary line of S;, while the ordinary
lines of S, are also called real lines. We denote by A(S,) the group of automorphisms
of S, that arise from automorphisms of PG(2,¢?) that stabilize B. Then A(S,) consists
of all automorphisms of S, that do not only map real lines to real lines, but also every
imaginary line to an imaginary line.

The ovoids of the geometry S, are precisely the indicator sets of AG(2, ¢*) with respect
to B. Two ovoids of S, are equivalent as indicator sets if there exists an element of A(S,)
mapping one of them to the other. In Section 4 of [1], computer code in SageMath [12]
can be found for classifying ovoids of point-line geometries. With the aid of this code and
some computations in GAP [I7], we classified all ovoids of S, for ¢ € {2,3,4}, see [7].
Our results are summarised in Table [Il

It turns out that up to equivalence the number of ovoids of S, is equal to one, three or
seven depending on whether ¢ is equal to 2, 3 or 4. For each ovoid, we have also listed some
information, like the size of its equivalence class (column 3) and its intersection pattern
(column 4). The intersection pattern of an ovoid O of S, is defined as the sequence
0% ... (¢?)%?, where e; for i € {0,1,...,¢*} denotes the total number of imaginary
lines meeting O in precisely ¢ points. We have hereby followed the convention to omit
each term “i¢” for which e; = 0.



| Ovoid | ¢| # | Intersection Pattern f(x)
O; 2 8 031441 azx
O, 3 54 0814591 Bz
Os 3| 108 024118312 Ba?
Oy 3| 486 02411221652 B2a®
Os 41 192 0151176161 YT
Og 4| 960 00071112420 xt +yx
O, | 4] 9216 0951725061111 ot 4+ 28 4+ vy
Os || 4] 9600 (84148248412 28+ ~"x?
Oy 4 1 23040 07816622°32052¢1 0+ 2%+ 28+t 423+
O | 4] 46080 0701722231555 o 4+ 20 a8 20 2t 4y
O1 | 4153600 | (0781°02273154353 it + 4728 4+ 482 + 22

Table 1: The ovoids of S;, ¢ < 4

For each ovoid O of §; we find with the computer search, we can use interpolation
to find a polynomial p(x) € F,2[z] (necessarily being an I-polynomial) such that O =
{(1,z,p(x))|x € Fpe}. In this way, we found a suitable polynomial for each equivalence
class of ovoids. Such a polynomial is listed in the last column of Table [I} where «, 8 and
~ play the same role as in Theorem

As mentioned in the introduction, the problem of finding the equivalence classes of I-
permutations of F. is equivalent with finding the equivalence classes of indicator sets of
AG(2,¢?), i.e. the equivalence classes of ovoids of S,. Theorem is thus a consequence
of our computer classification of the ovoids of S;. We also wish to note that we have used
the constructions (C1)—(C7) to find the “easiest forms” for the mentioned polynomials.

4 Additive [-monomials

The I-polynomials of degree 1 in F2[z] are precisely the maps  + bx+c, where b, c € F2
with b € IF,. Regarding I-polynomial of degree 2, we can say the following.

Proposition 4.1. There are no I-polynomials of degree 2 in F2[z].

Proof. Consider a polynomial f(z) = az?+ bx + ¢ of degree 2 in Fe[z]. If 2,y € F,2 with
x # vy, then % =a(r+y)+band, as a # 0, this can attain any value in Fp if ¢ is
odd and any value in Fp2 \ {b} if ¢ is even. O

We now consider /-permutations of F, that are of the form z +— Ax°, where e €
{1,2,...,¢*~1} and X\ € F2\F,. Assuch amap must be bijective, we have gcd(e, ¢*—1) =
1. As % =Xt g F, forallz e [}z, we have ged(e—1,q* —1) # 1. For each prime
power g < 32, we have determined all possibilities for the exponent e, see Appendix [A]



We now assume that ¢ = p" and e = p’, where p is prime, h € N*and i € {1,2,...,2h—
1}. In this case the map = — A\z° is additive. Put d := ged(e — 1, + 1).

Lemma 4.2. The set
A={z"""y|z €F,, and y € F}}

consists of all dth powers of the elements of F,,. As a consequence, |A| = q2d_1.

Proof. Let 4 be a primitive element of F,2. Then the elements of the form 2¢~'y with
z € T, and y € F; are precisely the elements of the from Aot A (a4)] = A le=Dit(gH1)]
where 7,7 € Z. By Bézout’s theorem, we know that these elements are all elements of the
form % where k € Z. m

Theorem 4.3. The map x — Ax® is an [-permutation if and only if X is not a dth power
m ]qu.

Proof. We should have that Az~ ¢ I, for all z € F;, or equivalently, A & {(27")* 'y |z €
F;z and y € FZ} = A. The claim then follows from Lemma . O

By Lemma [4.2] and Theorem 4.3 we thus have:

Corollary 4.4. ¢ = p' € E(¢?) if and only if d = ged(e — 1, + 1) > 1.

The following proposition proves Theorem ( 1).

Proposition 4.5. We have q € E(¢?) if and only if q is odd, in which case there is only
one equivalence class of I-permutations of Fp of the form x — Az (comprising all such
permutations for which X\ is a nonsquare).

Proof. We have ged(q — 1, + 1) > 1 if and only if ¢ is odd. This in combination with
Corollary proves the first claim of the theorem.

If q is odd, we know by Theorem that the map fy :  — Az? is an I-map if and
only if A is a nonsquare. If A\; and Ay are two nonsquares of F72, then Ay = B2\ for some
B € Fr,. For such a 8, we see that fy, and fyg+1 are equivalent by construction (C6)
and fy,ger1 and fy g2 = f), are equivalent by construction (C4). O

Lemma 4.6. Put f = ged(i, h). If% is even and % is odd, then ged(e — 1,q + 1) =
p/ + 1> 3. If this is not the case, then ged(e — 1,q + 1) is equal to 2 or 1 depending on
whether p is odd or even.

Proof. 1If €1, €5 € {1, —1} and 4y, € N* with 4; < iy, then any common divisor of p’ + ¢
and p2 + €, is also a common divisor of p2~" — €65, By Euclid’s algorithm for computing
ged’s, we thus see that ged(e —1,¢+ 1) = ged(p® — 1, p" + 1) = ged(p' — 1,p" + 1,p7 +¢)
for some € € {1, —1}.

If % is even and % is odd, then pf + 1 is a divisor of p* — 1 and p" + 1, and in this case,
we thus see that ged(p’ — 1,p" +1) = p/ + 1.



If ? is even, then p/ + € is a divisor of p" — 1 and so we have ged(p’ — 1,p" + 1) =
ged(pi—1,p"+1,2). If% and % are odd, then p/ +¢ is a divisor of p'+1if e = 1 and pf +€is a
divisor of p"—1if e = —1. In any case, we also have ged(p'—1, p"+1) = ged(p'—1,p"+1,2).
Now, ged(p® — 1,p" + 1,2) is equal to 2 if p is odd and equal to 1 otherwise. O

The following is an immediate consequence of Corollary [£.4] and Lemma [4.6] It proves
parts (2) and (3) of Theorem [1.4]
Corollary 4.7. e Ifpis odd, then e = p' € E(¢?).

o Ifp=2, thene=2"€ E(q¢*) if and only if the largest power of 2 dividing i is bigger
than the largest power of 2 dividing h.

5 Proof of Theorem [1.4/(4)

Let ¢ be an odd prime power and « a primitive element of F,2. Then o cannot be a
square. We put f = a(?*)/2 The following property of finite fields is well-known, see e.g.
[10, Exercise 2.13].

Lemma 5.1. If x € ]F;z, then z(@~1/2 g equal to 1 or —1 depending on whether x is a
square or not.

Lemma 5.2. We have % = —f3. As a consequence, 3 ¢ F,.

Proof. As « is a nonsquare, we have o(@~1/2 = —1. We then have 7 = (@+9/2 =
a@-D/2p(e+1)/2 = _ 3 O

Theorem 5.3. The map Fp — Fpo - v BalC+D/2 is an T-map.

Proof. We need to show that

B(y(q2+1)/2 _ x(x2+1)/2)

g(SL’,’y): qu

y—x
for all z,y € Fp with o # y. Since f € F, and Z@-D/2 = (2'(‘1*1)/2)(#rl € F, for
every z € IFp,, this is certainly true if one of x,y is zero. We therefore suppose that

0#x#y+#N0.
Suppose z and y are two distinct nonzero squares in F2. By Lemma

g(x,y) = B2 =B ¢F,

y—x
Suppose z and y are two distinct nonsquares in Fp2. By Lemma

oa.9) =40 = B¢,
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Suppose one of z,y in a nonzero square and the other is a nonsquare. Then there
exists an € € {1, —1} such that g(z,y) = eﬁi—fz. If g(z,y) € F,, then we would have

q q q+1 _ ,,q+1
O:<59£+y>_<ﬁx+y>qzﬁ<x+y+x —|—y>:25 T Y .
r—y x—y r—y al—yl (z —y)(z? —y?)

g+1
So, %) =1,ie Zisa (¢ — 1)th power. But then 2 is a square which is obviously not

possible here. O

We now show that the indicator set of AG(2,¢*) corresponding to the [-map z —
alat1)/22(@*+1)/2 §g equivalent with the indicator set described in Section 2 of [5].

Let (X1, Xy, X3) denote the coordinates of a point of PG(2,¢?). Let L, denote the
line of PG(2,¢*) with equation X; = 0 and regard it as the line at infinity of PG(2, ¢?).
Let B’ be the Baer subline of L., consisting of all points (0,1, 2) where 241 = 1. By [5,
Section 2], the set

{(1,0,0)} U{(1,2,0) |2 is a square of F .} U{(1,0,y) |y is a nonsquare of Fg }

is an indicator set of AG(2,¢*) with respect to B’.
Now, the indicator set X of AG(2, ¢?) corresponding to the I-map & — o/(0t1/2z(a*+1)/2
consists of all points of the form

(1,z, a(q+1)/?x(q2+1)/2)7

where x € F2. If x = 0, then this is the point (1,0,0).
If x is a nonzero square, i.e. x = y? for some y € Fl2, then
(q2+1)/2 = q2+1 = yQ = XI.

z Y

If x is a nonsquare, i.c. x = ay? for some y € IFZQ, then

¢°+1)/2 °=1)/2 .2

2 = oc(q2+1)/2yq2+1 = al ay’ = —ay2 - .

Now, let § be the automorphism of PG(2, ¢*) determined by
1 1
(X1, X2, X3) = (X1, 5(Xo + a~ @2 X)), 5 (X — a~ @2 xL),

Then LY, = L., and X? consists of the following points:
e (1,0,0),
e (1,2,0) where z is a nonzero square of F;
e (1,0,y) where y is a nonsquare of F .
Moreover, # maps the Baer subline B = {(0, k2, k3) | k2, k3 € F, with (ko, k3) # (0,0)} to

BY = {(0,ky + oW kg ky — o WD) | ky kg € F, with (ko, ks) # (0,0)}.
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We show that B? = B’. To that end, it suffices to prove that

(k:2 — k3a_(Q+l)/2)q+l .

ko + kga—(at1)/2 Vko, ky € Fy with (ko, k3) # (0,0).

Indeed, as (a~(@+D/2)0 = —q~(0+1)/2 e have

ky — ksa™@HD/2 (ky — ks~ (@H1)/2)0 by — kg~ (@02 by 4 kg (@HD)/2

ko + k3o~ @2 (ky + kya@D/2)a  Joy + kya@HD/2  ky — ko (@PD/2 I

6 Proof of Theorem (1.4{(5)

Lemma 6.1. Let ¢ = p" with p prime and h € N*. Ifi € N with 3 < i < q— 1, then
(qﬂ) =0 (mod p).

()

Proof. Note that ¢ > 4. We have

(q+2) _ (g+2)(g+1)---(g+3—1)
? 1-2+.... i
_ —-1@=2)---(g—1) (¢+2)(g+1)g
L-2eeei (=i(g—i+1)(g—i+2)

For every j € {1,2,...,i}, the largest power of p dividing j equals the largest power of p
dividing ¢ — j. The largest power of p dividing (q + 2)(¢ + 1)q is ¢ = p" if p is odd and
2M1if p = 2. The largest power of p dividing (¢ —4)(q — i + 1)(q¢ — i + 2) is smaller than
q = p" if p is odd and smaller than 2"*! if p = 2. We conclude that

(“,2) =0 (mod p).

1

]

Now, suppose that p is a prime and h € N* such that precisely one of the following cases
occurs (with ¢ = p"):

(a) p=2and h > 3 is an odd integer;
(b) p=3;
(c) ¢ is congruent to 5 modulo 6.

Let o be a primitive element of F2 and define 3 := @ ~D8ed@6)/6 - Algo, let f be the
the map Fp2 — Fpe @ 2 — o/29%2 where o/ = l+Ded®6)/6 Note that the number
(g+1) - ged(p, 6)/6 (and hence also (¢* — 1) - ged(p,6)/6) is always an integer in each of
the cases (a), (b), (c).

Lemma 6.2. We have (')? = fBo’'.
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Proof. We have

(o/)q — (@ +a)ecd(p,6)/6 _ (a°—1)ged(p,6)/6 | (a+1)-ged(p6)/6 _ Ba.

Lemma 6.3. We have  # 1 and o/ ¢ F,.

Proof. The (multiplicative) order of the primitive element « is equal to ¢*> — 1. So, for
the element 3 to be equal to 1, we should have that ged(p,6) = 6. This condition is never
satisfied. As (o/)? = o’ # o/, we have o/ ¢ F,. O

Lemma 6.4. We have 82 = —1, 2 =B —1and 89 =1— 3. If p=3, then B = —1.

Proof. Suppose first that p = 3. Then 8 = o/ 1/2 and so f2 = 1. As 8 # 1, we have
B = —1. One then readily verifies that 32 = —1, 2 =3 -1 and 89 =1 — 8.

So, we may suppose that p # 3. Since 8¢ = a(@*~1D&d®6) — 1 e have 33 € {1, —1}.
In case (a), we have 1 = —1 (as p = 2) and in case (c), we have 33 = a(¢°~D/2 £ 1 (since
« has multiplicative order ¢ — 1). In any case, we have 3% = —1.

We thus also have (8+1)(5%*—8+1) = 0. In case (a), we have 8 # 1 = —1 by Lemma
and in case (c), we have 52 = o@~1/3 £ 1. In any case, § # —1. So, B2 — B +1=0
and 32 = — 1.

Suppose now that 3 € F,, i.e. 377! = 1. In case (a) the fact that & is odd implies that
ged(3,q — 1) = 1. This in combination with 3% = 897! = 1 then implies that 8 = 1, a
contradiction. In case (6), the facts that 8% = 897! =1 and ged(6,q — 1) = 2 then imply
that 8% = 1, in contradiction with 1 # 3 # —1. So, € F, and 89 # f3.

Now, as 32 — 3+ 1 = 0, we also have (379)? — 39+ 1 = 0, implying that 87 € {3,1—}.
By the previous paragraph, we then know that g9 =1 — . n

Theorem 6.5. f is an I[-map.

Proof. Recall that (/)7 = fo’. As o/ ¢ Fy and 27" € F; for all z € [}z, we know that
the condition

y—2x
for distinct x,y € Fg2 is certainly valid if one of z,y is zero. So, we may suppose that z
and y are nonzero. Then

q+2 _ pq+2 +2 _ 1 1)9t2 — 1
y x z u+
L B o/x‘”l( )

Yy— z—1 U

(0%

bl

where z = Y and u = 2 — 1. As xitt ¢ [y, we need to prove that

/(u + 1)q+2 —1

F
« U ¢ q

11



for all u € Fy,. By Lemma , we need to prove that
o (w20t + T +u+2) €F,

for all u € F,. Suppose to the contrary that o/(u?™' + 2u? +u?! +u +2) € F, for a
certain u € F7,. As (/)7 = B/, this condition is equivalent with

(™ 4+ 200 +utt w4 2) — Butt 4 20t Fut w4 2)4

= (™ 4 20+ ut w4+ 2) — But 4 2u +

ud—1 +u? + 2) = 0.

Multiplying by 9™ and rearranging terms, we find
((1 — B + (2 - Bu+ 1>u2q + ((1 — 28 + (2 — QB)U) ul — fu? = 0.
Taking into account that 32 — 8+ 1 = 0, this is equivalent with

(((1 = Blu+1u? — (B — 1)u> . ((u + Du? — (B — 1)u) =0.

As B # 1 and u # 0, at least one of the following cases occurs:

— (B=Du,
(1) u+1#0and u? = 5=

(2) (l—B)u—l—l%Oanduq:(l(f[;—lu)il.

If case (1) occurs, then

(Br— D (1-p-1)- 52 53— 1)u

w1 @y futl

implying that Bu = —3? + 8 — 1 = 0, in contradiction with u # 0.
If case (2) occurs, then

—B(B—1)u
e B Dut Gopurr BB Du
(I=pur+1  JCDw 1 (62 =26+ Du+ 1’

implying that (8 —1)?u = —3?+ 8 — 1 =0, in contradiction with v # 0 and 3 # 1. O

Remark. The only prime powers ¢ = p" for which ¢ + 2 € E(¢?) are those considered in
the cases (a), (b) and (c) above. Indeed, the map x — 972 should be bijective, implying
that 1 = ged(¢+2,¢> — 1) = ged(q+2,(¢+1)(¢—1)) = ged(q¢+2,g— 1) = ged(3,q — 1).
So, g cannot be congruent to 1 modulo 3.
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7 The ovoids of H(3,9)

Consider again the Hermitian variety H associated with a Hermitian polarity ¢ of PG(3, ¢?).
A line L of PG(3,¢?) is called a hyperbolic line if it intersects H in precisely ¢ + 1 points.
This intersection of ¢ + 1 points is a Baer subline of L and is called a chord. If L is
a hyperbolic line, then also L¢ is a hyperbolic line and the chord L¢ N H is called the
opposite chord of L NH.

As before, let H(3,q?) denote the generalized quadrangle associated with H. If O is
an ovoid of H(3,¢?) containing a chord C, then the point set which arises from O by
replacing C with its opposite chord is also an ovoid of H (3, ¢?), see [15], [16]. This process
of constructing ovoids of H(3,¢*) from others is called derivation.

By [2], the generalized quadrangle H(3,4) has two isomorphism classes of ovoids, the
classical ovoids and the ovoids that arise from classical ovoids by means of one derivation.
From Table [I} we know that there are up to isomorphism three locally Hermitian ovoids
of H(3,9). We obtained this conclusion by classifying all ovoids of the point-line geometry
S3. The computational techniques we used to compute all ovoids of §; with ¢ < 4 can
also be used to compute all ovoids of H(3,9), see [7]. Our results are summarized in
Table 2] It turns out that there are up to isomorphism 26 ovoids in H(3,9). The number
of ovoids in each isomorphism class has been listed in the second column. The locally
Hermitian ovoids of H(3,9) are the ovoids of types 1, 2 and 7, respectively corresponding
to the I-polynomials Bz, B3 and B?z°. Computations show that the isomorphism class
to which an ovoid O belongs is uniquely determined by two combinatorial parameters:

e D: the number of classical ovoids disjoint from O;

e S: the number of classical ovoids intersecting O in a singleton.

We explain a number of other entries in the table, hereby denoting by G the full auto-
morphism group of H(3,9) and by Go the setwise stabiliser (in G) of an ovoid O:

e N, is the number of orbits of Gp on O;

e N, is the number of orbits of Gp on the complement of O;

e (U is the number of chords contained in O;

e a symbol ¢ occurring in the column “Derivation” means that there are precisely e
chords in O for which derivation yields an ovoid of type ¢;

e in case O can be obtained by successive derivations from a classical ovoid, the last
column denotes the minimal number M of such derivations that are necessary.

We thus see that among the 26 ovoids of H(3,9), there are 12 that can be obtained from
classical ovoids by means of successive derivations (the M hyperbolic lines involved in
the derivation process can in fact all be chosen in the same plane, namely the plane from
which the classical ovoid arises). It would be interesting to have explicit computer free
constructions for the 26 ovoids.
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’ Type H # ‘ D ‘ S ‘ C ‘ Derivation ‘ Ny ‘ Ny ‘ M ‘
1 540 0 |224 63 463 1 1 0
2 30240 0 2401 9 10? 2 2 | —
3 34020 |12 | 160 | 15 53912 2 3 3
4 34020 | 37| 96 | 31 11501424 2 4 1
5 102060 | 40 | 96 | 15 314284138 3 6 2
6 136080 | 76 | 24 | 7 71135 2 7| 4
7 136080 | 51 | 24 | 15 61149218 3 6 3
8 204120 |17 | 144 | 7 5291144 3 7 3
9 204120 |20 | 112 | 7 3281134 3 7 4
10 272160 [ 50| 96 | 1 21 2 7T | —
11 272160 |24 | 112 | 3 123 3 6 | —
12 272160 |24 | 160 | 3 11° 3 6 | —
13 408240 [ 44| 96 | 7 52629214 4 [11] 3
14 408240 |34 | 80 | 15 | 4%7%8%13'228 | 5 | 10 | 2
15 622080 | 421|126 | O — 2 & | —
16 725760 | 36 | 108 | 0 — 3 | 11 | —
17 725760 |45 96 | O — 3 | 11 | —
18 816480 | 50 | 88 | 1 19! 3 | 14 | —
19 816480 | 34| 96 | 1 18! 4 |13 | —
20 933120 | 35| 126 | O — 3 | 13 | —
21 1088640 | 52 | 69 | 4 71223 5 120 | 4
22 1088640 | 27 | 109 | 6 143213 5 | 17 | 3
23 1088640 | 51| 70 | O — 3 | 15 | —
24 1866240 | 29 | 126 | 0 — 3 | 22 | —
25 2177280 | 39 | 126 | 3 263 6 | 30
26 3265920 | 49 | 80 | 2 252 7139 | —

Table 2: The ovoids of H(3,9)
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A Determination of some Ej(¢°)’s

If A\z¢ is an J-monomial of F[z], then the map x — Az° is bijective and hence ged(e, ¢* —
1) = 1. Also, as % = /\a:e V¢ F, forallze [}z, we have A ¢ F, and ged(e — 1,¢% —

1) # 1. For each prime power ¢ < 32, we computed all [-monomials Az°, see [7]. If we
denote by E(q?) the set of all e € {1,2,...,¢* — 1} for which there exists an I-monomial
of F2[x] of the form Az°, then we have:

. E(22) = {1},

E(3%) ={1,3,5},

E(4%) = {1},

E(5%) = {1,5,7,13},

E(7%) = {1,7,17,25},

E(8%) = {1,4,10,16,19},

E(9%) = {1,3,9,11,27,41,51},

E(11 2) {1,11,13,37,61},

E(13%) = {1, 13,29, 85},
. E(162) {11,
e E(172) = {1,17,19,37,91,109, 145},
e E(19?) = {1,19,181},
o E(23?) = {1,23,25,49,97,169, 265},
o E(25%) = {1,5,25,53,125,313, 365},
o E(27?) = {1,3,9,27,29,57,81,99, 113,243, 281, 365, 393, 477, 603},
o B(29%) = {1.29,31,271, 421},
e E(312) = {1,31, 481},

o [(322) = {1,4,16,34, 64, 67,256, 331,397}

More generally, if [ € N*, then Ej(¢?) denotes the set of all subsets {ej, e, ..., e} C N*
such that 1 < e; < ey < --- < ¢ < ¢? — 1 and there exist A\, \y,..., \ € IFZQ such that

x — YO\ Mz is an I-permutation of F. We denote by E}(¢?) the subset of Ej(q?)
consisting of all {ej, eq,..., e} € N* satisfying the above conditions but with the extra
requirement that \; € F, if e; = 1. If I € Ey(¢*) \ E](¢?) for some | € N*, then [ > 2,
leTland I\{1} € E/ ,(¢*) by construction (C5). Conversely, by construction (C5) we
know that if [ > 2 and I € E] ,(¢*) with 1 € I, then TU{1} € E;(¢?). If one is interested
in finding only one representative for each equivalence class of I-polynomials, it suffices
to consider the sets E;(¢*). With the aid of a computer, we found all sets E}(q?) for ¢ <9
and all sets F4(q*) for ¢ <5 ([7]):
o £5(2°) = Ey(3?) = {},

o E5(4%) = {{1.4},{2,8}},

o B5(5%) = {{1,5},{7.19}},

o B,(7%) = {{1,7}, {5, 17}, {5,29}, {17, 41}},

o F}(8%) = {{1,8},{2,16}, {4,32},{16,37}},

o £(9%) = {{1 9},{3,27}, {11, 27}, {21,61},{29,61}, {31, 71}},
o Bj(2%) = Bj(3) = {},

o Ej(42) = {{1,6.11}},
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L (@) [A] (g0 [A] (ge) [A] (g6 [ A ] (g0) | A |
(3,5) |2 | (9,51) | @ || (17,109) | o | (25,313) | o || (27,477) | o'
(5,7) | a || (11,13) | o® || (17,145) | oY | (25,365) | o' || (27,603) | af
(5,13) | o® || (11,37) | o2 || (19,181) | & | (27,29) | o™ | (29,31) | o®
(7,17) | a || (11,61) | o® | (23,25) | of || (27,57) | ' || (29,271) | &®
(7,25) | o || (13,29) | o® | (23.49) | o® | (27,99) | a7 || (29,421) | o™
(3,10) | o || (13,85) | o7 | (23,97) | o || (27,113) | o™ || (31,481) | a™®
(8,10) | @ | (17,19) | o® || (23,169) | oF | (27,281) | o' || (32,34) | ot
(9,11) | o® || (17.37) | o7 || (23,265) | a2 || (27,365) | &'* || (32,67) | a™"
(9,41) | o | (17,91) | & | (25,53) | ' || (27,393) | o || (32,331) | o!!

— | — — — | (32,397) | o'! — — — —
Table 3: The nonadditive /-monomials Az¢ of F (x|, ¢ < 32

lq=p" ] f(z) | q=p"] f(z)

2 2 +r+1 16 B+t Fat+1

3 2 —x—1 17 22—+ 3

4 2+ 41 19 22—+ 2

5 22—+ 2 23 x> —2x+5

7 2 —x+3 25 a2t —a? —x+2

8 D+t 41 27 2 — a2ttt - —1

9 2t —ad—1 29 % —bx + 2

11 22 —dx +2 31 22— 2z +3

13 22— +2 32 20+’ +1

Table 4: A primitive polynomial f(z) of degree 2h in F,[z], ¢ = p" < 32

o E4(52) = {{1,7,13},{1,9,17},{3,11,19} }.

For additive I-polynomials, the corresponding ovoids of H(3,¢?) are translation ovoids
related to so-called semifield spreads of PG(3, ¢), see [5]. These spreads and their related
semifields have extensively been discussed in the literature, see e.g. [9].

Let us now turn our attention to non-additive /-monomials of Fp[z] with ¢ < 32,
non-additive /-binomials of F2[z] with ¢ < 9 and non-additive /-trinomials of F2[z] with
q < 5. We have verified by computer that for each ¢ = p" < 32 and each e € E(¢?) not
being a power of p, there exists up to equivalence a unique I-polynomial of the form A\z°.
These I-monomials have been listed in Table [3] In this table, « is a primitive element of
[F,» that is a root of the polynomial mentioned in Table .

We have also verified that each subset of E)(¢*), ¢ = p" < 9, and each subset of E}(¢?),
q = p" < 5, not entirely consisting of powers of p, is associated with either one or two
I-polynomials (up to equivalence). These have been listed in Table[5] Also here, v is a
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la] E(?) | /()
51 {7,19} 2"+ %2 Pz + a2t
71 {517} o’z 4z’
71 {5,29} 2° + a?2?, o22° + o*2¥
71 {1741} 17 + ottt
8| {16,37} az'® + a0z
9| {11,27} a’xtt + ova?’
9| {21,61} azr® + a’z% ada?! + a® bl
91 {29,61} az® + a2
9| {31,71} x4 ™
4| {1,6,11} ar + 2% + 2t
5 {1,7,13} ar + 2" + o?tat
5| {1,9,17} ar + o’z + Pz’
51 {3,11,19} | az® + o’2' + oz, ax® + a®at! + o?2??

Table 5: Some I-binomials and /-trinomials

primitive element of F> that is a root of the polynomial mentioned in Table [4

Finally, we wish to mention that we found more subsets of the Fj(¢?)’s than the ones
mentioned above. Through ad-hoc searches we found for instance that {1,17,33} € E4(7%)
and {1,7,13,19} € E}(5%).
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