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Abstract

We construct examples and families of locally Hermitian ovoids of the gener-
alized quadrangle H(3, q2). We also obtain a computer classification of all locally
Hermitian ovoids of H(3, q2) for q ≤ 4, and compare the obtained classification
for q = 3 with the classification of all ovoids of H(3, 9) which is also obtained by
computer.
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1 Introduction

Consider the finite field Fq2 of order q2, where q is some prime power. A map f : Fq2 → Fq2
is said to be an I-map if f(y)−f(x)

y−x 6∈ Fq for all x, y ∈ Fq2 with x 6= y. Every I-map must

be bijective. A polynomial p(x) ∈ Fq2 [x] for which the map x 7→ p(x) defines an I-
permutation of Fq2 is called an I-polynomial. Having an I-map f : Fq2 → Fq2 , we can
construct several others:

(C1) x 7→ f(xφ
−1

)φ for every automorphism φ of Fq2 ;
(C2) x 7→ f(x+ k) for every k ∈ Fq2 ;
(C3) x 7→ f(x) + k for every k ∈ Fq2 ;
(C4) x 7→ 1

k
f(kx) for every k ∈ F∗q2 := Fq2 \ {0};

(C5) x 7→ f(x) + kx for every k ∈ Fq;
(C6) x 7→ kf(x) for every k ∈ F∗q := Fq \ {0};
(C7) f−1.

Two I-permutations of Fq2 are called equivalent if one of them can be obtained from
the other by successively applying the constructions mentioned in (C1)–(C7). Two I-
polynomials are called equivalent when their associated I-permutations are.

The reason why the above maps are called I-maps is because of their connection
with Indicator sets of AG(2, q2). Suppose AG(2, q2) is the affine plane obtained from the
projective plane PG(2, q2) by removing a line L∞. Let B be a Baer subline of L∞. Then a
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set X of q2 points of AG(2, q2) is called an indicator set (with respect to B) [4, 13, 14] if any
line of PG(2, q2) containing two distinct points of X is disjoint from B. Two indicator sets
X1 and X2 are called equivalent if there exists an automorphism of PG(2, q2) stabilizing
B and mapping X1 to X2.

The coordinates of a generic point of PG(2, q2) will be denoted by (X1, X2, X3). We
will assume L∞ has equation X1 = 0 and that the Baer subline B of L∞ consists of all
points of the form (0, k1, k2), where (k1, k2) ∈ Fq × Fq with (k1, k2) 6= (0, 0). Any map
f : Fq2 → Fq2 defines a set Of := {(1, x, f(x)) |x ∈ Fq2} of q2 points in AG(2, q2). It is
straightforward to verify that Of is an indicator set if and only if f is an I-permutation
([5, Section 6]). The following is the first result of this paper.

Theorem 1.1. If f1 and f2 are two I-permutations of Fq2, then the indicator sets Of1

and Of2 of AG(2, q2) are equivalent if and only if the maps f1 and f2 are equivalent.

With the aid of the computer algebra systems GAP [17] and SageMath [12], we have
classified all indicator sets of AG(2, q2) for q ∈ {2, 3, 4}. We found that there are up to
equivalence one, three or seven such indicator sets depending on whether q is equal to 2, 3
or 4. For each indicator set O we found with the computer search, we can use (Lagrange)
interpolation to find a polynomial p(x) ∈ Fq2 [x] such that O = {(1, x, p(x)) |x ∈ Fq2}.
Our results are summarised in the following theorem.

Theorem 1.2. (1) Up to equivalence, F4 has only one I-permutation. Any such per-
mutation is equivalent with x 7→ αx, where α is a root of the irreducible polynomial
x2 + x+ 1 ∈ F2[x].

(2) Up to equivalence, F9 has three I-permutations. Any such permutation is equivalent
with either x 7→ βx, x 7→ βx3 or x 7→ β2x5, where β is a root of the irreducible
polynomial x2 − x− 1 ∈ F3[x].

(3) Up to equivalence, F16 has seven I-permutations. Any such permutation is equivalent
with either x 7→ γx, x 7→ x4 + γx, x 7→ x11 + x6 + γx, x 7→ x8 + γ7x2, x 7→
x10+x9+x8+x4+x3+γx, x 7→ x11+x10+x6+x5+x4+γx or x 7→ x11+γ7x8+γ8x5+x2,
where γ is a root of the irreducible polynomial x4 + x+ 1 ∈ F2[x].

There are two standard examples of indicator sets ([5]):

(1) The lines of AG(2, q2) whose points at infinity do not belong to B. These are called
the classical indicator sets.

(2) The sets of the form B \ L, where B is a Baer subplane of PG(2, q2) intersecting L
in a Baer subline disjoint from B. These are called the semiclassical indicator sets.

The I-permutations of Fq2 corresponding to classical indicator sets have the form x 7→ bx+
c where b, c ∈ Fq2 with b 6∈ Fq. All I-permutations of Fq2 corresponding to semiclassical
indicator sets have a description of the form x 7→ axq+bx+c, where a, b, c ∈ Fq2 with a 6= 0.
Up to the construction (C3), these I-permutations are all additive, a map f : Fq2 → Fq2
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being called additive if f(u + v) = f(u) + f(v) for all u, v ∈ Fq2 . Obviously, such an

additive map is an I-map if and only if f(x)
x
6∈ Fq for all x ∈ F∗q2 .

Now, let H be a nonsingular Hermitian variety in PG(3, q2) with associated polarity ζ
([8]). Let x be a point of H. Then there are q + 1 lines K1, K2, . . . , Kq+1 of H through
x which all lie in the tangent plane Πx = xζ . Consider the quotient projective space
Px ∼= PG(2, q2) whose points and lines are the lines and planes of PG(3, q2) through x.
The plane Πx is a line of Px and B = {K1, K2, . . . , Kq+1} is a Baer subline of this line.
Suppose Ax ∼= AG(2, q2) is the affine plane that arises from Px by considering Πx as line
at infinity.

The points and lines of PG(3, q2) contained in H define a generalized quadrangle
H(3, q2), see [11]. An ovoid of a point-line geometry is a set of points meeting each line
in a singleton. An ovoid O of H(3, q2) is said to be a translation ovoid with respect to
a point y ∈ O if there exists a group G of automorphisms of H(3, q2) fixing each line of
H(3, q2) through y and acting regularly on O\{y}. An ovoid of H(3, q2) is called classical
if it is obtained by intersecting H with a nontangent plane.

Suppose L is an indicator set of Ax (with respect to the Baer subline B of the line at
infinity Πx of Ax). By [14, Section 1.1.3], the set OL :=

⋃
L∈L(L ∩H) is then an ovoid of

H(3, q2). Any ovoid of H(3, q2) that arises in this way is called locally Hermitian. If L is
a classical indicator set, then OL is a classical ovoid of H(3, q2). The ovoids of H(3, q2)
arising from semiclassical indicator sets are called semiclassical ovoids. Every ovoid of
H(3, q2) associated with an indicator set that is described by an additive I-polynomial is
a translation ovoid, see [5, Section 6]. By [6, Theorem 3.2], two locally Hermitian ovoids
of H(3, q2) are isomorphic if and only if their associated indicator sets are equivalent,
i.e. if and only if the associated I-maps are equivalent. This fact in combination with
Theorem 1.2 gives the following result.

Corollary 1.3. Up to isomorphism, H(3, q2) has one, three or seven locally Hermitian
ovoids depending on whether q is equal to 2, 3 or 4.

In Section 7, we compare the classification of the locally Hermitian ovoids of H(3, 9) with
the (computer) classification of all ovoids of H(3, 9).

In this paper, we construct several examples and families of indicator sets of AG(2, q2)
which we didn’t find in the literature. Certain of these indicator sets are associated with
I-monomials of Fq2 [x]. We denote by E(q2) the set of all e ∈ {1, 2, . . . , q2 − 1} for which
there exists an λ ∈ Fq2 such that λxe is an I-polynomial. Regarding I-monomials, the
following can be proved.

Theorem 1.4. (1) If q is odd, then q ∈ E(q2). In fact, x 7→ λxq with λ ∈ Fq2 is an
I-permutation of Fq2 if and only if λ is a nonsquare, and any two such maps are
always equivalent.

(2) If q = ph with p an odd prime and h ∈ N∗ := N \ {0}, then pi ∈ E(q2) for any
i ∈ {1, 2, . . . , 2h− 1}.
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(3) If q = 2h with h ∈ N∗, then 2i with i ∈ {1, 2, . . . , 2h − 1} belongs to E(q2) if and
only if the largest power of 2 dividing i is bigger than the largest power of 2 dividing
h.

(4) If q is an odd prime power, then q2+1
2
∈ E(q2).

(5) Suppose q ≡ 3 (mod 6), q ≡ 5 (mod 6) or q = 22e+1 for some e ∈ N∗. Then1

q + 2, (q + 2)−1 ∈ E(q2).

Parts (1), (2) and (3) of Theorem 1.4 are all consequences of the treatment that we will
give in Section 4. Among these results, Theorem 1.4(2) was already proved in [4, Theorem
3.1] (see also Proposition 4.5 of [5] for a special case of that result). It could be that parts
(1) and (2) are also known, but we found no mentioning of them in the literature.

Parts (4) and (5) of Theorem 1.4 will respectively be proved in Sections 5 and 6. The
indicator sets arising from the examples mentioned in (4) can also be found in Section
2 of [5] (using another description). We found no mentioning of Theorem 1.4(5) in the
literature, nor of the associated ovoids of H(3, q2).

Based on computer computations, we would also like to propose the following open prob-
lem (which is confirmed by computer computations for q ≤ 100).

Open Problem Is it true that (2q+ 3), (2q+ 3)−1 ∈ E(q2) whenever q 6≡ 1 (mod 5) and
q 6≡ 4 (mod 5)?

Remark: If e ∈ {1, 2, . . . , q2 − 1} with gcd(e, q2 − 1) = 1 and f : Fq2 → Fq2 : x 7→ λxe is
an I-map, then the inverse of f is equal to f ′ : Fq2 → Fq2 : x 7→ λ′xe

′
, where e′ = e−1 and

λ′ = (λe
′
)−1. Hence, if e ∈ E(q2), then also e−1 ∈ E(q2). If q is an odd prime power, then

( q
2+1
2

)−1 = q2+1
2

.

2 Proof of Theorem 1.1

Suppose f is an I-permutation of Fq2 . In (G1)–(G7) below, we describe automorphisms
of PG(2, q2) which all together generate2 the group of all automorphisms of PG(2, q2)
stabilizing B. Each of these automorphisms θ maps the indicator set Of of AG(2, q2)
to another indicator set Og of AG(2, q2). For the automorphism θ described under (Gi),
i ∈ {1, 2, . . . , 7}, we show that the permutation g of Fq2 can be obtained from f in the
way as described in construction (Ci). This then allows to conclude that two indicator
sets are equivalent if and only if their corresponding I-permutations of Fq2 are.

(G1) Suppose θ : (x1, x2, x3) 7→ (xφ1 , x
φ
2 , x

φ
3) for some automorphism φ of Fq2 . Since

(1, x, f(x))θ = (1, xφ, f(x)φ), we see that g(x) = f(xφ
−1

)φ for every x ∈ Fq2 .
1If gcd(a, q2 − 1), then a−1 denotes the inverse of a modulo q2 − 1.
2Note that the group generated by the automorphisms mentioned under (G1), (G5), (G6), (G7)

induces the full group of automorphisms of L stabilizing B.
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(G2)-(G3)-(G4) Suppose θ fixes each point of L. Then there exist a, b, c ∈ Fq2 with a 6= 0
such that (x1, x2, x3)

θ = (ax1, bx1+x2, cx1+x3). Since (1, x, f(x))θ = (a, b+x, c+f(x)) =

(1, b
a

+ x
a
, c
a

+ f(x)
a

), we have g(x) = c
a

+ 1
a
f(ax− b) for every x ∈ Fq2 . We can consider the

following three special cases of this.

(G2) Suppose a = 1, b = −k ∈ Fq2 and c = 0. Then g(x) = f(x+ k) for every x ∈ Fq2 .
(G3) Suppose a = 1, b = 0 and c = k ∈ Fq2 . Then g(x) = f(x) + k for every x ∈ Fq2 .
(G4) Suppose a = k ∈ F∗q2 and b = c = 0. Then g(x) = 1

k
f(kx) for every x ∈ Fq2 .

(G5) Suppose θ : (x1, x2, x3) 7→ (x1, x2, x3 + kx2) where k ∈ Fq. Since (1, x, f(x))θ =
(1, x, f(x) + kx), we have g(x) = f(x) + kx for every x ∈ Fq2 .
(G6) Suppose θ : (x1, x2, x3) 7→ (x1, x2, kx3) where k ∈ F∗q. Since (1, x, f(x))θ = (1, x, kf(x)),
we have g(x) = kf(x) for every x ∈ Fq2 .
(G7) Suppose θ : (x1, x2, x3) 7→ (x1, x3, x2). Since (1, x, f(x))θ = (1, f(x), x), we have
g(x) = f−1(x) for every x ∈ Fq2 .

We have completed the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Continuing with the notation of Section 1, we define a point-line geometry Sq whose
points are the points of AG(2, q2) and whose lines are all the lines of AG(2, q2) whose
corresponding points at infinity belong to B, with incidence being the one derived from
AG(2, q2). The point-line geometry Sq has order (q2− 1, q) and is an example of a net (in
the sense of Bruck [3]). If L is a line of AG(2, q2) whose corresponding point at infinity
does not belong to B, then L is also called an imaginary line of Sq, while the ordinary
lines of Sq are also called real lines. We denote by A(Sq) the group of automorphisms
of Sq that arise from automorphisms of PG(2, q2) that stabilize B. Then A(Sq) consists
of all automorphisms of Sq that do not only map real lines to real lines, but also every
imaginary line to an imaginary line.

The ovoids of the geometry Sq are precisely the indicator sets of AG(2, q2) with respect
to B. Two ovoids of Sq are equivalent as indicator sets if there exists an element of A(Sq)
mapping one of them to the other. In Section 4 of [1], computer code in SageMath [12]
can be found for classifying ovoids of point-line geometries. With the aid of this code and
some computations in GAP [17], we classified all ovoids of Sq for q ∈ {2, 3, 4}, see [7].
Our results are summarised in Table 1.

It turns out that up to equivalence the number of ovoids of Sq is equal to one, three or
seven depending on whether q is equal to 2, 3 or 4. For each ovoid, we have also listed some
information, like the size of its equivalence class (column 3) and its intersection pattern
(column 4). The intersection pattern of an ovoid O of Sq is defined as the sequence
0e01e1 · · · (q2)eq2 , where ei for i ∈ {0, 1, . . . , q2} denotes the total number of imaginary
lines meeting O in precisely i points. We have hereby followed the convention to omit
each term “iei” for which ei = 0.
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Ovoid q # Intersection Pattern f(x)

O1 2 8 031441 αx
O2 3 54 0814591 βx
O3 3 108 024118312 βx3

O4 3 486 02411221652 β2x5

O5 4 192 0151176161 γx
O6 4 960 0601112420 x4 + γx
O7 4 9216 06517525061111 x11 + x6 + γx
O8 4 9600 084148248412 x8 + γ7x2

O9 4 23040 0781662253205261 x10 + x9 + x8 + x4 + x3 + γx
O10 4 46080 07517222531555 x11 + x10 + x6 + x5 + x4 + γx
O11 4 153600 0781662273154353 x11 + γ7x8 + γ8x5 + x2

Table 1: The ovoids of Sq, q ≤ 4

For each ovoid O of Sq we find with the computer search, we can use interpolation
to find a polynomial p(x) ∈ Fq2 [x] (necessarily being an I-polynomial) such that O =
{(1, x, p(x)) |x ∈ Fq2}. In this way, we found a suitable polynomial for each equivalence
class of ovoids. Such a polynomial is listed in the last column of Table 1, where α, β and
γ play the same role as in Theorem 1.2.

As mentioned in the introduction, the problem of finding the equivalence classes of I-
permutations of Fq2 is equivalent with finding the equivalence classes of indicator sets of
AG(2, q2), i.e. the equivalence classes of ovoids of Sq. Theorem 1.2 is thus a consequence
of our computer classification of the ovoids of Sq. We also wish to note that we have used
the constructions (C1)–(C7) to find the “easiest forms” for the mentioned polynomials.

4 Additive I-monomials

The I-polynomials of degree 1 in Fq2 [x] are precisely the maps x 7→ bx+c, where b, c ∈ Fq2
with b 6∈ Fq. Regarding I-polynomial of degree 2, we can say the following.

Proposition 4.1. There are no I-polynomials of degree 2 in Fq2 [x].

Proof. Consider a polynomial f(x) = ax2 + bx+ c of degree 2 in Fq2 [x]. If x, y ∈ Fq2 with

x 6= y, then f(y)−f(x)
y−x = a(x+ y) + b and, as a 6= 0, this can attain any value in Fq2 if q is

odd and any value in Fq2 \ {b} if q is even.

We now consider I-permutations of Fq2 that are of the form x 7→ λxe, where e ∈
{1, 2, . . . , q2−1} and λ ∈ Fq2\Fq. As such a map must be bijective, we have gcd(e, q2−1) =
1. As λxe−λ0e

x−0 = λxe−1 6∈ Fq for all x ∈ F∗q2 , we have gcd(e− 1, q2− 1) 6= 1. For each prime
power q ≤ 32, we have determined all possibilities for the exponent e, see Appendix A.
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We now assume that q = ph and e = pi, where p is prime, h ∈ N∗ and i ∈ {1, 2, . . . , 2h−
1}. In this case the map x 7→ λxe is additive. Put d := gcd(e− 1, q + 1).

Lemma 4.2. The set
A = {xe−1y |x ∈ F∗q2 and y ∈ F∗q}

consists of all dth powers of the elements of F∗q2. As a consequence, |A| = q2−1
d

.

Proof. Let γ be a primitive element of Fq2 . Then the elements of the form xe−1y with
x ∈ F∗q2 and y ∈ F∗q are precisely the elements of the from γ(e−1)i · γ(q+1)j = γ(e−1)i+(q+1)j

where i, j ∈ Z. By Bézout’s theorem, we know that these elements are all elements of the
form γdk where k ∈ Z.

Theorem 4.3. The map x 7→ λxe is an I-permutation if and only if λ is not a dth power
in Fq2.

Proof. We should have that λxe−1 6∈ Fq for all x ∈ F∗q2 , or equivalently, λ 6∈ {(x−1)e−1y |x ∈
F∗q2 and y ∈ F∗q} = A. The claim then follows from Lemma 4.2.

By Lemma 4.2 and Theorem 4.3, we thus have:

Corollary 4.4. e = pi ∈ E(q2) if and only if d = gcd(e− 1, q + 1) > 1.

The following proposition proves Theorem 1.4(1).

Proposition 4.5. We have q ∈ E(q2) if and only if q is odd, in which case there is only
one equivalence class of I-permutations of Fq2 of the form x 7→ λxq (comprising all such
permutations for which λ is a nonsquare).

Proof. We have gcd(q − 1, q + 1) > 1 if and only if q is odd. This in combination with
Corollary 4.4 proves the first claim of the theorem.

If q is odd, we know by Theorem 4.3 that the map fλ : x 7→ λxq is an I-map if and
only if λ is a nonsquare. If λ1 and λ2 are two nonsquares of F∗q2 , then λ2 = β2λ1 for some
β ∈ F∗q2 . For such a β, we see that fλ1 and fλ1βq+1 are equivalent by construction (C6)
and fλ1βq+1 and fλ1β2 = fλ2 are equivalent by construction (C4).

Lemma 4.6. Put f = gcd(i, h). If i
f

is even and h
f

is odd, then gcd(e − 1, q + 1) =

pf + 1 ≥ 3. If this is not the case, then gcd(e− 1, q + 1) is equal to 2 or 1 depending on
whether p is odd or even.

Proof. If ε1, ε2 ∈ {1,−1} and i1, i2 ∈ N∗ with i1 < i2, then any common divisor of pi1 + ε1
and pi2 + ε2 is also a common divisor of pi2−i1− ε1ε2. By Euclid’s algorithm for computing
gcd’s, we thus see that gcd(e− 1, q + 1) = gcd(pi − 1, ph + 1) = gcd(pi − 1, ph + 1, pf + ε)
for some ε ∈ {1,−1}.

If i
f

is even and h
f

is odd, then pf + 1 is a divisor of pi− 1 and ph + 1, and in this case,

we thus see that gcd(pi − 1, ph + 1) = pf + 1.
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If h
f

is even, then pf + ε is a divisor of ph − 1 and so we have gcd(pi − 1, ph + 1) =

gcd(pi−1, ph+1, 2). If i
f

and h
f

are odd, then pf+ε is a divisor of pi+1 if ε = 1 and pf+ε is a

divisor of ph−1 if ε = −1. In any case, we also have gcd(pi−1, ph+1) = gcd(pi−1, ph+1, 2).
Now, gcd(pi − 1, ph + 1, 2) is equal to 2 if p is odd and equal to 1 otherwise.

The following is an immediate consequence of Corollary 4.4 and Lemma 4.6. It proves
parts (2) and (3) of Theorem 1.4.

Corollary 4.7. • If p is odd, then e = pi ∈ E(q2).

• If p = 2, then e = 2i ∈ E(q2) if and only if the largest power of 2 dividing i is bigger
than the largest power of 2 dividing h.

5 Proof of Theorem 1.4(4)

Let q be an odd prime power and α a primitive element of Fq2 . Then α cannot be a
square. We put β = α(q+1)/2. The following property of finite fields is well-known, see e.g.
[10, Exercise 2.13].

Lemma 5.1. If x ∈ F∗q2, then x(q
2−1)/2 is equal to 1 or −1 depending on whether x is a

square or not.

Lemma 5.2. We have βq = −β. As a consequence, β 6∈ Fq.

Proof. As α is a nonsquare, we have α(q2−1)/2 = −1. We then have βq = α(q2+q)/2 =
α(q2−1)/2α(q+1)/2 = −β.

Theorem 5.3. The map Fq2 → Fq2 : x 7→ βx(q
2+1)/2 is an I-map.

Proof. We need to show that

g(x, y) =
β(y(q

2+1)/2 − x(x2+1)/2)

y − x
6∈ Fq

for all x, y ∈ Fq2 with x 6= y. Since β 6∈ Fq and z(q
2−1)/2 =

(
z(q−1)/2

)q+1 ∈ F∗q for
every z ∈ F∗q2 , this is certainly true if one of x, y is zero. We therefore suppose that
0 6= x 6= y 6= 0.

Suppose x and y are two distinct nonzero squares in Fq2 . By Lemma 5.1,

g(x, y) = β
y − x
y − x

= β 6∈ Fq.

Suppose x and y are two distinct nonsquares in Fq2 . By Lemma 5.1,

g(x, y) = β
−y + x

y − x
= −β 6∈ Fq.
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Suppose one of x, y in a nonzero square and the other is a nonsquare. Then there
exists an ε ∈ {1,−1} such that g(x, y) = εβ x+y

x−y . If g(x, y) ∈ Fq, then we would have

0 =
(
β
x+ y

x− y

)
−
(
β
x+ y

x− y

)q
= β

(x+ y

x− y
+
xq + yq

xq − yq
)

= 2β
xq+1 − yq+1

(x− y)(xq − yq)
.

So,
(
x
y

)q+1

= 1, i.e. x
y

is a (q− 1)th power. But then x
y

is a square which is obviously not

possible here.

We now show that the indicator set of AG(2, q2) corresponding to the I-map x 7→
α(q+1)/2x(q

2+1)/2 is equivalent with the indicator set described in Section 2 of [5].
Let (X1, X2, X3) denote the coordinates of a point of PG(2, q2). Let L∞ denote the

line of PG(2, q2) with equation X1 = 0 and regard it as the line at infinity of PG(2, q2).
Let B′ be the Baer subline of L∞ consisting of all points (0, 1, z) where zq+1 = 1. By [5,
Section 2], the set

{(1, 0, 0)} ∪ {(1, x, 0) |x is a square of F∗q2} ∪ {(1, 0, y) | y is a nonsquare of Fq2}

is an indicator set of AG(2, q2) with respect to B′.
Now, the indicator set X of AG(2, q2) corresponding to the I-map x 7→ α(q+1)/2x(q

2+1)/2

consists of all points of the form

(1, x, α(q+1)/2x(q
2+1)/2),

where x ∈ Fq2 . If x = 0, then this is the point (1, 0, 0).
If x is a nonzero square, i.e. x = y2 for some y ∈ F∗q2 , then

x(q
2+1)/2 = yq

2+1 = y2 = x.

If x is a nonsquare, i.e. x = αy2 for some y ∈ F∗q2 , then

x(q
2+1)/2 = α(q2+1)/2yq

2+1 = α(q2−1)/2αy2 = −αy2 = −x.

Now, let θ be the automorphism of PG(2, q2) determined by

(X1, X2, X3) 7→ (X1,
1

2
(X2 + α−(q+1)/2X3),

1

2
(X2 − α−(q+1)/2X3)).

Then Lθ∞ = L∞ and Xθ consists of the following points:
• (1, 0, 0),
• (1, x, 0) where x is a nonzero square of Fq2 ;
• (1, 0, y) where y is a nonsquare of Fq2 .

Moreover, θ maps the Baer subline B = {(0, k2, k3) | k2, k3 ∈ Fq with (k2, k3) 6= (0, 0)} to

Bθ = {(0, k2 + α−(q+1)/2k3, k2 − α−(q+1)/2k3) | k2, k3 ∈ Fq with (k2, k3) 6= (0, 0)}.

9



We show that Bθ = B′. To that end, it suffices to prove that(k2 − k3α−(q+1)/2

k2 + k3α−(q+1)/2

)q+1

= 1, ∀k2, k3 ∈ Fq with (k2, k3) 6= (0, 0).

Indeed, as (α−(q+1)/2)q = −α−(q+1)/2, we have

k2 − k3α−(q+1)/2

k2 + k3α−(q+1)/2
· (k2 − k3α−(q+1)/2)q

(k2 + k3α−(q+1)/2)q
=
k2 − k3α−(q+1)/2

k2 + k3α−(q+1)/2
· k2 + k3α

−(q+1)/2

k2 − k3α−(q+1)/2
= 1.

6 Proof of Theorem 1.4(5)

Lemma 6.1. Let q = ph with p prime and h ∈ N∗. If i ∈ N with 3 ≤ i ≤ q − 1, then(
q+2
i

)
≡ 0 (mod p).

Proof. Note that q ≥ 4. We have(
q + 2

i

)
=

(q + 2)(q + 1) · · · (q + 3− i)
1 · 2 · · · · · i

=
(q − 1)(q − 2) · · · (q − i)

1 · 2 · · · · · i
· (q + 2)(q + 1)q

(q − i)(q − i+ 1)(q − i+ 2)
.

For every j ∈ {1, 2, . . . , i}, the largest power of p dividing j equals the largest power of p
dividing q − j. The largest power of p dividing (q + 2)(q + 1)q is q = ph if p is odd and
2h+1 if p = 2. The largest power of p dividing (q − i)(q − i+ 1)(q − i+ 2) is smaller than
q = ph if p is odd and smaller than 2h+1 if p = 2. We conclude that(

q + 2

i

)
≡ 0 (mod p).

Now, suppose that p is a prime and h ∈ N∗ such that precisely one of the following cases
occurs (with q = ph):

(a) p = 2 and h ≥ 3 is an odd integer;

(b) p = 3;

(c) q is congruent to 5 modulo 6.

Let α be a primitive element of Fq2 and define β := α(q2−1)·gcd(p,6)/6. Also, let f be the
the map Fq2 → Fq2 : x 7→ α′xq+2, where α′ = α(q+1)·gcd(p,6)/6. Note that the number
(q + 1) · gcd(p, 6)/6 (and hence also (q2 − 1) · gcd(p, 6)/6) is always an integer in each of
the cases (a), (b), (c).

Lemma 6.2. We have (α′)q = βα′.

10



Proof. We have

(α′)q = α(q2+q)·gcd(p,6)/6 = α(q2−1)·gcd(p,6)/6 · α(q+1)·gcd(p,6)/6 = βα′.

Lemma 6.3. We have β 6= 1 and α′ 6∈ Fq.

Proof. The (multiplicative) order of the primitive element α is equal to q2 − 1. So, for
the element β to be equal to 1, we should have that gcd(p, 6) = 6. This condition is never
satisfied. As (α′)q = βα′ 6= α′, we have α′ 6∈ Fq.

Lemma 6.4. We have β3 = −1, β2 = β − 1 and βq = 1− β. If p = 3, then β = −1.

Proof. Suppose first that p = 3. Then β = α(q2−1)/2 and so β2 = 1. As β 6= 1, we have
β = −1. One then readily verifies that β3 = −1, β2 = β − 1 and βq = 1− β.

So, we may suppose that p 6= 3. Since β6 = α(q2−1)·gcd(p,6) = 1, we have β3 ∈ {1,−1}.
In case (a), we have 1 = −1 (as p = 2) and in case (c), we have β3 = α(q2−1)/2 6= 1 (since
α has multiplicative order q2 − 1). In any case, we have β3 = −1.

We thus also have (β+1)(β2−β+1) = 0. In case (a), we have β 6= 1 = −1 by Lemma
6.3 and in case (c), we have β2 = α(q2−1)/3 6= 1. In any case, β 6= −1. So, β2 − β + 1 = 0
and β2 = β − 1.

Suppose now that β ∈ Fq, i.e. βq−1 = 1. In case (a) the fact that h is odd implies that
gcd(3, q − 1) = 1. This in combination with β3 = βq−1 = 1 then implies that β = 1, a
contradiction. In case (6), the facts that β6 = βq−1 = 1 and gcd(6, q − 1) = 2 then imply
that β2 = 1, in contradiction with 1 6= β 6= −1. So, β 6∈ Fq and βq 6= β.

Now, as β2−β+1 = 0, we also have (βq)2−βq +1 = 0, implying that βq ∈ {β, 1−β}.
By the previous paragraph, we then know that βq = 1− β.

Theorem 6.5. f is an I-map.

Proof. Recall that (α′)q = βα′. As α′ 6∈ Fq and zq+1 ∈ F∗q for all z ∈ F∗q2 , we know that
the condition

α′
yq+2 − xq+2

y − x
6∈ Fq

for distinct x, y ∈ Fq2 is certainly valid if one of x, y is zero. So, we may suppose that x
and y are nonzero. Then

α′
yq+2 − xq+2

y − x
= α′xq+1 z

q+2 − 1

z − 1
= α′xq+1 (u+ 1)q+2 − 1

u
,

where z = y
x

and u = z − 1. As xq+1 ∈ F∗q, we need to prove that

α′
(u+ 1)q+2 − 1

u
6∈ Fq

11



for all u ∈ F∗q2 . By Lemma 6.1, we need to prove that

α′(uq+1 + 2uq + uq−1 + u+ 2) 6∈ Fq

for all u ∈ F∗q2 . Suppose to the contrary that α′(uq+1 + 2uq + uq−1 + u + 2) ∈ Fq for a
certain u ∈ F∗q2 . As (α′)q = βα′, this condition is equivalent with

(uq+1 + 2uq + uq−1 + u+ 2)− β(uq+1 + 2uq + uq−1 + u+ 2)q

= (uq+1 + 2uq + uq−1 + u+ 2)− β(uq+1 + 2u+
1

uq−1
+ uq + 2) = 0.

Multiplying by uq+1 and rearranging terms, we find(
(1− β)u2 + (2− β)u+ 1

)
u2q +

(
(1− 2β)u2 + (2− 2β)u

)
uq − βu2 = 0.

Taking into account that β2 − β + 1 = 0, this is equivalent with(
((1− β)u+ 1)uq − (β − 1)u

)
·
(

(u+ 1)uq − (β − 1)u
)

= 0.

As β 6= 1 and u 6= 0, at least one of the following cases occurs:
(1) u+ 1 6= 0 and uq = (β−1)u

u+1
;

(2) (1− β)u+ 1 6= 0 and uq = (β−1)u
(1−β)u+1

.

If case (1) occurs, then

u =
(βq − 1)uq

uq + 1
=

(1− β − 1) · (β−1)u
u+1

(β−1)u
u+1

+ 1
=
−β(β − 1)u

βu+ 1
,

implying that βu = −β2 + β − 1 = 0, in contradiction with u 6= 0.
If case (2) occurs, then

u =
(βq − 1)uq

(1− βq)uq + 1
=

−β(β−1)u
(1−β)u+1

β(β−1)u
(1−β)u+1

+ 1
=

−β(β − 1)u

(β2 − 2β + 1)u+ 1
,

implying that (β − 1)2u = −β2 + β − 1 = 0, in contradiction with u 6= 0 and β 6= 1.

Remark. The only prime powers q = ph for which q + 2 ∈ E(q2) are those considered in
the cases (a), (b) and (c) above. Indeed, the map x 7→ xq+2 should be bijective, implying
that 1 = gcd(q+ 2, q2− 1) = gcd(q+ 2, (q+ 1)(q− 1)) = gcd(q+ 2, q− 1) = gcd(3, q− 1).
So, q cannot be congruent to 1 modulo 3.

12



7 The ovoids of H(3, 9)

Consider again the Hermitian varietyH associated with a Hermitian polarity ζ of PG(3, q2).
A line L of PG(3, q2) is called a hyperbolic line if it intersects H in precisely q + 1 points.
This intersection of q + 1 points is a Baer subline of L and is called a chord. If L is
a hyperbolic line, then also Lζ is a hyperbolic line and the chord Lζ ∩ H is called the
opposite chord of L ∩H.

As before, let H(3, q2) denote the generalized quadrangle associated with H. If O is
an ovoid of H(3, q2) containing a chord C, then the point set which arises from O by
replacing C with its opposite chord is also an ovoid of H(3, q2), see [15, 16]. This process
of constructing ovoids of H(3, q2) from others is called derivation.

By [2], the generalized quadrangle H(3, 4) has two isomorphism classes of ovoids, the
classical ovoids and the ovoids that arise from classical ovoids by means of one derivation.
From Table 1, we know that there are up to isomorphism three locally Hermitian ovoids
of H(3, 9). We obtained this conclusion by classifying all ovoids of the point-line geometry
S3. The computational techniques we used to compute all ovoids of Sq with q ≤ 4 can
also be used to compute all ovoids of H(3, 9), see [7]. Our results are summarized in
Table 2. It turns out that there are up to isomorphism 26 ovoids in H(3, 9). The number
of ovoids in each isomorphism class has been listed in the second column. The locally
Hermitian ovoids of H(3, 9) are the ovoids of types 1, 2 and 7, respectively corresponding
to the I-polynomials βx, βx3 and β2x5. Computations show that the isomorphism class
to which an ovoid O belongs is uniquely determined by two combinatorial parameters:
• D: the number of classical ovoids disjoint from O;
• S: the number of classical ovoids intersecting O in a singleton.

We explain a number of other entries in the table, hereby denoting by G the full auto-
morphism group of H(3, 9) and by GO the setwise stabiliser (in G) of an ovoid O:
• N1 is the number of orbits of GO on O;
• N2 is the number of orbits of GO on the complement of O;
• C is the number of chords contained in O;
• a symbol ie occurring in the column “Derivation” means that there are precisely e

chords in O for which derivation yields an ovoid of type i;
• in case O can be obtained by successive derivations from a classical ovoid, the last

column denotes the minimal number M of such derivations that are necessary.

We thus see that among the 26 ovoids of H(3, 9), there are 12 that can be obtained from
classical ovoids by means of successive derivations (the M hyperbolic lines involved in
the derivation process can in fact all be chosen in the same plane, namely the plane from
which the classical ovoid arises). It would be interesting to have explicit computer free
constructions for the 26 ovoids.
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Type # D S C Derivation N1 N2 M

1 540 0 224 63 463 1 1 0
2 30240 0 240 9 109 2 2 —
3 34020 12 160 15 53912 2 3 3
4 34020 37 96 31 11561424 2 4 1
5 102060 40 96 15 314284138 3 6 2
6 136080 76 24 7 71136 2 7 4
7 136080 51 24 15 61146218 3 6 3
8 204120 17 144 7 5291144 3 7 3
9 204120 20 112 7 3281134 3 7 4
10 272160 50 96 1 21 2 7 —
11 272160 24 112 3 123 3 6 —
12 272160 24 160 3 113 3 6 —
13 408240 44 96 7 52629214 4 11 3
14 408240 34 80 15 427282131228 5 10 2
15 622080 42 126 0 — 2 8 —
16 725760 36 108 0 — 3 11 —
17 725760 45 96 0 — 3 11 —
18 816480 50 88 1 191 3 14 —
19 816480 34 96 1 181 4 13 —
20 933120 35 126 0 — 3 13 —
21 1088640 52 69 4 71223 5 20 4
22 1088640 27 109 6 143213 5 17 3
23 1088640 51 70 0 — 3 15 —
24 1866240 29 126 0 — 3 22 —
25 2177280 39 126 3 263 6 30 —
26 3265920 49 80 2 252 7 39 —

Table 2: The ovoids of H(3, 9)
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A Determination of some El(q
2)’s

If λxe is an I-monomial of Fq2 [x], then the map x 7→ λxe is bijective and hence gcd(e, q2−
1) = 1. Also, as λxe−λ0e

x−0 = λxe−1 6∈ Fq for all x ∈ F∗q2 , we have λ 6∈ Fq and gcd(e− 1, q2 −
1) 6= 1. For each prime power q ≤ 32, we computed all I-monomials λxe, see [7]. If we
denote by E(q2) the set of all e ∈ {1, 2, . . . , q2 − 1} for which there exists an I-monomial
of Fq2 [x] of the form λxe, then we have:
• E(22) = {1},
• E(32) = {1, 3, 5},
• E(42) = {1},
• E(52) = {1, 5, 7, 13},
• E(72) = {1, 7, 17, 25},
• E(82) = {1, 4, 10, 16, 19},
• E(92) = {1, 3, 9, 11, 27, 41, 51},
• E(112) = {1, 11, 13, 37, 61},
• E(132) = {1, 13, 29, 85},
• E(162) = {1},
• E(172) = {1, 17, 19, 37, 91, 109, 145},
• E(192) = {1, 19, 181},
• E(232) = {1, 23, 25, 49, 97, 169, 265},
• E(252) = {1, 5, 25, 53, 125, 313, 365},
• E(272) = {1, 3, 9, 27, 29, 57, 81, 99, 113, 243, 281, 365, 393, 477, 603},
• E(292) = {1, 29, 31, 271, 421},
• E(312) = {1, 31, 481},
• E(322) = {1, 4, 16, 34, 64, 67, 256, 331, 397}.

More generally, if l ∈ N∗, then El(q
2) denotes the set of all subsets {e1, e2, . . . , el} ⊆ N∗

such that 1 ≤ e1 < e2 < · · · < el ≤ q2 − 1 and there exist λ1, λ2, . . . , λl ∈ F∗q2 such that

x 7→
∑l

i=1 λix
ei is an I-permutation of Fq2 . We denote by E ′l(q

2) the subset of El(q
2)

consisting of all {e1, e2, . . . , el} ⊆ N∗ satisfying the above conditions but with the extra
requirement that λ1 6∈ Fq if e1 = 1. If I ∈ El(q2) \ E ′l(q2) for some l ∈ N∗, then l ≥ 2,
1 ∈ I and I \ {1} ∈ E ′l−1(q2) by construction (C5). Conversely, by construction (C5) we
know that if l ≥ 2 and I ∈ E ′l−1(q2) with 1 6∈ I, then I ∪{1} ∈ El(q2). If one is interested
in finding only one representative for each equivalence class of I-polynomials, it suffices
to consider the sets E ′l(q

2). With the aid of a computer, we found all sets E ′2(q
2) for q ≤ 9

and all sets E ′3(q
2) for q ≤ 5 ([7]):

• E ′2(22) = E ′2(3
2) = {},

• E ′2(42) = {{1, 4}, {2, 8}},
• E ′2(52) = {{1, 5}, {7, 19}},
• E ′2(72) = {{1, 7}, {5, 17}, {5, 29}, {17, 41}},
• E ′2(82) = {{1, 8}, {2, 16}, {4, 32}, {16, 37}},
• E ′2(92) = {{1, 9}, {3, 27}, {11, 27}, {21, 61}, {29, 61}, {31, 71}},
• E ′3(22) = E ′3(3

2) = {},
• E ′3(42) = {{1, 6, 11}},
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(q, e) λ (q, e) λ (q, e) λ (q, e) λ (q, e) λ

(3, 5) α2 (9, 51) α5 (17, 109) α7 (25, 313) α13 (27, 477) α14

(5, 7) α (11, 13) α2 (17, 145) α9 (25, 365) α13 (27, 603) α7

(5, 13) α3 (11, 37) α2 (19, 181) α10 (27, 29) α14 (29, 31) α5

(7, 17) α (11, 61) α6 (23, 25) α4 (27, 57) α7 (29, 271) α5

(7, 25) α4 (13, 29) α5 (23, 49) α5 (27, 99) α7 (29, 421) α15

(8, 10) α3 (13, 85) α7 (23, 97) α5 (27, 113) α14 (31, 481) α16

(8, 19) α3 (17, 19) α3 (23, 169) α4 (27, 281) α7 (32, 34) α11

(9, 11) α5 (17, 37) α7 (23, 265) α12 (27, 365) α14 (32, 67) α11

(9, 41) α5 (17, 91) α3 (25, 53) α13 (27, 393) α14 (32, 331) α11

— — — — (32, 397) α11 — — — —

Table 3: The nonadditive I-monomials λxe of Fq2 [x], q ≤ 32

q = ph f(x) q = ph f(x)

2 x2 + x+ 1 16 x8 + x4 + x3 + x2 + 1
3 x2 − x− 1 17 x2 − x+ 3
4 x4 + x+ 1 19 x2 − x+ 2
5 x2 − x+ 2 23 x2 − 2x+ 5
7 x2 − x+ 3 25 x4 − x2 − x+ 2
8 x6 + x4 + x3 + x+ 1 27 x6 − x4 + x2 − x− 1
9 x4 − x3 − 1 29 x2 − 5x+ 2
11 x2 − 4x+ 2 31 x2 − 2x+ 3
13 x2 − x+ 2 32 x10 + x6 + x5 + x3 + x2 + x+ 1

Table 4: A primitive polynomial f(x) of degree 2h in Fp[x], q = ph ≤ 32

• E ′3(52) = {{1, 7, 13}, {1, 9, 17}, {3, 11, 19}}.

For additive I-polynomials, the corresponding ovoids of H(3, q2) are translation ovoids
related to so-called semifield spreads of PG(3, q), see [5]. These spreads and their related
semifields have extensively been discussed in the literature, see e.g. [9].

Let us now turn our attention to non-additive I-monomials of Fq2 [x] with q ≤ 32,
non-additive I-binomials of Fq2 [x] with q ≤ 9 and non-additive I-trinomials of Fq2 [x] with
q ≤ 5. We have verified by computer that for each q = ph ≤ 32 and each e ∈ E(q2) not
being a power of p, there exists up to equivalence a unique I-polynomial of the form λxe.
These I-monomials have been listed in Table 3. In this table, α is a primitive element of
Fq2 that is a root of the polynomial mentioned in Table 4.

We have also verified that each subset of E ′2(q
2), q = ph ≤ 9, and each subset of E ′3(q

2),
q = ph ≤ 5, not entirely consisting of powers of p, is associated with either one or two
I-polynomials (up to equivalence). These have been listed in Table 5. Also here, α is a
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q E ′l(q
2) f(x)

5 {7, 19} x7 + α9x19, α3x7 + α9x19

7 {5, 17} α2x5 + x17

7 {5, 29} x5 + α25x29, α2x5 + α46x29

7 {17, 41} x17 + α4x41

8 {16, 37} αx16 + α36x37

9 {11, 27} α5x11 + α5x27

9 {21, 61} αx21 + α5x61, α5x21 + α25x61

9 {29, 61} αx29 + α5x61

9 {31, 71} α5x31 + α25x71

4 {1, 6, 11} αx+ x6 + x11

5 {1, 7, 13} αx+ x7 + α21x13

5 {1, 9, 17} αx+ α7x9 + α5x17

5 {3, 11, 19} αx3 + α5x11 + α15x19, αx3 + α23x11 + α3x19

Table 5: Some I-binomials and I-trinomials

primitive element of Fq2 that is a root of the polynomial mentioned in Table 4.
Finally, we wish to mention that we found more subsets of the El(q

2)’s than the ones
mentioned above. Through ad-hoc searches we found for instance that {1, 17, 33} ∈ E ′3(72)
and {1, 7, 13, 19} ∈ E ′4(52).
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