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The Vaginal Microbiome: I. Research Development,
Lexicon, Defining “Normal” and the Dynamics

Throughout Women's Lives
Hans Verstraelen, MD, MPH, PhD,1,2 Pedro Vieira-Baptista, MD,3,4,5 Francesco De Seta, MD,6,7

Gary Ventolini, MD, FACOG,8 Risa Lonnee-Hoffmann, MD, PhD,9,10 and Ahinoam Lev-Sagie, MD11,12

Objective: This series of articles, titled The Vaginal Microbiome, written
on behalf of the International Society for the Study of Vulvovaginal Disease,
aims to summarize the current findings and understanding of the vaginal bac-
terial microbiota, mainly regarding areas relevant to clinicians specializing in
vulvovaginal disorders.
Materials andMethods: A database search of PubMed was performed,
using the search terms “vaginal microbiome” (VMB) with “research,” “nor-
mal,” “neonate,” “puberty,” “adolescent,” “menopause,” and “ethnicities,” as
well as “human microbiome project.” Full article texts were reviewed. Refer-
ence lists were screened for additional articles.
Results: In the last 2 decades, many studies applying molecular tech-
niques were performed, intending to characterize the vaginal microbiota.
These studies advanced our understanding of how vaginal health is de-
fined. The first article in this series focuses on the advancement of VMB
research, technical definitions, the definition of “normal” VMB, and the
dynamics of VMB throughout women's lives.
Conclusions: Understanding how microorganisms inhabiting the vagina
interact with each other and with the host is important for a more complete
understanding of vaginal health. The clinical application of microbial com-
munity sequencing is in its beginning, and its interpretation regarding prac-
tical clinical aspects is yet to be determined.

Key Words: vaginal microbiome research, normal vaginal microbiome,
dynamics of vaginal microbiome

(J Low Genit Tract Dis 2022;26: 73–78)

T he vagina is a highly versatile organ that profoundly affects
women's health as well as the health of their newborns. Asmi-

croorganisms play a critical role in determining the vaginal envi-
ronment in terms of biochemical and inflammatory properties,
the characteristics of the vaginal environment may not only relate

to genital symptoms but also impact conception, the ability to
carry a fetus to term, the risk of acquiring sexually transmitted in-
fections (STIs), and the risk for gynecological malignancies.

In the last 2 decades, many studies usingmolecular techniques
were performed, aiming to characterize the vaginal microbiota. These
studies identified vaginal bacteria that had been previously overlooked
by culture-basedmethods, showing that bacterial communities in the va-
gina are more complex than previously thought. Although many dif-
ferent vaginal microbiome (VMB) reviews have been published
recently, we aim to integrate the most recent knowledge regarding
topics relevant to clinicians specializing in vulvovaginal disorders.
This series of articles seeks to describe the current concepts re-
garding normal VMB and dysbiosis, VMB findings in different
genital conditions, and discuss future therapeutic options. In this
series of articles, we focused on the vaginal bacterial microbiota
and did not describe the fungal, viral, archaeal, and protozoan di-
versity due to the paucity of published molecular surveys.

The first article in this series focuses on the evolution of
VMB research, technical explanations, the definition of “normal”
VMB, and the dynamics of VMB throughout women's lives. Sub-
sequent articles in this series discuss VMB variations and dysbiotic
conditions (II), the VMB in various urogenital disorders, includ-
ing vulvovaginal candidiasis, urinary tract infections, STIs, and
vulvodynia (III). The fourth part (IV) focuses on 2 distinct areas:
the role of VMB in various aspects of human reproduction, in-
cluding infertility, pregnancy, preterm birth, and miscarriages,
and in sharp contrast, the association between the VMB and gyneco-
logic cancers. The last article (V) discusses therapeuticmodalities and
the challenges facing the research of VMB.

Historical Aspects and Development of Vaginal
Microbiome Research

Investigation of the microbes inhabiting the human body has
been conducted for more than 350 years, since van Leeuwenhoek de-
scribed the discovery of “animalcules,” looking at teeth plaque with
his handmade microscope in 1683. The investigation was done pri-
marily by microscopic methods that allow inspection of individual
microbes and later by culture-based methods, enabling growth and
isolation of individual microorganisms. Over time, thesemethods be-
came an integral part of clinical practice. For example, wetmountmi-
croscopy is used for office diagnosis of vaginitis, and Gram staining
is used to diagnose bacterial vaginosis (BV), using theNugent score.1

In the past 2 decades, molecular methods have been developed to
characterizemicrobial diversity. The first study usingmolecular methods
to characterize the VMB was published in 2002.2 Since then, phyloge-
netic analyses of vaginal samples (mostly bacterial 16S ribosomal
RNA gene sequencing, see hereinafter) have shown that bacterial com-
munities in the vagina are more complex than previously thought.3,4

Molecular methods enable comprehensive and quick analy-
sis of microbial communities. In contrast, older, classical, culture
and isolation requirements vary greatly for different bacteria, re-
sulting in inability to culture many human-associated microbes
5, known as ‘fastidious’ microbes.5 Polymerase chain reaction
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(PCR) can detect the presence and abundance of specific mi-
crobes using a designated primer. Polymerase chain reaction assays
are being used for assessment of specific microorganisms, such as
Neisseria gonorrhoeae, Chlamydia trachomatis,Mycoplasma genitalium,
and Trichomonas vaginalis. Nevertheless, these assays are restricted
to detect specific microbes, for which primers were designed.

To provide a comprehensive description of the microbiome,
high-throughput sequencing methods are being used, providing
fast, accurate, and comprehensive descriptions of whole microbial
communities. The 3 main community sequencing methods used
are: amplicon sequencing, shotgun metagenomic sequencing,
and metatranscriptomic sequencing (for a review of the various
methods, see Berman et al.6). Community sequencing has quickly
become the preferred research method for describing the compo-
sition of the VMB, as it allows a description of an entire microbial
community with a single measurement.6 To date, amplicon se-
quencing has been the most common method used because of
its cost advantage; however, metagenomic andmetatranscriptomic
sequencing are being used more frequently.

Microbiome studies also aim to study microbial factors in a
variety of health conditions, as will be described in this review.
However, the clinical application of microbial community se-
quencing is in its early stage of development, and its interpretation
regarding practical clinical aspects, including diagnostics and in-
terventions, is yet to be determined.

Definitions
In the following section, we have included a lexicon used to

describe different aspects of microbiome research.

• Microbiota: the collection of microorganisms present in a
defined environment.7

• Microbiome: the entire habitat, including the microbiota, their
genomes, and the surrounding environmental conditions.7

• Metagenome: the collection of genomes and genes from the
members of a microbiota, studied using “shotgun sequencing”
of DNA present in each sample.7 The method provides strain-
level resolution through sequencing and bioinformatic assembly
of microbial genomes, which can then bemapped and annotated
using reference databases.

• Metataxonomics: the high-throughput process used to characterize
the entire microbiota and produce a metataxonomic tree, which
demonstrates the connections between all sequences obtained.7

Metataxonomics involves amplification and sequencing of spe-
cific, often short-length regions of microbial taxonomic marker
genes. The bacterial 16S ribosomal RNAgene (16S rRNA) ismost
targeted for bacteria. It is composed of highly conserved regions
and 9 “hypervariable” regions (V1–V9). Polymerase chain reaction
primers designed to bind to the conserved regions enable amplifi-
cation of the variable regions, which are generally distinctive and
diverse. This facilitates the classification of bacterial taxonomy to
species and, in some cases strain level, bymapping the resulting se-
quences to 16S rRNA gene database.8

• Metabolomics: the analytical methods used to determine the
metabolite profile(s) of each strain or single tissue. The resulting
census of all metabolites present is called metabolome.7

• Alpha diversity: the diversity of microbiome profile within
a sample.

• Beta diversity: the diversity/dissimilarity of microbiome profile
among samples.

THE NORMAL MICROBIOME
Determining what is normal in the context of the human

microbiome is challenging. Within the framework of the Human

Microbiome Project (HMP, see below), a “reference microbiome”
has been defined inwhatwere considered “relatively healthy” adults,9

whereas a “healthy microbiome” has been defined elsewhere as the
microbiome “in the absence of overt disease.”10 Hence, these and
similar translational definitions merely formalize the assumption that
the health of a host organism equals “health” or “normality” of its
associated microbiome communities. This also reflects our current
inability in defining “normal” or “healthy” microbiome ecologies,
for example, through metabolic phenotyping.11

Inwhat is arguably themost cited study ofmicrobiome commu-
nities, Ravel et al.12 distinguished in a cohort of healthy, reproductive-
agedUSwomen between fiveVMB “community state types” (CST),
based on composition and abundance of vaginal bacterial species.
Specifically, CST-I, CST-II, CST-III, and CST-V referred to an abun-
dance of Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii,
respectively, whereas CST-IV was characterized by a combination
of diverse facultative anaerobeswith lowabundances of lactobacilli.
As a heterogeneous group of lactobacilli depleted, high-diversity
community states, CST-IV was further subdivided in a subsequent
study into 2 substates CST IV-A and CST IV-B; CST IV-A com-
prises of species of genera Anaerococus, Peptoniphilus, Coryne-
bacterium, Prevotella, Finegoldia, and Streptococcus, whereas
CST IV-B is characterized by Atopobium, Gardnerella, Sneathia,
Mobiluncus,Megasphera, and other taxa of order Clostridiales.13

As the cohort consisted of asymptomatic women, it was consid-
ered by the authors as representing a healthy state. Unfortunately,
there are many examples in medicine in which asymptomatic
states and exposures are not quite “normal” and pose defined risks
to human health. In this respect, it was observed that CST-IV rep-
resents Nugent scores 4–10 and hence also BV3,14 and was re-
ported predominantly in Black and Hispanic women.12,13 While
such communities display lactic acid production, as contended
by the authors, this occurs to a much lower extent relative to Lac-
tobacillus species dominated communities,15 consistent with an
overall dissimilar functional assembly and metabolome profile.

Overall, although widely used, the validity and the resolution
of the vaginal CST model remain unsettled.3

Systematic appraisal of published microbiome data4 revealed
that in a majority of reproductive-aged women and for a majority
of points in time, the VMB is essentially dominated by 1 of 4
niche-specific16 Lactobacillus taxa, specifically L. crispatus, L.
jensenii, L. gasseri, and L. iners, consistent with the CST model.
The remarkable community structure of the VMB with a single
taxon largely dominating an ecological niche17 presumably is con-
sistent with microbial communities having coevolved with humans
throughout evolution to serve critical host functions.3,16,17 This, in
turn, likely accords with unique metabolic profiles observed with
the VMB under differing conditions, e.g., gross differences are
observed with metabolomic profiling between Lactobacillus-
dominated and BV communities,18–20 whereas metabolome diver-
gence also occurs in the setting of vaginal infections with Candida
and STI, such as Chlamydia trachomatis.20–22

Longitudinal studies of the VMB have further highlighted the
dynamic nature of the VMB.13,14,23 Temporary, mostly short-lived,
deviations from a Lactobacillus-dominated ground state and ac-
companying metabolome shifts are common in reproductive-aged
women, typically observed in association with menses and sexual
activity. Studies consistently suggest that menses is the major
disturbing factor to VMB during the menstrual cycle, with large
reductions in lactobacilli,13,24,25 shifts from L. crispatus to L.
iners,24,26 or the appearance of BV-associated bacteria.26,27 How-
ever, longitudinal studies also suggest a “dynamic stability”
wherein most women retain their CSTor alternate between certain
CSTs, mostly in correspondence to menses.13,24,27,28

Overall, the distinct Lactobacillus-dominated community states
are thought to be the most optimal3,4 with, as further discussed,
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numerous associations with reproductive health. These may, there-
fore, cautiously be considered as representative of the normal
VMB. The future understanding of “normality” of the VMB should
define microbe community states through functional and ecological
indices that transcend taxonomic description. The “healthy” VMB
should not only be defined by symptoms at the time of sampling
but also be defined by considering the long-term health of women,
their partners, and their offspring.

The Role of Lactobacilli in Vaginal Health
Over 20 species of lactobacilli have been detected in the va-

gina; however, in most women, the vagina is dominated by a sin-
gle species of lactobacilli12 and characterized by a pH level less
than 4.5. Lactobacillus dominance and low pH are also unique
compared with other mammals, in which lactobacilli hardly en-
compass more than 1% of the VMB, and which present a mixture
of bacterial species and neutral pH.29,30 It was hypothesized that
the protective role of lactobacilli in humans has evolved in associ-
ation with continuous sexual receptivity throughout the menstrual
cycle, pregnancy, and the postpartum period, exposing to risks of
STIs and obstetric complications.31

The protective role of lactobacilli in the vagina is exerted by
several mechanisms, counteracting overgrowth of other microor-
ganisms by competition for nutrients and tissue adherence, reduc-
tion of the vaginal pH by production of organic acids, mainly lac-
tic acid, modulation of local immune system, and production of
antimicrobial substances, such as bacteriocins.32

The vaginal microenvironment not only provides a tissue
substrate on which bacteria may reside but also bathes these or-
ganisms in a complex milieu, originating from transudation of
fluids into the lumen, shedding of epithelial cells, secretions from
the cervix and inflammatory cells, introducing antimicrobial sub-
stances. The microbiota itself may contribute to the environment
by degradation of macromolecules to make nutrients available or
release metabolites. Vaginal fluid also contains amylases33 that de-
grade glycogen releasing monosaccharides, disaccharides, and tri-
saccharides that support Lactobacillus growth.34 The glycogen con-
tent of the vaginal epithelium covariates with estrogen levels and, in
general, high levels of estradiol may favor a lactobacilli-dominant
environment, especially L. crispatus, L. gasseri, and L. jensenii.13

Lactobacillus iners. Lactobacillus iners is one of the most
frequently isolated bacteria in the vagina; however, its role in vaginal
health is still unclear.35 Lactobacillus iners can be detected in both
dysbiotic and healthy conditions and presents unusual characteristics,
including an unusually small genome compared with other
lactobacilli, possibly indicative of a symbiotic or parasitic lifestyle,35

and specific genes encoding unique proteins.
For many years, culture and microscopy-dependent ap-

proaches failed to identify this species. Only in 1999 was it named
L. iners35 andwas described as a gram-positive, rod-shaped bacte-
rium. However, it is not always clearly gram-positive, and at least
some isolates seem to have a coccobacillary morphology (rather
than bacillary), and this may be one of the reasons why L. iners
has been overlooked by Gram staining of vaginal smears of
women with vaginal dysbiosis.36 This ambiguity in L. inersGram
staining properties and cell morphology is important because
some diagnostic determinations of vaginal health depend on these
characteristics, that is, the Nugent score.

A similar prevalence of L. iners was found in women with
normal, intermediate, and BVNugent scores.37 Women with high
abundances of L. iners could be either BV-negative or BV-positive
and have either low or high pH levels.38 It was also shown that
L. iners presence and abundance inversely correlate with L.
crispatus.12,39While L. crispatus seems to decline during menses,

L. iners concentrations increase24,25,27 along withGardnerella va-
ginalis and is the dominant species duringmenses. These findings
suggest that this species is very flexible and can easily adapt to the
fluctuating vaginal niche.

The genome of L. iners encodes proteins (iron-sulfur pro-
teins and unique s-factors) that optimally adapt the microbe to
the vaginal niche. These proteins may be involved in resistance
to oxidative stress, present where high levels of H2O2 are pro-
duced by other lactobacilli.40 Lactobacillus iners also encodes
stress resistance proteins, which might promote improved toler-
ance to vaginal environmental fluctuations (pH, mucus concentra-
tion, hormones, and infection),40 and exhibits superior metabolic
adaptation to the changing carbohydrate sources in this environ-
ment. Lactobacillus iners strains have also been shown to secrete
inerolysin, a pore-forming toxin, which may contribute to the
pathogenesis of BV.35

In summary, various genetic and functional studies point to-
ward a remarkable environmental adaptation of L. iners to the vag-
inal niche. It remains to be clarified to what extent this represents
pathogenicity or strong colonization capacity and to further clarify
L. iners role in health and disease. Possibly, this organism may
have clonal variants that in some cases promote a healthy vagina
and in other cases are associated with dysbiosis and disease.35

Vaginal Microbiome Throughout Life: Childhood,
Reproductive Years, and Menopause

The vagina is a dynamic ecosystem, undergoing a natural
fluctuation in the composition of the VMB throughout a woman's
life. Such changes are influenced by levels of sex hormones, gly-
cogen content in the vaginal epithelium, menstrual cycle, vaginal
pH, and immune responses. The primary driver of lactobacilli
dominance in the vaginal niche is generally assumed to be the
availability of glycogen,41 which accumulates in the cervicovaginal
environment, in an estrogen-dependent manner.42,43Much in accor-
dance, the VMB is thought to relate essentially to reproductive
health, which, arguably, also explains why the VMB has been pri-
marily studied in reproductive-aged women.

In stark contrast, little, if anything, is known on the VMB in
prepubertal girls. At birth, it is believed that the VMB is established
when the neonate is exposed to the vaginal tract during vaginal deliv-
ery or the skin bacteria after cesarean section.44 The VMB of the ne-
onate delivered through the vaginal tract resembles that of her mother,
dominated by either Lactobacillus species, Prevotella species, or
Sneathia species.44 Later, with estrogen withdrawal, the vaginal epi-
thelium becomes thinner and contains less glycogen, resulting in neu-
tral vaginal pH due to Lactobacillus species diminution.45

Vulvovaginitis in preadolescent children is common, typically
attributed to the anatomical immaturity of the vulva in fending off
bacterial invasion of the prepubertal vagina.46 The vagina in prepu-
bertal girls is a hypoestrogenic, alkaline environment, which pre-
sumably does not provide the colonization resistance observed in
adults.46 It is not known, however, to which extent the prepubertal
VMB is a cofactor to the common occurrence of vulvovaginitis.

Two longitudinal studies have documented the transition of the
vaginal microbiota throughout peripuberty, through gram-stained
smears47 and 16S rRNA sequencing.48 Although both studies are
not entirely concordant, the emerging picture is that around the
menarche, a BV-like microbiome gradually shifts toward an adult-
like Lactobacillus-dominated microbiome, which occurred, at least
in the latter study,48 well before the onset of menarche, probably
corresponding to the dynamics of circulating prepubertal sex
hormones.49 Hence, although an adult-like Lactobacillus-dominated
microbiome is presumably established in at least a majority of adoles-
cents, it remains elusivewhether the adolescent VMB at sexual debut
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might affect mucosal immune homeostasis and susceptibility to STIs,
including human papillomavirus and HIV.50,51

The role of the VMB in reproductive health is more apparent.
The peculiar VMB community structure has likely evolved to pre-
serve reproduction in response to the unique human lifestyle.52

First, although we presumably understand only a small part of
the broad array of antimicrobial defense mechanisms at play in
the cervicovaginal environment, it is clear that the Lactobacillus-
dominated microbiome—and this is most apparent in the case of
L. crispatus—confers several mechanisms directed toward invading
and colonizing pathogens,17,53–55 termed “colonization resistance.”
This, in turn, may at least in part relate to continuous sexual recep-
tivity, which is unique to humans and some other hominids. Con-
versely, vaginal dysbiosis predisposes to an increased risk of STI
acquisition, as most extensively documented for HIVand human
papillomavirus. Furthermore, although, hardly explored, the cervico
VMB may also be of undefined importance to conception and fer-
tility.56,57 Albeit difficult to document in human populations, the
VMB may also affect fetal development.58 During pregnancy, the
VMB tends to evolve as an even more stable community with ad-
vancing pregnancy, with increased lactobacilli abundance and even
lower alpha diversity.14,59–61 The latter phenomenon has been aptly
referred to as “pregnancy's stronghold on the VMB.”59 Dysbiotic
states in turn and BV in particular are associated with adverse
pregnancy outcomes and most notably with spontaneous preterm
birth. Study of the association between the VMB and preterm
birth was amajor objective of the recently completed second or in-
tegrative HMP project.62,63 After birth, there is a defined increase
in VMB diversity and a shift toward Lactobacillus species de-
pleted community structures that have been reported to persist
for up to 1 year postpartum.61

The initial human neonatal microbiota across all body habi-
tats after vaginal delivery were found to originate primarily from
the maternal VMB.44,64 Disturbance of this vertical transmission
route has recently been proposed to have potentially profound ef-
fects on offspring development and adult health, including disrup-
tion of neonate-microbe interactions necessary for immune educa-
tion, metabolic programming, and neurodevelopment.58

With advancing age, the marked decrease of circulating es-
trogen in menopause contrasts with the premenopausal state by
a reduction of Lactobacillus species dominance and a concomi-
tant increase in diverse anaerobes.

Gliniewicz et al65 documented 6 ecological clusters in a cross-
sectional study involving postmenopausal women with and without
hormonal therapy, specifically a cluster dominated by L. crispatus
(A), by L. iners (C), and by L. gasseri (F), respectively, whereas fur-
ther communities belonged to a cluster dominated by G. vaginalis
(B), a cluster dominated byBifidobacterium (E), and amore diverse
cluster codominated by several taxa (D). Although a small study,
there was no obvious relation between menopausal state and
hormonal therapy with community clusters. Indeed, although a
deviation might be expected from lactobacilli dominance with
menopause, such transitioning is neither abrupt nor predictable
at present. The association between the VMB in menopause and
vulvovaginal symptoms is also equivocal, as some studies did
not find such an association,66 whereas other studies did suggest
a role for the VMB, possibly mediating symptoms of the “genito-
urinary syndrome of menopause.”67–69

Comparison Between Races and Ethnicities—Is
“Normal” Universal?

Comparison of VMB profiles of African American women
and White women with and without a clinical diagnosis of BV
showed differences between the 2 groups.70 Of those without a
clinical diagnosis of BV, African American women were more

likely to be colonized by strict anaerobes, whereas White women
were more likely colonized by L. crispatus, L. gasseri, and L.
jensenii. These data suggest that even among healthy women,
African American ethnicity is associated with a VMB that more
closely resembles BV, characterized by an increase in species di-
versity and a decrease in lactobacilli. Another study found that
28 bacterial taxa were significantly associated with VMB in
African American women than inWhite women without BV,38 in-
cluding Leptotrichia amnionii, Atopobium vaginae, and BVAB1.
More African American women had VMB dominated by L. iners,
whereas more White women had microbiota dominated by L.
crispatus.38 It is unclear whether these different profiles in women
without BV lead to differences in risk for BV. Ravel et al.12 also
observed differences in theVMB associatedwith race; asymptomatic
AfricanAmerican andHispanicwomen inNorthAmericaweremore
likely to have vaginal bacterial communities comprising diverse
bacteria that mirrored bacterial communities typically seen with
BV (CST IV).12 However, examinations to document absence of
vaginal discharge were not reported, Amsel criteria for BV were
not assessed, and many of these women had BV diagnosed by
gram stain of vaginal fluid.

Studies in Sub-Saharan African populations found Lactoba-
cillus dominance in less than 40% of asymptomatic women,71,72

further indicating the controversy around whether Lactobacillus
dominance should be considered “normal” in all populations.

The factors driving racial and geographic differences of VMB
are unknown but could include variation in hygienic practices, con-
traceptive use, sexual practices, rectal colonization, or host genetics.
Nevertheless, it remains possible that VMB configurations, which
are associated with elevated baseline genital inflammation, may
be advantageous in specific contexts, contributing to the high prev-
alence of diverse VMB in certain populations.17

Main Findings of the Human Microbiome Project
The HMP, established in 2007, is a global project in which

multiple research groups sought to characterize the microbiomes
of 18 (15 in men) bodily habitats in healthy participants. Through
the use of molecular sequencing methods over the past decade, the
HMP and other studies have revolutionized the understanding of
diversity and complexity of the human microbiome. Older classi-
cal culture and isolation methods have commonly failed to dem-
onstrate this diversity and complexity discovered in the vagina
and other human body environments.

The first of a 2-phase effort, frequently referred to as HMP1,
ran from 2008 through 2013.

In the HMP,73 3 vaginal sites were considered, specifically,
the vaginal introitus, midvagina, and posterior fornix. An overall
little distinction among different vaginal sites was found, with
Lactobacillus species dominating all 3 and correlating in abun-
dance. As a matter of fact, of all human body sites targeted in
the HMP project, the vaginal sites displayed the lowest within
community or alpha diversity at the operational taxonomic unit
(OTU) level (OTU refers to sequence similarity of the 16S rRNA
gene amplicons and is used in settings as these as a proxy for bac-
terial species). Indeed, as the majority of community members are
lactobacilli, the overall species diversity of the community tends to
be low. Vaginal Lactobacillus-dominated communities further
consistently included a variable assortment of low abundance com-
munitymembers, albeit with an overall OTU richness far below that
observedwith any other humanmicrobiome site.74 Between subject
(or beta diversity) was still fairly low at the genus level (since in
most women the dominant genus was Lactobacillus), yet very high
among OTUs due to the presence of the presence of distinct Lacto-
bacillus species dominance73 (because of the dominance of differ-
ent Lactobacillus species across women, as discussed previously).
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The HMP project was also the first large-scale study to map
the relative abundances of microbial metabolic and functional path-
ways in the microbiome communities under study, hence account-
ing for community phenotypes. An important finding was that the
relative abundances of pathways in community metagenomes were
muchmore constant and evenly diverse thanwere organismal abun-
dances.75 Protein families showed diversity and prevalence trends
similar to those of full pathways, with an estimated number of ap-
proximately 16,000 unique families per community in the vagina
(e.g., compared with almost 400,000 in the oral cavity), consistent
with amore limited set of core functions. Of note in this respect is that
increasing pH with a reduction in Lactobacillus species abundance
was also accompanied by an increase in metabolic diversity.
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