
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24152  | https://doi.org/10.1038/s41598-021-03594-0

www.nature.com/scientificreports

Comparing different nonlinearities 
in readout systems for optical 
neuromorphic computing networks
Chonghuai Ma1*, Joris Lambrecht2, Floris Laporte1, Xin Yin2, Joni Dambre2 & 
Peter Bienstman1

Nonlinear activation is a crucial building block of most machine-learning systems. However, unlike 
in the digital electrical domain, applying a saturating nonlinear function in a neural network in 
the analog optical domain is not as easy, especially in integrated systems. In this paper, we first 
investigate in detail the photodetector nonlinearity in two main readout schemes: electrical readout 
and optical readout. On a 3-bit-delayed XOR task, we show that optical readout trained with 
backpropagation gives the best performance. Furthermore, we propose an additional saturating 
nonlinearity coming from a deliberately non-ideal voltage amplifier after the detector. Compared to an 
all-optical nonlinearity, these two kinds of nonlinearities are extremely easy to obtain at no additional 
cost, since photodiodes and voltage amplifiers are present in any system. Moreover, not having to 
design ideal linear amplifiers could relax their design requirements. We show through simulation that 
for long-distance nonlinear fiber distortion compensation, using only the photodiode nonlinearity in 
an optical readout delivers BER improvements over three orders of magnitude. Combined with the 
amplifier saturation nonlinearity, we obtain another three orders of magnitude improvement of the 
BER.

Machine learning is getting more and more ubiquitous in everyday life. With increasing demands from all kinds 
of applications, the vast majority of machine-learning hardware is based on von-Neumann architectures, like 
CPUs and GPUs. While these are compelling and capable of high-complexity computations, they are inherently 
limited in power efficiency and latency because of their digital electronic nature. This is especially the case in 
digital signal processing for the optical communication industry, where the signal bandwidth has been getting 
higher and higher in recent years. With a tens-of-gigabaud transmission data rate, real-time signal processing 
in electronic digital signal processors (DSPs) is getting progressively harder to achieve, at an increasing cost in 
terms of energy, latency and chip area1.

For this reason, it is interesting to also consider other information processing paradigms, like those based on 
neuromorphic computation. In addition, optical neuromorphic networks have the added advantage of being able 
to operate in the optical domain, promising much better processing speeds and power efficiency2,3. All-optical 
neuromorphic systems are especially useful for optical communication systems, since they do not require optical-
electrical conversion of the signal within the network, which translates to additional energy savings. Instead, the 
optical signal can be transported and manipulated directly in the optical domain by photonics hardware and 
only be detected at the end of the system. Apart from all-optical neuromorphic networks, there are also systems 
that implement hybrid neural networks4, consisting of both optical and electrical components, as well as neural 
networks based on diffractive elements5.

Photonics reservoir computing6–8 is one of the hardware implementations of optical neuromorphic process-
ing. The scheme of reservoir computing (RC) was introduced two decades ago9,10 and consists essentially of a 
recurrent neural network (RNN), except for the fact that the weights of the internal nodes are not trained. The 
training of an RC network only requires the optimization of a linear readout layer, which makes it much easier 
than training a conventional RNN system. Moreover, the internal connection weights can be set randomly 
without further constraints. This feature makes the hardware manufacturing of such a system more robust than 
others, as deviations due to fabrication tolerances can be compensated for by having bespoke weights for each 
chip. Additionally, like RNNs, RC systems are inherently suited to the processing of time-varying signals, because 
of the presence of recurrent connection between their nodes which gives them internal memory.
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Nonlinearity Nonlinearity is one of the essential building blocks of a machine learning network. In the digital 
electrical domain, an arbitrary nonlinear function is relatively easy to implement. However, in the analog optical 
domain, performing a nonlinear activation function on an analog optical signal brings many challenges. There 
are some approaches that utilize nonlinearity in the optical domain, like the nonlinearity based on optical reverse 
saturated absorption11, or utilizing integrated semiconductor optical amplifiers6. However, such optical devices 
often require high external optical or electrical power and are usually not cost-efficient or difficult to integrate 
on-chip. Therefore, many papers consider a hybrid optical neural network, where the nonlinearity is achieved in 
the electrical domain12 as a workaround. However, this sacrifices latency and power efficiency because of the pro-
cess of opto-electrical and electro-optical conversion. Another option is external electrical-modulation-assisted 
nonlinearity13, which utilizes a special driving of optical modulators. However, such an implementation would 
also introduce additional complexity to the system. In short, the methods mentioned above normally require a 
complex setup or high optical or electrical power.

Another approach does not consider any nonlinearity inside the network, but rather only relies on the detector 
nonlinearity at the output of the system7,14. In that case, the nonlinearity mainly comes from the modulus-square 
of the optical detection from the photodetector. As mentioned before, this nonlinearity is easy to obtain at no 
extra cost. However, as we will discuss in this paper, there are some pitfalls to be aware of when exploiting this 
non-linearity, especially if the weighted sum happens before the detector in the optical domain.

The goal of this work is to demonstrate the possible performance improvements by fully utilizing the non-
linearities from the photodetector. We also propose to use another easily accessible nonlinearity, namely that 
of a deliberately non-ideal voltage amplifier that is part of the transimpedance amplifier (TIA) module present 
in any readout system. These combined nonlinearities deliver high performance while still being very easy to 
realise experimentally. Additionally, we slightly ease the design of a traditional voltage amplifier, since we no 
longer require a stringent linear behaviour from its emitter-coupled pair.

The rest of this paper is structured as follows. In “Reservoir computing architecture” section, we introduce the 
reservoir computing system we used for the simulations in the paper. In “Photodetector nonlinearity: electrical 
readout versus optical readout” section we compare so-called electrical and optical readout schemes and show 
their performance difference when utilizing the photodetector nonlinearity. “Voltage amplifier nonlinearity” 
section deals with the improvement coming from exploiting nonlinearity in voltage amplifiers, in addition to 
the detector nonlinearity. We conclude our work in “Conclusion” section.

Reservoir computing architecture
In principle, the optical input to the readout system can be the output of the final layer of any photonic neuro-
morphic architecture, as long as that signal is coherent. The goal of our work is not to compare different photonic 
neuromorphic architectures, which each have their strengths and weaknesses depending on the application. 
Rather, we focus on the readout part at the end of the system, which performs linear combinations and a non-
linear transformation. In this paper, we illustrate the influence of this readout layer using a neural architecture 
called reservoir computing (RC).

As mentioned above, reservoir computing consists of an untrained recurrent neural network (the reservoir) 
and a trained linear readout layer.

In discretized time, a general form of the reservoir state update equation is given by:

Here f is a nonlinear function, u is the input to the reservoir and ubias is a fixed scalar bias applied to the 
inputs of the reservoir. For an N-node reservoir, Wres is an N × N  matrix representing the interconnections 
between reservoir components. win is an N-dimensional column vector whose elements are nonzero for each 
active input node.

The output y is given by a simple linear combination of the states:

In terms of photonic implementations, there are two main classes. The first one is based on time-multiplexed 
systems that utilize a single nonlinear element which is coupled to a feedback loop with a curated delay time15–18. 
The second approach consists of spatially extended systems, where each node corresponds to a separate device, 
e.g. a network of optical amplifiers19. A variation on this are optical networks which do not contain any nonlinear-
ity inside the network, but rely on the detector nonlinearity at the output and are therefore purely passive6,20,21.

In the simulations for this paper, we make use of a 16-node integrated silicon RC computing system, which 
uses 50/50 directional coupler pairs as nodes, which are interconnected using the so-called 4-port topology20 
that is illustrated by Fig. 1, mainly to reduce the optical loss in the reservoir.

We use the Photontorch22 framework for circuit simulation, which is a highly configurable parallel photonics 
circuit simulation and optimization framework based on Pytorch tensors23. This also allows easy interfacing with 
machine-learning optimization techniques.

Photodetector nonlinearity: electrical readout versus optical readout
Readout systems.  A readout system takes the output of the optical neuromorphic network as its input, 
applies some signal processing and produces a final electrical signal as output. The signal processing usually 
consists of weighting and summation of the inputs, and can include additional nonlinearity.

We distinguish two readout schemes. In a so-called electrical readout scheme (Fig. 2 left), optical detection 
is first performed for each individual input node. This is then followed by weighting in the (analog or digital) 

x[k + 1] = f (Wresx[k] + win(u[k + 1] + ubias))

y[k] = Woutx[k]
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electrical domain. Note that this scheme requires a separate detector and analog-to-digital converter (ADC) for 
each node, which is not desirable.

On the other hand, in a so-called optical readout scheme (Fig. 2 right), the weighting is performed in the 
analog optical domain, e.g. using phase shifters or modulators, and then the weighted signals are coherently 
combined in an optical combiner tree. In this scheme, only a single detector/ADC is needed.

Another conceptual difference between these two schemes is the order of the weighting, summation and 
(nonlinear) detection. One can indeed expect that the richness that can be achieved by the nonlinearity will 
depend on whether or not the summation happens before it. Before comparing the performance of these two 
readouts, we will first discuss the consequences of this ordering on the way these systems are trained, i.e. on the 
way the weights in the linear combination should be chosen in order to minimise the difference between the 
desired output and the actual output.

Training the electrical readout.  In this scheme, after applying the inherent nonlinear transformation 
in the photodiode (from complex-valued fields to real-valued intensities), we need to find a set of real-valued 
weights to sum these time traces in order to approximate the target time trace. This is essentially a linear regres-
sion operation:

WoutX = Ỹ

Figure 1.   4-port topology that we used as our reservoir architecture. Shown here is a 16 node layout. Each node 
has two inputs and two outputs that are connected to other nodes.

Figure 2.   (Left) electrical readout. (Right) optical readout. Green lines represent optical signals, and red lines 
electrical signals. A crucial difference is the order of the summation and detection.
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Here X is the matrix containing the input time traces for each node, Ỹ  is the desired target signal, and Wout 
are the output weights that need to be found so as to minimise the difference between WoutX and Ỹ  . This can be 
achieved in one step using the Moore-Penrose generalized matrix inverse24, where a regularization parameter � 
can also be taken into consideration:

This one-step solution vastly reduces the optimization time and makes training much more accessible, as we 
do not have to perform iterations which could get stuck in local minima. This regression is the standard method 
for reservoir computing training when the weighting is done in the electrical domain.

Training the optical readout.  Mathematically, when the signal is in the optical domain and is coherent 
(i.e. complex valued), a similar linear regression one-step solution still exists, which is:

Here, the signals are represented by a complex-valued matrix and the conjugate transpose is used instead of 
regular transpose.

In principle this solution can be used to train coherent optical readout systems. However, the issue is choosing 
the complex-valued target. Indeed, for many applications, the only target we care about is a real-valued target after 
the photodiode, and not a complex-valued target before that same photodiode. Since in that case the phase before 
the detector is irrelevant, we could in theory fix it arbitrarily to e.g. zero and then perform the complex-valued 
linear regression using that target. However, in that way we artificially restrict our solution space to situations 
where the phase before the detector is zero. As such, we risk missing out on better solutions.

Therefore, a better approach is to abandon linear regression, and to use backpropagation to train the entire 
system, including the nonlinearity in the readout22. That way, we only need to specify the real-valued target after 
the detector, and the phase before the detector is free to evolve as the optimiser sees fit. Therefore, unnecessary 
constraints and assumptions are eliminated.

In our simulations we use Pytorch23 as the backpropagation optimization framework. The optimizer of choice 
is Adam25. Since the number of nodes is not significant and the readout system itself only consists of one layer 
of weighting, the optimization time is usually below 1 minute, with GPU acceleration enabled by an NVIDIA 
Geforce 970 graphics card.

Benchmark: 3‑bit‑delayed XOR task.  In this section, we show the performance of the two readout 
schemes on the 3-bit delayed XOR task. Among the basic logic gates, a boolean XOR requires the most nonlin-
earity in the calculation. Here, we choose a more challenging variant of this task, namely the 3-bit-delayed XOR, 
which calculates the XOR between the current bit and the one from 3 bit periods ago. As such, it also requires 
more memory from the photonics system. To train the system, we use 2000 randomly generated bits and another 
2000 bits as testing data. The simulated bit rate is 32 Gbit/s and the CW laser works at 1550 nm wavelength with 
operation power of 5 mW. For the photodetector, we modeled a PIN photodiode based on the model from VPI 
Design Suite simulation framework that takes dark current, shot noise and thermal noise into account26–29 The 
PIN photodetector has a responsivity of 1, dark current of 1e−10 A, a load resistance of 166 Ohm. The bandwidth 
of the detector used in this task is 16 GHz, which is modeled by a Butterworth filter of 4th order. The same 
detector model is used for our next benchmark task. The performance comparison and training progress are 
illustrated in Fig. 3.

For this nonlinear task with memory, Fig. 3a shows that, although there is nonlinearity involved in the elec-
trical readout, it still does not deliver good enough performance. Figure 3b shows that the complex regression, 
which ignores the photodetector in the optimization, does not perform well at all. The nonlinearity of the detector 
still exists, but it only applies a square nonlinearity on the single optical output signal converting it to electrical 
power. The phase of the optical signal before the detector is artificially constrained, limiting the system in giving 
a valid prediction. In Fig. 3c, we do include the photodetector nonlinearity in the optimization, resulting in a 
very clean signal that follows the target signal very well, with a practically zero bit error rate.

Voltage amplifier nonlinearity
Voltage amplifiers.  The idealised photodiode discussed in the previous section only provides a square 
nonlinearity. However, machine learning teaches us that saturating nonlinearities are very important to imple-
ment as well. As discussed in the introduction, obtaining such nonlinearities in an optical neural network often 
requires either certain optical nonlinear effects to emulate the saturation nonlinearity, or external electrical assis-
tance. In comparison, exploiting the saturating nonlinearity in the voltage amplifier in a TIA module is much 
easier to obtain, and the profile of the nonlinearity is essentially a hyperbolic tangent function ( tanh).

Indeed, for an emitter-coupled amplifier pair. the gain is already nonlinear. The differential output voltage 
Vod as a function of the differential input voltage Vid is given by30:

Here, αF represents the common-base current gain and should be very close to 1. ITAIL and RC are respectively 
the bias current and the load resistor in the amplifier. VT is the threshold voltage, which is usually determined 
by the operation temperature. As mentioned before, the input and the output have a nonlinear relation given by 
the tanh function. In common amplifier design, it is important to avoid the nonlinear range of Vid . To achieve 

Wout = (XTX + �I)−1XTỸ

Wout = (XHX + �I)−1XHỸ

Vod = αFITAILRC tanh(−Vid/2VT )
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that, emitter-degeneration resistors RE are normally added to enlarge the linear region of the amplification curve. 
The transmission relation is then shown below in Fig. 4. By introducing large emitter resistance (see Fig. 4 black 
dashed curve, which corresponds to an emitter-degeneration resistor of RE = 10VT/ITAIL ), the linear range will 
be extended considerably, but at the expense of a lower voltage gain.

However, in order to exploit the amplifier nonlinearity for machine-learning purposes, one can lower the 
emitter resistance to make the gain more nonlinear, or even remove the resistor entirely to obtain a pure hyper-
bolic tangent gain curve. Potentially, the strength of the nonlinearity can even be predesigned or even tuned 
during testing: with RE present and fixed, the linear range is determined by ITAILRE . So increasing ITAIL then 
gives a more linear range and less voltage gain. Additionally, tuning RE on-chip is not difficult either.

Benchmark: long‑distance nonlinear fiber distortion compensation.  To demonstrate the perfor-
mance benefit of utilizing this nonlinearity, we choose to perform long-haul nonlinear fiber distortion compen-
sation. This task is both harder and more industrially relevant than the XOR task. Fiber dispersion and nonlinear 
distortion are significant factors that degrade the optical signal quality in the fiber27. Linear dispersion from the 
fiber is comparatively easy to compensate in terms of computational capability. However, nonlinear distortion 
(especially for long-distance communication) requires better computational capability when doing the signal 
equalization. Modern solutions like digital backpropagation31 and Volterra series32 typically require extensive 
DSP (digital signal processing)33 for such tasks after the optical signal is detected and digitized by analog-to-
digital converters (ADCs). An all-optical system without any optical-electrical conversion in between could 
bring benefits in minimizing latency and power consumption.

Figure 3.   Performance comparison for the 3-bit delayed XOR task, for electrical (a) and optical (b,c) readouts. 
In (b), the readout is trained by linear regression and in (c) backpropagation through the photodetector is 
performed. It is clear that for this last option the actual output of the system (orange) most closely resembles the 
target (blue). (d) Evolution of Bit Error Rate and Normalised Mean Square Error during the backpropagation 
training.

Figure 4.   Voltage amplifier gain curve. The black dashed curve represents a regular gain curve obtained by 
using emitter-degeneration resistors RE . The blue curve represents the initial gain curve without an emitter-
degeneration resistor.
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In our simulation, we obtain the distorted optical signal data from the optical system simulation framework 
VPIphotonics Design SuiteTM26. The transmission system we choose is a 2000 km NRZ transmission link. The 
transmission speed is 10 Gbit/s. Detailed parameters of the system are listed in Table 1. The link consists of ten 
repetitive sections of 200 km fiber span. In each section there are regular single-mode fibers with dispersion 
compensation modules (DCM) for managing linear dispersion, and two erbium-doped fiber amplifiers (EDFAs), 
one at the beginning of the link as booster and a second one before the dispersion compensation fiber as line 
amplifier for loss management. In this case, the linear dispersion of the link is already mitigated and the final 
optical signal distortion is dominated by the (harder to compensate) nonlinear effects.

The results from Fig. 5 show the performance for this nonlinear distortion compensation task in the form 
of eye diagrams. It includes all the previously discussed readout schemes and nonlinearities, so as to compare 
their performance differences.

By performing a Gaussian distribution bit-error-rate (BER) approximation method with Inter-Symbol-Inter-
ference (ISI) taken into account34, we can statistically estimate the BER to levels much lower than what would be 
possible with simple error counting. Using this method, the BER from the original unequalized signal (Fig. 5a) 
can be calculated to be around 10−7 . Using an electrical readout, the system can slightly improve the BER with 
one order of magnitude to 10−8 , as shown in Fig. 5b. The result is also in alignment with the observation we got 
from the XOR task before, where electrical readout performed reasonably well. Even though the electrical readout 
scheme incorporates the photodetector nonlinearity, without utilizing coherent weighting, its performance is 
still limited. In comparison, the eye diagram of the optical readout system trained with backpropagation is more 
open both in the vertical and the horizontal direction (Fig. 5c), with a BER of 10−10 . This again proves that the 
optical readout system can utilize the nonlinearity in the photodetector better and provide enough computational 
capability to compensate for the nonlinear distortion. Finally, combined with the voltage amplifier nonlinearity, 
the BER will have a further improvement to 10−13 (Fig. 5d). We note here that the nonlinearity required by the 
amplifier is not extreme. The current nonlinear region we utilize in our system is only about 55% of the 3 dB 
compression point (P3dB).

Table 1.   Details of the long distance transmission link.

Link details

Parameter name Value

Laser power 2 mW

Laser wavelength 1550 nm

Laser linewidth 10 MHz

Transmission bit rate 10 Gbit/s

Laser emission frequency 193.1× 1012 Hz

Transmission fiber dispersion 16× 10−6 s/m2

Transmission fiber nonlinear index 5.6× 10−20 m2/W

DCM fiber dispersion 106× 10−6 s/m2

DCM fiber nonlinear index 4.4× 10−20 m2/W

Detector bandwidth 10 GHz

Training details

Parameter name Value

Training set size 2048 bit

Testing set size 4096 bit

Loss function Mean square error

Optimizer Adam

Figure 5.   Eye diagrams for different readout schemes and with different nonlinearities. (a) Unequalized, (b) 
equalized by electrical readout, (c) equalized by optical readout and (d) equalized by optical readout utilizing 
both photodetector nonlinearity and voltage amplifier nonlinearity.
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We need to stress that the compensation here is done purely in the optical domain, before the detection by 
the photodetector. This analog optical dispersion compensation has the potential to reduce the requirements 
on the DSP after the detection.

Conclusion
In this work, we discussed two types of readout systems for coherent neuromorphic computing networks using 
the easily accessible photodetector nonlinearity. We also demonstrated a further performance boost by exploit-
ing the gain nonlinearity from the voltage amplifier in the detection link. In our work, we used a basic 16-node 
reservoir computing network without any form of nonlinearity inside as the input to the readout system. By 
comparing electrical readout and optical readout systems on the 3-bit delay XOR task, we demonstrated that by 
performing the proper training method, the optical readout can utilize the photodetector nonlinearity much 
better than the electrical readout. For a long-distance and harder nonlinear fiber distortion compensation task, 
we further demonstrate that combining the photodetector nonlinearity with amplifier nonlinearity results in a 
system that is capable of delivering a six orders of magnitude BER improvement.
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