
SoftwareX 17 (2022) 100997

D

j

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

EvalNE: A framework for network embedding evaluation
Alexandru Mara ∗, Jefrey Lijffijt, Tijl De Bie
epartment of Electronics and Information Systems, Ghent University, Technologiepark 122, 9052 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 23 March 2021
Received in revised form 12 January 2022
Accepted 12 January 2022

Keywords:
Representation learning
Evaluation
Reproducibility
Open-source tools

a b s t r a c t

In this paper we introduce EvalNE, a Python toolbox for network embedding evaluation. The main
goal of EvalNE is to aid researchers and practitioners in performing consistent and reproducible
evaluations of new embedding methods, replicating existing evaluations, and conducting benchmark
studies. The toolbox can evaluate models independently of their programming language and assess
the quality of learned representations through data visualization and downstream tasks such as sign
and link prediction, network reconstruction, and node multi-label classification. EvalNE streamlines
evaluation by providing automation and abstraction for tasks such as hyperparameter tuning and
model validation, node and edge sampling, node-pair embedding computation, and performance
reporting. As a command line tool, configuration files describe the evaluation setup and guarantee
consistency and reproducibility. As an API, EvalNE provides the building blocks to design any evaluation
setup while minimizing the risk of evaluation errors.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.3.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00057
Code Ocean compute capsule N/A
Legal Code License MIT
Code versioning system used Git
Software code languages, tools, and services used Python 2.7.x & 3.6.x
Compilation requirements, operating environments & dependencies Numpy, Scipy, NetworkX, Scikit-learn, Pandas, Matplotlib, Tqdm
If available Link to developer documentation/manual https://evalne.readthedocs.io/en/latest/
Support email for questions alexandru.mara@ugent.be

Software metadata

Current software version v0.3.3
Permanent link to executables of this version https://github.com/Dru-Mara/EvalNE/releases/tag/v0.3.3
Legal Software License MIT
Computing platforms/Operating Systems Linux, macOS, Microsoft Windows
Installation requirements & dependencies Numpy, Scipy, NetworkX, Scikit-learn, Pandas, Matplotlib, Tqdm
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://evalne.readthedocs.io/en/latest/

Support email for questions alexandru.mara@ugent.be

∗ Corresponding author.
E-mail addresses: alexandru.mara@ugent.be (Alexandru Mara),

efrey.lijffijt@ugent.be (Jefrey Lijffijt), tijl.debie@ugent.be (Tijl De Bie).

1. Motivation and significance

Network embedding (NE) or network representation learning
methods aim to learn low-dimensional representations of net-
work nodes as vectors, typically in the Euclidean space. These
representations can then be directly used for network visualiza-

tion or to efficiently perform a variety of downstream prediction

ttps://doi.org/10.1016/j.softx.2022.100997
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.100997
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.100997&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00057
https://evalne.readthedocs.io/en/latest/
mailto:alexandru.mara@ugent.be
https://github.com/Dru-Mara/EvalNE/releases/tag/v0.3.3
https://evalne.readthedocs.io/en/latest/
mailto:alexandru.mara@ugent.be
mailto:alexandru.mara@ugent.be
mailto:jefrey.lijffijt@ugent.be
mailto:tijl.debie@ugent.be
https://doi.org/10.1016/j.softx.2022.100997
http://creativecommons.org/licenses/by/4.0/


Alexandru Mara, Jefrey Lijffijt and Tijl De Bie SoftwareX 17 (2022) 100997

t
4
h
a

m
t
h
d
c
F
c
n
d
a
e
w
t
t
a
p
c
a
s
e
o
d
n
p
c
w
F
n
d

e
E
o

E
f
t
i
T
d
p
g
e

E
c
f
U
n
N
n
h
S

2

l
b
d
b
p

asks. These tasks include sign prediction [1,2], link prediction [3,
], network reconstruction [5,6], and node classification [7,8]. A
igher performance on these downstream tasks is then generally
ssociated with a better representation of the network.
Evaluating NE methods based on downstream task perfor-

ance, however, is challenging and requires a number of addi-
ional steps and design choices which can confound the results,
arm reproducibility, and are prone to errors. Firstly, for each
ownstream task one must ensure that the input data is prepro-
essed consistently, such that all methods are correctly evaluated.
or instance, many NE methods require the input network to
ontain a single connected component (e.g. [4]) while some do
ot (e.g. [6]). Additionally, the necessary sets of train and test
ata (nodes or edges) can be selected according to a variety of
pproaches and be of different sizes [9]. Two popular choices for
dge sampling, for example, are pseudo-random train-test split
ith certain constraints or timestamp-based sampling (i.e., use
he most recent edges for testing and the remaining ones for
raining). Another source of evaluation inconsistencies is neg-
tive sampling [10]. This technique is commonly used in link
rediction evaluation to generate the negative class for the binary
lassification of edges and non-edges. The negative sampling
pproach and the relative sizes of the train and test non-edge
ets vary between scientific studies. Yet another challenge in NE
valuation is that embedding methods provide different types
f outputs. While some approaches only output node embed-
ings [11], others can provide node-pair embeddings [12] or even
ode similarities [4]. As such, specific pipelines for different out-
ut types are required. Particularly important, in this case, is the
omputation of node-pair embeddings from node embeddings
hich has been shown to strongly impact embedding quality [3].
inally, additional complexity stems from hyperparameter tuning,
ot only for the evaluated embedding methods, but also for the
ownstream task itself.
To address the above-mentioned challenges and simplify the

valuation of NE methods on downstream tasks, we introduce
valNE. The toolbox can be used both as a standalone application
r integrated in existing code.

valNE as a command line tool. EvalNE leverages configuration
iles that allow the user to describe complete experimental se-
ups, from the tasks, datasets and methods to use, to preprocess-
ng, sampling, hyperparameter tuning and metrics to optimize.
hese configuration files provide flexibility to define or replicate
ifferent experimental setups and are sufficient for complete re-
roducibility. After evaluation, detailed performance reports and
raphics are generated as well as log files detailing the issues
ncountered.

valNE as an API. The toolbox provides access to a series of
lasses and functions implementing various components required
or method evaluation on different downstream tasks (see Fig. 1).
sers can combine and modify these building blocks to produce
ew evaluation pipelines. The library does not implement any
E method but provides the necessary accessories to conve-
iently evaluate any off-the-shelf approach. The framework does,
owever, implement a number of link prediction heuristics (see
ection 3.2).

. Related software

To the best of our knowledge, no other libraries provide simi-
ar levels of automation and flexibility as EvalNE for network em-
edding evaluation. A recently proposed framework [13], which
raws inspiration from EvalNE, is geared towards evaluating em-
eddings on semantic tasks and is limited to node embedding ap-
roaches only. Other libraries such as OpenNE [14] and GEM [15]

focus mainly on providing implementations of NE methods and
present limited evaluation capabilities. Their evaluation pipelines
are rigid and tailored specifically to the approaches they imple-
ment, particular datasets and small sets of downstream tasks
(node classification in both cases and additionally link prediction
for GEM). The Karateclub [16] library is designed to aid users in
coding their own evaluations. Finally, other initiatives such as the
Open Graph Benchmark [17] collect challenging datasets for NE
evaluation. The associated OGB Python package also offer support
for data preprocessing and a set of evaluators specifically tailored
to the benchmark datasets.

Unlike these frameworks, EvalNE can evaluate methods with
different types of output, from node to node-pair embeddings
and node-pair similarities. Our framework is not limited to a
predefined set of networks or methods available in a particular
library. Instead, it can evaluate any available approach (note
that this includes all implementations in the above-mentioned
libraries). EvalNE also does not require users to write their own
evaluation pipelines nor significantly modify their code to fit a
particular API.

3. Software description

EvalNE is available on GitHub and is released under the MIT
free software license. The library’s code style complies with PEP
8 and the docstring documentation follows the standard Numpy
format. The toolbox is compatible with Python 2 and Python
3 and can be easily installed using pip. Supported platforms
include Linux, macOS, and Microsoft Windows. EvalNE only de-
pends on a small number of popular open-source packages and
others such as OpenNE and GEM are optional and can provide
implementations of different NE methods. The toolbox documen-
tation is automatically managed and hosted online by Read the
Docs. It provides detailed instructions on the installation and
main functionalities as well as a range of examples for both
command line and API use. Finally, the library contains a set of
pre-filled configuration files which allow one to reproduce the
experimental sections of several influential papers on NE.

3.1. Software architecture

Conceptually, the design of EvalNE can be seen as a set of
interconnected building blocks which provide all the necessary
components for evaluation. This modular structure, shown in
Fig. 1, simplifies code maintenance and addition of new features
and allows one to evaluate methods with different output types
(node embeddings, node-pair embeddings, node-pair similarities,
etc.) on different downstream tasks.

3.2. Software functionalities

The building blocks introduced in Section 3.1 are composed of
a variety of classes and methods offering the following function-
alities.

Data preprocessing. Building on the popular NetworkX [18]
framework, EvalNE offers additional functions for loading and
storing networks, pruning and relabeling nodes, removing self-
loops, sampling edges, restricting networks to the main con-
nected component and obtaining common statistics.
2



Alexandru Mara, Jefrey Lijffijt and Tijl De Bie SoftwareX 17 (2022) 100997

d
T
I
f
t
v
s
n
n
w

s
c
l
t
E

E
t
g
a
c
e
s
g
t
o
p
L

E
s
f
m
p
p
i
v
d
e
R
t

B
t
u
s
A
s
l
b

Fig. 1. Block diagram of EvalNE showing the methods and tasks that can be evaluated. Downstream link prediction, sign prediction, network reconstruction and
node classification tasks are abbreviated as LP, SP, NR, and NC, respectively. Dashed blocks correspond to user-specified methods with different output types while
the remaining blocks are provided by EvalNE.

Data sampling. For evaluation, sets of train, validation, and test
ata (nodes or edges) must be obtained from the input networks.
he particular sampling strategy varies for each downstream task.
n node classification, for instance, this is relatively straight-
orward as test/validation nodes can be sampled randomly. For
he remaining tasks, which require sets of edges, we provide a
ariety of sampling methods. From timestamp-based to random
ampling that ensures the train edges continue to span a con-
ected subgraph (a key requirement for many NE methods). For
egative sampling, EvalNE provides two alternatives: the open
orld and the closed world assumptions. The former considers the

case where non-edges are not known a priori and, thus, must be
ampled from the train graph spanned by the train edges. In this
ase, the sampled non-edges may overlap with the test edges. The
atter considers the case where non-edges are known a priori and,
hus, the train non-edges do not overlap with the test edges. The
valSplit class encapsulates the sampling and negative sampling

functionalities.

Model training & validation. EvalNE provides specific classes called
valuators for each downstream task. These classes manage model
raining with appropriate input data, hyperparameter tuning via
rid search and collection of results. For sign and link prediction
nd network reconstruction, methods providing node similarities
an be directly evaluated. Those that output node or node-pair
mbeddings are evaluated through binary classification. EvalNE
upports any Scikit-learn binary classifier and implements Lo-
istic Regression with cross-validation as a default. Methods
hat only output node embeddings additionally require a binary
perator to compute node-pair embeddings. For this, EvalNE im-
lements the following operators: average, Hadamard, weighted
1 and weighted L2 (see [3]).

valuation report & visualization. EvalNE can evaluate method
calability through wall clock time, and performance through
ixed-threshold metrics and threshold curves. The library imple-
ents over 10 different fixed-threshold metrics including AUC,
recision, recall, and F-score. Integrated threshold curves, which
resent method performance for a range of threshold values,
nclude precision–recall [19] and ROC [20] curves. Methods to
isualize embeddings and graphs are also provided as well as
imensionality reduction techniques to map higher-dimensional
mbeddings to 2D. Method specific performance is recorded in
esults objects while global evaluation summaries are provided
hrough Scoresheet objects.

aseline heuristics. Specifically for the link prediction task, the
oolbox provides a set of heuristic methods for both directed and
ndirected networks. These heuristics are based on: (i) node-pair
imilarities, i.e., common neighbors, Jaccard coefficient, Adamic–
dar index, preferential attachment, resource allocation, cosine
imilarity, Leicht–Holme–Newman index and topological over-
ap, (ii) paths, i.e., Katz similarity, and (iii) embeddings, i.e., all_
aselines (the concatenation of five heuristics as an embedding).

4. Illustrative examples

In this section, we present two examples that showcase the
use of EvalNE as a command line application and as a Python API.

4.1. Command line example

When using EvalNE as a command line application a configu-
ration file describing the evaluation setup is required. An example
of one such file is presented in Appendix A of the supplementary
material. The evaluation parameters in the configuration file are
grouped into 8 categories or sections also described in Appendix
A. These sections cover general task-related parameters, data
ingestion and preprocessing, edge sampling, methods to evaluate
and results reporting.

Once the configuration file is filled, the evaluation can be
started using the following command: python -m evalne <con-
fig_file>.ini. The toolbox will automatically log any issues
such as failed method executions, provide a tabular output and
two pickle files containing the train and test evaluation score-
sheets.

4.2. API example

A code snippet showing the use of EvalNE as an API to eval-
uate five different methods on downstream link prediction is
presented in Appendix B of the supplementary file. In this ex-
ample, we first read and preprocess a new dataset, crate an
LPEvalSplit object that will contain the train and test edges and
non-edges and initialize a link prediction evaluator. Then, we cre-
ate a scoresheet object to store the evaluation results and select
three baseline heuristics and two NE methods to be evaluated.
Finally, we launch the evaluation and present the results.

5. Impact

Recent research has found that progress is stalling in many
areas within AI [21–23], and that at the core of this phenomenon
is the so called reproducibility crisis. Tools such as EvalNE and
others inspired by it, e.g. [13], have the potential to minimize
this crisis by enabling reproducible and consistent evaluations
and large-scale benchmarks. One such large-scale evaluation us-
ing EvalNE has already been conducted, specifically for the link
prediction task [9]. Moreover, the ability to use configuration
files to describe rich experimental setups presents two particular
benefits. On the one hand, evaluations are simplified as many
repetitive tasks such as data preprocessing or hyperparameter
tuning are automated. On the other hand, ensuring that other
practitioners can replicate an evaluation, reduces to making the
configuration files accessible. The authors of [2,24] have already
explored these benefits when conducting a link prediction eval-
uation on large-scale networks and a sign prediction evaluation,
3



Alexandru Mara, Jefrey Lijffijt and Tijl De Bie SoftwareX 17 (2022) 100997

r
a
t
e
E
s

6

f
m
p
a
f
s
f
p
c

D

c
t

A

f
S
A
t
d
G

A

o

R

espectively. We also note that the software has attracted some
ttention in other research areas with BSc and MSc thesis in
he fields of Mathematics [25], Biology [26] and Computer Sci-
nce [27] making use of its capabilities. Finally, the user base of
valNE has been continuously growing for the past months as
hown by several popularity indicators of our GitHub repository.

. Conclusions

In this paper we have introduced EvalNE, a Python toolbox
or consistent and reproducible evaluation of network embedding
ethods. The toolbox allows users to compare NE methods and
erform benchmarks on a variety of downstream tasks using
utomated yet highly flexible evaluation pipelines. In the near
uture, we expect to broaden the impact of our framework with
upport for additional tasks such as clustering and node classi-
ication through link prediction, direct integration with libraries
roviding NE method implementations, extended visualization
apabilities and a GUI.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The research leading to these results has received funding
rom the European Research Council under the European Union’s
eventh Framework Programme (FP7/2007–2013) / ERC Grant
greement no. 615517, from the Flemish Government under
he ‘‘Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaan-
eren’’ programme, and from the FWO (project no. G091017N,
0F9816N, 3G042220).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.softx.2022.100997.

eferences

[1] Wang S, Tang J, Aggarwal C, Chang Y, Liu H. Signed network embedding in
social media. In: Proceedings of the 17th SIAM international conference on
data mining. 2017, p. 327–35. http://dx.doi.org/10.1137/1.9781611974973.
37.

[2] Mara A, Mashayekhi Y, Lijffijt J, de Bie T. CSNE: Conditional signed network
embedding. In: Proceedings of the 29th ACM international conference on
information & knowledge management. 2020, p. 1105–14. http://dx.doi.
org/10.1145/3340531.3411959.

[3] Grover A, Leskovec J. Node2vec: Scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. 2016, p. 855–64. http://dx.doi.org/
10.1145/2939672.2939754.

[4] Kang B, Lijffijt J, De Bie T. Conditional network embeddings. In: Proceedings
of the 7th international conference on learning representations. 2019, URL
https://openreview.net/forum?id=ryepUj0qtX.

[5] Wang D, Cui P, Zhu W. Structural deep network embedding. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 2016, p. 1225–34. http://dx.doi.org/10.1145/
2939672.2939753.

[6] Zhang Z, Cui P, Wang X, Pei J, Yao X, Zhu W. Arbitrary-order proximity
preserved network embedding. In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2018, p.
2778–86. http://dx.doi.org/10.1145/3219819.3219969.

[7] Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on knowledge discovery and data mining. 2014, p. 701–10.
http://dx.doi.org/10.1145/2623330.2623732.

[8] Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. LINE: Large-scale
information network embedding. In: Proceedings of the 24th international
conference on world wide web. 2015, p. 1067–77. http://dx.doi.org/10.
1145/2736277.2741093.

[9] Mara A, Lijffijt J, De Bie T. Benchmarking network embedding models for
link prediction : are we making progress? In: Proceedings of the 7th IEEE
international conference on data science and advanced analytics. 2020, p.
138–47. http://dx.doi.org/10.1109/DSAA49011.2020.00026.

[10] Kotnis B, Nastase V. Analysis of the impact of negative sampling on
link prediction in knowledge graphs. 2017, CoRR abs/1708.06816. URL
https://dblp.org/rec/journals/corr/abs-1708-06816.

[11] Tsitsulin A, Mottin D, Karras P, Müller E. VERSE: Versatile graph embed-
dings from similarity measures. In: Proceedings of the 27th international
conference on world wide web. 2018, p. 539–48. http://dx.doi.org/10.1145/
3178876.3186120.

[12] Song W, Wang S, Yang B, Lu Y, Zhao X, Liu X. Learning node and edge
embeddings for signed networks. Neurocomputing 2018;319:42–54. http:
//dx.doi.org/10.1016/j.neucom.2018.08.072.

[13] Pellegrino MA, Cochez M, Garofalo M, Ristoski P. A configurable evaluation
framework for node embedding techniques. In: ESWC satellite events.
2019, p. 156–60. http://dx.doi.org/10.1007/978-3-030-32327-1_31.

[14] Tu C, Yang C, Liu Z, Sun M. Network representation learning: an
overview. Sci Sinica Inf 2017;47(8):980–96. http://dx.doi.org/10.1360/
N112017-00145.

[15] Goyal P, Ferrara E. GEM: A python package for graph embedding methods.
J Open Sour Softw 2018;3(29):876. http://dx.doi.org/10.21105/joss.00876.

[16] Rozemberczki B, Kiss O, Sarkar R. Karate club: An API oriented open-source
Python framework for unsupervised learning on graphs. In: Proceedings
of the 29th ACM international conference on information & knowl-
edge management. 2020, p. 3125–32. http://dx.doi.org/10.1145/3340531.
3412757.

[17] Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, et al. Open graph benchmark:
Datasets for machine learning on graphs. 2020, CoRR abs/2005.00687 URL
https://dblp.org/rec/journals/corr/abs-2005-00687.

[18] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics,
and function using networkx. In: Proceedings of the 7th Python in science
conference. 2008, p. 11–5, URL https://www.osti.gov/biblio/960616.

[19] Lichtenwalter RN, Chawla NV. Link prediction: Fair and effective eval-
uation. In: Proceedings of the 2012 IEEE/ACM International conference
on advances in social networks analysis and mining. 2012, p. 376–83.
http://dx.doi.org/10.1109/ASONAM.2012.68.

[20] Fawcett T. ROC graphs: Notes and practical considerations for researchers.
Tech. rep., Personal communication; 2004.

[21] Hutson M. Core progress in AI has stalled in some fields. Science
2020;368(6494):927. http://dx.doi.org/10.1126/science.368.6494.927.

[22] Dacrema MF, Cremonesi P, Jannach D. Are we really making much
progress? A worrying analysis of recent neural recommendation ap-
proaches. In: Proceedings of the 13th ACM conference on recommender
systems. 2019, p. 101–9. http://dx.doi.org/10.1145/3298689.3347058.

[23] Blalock D, Ortiz JJG, Frankle J, Guttag J. What is the state of neural
network pruning? In: Proceedings of the 2nd machine learning and
systems conference. 2020, p. 129–46, URL https://proceedings.mlsys.org/
paper/2020/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html.

[24] Adriaens F, Mara A, Lijffijt J, De Bie T. Block-approximated exponential
random graphs. In: Proceedings of the 7th IEEE international conference
on data science and advanced analytics. (DSAA), 2020, p. 70–80. http:
//dx.doi.org/10.1109/DSAA49011.2020.00019.

[25] Petro-de Chalendar KN, Benczúr A. Node embedding algorithms and their
evaluation through link prediction. Tech. rep., Eotvos Lorand Univer-
sity; 2020, URL https://web.cs.elte.hu/blobs/diplomamunkak/bsc_matelem/
2020/petro_de_chalendar_katalin_nicole.pdf.

[26] Strybol P-P. Using deep learning approaches to unveil key biological
processes in human tumours. Tech. rep., Ghent University; 2019, URL
https://lib.ugent.be/catalog/rug01:002782844.

[27] Mbungu S, Saerens M. Graph embedding with application to semi-
supervised classification, visualization, reconstruction and neighborhood
preservation tasks: an experimental comparison. Tech. rep., Ecole poly-
technique de Louvain; 2019, URL http://hdl.handle.net/2078.1/thesis:
19457.
4

https://doi.org/10.1016/j.softx.2022.100997
http://dx.doi.org/10.1137/1.9781611974973.37
http://dx.doi.org/10.1137/1.9781611974973.37
http://dx.doi.org/10.1137/1.9781611974973.37
http://dx.doi.org/10.1145/3340531.3411959
http://dx.doi.org/10.1145/3340531.3411959
http://dx.doi.org/10.1145/3340531.3411959
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
https://openreview.net/forum?id=ryepUj0qtX
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1145/3219819.3219969
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1109/DSAA49011.2020.00026
https://dblp.org/rec/journals/corr/abs-1708-06816
http://dx.doi.org/10.1145/3178876.3186120
http://dx.doi.org/10.1145/3178876.3186120
http://dx.doi.org/10.1145/3178876.3186120
http://dx.doi.org/10.1016/j.neucom.2018.08.072
http://dx.doi.org/10.1016/j.neucom.2018.08.072
http://dx.doi.org/10.1016/j.neucom.2018.08.072
http://dx.doi.org/10.1007/978-3-030-32327-1_31
http://dx.doi.org/10.1360/N112017-00145
http://dx.doi.org/10.1360/N112017-00145
http://dx.doi.org/10.1360/N112017-00145
http://dx.doi.org/10.21105/joss.00876
http://dx.doi.org/10.1145/3340531.3412757
http://dx.doi.org/10.1145/3340531.3412757
http://dx.doi.org/10.1145/3340531.3412757
https://dblp.org/rec/journals/corr/abs-2005-00687
https://www.osti.gov/biblio/960616
http://dx.doi.org/10.1109/ASONAM.2012.68
http://refhub.elsevier.com/S2352-7110(22)00013-9/sb20
http://refhub.elsevier.com/S2352-7110(22)00013-9/sb20
http://refhub.elsevier.com/S2352-7110(22)00013-9/sb20
http://dx.doi.org/10.1126/science.368.6494.927
http://dx.doi.org/10.1145/3298689.3347058
https://proceedings.mlsys.org/paper/2020/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/d2ddea18f00665ce8623e36bd4e3c7c5-Abstract.html
http://dx.doi.org/10.1109/DSAA49011.2020.00019
http://dx.doi.org/10.1109/DSAA49011.2020.00019
http://dx.doi.org/10.1109/DSAA49011.2020.00019
https://web.cs.elte.hu/blobs/diplomamunkak/bsc_matelem/2020/petro_de_chalendar_katalin_nicole.pdf
https://web.cs.elte.hu/blobs/diplomamunkak/bsc_matelem/2020/petro_de_chalendar_katalin_nicole.pdf
https://web.cs.elte.hu/blobs/diplomamunkak/bsc_matelem/2020/petro_de_chalendar_katalin_nicole.pdf
https://lib.ugent.be/catalog/rug01:002782844
http://hdl.handle.net/2078.1/thesis:19457
http://hdl.handle.net/2078.1/thesis:19457
http://hdl.handle.net/2078.1/thesis:19457

	EvalNE: A framework for network embedding evaluation
	Motivation and significance
	Related software
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Command line example
	API example

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


