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Abstract
Using the EffectLiteR framework, researchers can test classical null hypotheses about effects of 
interest via Wald and F-tests, while taking into account the stochastic nature of group sizes. This 
paper aims at extending EffectLiteR to test informative hypotheses, assuming for example that the 
average effect of a new treatment is greater than the average effect of an old treatment, which in 
turn is greater than zero. We present a simulated data example to show two methodological 
novelties. First, we illustrate how to use the Fbar- and generalized linear Wald test to assess 
informative hypotheses. While the classical test did not reach significance, the informative test 
correctly rejected the null hypothesis, indicating the need to take into account the order of the 
treatment groups. Second, we demonstrate how to account for stochastic group sizes in 
informative hypotheses using the generalized non-linear Wald statistic. The paper concludes with 
a short data example.

Keywords
treatment effects, prior order expectations, type I error, higher power, hypothesis testing, Wald tests and F-tests 
for informative effect hypotheses

Empirical research across a broad range of disciplines aims at assessing the effectiveness 
of a treatment or an intervention. The interest might lie in average effects on a certain 
outcome or in conditional effects, given values of categorical or continuous covariates. 
For example, a researcher might be interested in the average effect of an extended day 
program on student achievement (Meyer & Van Klaveren, 2013) or the conditional effects 
of an anxiety intervention on symptoms and functioning measures of females versus 
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males (Grubbs et al., 2015). Currently, most researchers use linear regression or ANOVA 
(analysis of variance; Rutherford, 2001, Weiss, 2006) to analyze their data. However, 
this only yields distinct regression coefficients, whereas the effects of interest are often 
a more complicated function of these parameters. This makes interpretation of results 
cumbersome.

The EffectLiteR approach (Mayer & Dietzfelbinger, 2019; Mayer et al., 2016) provides 
a framework and an R package (R Core Team, 2020) for the estimation of average and 
conditional effects of a discrete treatment variable on a continuous outcome variable, 
conditioning on categorical and continuous covariates. This approach uses definitions 
of average and conditional effects from the causal inference literature (Imbens & Rubin, 
2015; Steyer et al., 2014). In addition to the computation of these effects of interest and 
their standard errors, Wald or F-tests are used to test several hypotheses of interest, for 
example that (all) average effects are equal to zero, or (all) conditional effects are equal 
to zero in the population. A feature of the EffectLiteR approach are stochastic group 
weights, that have been embedded into the calculation of these effects (see, e.g., Mayer & 
Thoemmes, 2019). In the behavioral and social sciences, treatment group sizes often vary 
across samples. Stochastic group sizes should be considered whenever the exact group 
sizes are not determined before conducting the experiment. For an in-depth discussion 
on why it is important to include stochastic group sizes in general linear models and 
structural equation models, see Mayer and Thoemmes (2019).

A limitation of the current EffectLiteR approach is that it does not allow for testing 
informative hypotheses (Hoijtink, 2012; Silvapulle & Sen, 2005) yet. For example, assume 
there are three groups in a randomized experiment (without further covariates), where 
one is a control group (X = 0), one receives a standard treatment (X = 1) and one 
receives a novel treatment (X = 2) and we are interested in the group means of the de­
pendent variable Y . The researcher expects that the group mean of the novel treatment, 
μ2, is greater than the group mean of the standard treatment, μ1, and that the group 
mean of the standard treatment is greater than the group mean of the control group, μ0. 
Within the framework of classical null hypothesis testing, a two-step procedure has to be 
followed. First, we have to test H0: μ2 = μ1 = μ0 against Ha: not H0, that is, not all three 
means are equal. If we can reject H0 in favor of Ha, a second step follows, in which we 
execute pairwise comparisons to determine which means are equal and which means are 
not equal. Thus, step one alone does not give us the answer we are looking for, and step 
two entails multiple testing, which brings along the risk of an inflated type I error rate. 
In an informative test, the a priori expectation of the order of the means is explicitly 
taken into account. For example, we can test the null hypothesis H0: μ2 = μ1 = μ0 against 
the ordered hypothesis Ha: μ2 > μ1 > μ0 in a single step. The statistical approach to allow 
for these informative hypothesis tests is called constrained statistical inference (Hoijtink, 
2012; Silvapulle & Sen, 2005). It is available in several R packages, including restriktor 
(Vanbrabant, 2020), ic.infer (Grömping, 2010) and bain (Gu et al., 2020).
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The goal of this paper is to integrate informative hypothesis testing into the Effect­
LiteR approach. We will show how F- and Wald tests can be used in the regular as 
well as the informative case, where the quantities of interest can be expressed as a 
linear or non-linear function of the parameters. The paper is organized as follows. First, 
an introduction to the EffectLiteR framework will be given by means of a simulated 
data example along the lines of the original EffectLiteR paper (Mayer et al., 2016). It 
will be shown how (non-informative) hypotheses about effects of interest can currently 
be tested via standard F- or linear Wald tests. Second, it will be explained how to 
incorporate informative hypotheses into the EffectLiteR approach. For this purpose, the 
F–- and generalized linear Wald test as well as two procedures to calculate their p-values 
will be presented. Finally, stochastic group sizes will be included, which implies two 
further challenges. First, parameter estimation will be carried out by means of structural 
equation modeling (SEM) via the R package lavaan (Rosseel, 2012). And second, the 
generalized non-linear Wald test will be introduced. The paper concludes with a short ar­
tificial data example from the constrained statistical inference literature. Accompanying 
Supplementary Materials are provided and will be referenced throughout the paper.

Introduction Into the EffectLiteR Framework
In the following, the background of the EffectLiteR framework is explained. This will 
be illustrated by means of a non-randomized experiment, whose data of size N = 1000
are generated along the lines of Mayer et al. (2016). In the Supplementary Materials, the 
associated R script (“A-exampleI.R”) as well as the data set itself (“B-exampleIData.rds”) 
and detailed explanations regarding the R script (“C-explanation.pdf”) can be found. 
Three treatment groups are considered, namely a group receiving innovative therapy 
(X = 2), a group receiving conventional therapy (X = 1) and a wait-list control group 
(X = 0). As covariates, the dichotomous variable gender with values male (K = 0) and 
female (K = 1) and the continuous covariate mental health pre-test (Z ), are considered. 
The outcome variable is the post-test of mental health (Y ). Mental health will be treated 
as a manifest variable. Table 1 shows the relative treatment group frequencies, the means 
of Z  and the raw as well as the adjusted means of mental health Y .

When all variables are observed, the EffectLiteR approach first estimates a linear 
regression model. Typically, this regression model contains not only the main effects 
of X , K  and Z , but also the interaction effects of X ⋅ K , X ⋅ Z  and K ⋅ Z  as well as 
the three-way interaction effect of X ⋅ K ⋅ Z . However, when defining the model via 
the effectLite() command, the researcher can specify any preferences regarding 
the interactions by means of the interactions= argument. In our case, we fit the 
regression model including all possible interactions:

Keck, Mayer, & Rosseel 309

Methodology
2021, Vol. 17(4), 307–325
https://doi.org/10.5964/meth.7379

https://www.psychopen.eu/


Ta
bl

e 
1

R
aw

 M
ea

ns
 o

f M
en

ta
l H

ea
lth

 P
os

t-
Te

st
 E

Y
, A

dj
us

te
d 

M
ea

ns
 o

f M
en

ta
l H

ea
lth

 P
os

t-
Te

st
 A

djM
Y

, R
aw

 M
ea

ns
 o

f M
en

ta
l H

ea
lth

 P
re

-T
es

t E
Z

 a
nd

 R
el

at
iv

e 
Tr

ea
tm

en
t 

G
ro

up
 F

re
qu

en
ci

es
 P

X
=

x,
K

=
k

G
ro

up
X

=
0

X
=

1
X

=
2

X
=

.

E
Y

X
=

0,K
=

0
=

1.5
26

E
Y

X
=

1,K
=

0
=

1.6
30

E
Y

X
=

2,K
=

0
=

1.8
21

E
Y

K
=

0
=

1.7
25

K
=

0
Ad

jM
Y

X
=

0,K
=

0
=

1.4
83

Ad
jM

Y
X

=
1,K

=
0

=
1.6

13
Ad

jM
Y

X
=

2,K
=

0
=

1.8
19

Ad
jM

Y
K

=
0

=
1.6

95
E

Z
X

=
0,K

=
0

=
0.4

97
E

Z
X

=
1,K

=
0

=
0.7

03
E

Z
X

=
2,K

=
0

=
0.6

92
E

Z
K

=
0

=
0.6

50
P

X
=

0,K
=

0
=

0.1
04

P
X

=
1,K

=
0

=
0.0

74
P

X
=

2,K
=

0
=

0.2
91

P
K

=
0

=
0.4

69
E

Y
X

=
0,K

=
1

=
1.7

04
E

Y
X

=
1,K

=
1

=
1.7

44
E

Y
X

=
2,K

=
1

=
1.9

36
E

Y
K

=
1

=
1.8

11
K

=
1

Ad
jM

Y
X

=
0,K

=
1

=
1.7

06
Ad

jM
Y

X
=

1,K
=

1
=

1.7
44

Ad
jM

Y
X

=
2,K

=
1

=
1.9

24
Ad

jM
Y

K
=

1
=

1.8
29

E
Z

X
=

0,K
=

1
=

0.5
03

E
Z

X
=

1,K
=

1
=

0.6
44

E
Z

X
=

2,K
=

1
=

0.7
71

E
Z

K
=

1
=

0.6
44

P
X

=
0,K

=
1

=
0.2

06
P

X
=

1,K
=

1
=

0.0
97

P
X

=
2,K

=
1

=
0.2

28
P

K
=

1
=

0.5
31

E
Y

X
=

0
=

1.6
44

E
Y

X
=

1
=

1.6
95

E
Y

X
=

2
=

1.8
72

K
=

.
Ad

jM
Y

X
=

0
=

1.6
01

Ad
jM

Y
X

=
1

=
1.6

83
Ad

jM
Y

X
=

2
=

1.8
74

E
Z

X
=

0
=

0.5
01

E
Z

X
=

1
=

0.7
00

E
Z

X
=

2
=

0.7
26

P
X

=
0

=
0.3

10
P

X
=

1
=

0.1
71

P
X

=
2

=
0.5

19
N

ot
e. 

T
he

 la
st

 c
ol

um
n 

of
 th

e 
ta

bl
e 

sh
ow

s 
th

e 
ex

pe
ct

at
io

ns
 a

nd
 p

ro
ba

bi
lit

ie
s 

w
he

re
 w

e 
ig

no
re

 X
. T

he
 la

st
 r

ow
 s

ho
w

s 
th

e 
ex

pe
ct

at
io

ns
 a

nd
 p

ro
ba

bi
lit

ie
s 

w
he

re
 w

e 
ig

no
re

 K
.

Informative Hypotheses in EffectLiteR 310

Methodology
2021, Vol. 17(4), 307–325
https://doi.org/10.5964/meth.7379

https://www.psychopen.eu/


E Y X , Z , K = γ000 + γ010 ⋅ K + γ001 ⋅ Z + γ011 ⋅ K ⋅ Z
+ γ100 + γ110 ⋅ K + γ101 ⋅ Z + γ111 ⋅ K ⋅ Z ⋅ IX=1
+ γ200 + γ210 ⋅ K + γ201 ⋅ Z + γ211 ⋅ K ⋅ Z ⋅ IX=2,

(1)

where IX=x are dummy variables indicating the treatment group and the three-digit 
subscripts of the regression coefficients refer to the treatment group (first subscript), the 
gender K(second subscript) and the pre-test of mental health Z  (third subscript). Based 
on this regression model, we obtain estimates for the twelve γs (see Table 2). While it is 
common to use βs in the regression literature, the EffectLiteR approach is based on the γ
notation (Mayer et al., 2016).

Table 2

Estimated Regression Parameters (Simulated Data)

γ000 γ001 γ010 γ011 γ100 γ101 γ110 γ111 γ200 γ201 γ210 γ211

1.667 -0.285 0.029 0.300 -0.252 0.591 0.261 -0.546 0.128 0.322 0.032 -0.234

All the effects of interest in the EffectLiteR approach will be written as a function of the 
estimated regression parameters and the (conditional) expectations of the covariates. In 
the next section, possible hypotheses of interest are discussed.

Formulation of Hypotheses
With a general linear hypothesis test, hypotheses concerning regression parameters like 
γ100 = 0 versus γ100 ≠ 0 can be tested. In contrast, EffectLiteR allows for testing hypothe­
ses concerning average and conditional effects like AE10 = 0 versus AE10 ≠ 0. Here, AE10
is the average effect of treatment X = 1 compared to the control group X = 0. In this 
paper, we aim at combining EffectLiteR and informative hypotheses, which will allow 
for testing hypotheses like AE20 = AE10 versus AE20 > AE10. Regarding our illustrative 
example, one may be interested in the following hypotheses:

H1 :AE20 = 0, AE10 = 0,
H2 :AE20 ≠ 0, AE10 ≠ 0,
H3 :AE20 > 0, AE10 > 0,
H4 :AE20 > AE10 > 0.

(2)

H1 assumes that the average effect of innovative therapy (AE20) and the average effect of 
conventional therapy (AE10) equal zero. H2 states that these average effects are not equal 
to zero. According to H3, the average effects of innovative (AE20) as well as conventional 

Keck, Mayer, & Rosseel 311

Methodology
2021, Vol. 17(4), 307–325
https://doi.org/10.5964/meth.7379

https://www.psychopen.eu/


therapy (AE10) are greater than zero. Finally, H4 postulates a complete ordering with 
the average effect of innovative therapy (AE20) being greater than the average effect of 
conventional therapy (AE10) and the average effect of conventional therapy being greater 
than zero. Note that H3 represents a special case. Even though this is an informative 
hypothesis with two separate constraints, it can still be carried out within the framework 
of classical null hypothesis testing by using two one-sided tests (Casella & Berger, 2002). 
This is not possible anymore as soon as we impose two or more constraints at once as 
in H4. The approach presented in this paper allows for testing all of the above mentioned 
hypotheses. This includes the calculation of the average effects by means of the model 
equations, which are presented in the next section.

EffectLiteR Model
The EffectLiteR model is based on intercept and effect functions (see also Steyer, 2021). 
Considering three treatment groups, a binary variable (K) with values 0 and 1 as well as 
a continuous covariate (Z ), these can be formulated as follows:

E Y X , K , Z = g0 K , Z + g1 K , Z ⋅ IX=1 + g2 K , Z ⋅ IX=2,
g0 K , Z = γ000 + γ010 ⋅ K + γ001 ⋅ Z + γ011 ⋅ K ⋅ Z ,
g1 K , Z = γ100 + γ110 ⋅ K + γ101 ⋅ Z + γ111 ⋅ K ⋅ Z ,
g2 K , Z = γ200 + γ210 ⋅ K + γ201 ⋅ Z + γ211 ⋅ K ⋅ Z ,

(3)

which corresponds to Equation 1. The intercept function g0 K , Z  represents the condi­
tional regressive dependency of the outcome variable mental health Y  on the covariates 
in the control group (X = 0). The values of the effect functions g1 K , Z  and g2 K , Z
represent the conditional treatment effects of conventional therapy (X = 1 versus X = 0) 
and innovative therapy (X = 2 versus X = 0) on the post-test Y , given values of the pre­
test variable Z  and the gender variable K . The average effects are defined as expectations 
of the effect functions g1 K , Z  and g2 K , Z . For example, the unconditional expectation 
of the g1 K , Z  effect function, E g1 K , Z , is the average effect of conventional therapy 
(X = 1 versus X = 0). The g1 K , Z  function represents the difference between the two 
regressions E Y X = 1, K , Z  and E Y X = 0, K , Z .

To be able to calculate the average effect, we need the unconditional expectation of Z , 
the unconditional expectation of K  and the unconditional expectation of K ⋅ Z . Note that 
for binary K , the unconditional expectation equals the probability of K = 1. The follow­
ing calculations can also be found in the document “D-manualCalculations.pdf” in the 
Supplementary Materials, which contains a more exhaustive overview of the calculations 
done by EffectLiteR including all intermediate steps. The unconditional expectation of Z
can be calculated as follows:
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E Z =E Z X = 0, K = 0 ⋅ P X = 0, K = 0 + E Z X = 0, K = 1 ⋅ P X = 0, K = 1
+E Z X = 1, K = 0 ⋅ P X = 1, K = 0 + E Z X = 1, K = 1 ⋅ P X = 1, K = 1
+E Z X = 2, K = 0 ⋅ P X = 2, K = 0 + E Z X = 2, K = 1 ⋅ P X = 2, K = 1 ,

(4)

which yields 0.647 in our simulated data set. The unconditional probability of K = 1 can 
be obtained as:

P K = 1 = P X = 0, K = 1 + P X = 1, K = 1 + P X = 2, K = 1 , (5)

which is 0.531 in our example data set. Finally, E K ⋅ Z  can be calculated as follows:

E K ⋅ Z =E Z X = 0, K = 1 ⋅ P X = 0, K = 1
+E Z X = 1, K = 1 ⋅ P X = 1, K = 1
+E Z X = 2, K = 1 ⋅ P X = 2, K = 1 ,

(6)

which equals 0.342 in our simulated data set. We can obtain the average effect AE10 by 
taking the expectation of the effect function:

AE10= E g1 Z , K = E γ100 + γ101 ⋅ Z + γ110 ⋅ K + γ111 ⋅ Z ⋅ K
= γ100 + γ101 ⋅ E Z + γ110 ⋅ P K = 1 + γ111 ⋅ E K ⋅ Z , (7)

which yields 0.082 in our simulated data set. The computation of the average effect AE20
can proceed analogously:

AE20= E g2 K , Z = E γ200 + γ201 ⋅ Z + γ210 ⋅ K + γ211 ⋅ Z ⋅ K
= γ200 + γ201 ⋅ E Z + γ210 ⋅ P K = 1 + γ211 ⋅ E K ⋅ Z , (8)

which is 0.274 in our example data set. Furthermore, the adjusted means can be compu­
ted as follows:

AdjM Y X = 0 =E E Y X = 0, K , Z = E g0 K , Z
=γ000 + γ001 ⋅ E Z + γ010 ⋅ P K = 1 + γ011 ⋅ E K ⋅ Z ,

AdjM Y X = 1 =E E Y X = 1, K , Z = E g0 K , Z + g1 K , Z
=γ000 + γ001 ⋅ E Z + γ010 ⋅ P K = 1 + γ011 ⋅ E K ⋅ Z

+γ100 + γ101 ⋅ E Z + γ110 ⋅ P K = 1 + γ111 ⋅ E K ⋅ Z ,
AdjM Y X = 2 =E E Y X = 2, K , Z = E g0 K , Z + g2 K , Z

=γ000 + γ001 ⋅ E Z + γ010 ⋅ P K = 1 + γ011 ⋅ E K ⋅ Z
+γ200 + γ201 ⋅ E Z + γ210 ⋅ P K = 1 + γ211 ⋅ E K ⋅ Z .

(9)
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In our simulated data set, the adjusted means equal 1.601, 1.683 and 1.875. As can be seen 
from the equations, the average effect of conventional therapy equals the difference of 
the adjusted means of the groups X = 1 and X = 0, while the average effect of innovative 
therapy equals the difference of the adjusted means of the groups X = 2 and X = 0. 
The columns of Table 3 titled “Fixed group sizes” show the EffectLiteR estimates of all 
adjusted means and all average effects, including their standard errors. The columns 
titled “Stochastic group sizes” show the lavaan estimates when considering stochastic 
group sizes, which will be addressed later.

Table 3

Adjusted Means and Average Effects Estimates With Standard Errors in Parentheses (Simulated Data)

Group

Fixed group sizes Stochastic group sizes

Adjusted mean Average effect Adjusted mean Average effect

Control (X = 0) 1.601 (0.099) 1.601 (0.099)

Conventional therapy (X = 1) 1.683 (0.127) 0.082 (0.161) 1.683 (0.128) 0.082 (0.162)

Innovative therapy (X = 2) 1.875 (0.074) 0.274 (0.124) 1.875 (0.075) 0.274 (0.124)

Note. The average effect of conventional therapy (X = 1 versus X = 0) as well as the average effect of innova­
tive therapy (X = 2 versus X = 0) equal the differences of the respective adjusted means: 1.683 − 1.601 = 0.082
and 1.875 − 1.601 = 0.274.

To test the hypotheses of interest, EffectLiteR makes use of the F-statistic or the linear 
Wald test. Both will be explained below.

Hypothesis Testing
The F-test can be calculated as follows (Seber & Lee, 2012, p. 100):

F   = n
ℎ(Rγ)′(RI 1

−1R′)−1(Rγ) D F , (10)

where n is the number of observations, ℎ is the row rank of R, which is the constraint 
matrix specifying the linear combinations of regression coefficients expressing the hy­
pothesis of interest, γ is the vector of estimated regression coefficients and I 1 their unit 
information matrix. Under the null hypothesis, the F-statistic follows an F  distribution 
with df1 = ℎ, df2 = n − p, where p is the column rank of X , the design matrix of the 
regression model.

Using the same notation, the linear Wald test can be defined as (Fahrmeir et al., 2013, 
p. 663):
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W ald  = n(Rγ)′(RI 1
−1R′)−1(Rγ) D χ2. (11)

Under the null hypothesis, the linear Wald test is χ2 distributed with df = ℎ. We can 
construct two versions of the linear Wald statistic, a regular and a corrected one (Seber 
& Lee, 2012, p. 100). The difference between them lies in the calculation of the unit 
information matrix. In the regular linear Wald statistic, the unit information matrix can 
be expressed as:

I 1  = 1
n · X ′X · 1

S2 , (12)

where X ′X  is the cross-product of the design matrix and the mean squared error S2 is 
calculated as follows:

S2  = RSS(γ)
n . (13)

RSS γ  is the residual sum of squares and can be obtained as:

RSS(γ)  = ∑
i = 1

n ei2, (14)

where ei are the deviations of the observed from the predicted data based on the regres­
sion model using the unrestricted estimates γ. To obtain the corrected linear Wald 
statistic, S2 in Equation 12 is substituted by Scorrected

2 , the degrees of freedom corrected 
mean squared error. It is defined as:

Scorrected
2   = RSS(γ)

n − p . (15)

If we use Scorrected
2 , W ald/ℎ will be identical to the F-statistic (Fahrmeir et al., 2013, p. 131). 

If we use S2, W ald/ℎ and F  values will be similar, but not identical in small samples. 
EffectLiteR uses Scorrected

2  to calculate the Wald statistic, but it is important to keep this 
subtle difference in mind when using other software programs, especially if the sample 
size is small.

To test H1 against H2 in the EffectLiteR framework, R has to be defined as follows. 
AE10 can be written as r1′γ, where r1′ equals:

r1′  = 0 0 0 0 1 E(Z) P(K = 1) E(K · Z) 0 0 0 0 . (16)

Similarly, AE20 can be written as r2′γ, where r2′ equals:
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r2′  = 0 0 0 0 0 0 0 0 1 E(Z) P(K = 1) E(K · Z) . (17)

Combining r1′ and r2′ gives the full constraint matrix:

R  = 0 0 0 0 1 E(Z) P(K = 1) E(K · Z) 0 0 0 0
0 0 0 0 0 0 0 0 1 E(Z) P(K = 1) E(K · Z) . (18)

This hypothesis of no average effects is routinely calculated by EffectLiteR and yields 
F 2, 988 = 2.66, p = .071. Thus, we cannot reject H1:AE20 = 0, AE10 = 0 in favor of 
H2:AE20 ≠ 0, AE10 ≠ 0, using an α-level of .05. Furthermore, the current EffectLiteR ap­
proach is not equipped to test H1 against the fully ordered informative hypothesis H4. 
In the following section, it will be shown how to extend the EffectLiteR approach to 
incorporate informative hypotheses.

Integrating Informative Hypotheses into the 
EffectLiteR Framework

Informative hypotheses reflect prior order expectations regarding means, regression 
coefficients or combinations thereof. These hypotheses can be constructed by means of 
different constraints (see, e.g., Hoijtink, 2012). The most important constraints are equal­
ity constraints like μ1 = μ2 and inequality constraints like μ1 < μ2 or μ2 − μ1 > 0.5. Both 
large-sample test statistics (generalized Wald, Score or likelihood ratio) and small-sample 
test statistics (F–, E–) have been developed (Barlow et al., 1972; Robertson et al., 1988; 
Silvapulle & Sen, 2005). The F–-test was first introduced by Kudô (1963) and generalized 
by Wolak (1987). The F–-test and the generalized linear Wald test will be explained in 
more detail below.

Fbar-Statistic
The F–-statistic can be defined as follows (Silvapulle & Sen, 2005, p. 29):

F   = n(Rγ)′(RI 1
−1R′)−1(Rγ) D F . (19)

Note that R in Equation 19 is the same R as in Equation 10. However, γ, the vector of 
estimated unrestricted regression coefficients in Equation 10, is now replaced by γ, the 
vector of estimated restricted regression coefficients. I 1 is their unit information matrix, 
which can also be exchanged by I 1, the unit information matrix of the unrestricted fit. 
According to Silvapulle and Sen (2005, p. 29), including the constant 1

ℎ  from the regular 
F-statistic in the F–-statistic is not necessary, as it does not affect the results. Under the 
null hypothesis, the F–-statistic follows an F– distribution, which is a weighted mixture of 
F  distributions.
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If the constraints are linear, γ can be found using quadratic programming, for exam­
ple via the subroutine solve.QP() in the R package quadprog (Turlach & Weingessel, 
2019). In a simple regression example with three coefficients, the unrestricted estimates 
γ may be −0.1, 0.2, 0.5 . However, if Ha:β3 > β2 > β1 > 0, β1 will be constrained to be 
greater than zero in our estimation procedure, leading to the restricted estimates γ that 
may look like 0.001, 0.19, 0.48 . Note that the estimates of β2 and β3 also change slightly, 
even though they satisfied the constraints right from the beginning. Furthermore, the 
restricted estimation will lead to different residuals that are used in the informative test 
statistic.

Generalized Linear Wald Test
The generalized linear Wald statistic is a generalization of the regular Wald test and can 
be found in Silvapulle and Sen (2005, p. 154):

W ald  = n(Rγ)′(RI 1
−1R′)−1(Rγ) D χ2. (20)

Under the null hypothesis, the generalized linear Wald test is χ–2 distributed, which is 
a weighted mixture of χ2 distributions. Again, we can construct two versions of the 
generalized linear Wald statistic, depending on whether S2 or Scorrected

2  is used to calculate 
I 1. Note that to obtain RSS(γ) under the restricted hypothesis, ei are the deviations of 
the observed from the predicted data based on the regression model using the restricted 
estimates γ. If we use Scorrected

2 , the generalized linear Wald statistic will be identical to the 
F–-statistic.

In our example, the corrected Wald test as well as the F–-test yield the same results, as 
expected: χ–2 = 5.316 and F– = 5.316. In contrast, the uncorrected Wald test produces the 
slightly different result χ–2 = 5.381. In the following, the calculation of p-values for the 
generalized linear Wald and F–-statistic is explained.

p-Values
To calculate the p-values of the F–- and generalized linear Wald test, two approaches can 
be followed, which should yield similar results. These procedures are described in detail 
in the document “E-pValues.pdf” that can be found in the Supplementary Materials. 
Essentially, the first approach calculates the p-value by means of simulation (Silvapulle & 
Sen, 2005, p. 98). By generating a large amount of normal (or non-normal) random data 
under the null hypothesis and calculating their test statistics, it is possible to determine 
the proportion of times, the newly obtained test statistic exceeds the originally observed 
test statistic as an estimate of the p-value.

The second approach is more economical, as the mixing weights are estimated first, 
also by means of simulation, and directly used to calculate the p-value afterwards 
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(Silvapulle & Sen, 2005, p. 79). Here, generating a large amount of (normal) random 
data and calculating the parameters of interest allows to determine the proportions of 
times that a different number of constraints are satisfied as an estimate of the weights.

Estimating the p-value for the obtained F–-value yields p = .019 (simulation 
approach) and p = .020 (weights approach). This allows us to reject hypothesis 
H1:AE20 = 0, AE10 = 0 in favor of hypothesis H4:AE20 > AE10 > 0. A complete ordering 
of average effects of the treatment groups therefore seems to be in accordance with 
our data. This is an illustration of how informative hypothesis testing has greater 
power compared to classical null hypothesis testing, since the former could not reject 
H1:AE20 = 0, AE10 = 0 in favor of H2:AE20 ≠ 0, AE10 ≠ 0.

Intermediate Summary
It can be concluded that integrating informative hypotheses into the EffectLiteR frame­
work enriches testing hypotheses regarding effects of interest. This is because it allows 
to directly test hypotheses that correspond to the researcher’s prior order expectations 
of the treatment groups. Using this approach, it is not necessary anymore to follow 
a cumbersome two-step procedure with potentially increased type I error rates, as is 
needed in classical null hypothesis testing. In fact, it is even possible to detect significant 
results that would not have been detected via classical null hypothesis testing, as was 
the case in our motivating example. Going one step further, the next section illustrates 
how to account for stochastic group sizes while testing informative hypotheses in the 
EffectLiteR framework.

Stochastic Group Sizes
The treatment groups (X = x) and the binary covariate (K = k) divide the sample in 
several groups by means of combinations of their different levels. The group size is the 
number of observations in a particular group. The group proportions are the ratios of 
group sizes divided by the total sample size. The corresponding model parameters are 
called group weights.

So far, we have treated the group sizes as fixed. Theoretically, this implies that each 
time we would replicate the study, the group sizes would remain the same. However, in 
practice, this is not always the case, and the group sizes may vary from sample to sample. 
In this case, it is more correct to treat the group sizes as stochastic, and this implies that 
the group weights become free parameters in our model. Mayer and Thoemmes (2019) 
showed that failing to take the stochastic nature of group sizes into account may lead to 
increased type I error rates even in randomized experiments. If we want to account for 
stochastic group weights, our vector of parameters will not only include the regression 
coefficients but also the sample proportions:
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θ  = (γ′, p′). (21)

In our simulated data example, θ contains:

γ′= (1.667 −0.285 0.029 0.300 −0.252 0.591 0.261 −0.546 0.128
0.322 0.032 −0.234 .

p′= (0.104 0.206 0.074 0.097 0.291 0.228 .
(22)

Note that since Kiefer and Mayer (2019) proved that γ and p are independent, the 
variance-covariance matrix is block-diagonal:

V ar(θ)  = V ar(γ) 0
0 V ar(p) . (23)

To apply informative hypothesis testing in the EffectLiteR framework while taking into 
account stochastic group sizes, two changes are needed. First, a new method is needed 
to obtain θ̃, the vector of restricted regression coefficients and sample proportions, and 
second, the generalized non-linear Wald statistic has to be used. This is because the 
effects of interest are no longer a linear combination of the model parameters and 
quadratic programming cannot be used to find θ̃.

Estimation of θ̃ by Means of SEM
To obtain θ̃, several steps should be followed. The model is specified as a SEM, which is 
estimated via the R package elavaan (Rosseel, 2012). SEM software is used because it can 
handle constraints on functions of parameters. The hypotheses are included in the model 
definition as quantities of interest, but the constraints imposed on them are defined 
separately. This allows us to first fit an unconstrained SEM. If all quantities of interest 
already satisfy the constraints, the generalized non-linear Wald test is calculated based 
on the results of the unconstrained fit. If at least one quantity of interest does not satisfy 
the constraints, that is, at least one constraint is active, a constrained SEM is fitted and 
the generalized non-linear Wald test is calculated based on the results of the constrained 
fit. This procedure is implemented in the R script “A-exampleI.R” and is explained in the 
document “C-explanation.pdf”, which are both part of the Supplementary Materials. The 
resulting parameter vector θ̃ is used in the generalized non-linear Wald test, which is 
explained in the following section.

Generalized Non-linear Wald Test
The generalized non-linear Wald statistic can be found in Silvapulle and Sen (2005, p. 
166) and is defined as follows:
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W ald  = nc(θ)′[C(θ)I 1
−1C(θ)′]−1c(θ) D χ2, (24)

where c is a function of θ̃ that returns a vector, C is the Jacobian matrix of c and I 1
the unit information matrix. Note that if c θ̃  was linear, it would be equal to R in the 
generalized linear Wald statistic in Equation 20.

In our simulated data example, we obtain the following results. The columns of Table 
3 titled “Stochastic group sizes” show the estimates of all adjusted means and all average 
effects, including their standard errors. It can be observed that the standard errors get 
slightly larger when stochastic group sizes are considered, compared to when group sizes 
are assumed to be fixed, which reflects the increased uncertainty. However, when the 
sample size is smaller, the differences between the two sets of standard errors become 
larger. This is illustrated in the R script “F-exampleISmallN.R” in the Supplementary 
Materials. The data set with N = 50 is available under the name “G-exampleISmallNDa­
ta.rds” and the results are presented in the document “H-exampleISmallNResults.pdf”. 
As for the Wald statistic in our running example, we obtain χ–2 = 5.306, p = .019/.020, 
depending on whether the simulation or weights approach is used to calculate the p-val­
ue. The test statistic is slightly different than the one we obtained without considering 
stochastic group sizes (χ–2 = 5.381), while the p-values are nearly equal.

Intermediate Summary
We showed how to account for stochastic group sizes when testing informative hypothe­
ses within the EffectLiteR framework. If group weights are considered as free parameters 
in the model, uncertainty increases, which manifests itself in increased standard errors of 
parameters estimates. This seems to be more evident in small samples than it is in large 
samples. This observation is important especially in the social and behavioral sciences, 
where treatment group sizes often vary across samples and the exact group sizes are 
not determined before conducting the experiment. However, at this point, considering 
stochastic group sizes comes with an increased computational cost, as parameter estima­
tion has to be carried out in a two-step procedure by means of lavaan.

Data Example
In this section, the illustrated methods will be applied to an artificial data example 
from the constrained statistical inference literature (Hoijtink, 2012; Vanbrabant, 2018). 
The accompanying R script can be found in the Supplementary Materials and is named 
“I-exampleII.R”. We recommend this R script as a starting point for all researchers who 
would like to apply our method. The Anger Management data set comes with the 
restriktor package (Vanbrabant, 2018, 2020). It contains 40 observations on decrease in 
aggression level over the course of eight weeks and considers the continuous covariate 
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age. Subjects are assigned to either one of the following groups: No training (X = 0), 
physical training (X = 1), behavioral therapy (X = 2) and a combination of physical 
exercise and behavioral therapy (X = 3). All groups have the same size of n = 10. Since 
this data set is artificial and group sizes are fixed to 10, we do not consider stochastic 
group sizes here. Table 4 shows the raw and adjusted means of decrease in aggression 
level Y  as well as the relative treatment group frequencies.

Table 4

Raw as Well as Adjusted Means of Decrease in Aggression Level E Y , AdjM Y  and Relative 
Treatment Group Frequencies P X = x

Group Raw/adjusted Means and relative treatment group frequency

X = 0 E Y X = 0 = -0.200

AdjM Y X = 0 = -0.920

P X = 0 = 0.250

X = 1 E Y X = 1 = 0.800

AdjM Y X = 1 = 0.922

P X = 1 = 0.250

X = 2 E Y X = 2 = 3.100

AdjM Y X = 2 = 3.341

P X = 2 = 0.250

X = 3 E Y X = 3 = 4.100

AdjM Y X = 3 = 4.237

P X = 3 = 0.250

Possible hypotheses regarding the effects of interest are:

H1 :AE30 = 0, AE20 = 0, AE10 = 0,
H2 :AE30 ≠ 0, AE20 ≠ 0, AE10 ≠ 0,
H3 :AE30 > 0, AE20 > 0, AE10 > 0,
H4 :AE30 > AE20 > AE10 > 0,

(25)

where AE again refers to an average effect. H1 assumes that all average effects equal 
zero, that is, the average effect of the combination of physical exercise and behavioral 
therapy (AE30), the average effect of behavioral therapy (AE20) and the average effect 
of physical training (AE10) are assumed to be zero. H2 states that these average effects 
are not equal to zero. According to H3, the average effects are greater than zero. Finally, 
H4 postulates a complete ordering with the average effect of physical exercise and 
behavioral therapy (AE30) being greater than the average effect of behavioral therapy 
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(AE20), the average effect of behavioral therapy (AE20) being greater than the average 
effect of physical training (AE10) and the average effect of physical training (AE10) being 
greater than zero.

The adjusted means and average effects estimates are presented in Table 5.

Table 5

Adjusted Means and Average Effects Estimates With Standard Errors in Parentheses (Anger Management Data)

Group Adjusted mean Average effect

No training (X = 0) -0.920 (0.777)

Physical training (X = 1) 0.922 (0.744) 1.842 (1.076)

Behavioral therapy (X = 2) 3.341 (0.706) 4.261 (1.049)

Physical training & behavioral therapy (X = 3) 4.237 (0.801) 5.157 (1.116)

Testing Hypothesis H1 against H4, F– = 27.59, p < .001 (using either one of the two ap­
proaches to calculate the p-value) is obtained. Furthermore, the regular F-test of H1
against H2 yields F = 9.20, p < .001. Again, we observe that the test statistic of the 
informative hypothesis test is larger than the test statistic of the classical null hypothesis 
test, even though both p-values are highly significant.

Discussion
This paper demonstrated how to integrate informative hypotheses into the EffectLiteR 
framework, while taking into account stochastic group sizes. We provided R scripts and 
explanatory documents in the Supplementary Materials. The method described allows to 
directly test hypotheses that represent the researcher’s prior order expectations about 
the effects of interest in the treatment groups. In contrast to classical null hypothesis 
testing, it is not necessary anymore to follow a cumbersome two-step procedure with 
potentially increased type I error rates due to multiple testing. Furthermore, we were 
able to show that testing informative hypotheses about effects of interest has greater 
power compared to classical null hypothesis testing. Vanbrabant (2018) already showed 
this in the simpler context of comparing group means instead of effects of interest.

Considering stochastic group sizes in the approach described in this paper does not 
seem to impact the results substantially if the sample size is large. However, when deal­
ing with small sample sizes, standard errors might be underestimated when erroneously 
treating stochastic group sizes as fixed. This is because of adequately accounting for the 
increased uncertainty that stems from considering group weights as free instead of as 
fixed parameters in the model.
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Two approaches to estimate the p-values when testing informative hypotheses about 
effects of interest were introduced. When the residuals are normally distributed, the 
weights approach is preferred due to its efficiency. Furthermore, when stochastic group 
sizes are involved, we also prefer the weights approach, albeit for practical reasons: In 
particular when some of the group sizes are small, many simulation iterations may fail 
and must be replaced, making the simulation approach very time-consuming.

The limitations of this paper and the outlook on future research are the following. 
First, we only considered manifest variables. In the future, the presented methods should 
be extended to be able to deal with latent variables. Furthermore, the small-sample prop­
erties of the generalized non-linear Wald test are unknown. Thus, testing informative 
hypotheses in the EffectLiteR framework while accounting for stochastic group sizes 
should be examined further in future research by means of simulation studies. Moreover, 
we did not examine the consequences when assumptions of the general linear model 
like homoscedasticity are not fulfilled. When considering stochastic group sizes, it has 
already been shown that in the two-group context, erroneously assuming equal variances 
is only critical regarding standard error estimation of effects when group sizes are 
unequal (see, e.g., Berry, 1993; Mayer & Thoemmes, 2019). This can lead to increased 
type I error rates. Future research should thus examine the effect of violations of model 
assumptions when testing informative hypotheses in the EffectLiteR framework taking 
into account stochastic group sizes.

Finally, the two-step procedure presented to test informative hypotheses about effects 
of interest while considering stochastic group sizes needs a lot of manual tuning at this 
point. To make this approach more efficient and accessible for applied researchers, it 
might be possible to adapt it using the distance statistic (Silvapulle & Sen, 2005, p. 154). 
This would avoid the need for estimating the (order-)constrained model using SEM, and 
may result in a more efficient testing procedure.
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