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Abstract 

Mass spectrometry-based proteomics generates vast amounts of signal data that 

require computational interpretation to obtain peptide identifications. Dozens of 

algorithms for this task exist, but all exploit only part of the acquired data to judge a 

peptide-to-spectrum match (PSM), ignoring important information such as the observed 

retention time and fragment ion peak intensity pattern. Moreover, only few identification 

algorithms allow open modification searches that can substantially increase peptide 

identifications.  

 

We here therefore introduce ionbot, a novel open modification search engine that is the 

first to fully merge machine learning with peptide identification. This core innovation 

brings the ability to include a much larger range of experimental data into PSM scoring, 

and even to adapt this scoring to the specifics of the data itself. As a result, ionbot 

substantially increases PSM confidence for open searches, and even enables a further 

increase in peptide identification rate of up to 30% by also considering highly plausible, 

lower-ranked, co-eluting matches for a fragmentation spectrum. Moreover, the exclusive 

use of machine learning for scoring also means that any future improvements to 

predictive models for peptide behavior will also result in more sensitive and accurate 

peptide identification. 
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Main 

Liquid Chromatography combined with high-resolution (Tandem) Mass Spectrometry 

(LC-MS/MS) has established itself as an invaluable technology for sensitive proteome 

analysis. It generates vast amounts of raw signal data that require biological 

interpretation from dedicated bioinformatics tools, known as peptide identification 

engines. These engines seek to accurately match the observed LC-MS/MS signals with 

the peptide molecules that generated them. To date, dozens of such identification 

engines have been developed 1.  

Nevertheless, peptide identification from LC-MS/MS data remains far from trivial. 

Spectra are noisy and incomplete, and sequences can be several tens of amino acids 

long. This leads to an extremely large number of potential target sequences, which in 

turn poses computational challenges, along with specificity challenges 2. As a result, a 

commonly employed tactic for identification engines is to reduce the search space to 

only the proteome of interest for the sample under study. Yet, even this strong 

restriction is typically not sufficient, as several hundreds of potential amino acid 

modifications should be considered as well, again leading to an enormous growth in the 

number of possible targets, even for small proteomes. Most of the classical identification 

engines maintain a more manageable search space by drastically reducing the amount 

of potential modifications that can be considered. The obvious result is that many 

relevant modifications may be missed, leading to many false negatives. Recently, 

several so-called open modification search engines have therefore been developed, 

that see to address this limitation by allowing the full range of potential modifications to 
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be considered during a fast open modification search that can be applied to large LC-

MS/MS datasets 3–5.  

All identification engines compute a score for each considered peptide-to-spectrum-

match (PSM) that is typically designed to reflect the probability of obtaining a true 

positive identification. As this PSM scoring function decides on the best match for a 

given MS2 spectrum, the resulting scores should predict the likelihood of a true positive 

identification as accurately as possible, especially when searching spectra against large 

search spaces, as is the case for open searches 2. With different engines implementing 

different PSM scoring functions, the set of identified PSMs can be very different 

between them. 

Ideally, the PSM scoring function accurately models the expected LC-MS/MS signal 

from a given peptide and relies on the comparison between the expected and the 

observed data to judge a match. This can be achieved in practice by exploiting all 

accessible PSM data as matching information, including the observed retention time for 

the LC separation, the precursor m/z for the MS1 analysis, and the MS/MS spectrum for 

the fragmentation analysis. Importantly, Machine learning models already exist to 

accurately predict calibrated expected retention times 6–8 and expected MS2 peak 

intensities from peptide sequences 8–11  

However, current identification engines fail to efficiently exploit this matching information 

in the scoring function. Typically, the PSM score is computed by counting matched 

peaks, in some way weighted by the MS2 intensities they explain. This implicitly or 

explicitly penalizes unmatched fragment ions, which is particularly problematic in open 
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searches, where more accurate scoring functions are required. To address this issue 

and improve accuracy, the relationship between the peptide amino acid sequence and 

the corresponding peak intensity pattern needs to be considered in the PSM scoring 

function 12. 

An ideal PSM scoring function would optimally combine all the relevant sources of 

matching information into a single accurate score. Substantial progress towards building 

such a scoring function was made by applying Machine learning to rescore leveraged 

feature vector representations of PSMs that can contain any source of information 13,14. 

The PSM rescoring function is then computed from these feature vector representations 

of the experimental data. However, only limited data is explored as only first-ranked 

PSMs obtained by an engine are rescored. This means that false first-ranked PSMs 

cannot be replaced by the true PSM based on the leveraged matching information.  

 

We here therefore introduce ionbot, a completely new type of open modification search 

engine that exploits the ability to incorporate all relevant matching information into a 

single, Machine learning-based score. To achieve this, we introduce the concept of a 

candidate match set that is not restricted to first-ranked matches and is computed from 

a vast open search space using predicted sequence tags 15 and a set of biased PSM 

scoring functions. Furthermore, the ionbot PSM scoring function is computed from this 

candidate match set using semi-supervised Machine learning, making the PSM scores 

reproducibly tailored to the experimental data. This leads to an engine that outperforms 

traditional search engines, allows for reliable open modification searches that 

outperform current open modification engines, and can be readily adapted to very 
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specific conditions, such as TMT labelled data sets, with an even more dramatic 

increase in identification rates. Finally, we show that our approach naturally leads to the 

identification of a substantial amount of highly plausible lower-ranked co-eluting PSMs 

from chimeric MS2 spectra. Throughout, ionbot maintains a tightly controlled FDR, 

illustrating superior sensitivity while maintaining specificity. 
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Results 

Sequence tag prediction models learn from MS2 peak intensities and show high 

accuracy 

In this section the prefix and suffix tag prediction models (Methods) implemented in 

ionbot are evaluated on the testing set by the Area under the ROC Curve (AUC) and the 

Average Precision (AP) computed from the Precision-Recall (PR) curve. All models 

show very high predictive accuracy with suffix tag models (AUC=99.9/AP=98.2 for HCD 

and AUC=99.9/AP=99.4 for HCDTMT) performing better than prefix tag models 

(AUC=99.8/AP=93.1 for HCD and ACU=99.9/AP=99.2 for HCDTMT) (Supplementary 

Fig. 1). It is worth noting that TMT trained models show highest predictive accuracy, 

especially for the prefix tags.  

 

Furthermore, scoring a HCD testing set with a HCDTMT model and vice versa 

substantially decreases predictive accuracy. For the models trained on HCD and 

evaluated on HCDTMT, the prefix model reduced to AUC=98.9 and AP=58.7, while the 

suffix model shows a slight decrease to AUC=99.8 and AP=95.6. Notably, for models 

trained on HCDTMT and evaluated on HCD, the prefix models prediction performance 

decreased much further to AUC=87.7 and AP=7, with a smaller decrease for the suffix 

model (AUC=99.5/AP=92.2).  

  

To further evaluate the models, the true PSMs identified by an open search were 

analyzed. For each true PSM a prefix and suffix tag ranking was computed by scoring 
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all tags with the corresponding predictive models. The highest rank between the true 

prefix and suffix tag (determined by the matched peptide) is then recorded as a metric 

for how well the predicted sequence tags can reduce the search space (Methods). The 

vast majority of these ranks were within the top-10, with many ranked first for one of the 

two models (Supplementary Fig. 2).  

Expanding the search space is crucial; we recommend to no longer use closed 

searches 

Open searches can match peptidoforms never considered in closed searches. 

However, at the same time, a larger search space leads to higher scoring decoy 

matches, thereby potentially increasing the PSM score threshold required to maintain a 

1% FDR 16. In this section we investigate the difference between a closed and open 

ionbot search for the five evaluation datasets (Methods).  

 

Our findings confirm previous research showing that open searches considerably 

increase proteome coverage. The increase in PSM identifications is up to 56% for 

HEK239 (Fig. 1a), and even 74% for TMTCPTAC (Supplementary Fig. 3). At the unique 

peptide level, identification gains go up to 20% (HEK239). It is worth noting that this 

overall increase in the number of identifications will play an important role in the 

accurate downstream protein inference and quantification, as well as in increasing the 

power of the succeeding differential analyses. 

 

Counting PSM and peptide identifications does not reveal all the differences between a 

closed and open search. We found that a substantial number of closed search 
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identifications are no longer called in the corresponding open search. This is 11% of the 

closed search identifications for HEK239 (Fig. 1b) and goes up to 21% for the Breast 

dataset (Supplementary Fig. 5). Furthermore, many of these ‘lost’ matches are 

overruled by a better match in the open search, as indicated in the figures. It is likely 

that most of these overruled peptide matches are incorrect and have been forced upon 

closed search identifications due to the absence of the otherwise higher scoring, true 

peptide 17. 

 

Notably, the majority of PSMs gained in open searches are explained by the wide 

(7.5Da) precursor mass error tolerance that ionbot allows for matches without 

unexpected modification. These precursor errors show a periodic pattern at 1Da 

intervals (Supplementary Fig. 6). It is therefore possible that incorrect peak picking at 

the isotope level accounts for these.  

Prediction models trained on specific experimental conditions improve 

identification 

For each predictive model implemented in ionbot (tag-models, MS2PIP and DeepLC), 

there is a version trained on unlabeled HCD data, and a version trained on TMT labeled 

HCD data. In this section we apply ionbot with TMT specific prediction models on the 

non-TMT labeled evaluation datasets. Similarly, we applied ionbot not using TMT-

specific models on the TMTCPTAC dataset.  

 

We observed a 19% decrease in PSM and a 16% decrease in peptide identifications 

when employing non-optimal predictive models in HEK239 (Fig. 1a). For the other 
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datasets the loss amounts 16% for CD8T, 18% for Brain, 26% for Breast, and 16% for 

TMTCPTAC. At the peptide level these losses are repeated, with a loss of 13% for 

CD8T, 17% for Brain, 22% for Breast, and 20% for TMTCPTAC (Supplementary Fig. 3-

4). 

Predicted retention time and fragment ion intensities provide decisive PSM 

information 

In this section we investigate the relevance of the DeepLC retention time predictions 

(RT-pred-error) and MS2PIP peak intensity predictions (intensity-correlation) features in 

the ionbot PSM scoring function (Methods). Grouping PSMs by peptidoform (Methods) 

to compute the corrected observed retention time to compute RT-pred-error clearly 

reduced long elution time windows peptidoforms identified by multiple spectra (Fig. 1d-

e). This is especially true for peptides at the end of an LC run, where the issue can be 

even more problematic for the RT-pred-error feature.  

 

Comparing open searches with and without using the RT-pred-error feature in the PSM 

scoring function showed that consistently more PSMs were identified when the feature 

is added to the scoring function. At first, this gain appears to be relatively small, at 3.2% 

for HEK239 (Fig. 1a) and 2.4% for CD8T, 2.9% for Brain, 7.2% for Breast, and 1% for 

TMTCPTAC (Supplementary Fig. 1), but it is worth noting that the vast majority of true 

PSMs are (also) confirmed by the other sources of matching information, which leaves 

the retention time feature to correct only ambiguous situations that cannot be 

distinguished by any of the other sources. We found that PSM identifications unique to 

the search not using RT-pred-error show high retention time error in general, and, that 
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many PSMs that were overruled when adding the feature show high prediction error as 

well (Fig. 1f, Supplementary Fig. 8).  

 

Similarly, we compared open searches with and without using the intensity-correlation 

feature in the scoring function. The latter search also does not use this correlation 

information as a biased PSM scoring function. We saw an increase in PSMs (6%) 

identified when adding the feature for HEK239 (Fig. 1a). For the other datasets the gain 

is 5% for CD8T, 6% for Brain and Breast, and 8s% for TMTCPTAC (Supplementary Fig. 

1). Yet here again, this information only gains importance in ambiguous situations that 

cannot be distinguished by any of the other sources. For HEK239, identifications called 

only by using the intensity-correlation feature show high correlations (Fig. 1g), while 

PSMs that are eliminated when the correlation feature is used show low overall 

correlations (Fig. 1i). Also, for overruled matches when intensity-correlation is used, the 

difference in correlation can be large, even though the vast majority shows only small 

differences in the higher correlation range (Fig. 1h). In these cases, it becomes difficult 

to decide on the correct match based on correlation and other matching information is 

required to decide on the true match. The same conclusions were made for the other 

evaluation datasets (Supplementary Fig. 9). 

 

We repeated the same experiment with RT-pred-error and intensity-correlation omitted 

from the scoring function. This resulted in a much more substantial increase in the 

number of PSM identifications, with 11% for HEK239 (Fig 1a), 9% for CD8T, 11% for 

Brain, 16% for Breast, and 10% for TMTCPTAC (Supplementary Fig. 1). At the peptide 
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level the gains amount to 9% for CD8T, 12% for HEK239, 14% for Brain, 12% for 

Breast, and 15% for TMTCPTAC (Supplementary Fig. 2).   

 

Considering retention time error and intensity correlation in the PSM scoring function 

not only increases the number of identifications, but also corrects and overrules 

incorrect matches based on the additional matching information that becomes available. 

For instance, for HEK239, 2.8% of the PSMs identified omitting both features were 

overruled by a better match when using them (Fig. 1c). Similar results were found for 

the other datasets (Supplementary Fig. 10).   

Entrapment peptides confirm accuracy and stability of the ionbot open search 

FDR estimates 

For the FDR estimates to be meaningful, the ionbot PSM scoring function should treat 

false matches against the decoy and target database equally, i.e., decoy matches 

should be representative random matches. For ionbot, this conveys that the PSM 

scoring function learned from experimental data should not be biased towards favoring 

matches against the target database. 

 

To estimate a potential matching bias, we adopted the entrapment peptides approach 

(Methods). If a bias exists, we should observe more than the expected number of 

matches against the entrapment compared to the decoy database. In our experiment, 

there are about 10% more decoy peptides compared to entrapment peptides, so we 

expect to see this difference in the data. For the CD8T and HEK239 datasets, we 

observed about 6.2% and 6.6% more decoy matches respectively (Supplementary Fig. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.02.450686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450686
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

11). As this is well below 10%, we conclude that the accuracy of the FDR estimates is 

high, implying that the ionbot PSM scoring function is not biased towards matches 

against the target database.  

The ionbot engine compares favorably to other state-of-the-art open modification 

engines 

Many open search engines exist, but few can produce sensitive identification results for 

large datasets that contain hundreds of thousands of spectra, mainly due to 

computational limitations. Two recent engines stand out in terms of performance: 

MSFragger and open-pFind (Methods).  

 

At the PSM level, MSFragger is slightly more sensitive than open-pFind (Fig. 2a, 

Supplementary Fig. 12), mainly due to the 7.5Da wide error matches (data not shown) 

that are considered only in ionbot and MSFragger. At the peptide level, these 

differences become much smaller, with no obvious ranking for the identification engines. 

However, plotting PSM and peptide identification overlap reveals a notable level of 

disagreement between the search engines (Fig. 2b, Supplementary Fig. 13).   

 

To obtain more insight into this disagreement, we looked at the intensity-correlation 

computed for PSMs uniquely identified by one of the engines. To avoid discussion 

about the unknown effect of specific modifications on the peak intensity pattern, we 

limited this investigation to identifications without an unexpected modification. We found 

that many identifications unique to open-pFind and/or MSFragger are questionable. For 

HEK239 (Fig. 2c), when we look at the PSMs unique to ionbot, the 25% with the lowest 
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intensity-correlation still show correlation within [0.52,0.77] (excluding outliers). For the 

PSMs unique to open-pFind and MSFragger this interval is [0.12,0.58] and [0.15,0.57] 

respectively. The same observations were made for the other datasets, most extreme 

for TMTCPTAC with more than 25% of the matches in open-pFind and MSFragger 

showing a correlation less than 0.59 and 0.63 respectively. While for ionbot, all matches 

(except very few outliers) have correlations higher than 0.68 (Supplementary Fig. 14).  

 

For PSMs identified by just two engines, the intersection between ionbot and open-

pFind shows highest intensity-correlation values, while the intersection between open-

pFind and MSFragger clearly shows the lowest correlations, with 25% of these 

identifications having a correlation withing [0.15,0.61] for the HEK239 dataset (Fig. 2c). 

 

For the RT-pred-error information these differences are much smaller (Supplementary 

Fig. 15). For the intersections there are no obvious differences. But for the matches 

unique to each engine, the median retention time error for ionbot tends to be half of the 

median retention time error observed in the other engines. 

Identification sensitivity is substantially increased by considering lower ranked, 

highly plausible co-eluting matches 

To determine the best match for an MS2 spectrum, ionbot learns the PSM scoring 

function from the candidate match set and then selects the first-ranked match for each 

spectrum based on the computed scores. Next, a more accurate PSM score is 

computed from these first-ranked matches, and the statistical significance is determined 

for these first-ranked PSM scores (Methods). 
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Nevertheless, the candidate match set explicitly contains multiple candidates for many 

spectra (Methods). In this section we investigate computing the statistical significance of 

scores from all PSMs in the candidate match set, which can then result in multiple 

candidate peptides passing the 1% FDR threshold for a given spectrum. We found that 

even though the FDR threshold does not impose a limit on the number of possible 

matches, the vast majority of spectra with multiple identified matches had just two 

(Supplementary Fig. 16). The maximum number of different matches observed for an 

MS2 spectrum was six. 

 

Next, we focused on those MS2 spectra that had exactly two matches passing the 1% 

FDR threshold. For each such spectrum, we computed the edit distance (Levenshtein 

distance) between the two matched peptide sequences. Fig. 3a plots these edit 

distances for HEK239 and reveals a clear bimodal distribution, with one distribution 

tightly centered around distance 1. The exact same observation was made for the other 

datasets (Supplementary Fig. 17). PSMs in this distribution are examples of highly 

similar peptide matches that either co-elute, or that cannot be distinguished using the 

available matching information. Table 1 shows representative examples of PSMs with 

edit distance 1 (IDs 1-5). For instance, for the spectrum with ID=1 there is a difference 

of one amino acid between the two peptide matches, with the difference in mass 

compensated by a methylation.  
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We then continued to investigate matches which we consider to be highly plausible co-

eluting PSMs (edit distance > 2). In Table 1, the spectra with IDs 6 to 11 show very 

dissimilar co-eluting PSMs, all with low RT-pred-error and high intensity-correlation. 

Table 2 shows examples of spectra with four or even five different, highly plausible co-

eluting matches, each providing potential evidence for different proteins. Universal 

Spectrum Identifiers 18 to spectrum annotations can be found in the Supplementary 

Notes. These further confirm the high plausibility of these co-eluting matches. 

 

Considering all co-eluting matches (edit distance > 2) greatly increases identification 

sensitivity.  For instance, for the HEK239 (Fig. 3b) and Brain (Supplementary Fig. 18) 

datasets, more than 26% additionals unique peptide sequences were identified. 

 

For HEK239, comparing different sources of matching information between the first-

ranked PSMs and the lower-ranked co-eluting PSMs showed that the number of b- and 

y-ions matched is slightly lower for lower-ranked PSMs (Fig. 3c). However, lower-

ranked PSMs also tend to be smaller in length (Fig. 3d). For intensity-correlation (Fig. 

3f) and RT-pred-error (Fig. 3g), the lower-ranked PSMs again show highly plausible 

values as compared to the first-raked PSMs. The difference is much more pronounced 

when we look at the intensity explained by the b- and y-ions (Fig. 3e), which is much 

lower for the lower-ranked PSMs, resulting in a lower PSM score (Fig. 3h). 

Nevertheless, based on the other sources of matching information, these PSMs are still 

highly plausible matches. The same conclusions could be made for the other datasets 

(Supplementary Fig. 19). 
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Finally, we found that a substantial percentage of lower-ranked co-eluting matches were 

identified as first-ranked match by open-pFind and/or by MSFragger. For HEK23 we 

found that this was 42% (Fig. 3i). For the other datasets this was 42% for CD8T, 41% 

for Brain, 34% for Breast, and 30% for TMTCPTAC (Supplementary Fig. 20a). We also 

found that for PSMs unique to ionbot, the vast majority of matched peptides were 

identified as a first-ranked PSM by open-pFind and/or by MSFragger, but from another 

MS2 spectrum. For HEK239 this was 77% (Fig. 3j). For the other datasets this was 68% 

for CD8T, 77% for Brain, 62% for Breast, and 72% for TMTCPTAC. 

 

We believe these findings provide strong evidence for the presence of co-eluting PSMs, 

and that it is remarkably straightforward to discover and study these in ionbot due to its 

data-driven peptide identification approach. 
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Discussion and conclusion 

We presented ionbot, a novel type of open identification engine that is unique in taking 

full advantage of the accurate predictions provided by Machine learning algorithms. This 

is realized by omitting the predefined PSM scoring function altogether, and instead 

relying on a data-driven strategy to learn the weights of all matching information 

provided which includes the MS2 peak intensity pattern correlation and LC retention 

time prediction error. This provides ionbot with the flexibility to adapt the PSM scoring 

function to the experimental conditions and passes the identification bias from the 

expert to the data.  

 

We have shown that ionbot exploits the additional matching information in its PSM 

scoring function to increase the number of identifications at the PSM as well as at the 

peptide level, and that it also allows ionbot to adapt to specific experimental protocols 

such as TMT-labelling with ease. Moreover, we show that the additional matching 

information is also highly useful in reducing false positive matches by either eliminating 

these, or by replacing them with higher scoring identifications. 

 

When compared to other open modification search engines, ionbot performs on par at 

the identification sensitivity level. However, looking at the PSM evidence in terms of 

matching information reveals that many identifications unique to the other engines show 

very low intensity pattern correlation or high LC prediction error. This can indeed be 

expected as other open search engines do not exploit these sources of matching 
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information in their scoring function and, as such, are unable to make accurate 

decisions based on these sources. 

 

Finally, co-eluting lower-ranked PSMs arise naturally from the data-driven identification 

strategy implemented in ionbot. Even though many of these lower-ranked matches were 

considered potentially ambiguous highly similar matches to the first-ranked match, a 

substantial number were shown to be actual highly plausible co-eluting matches. By 

considering all these co-eluting matches, ionbot can provide substantially higher 

identification sensitivity compared to the other open search engines. 

 

We believe this research opens up new avenues for improving the analysis of LC-

MS/MS data. The Machine learning models employed by ionbot can likely still be 

improved, especially in terms of predicting the effects on analyte behavior of different 

protein modifications. Moreover, different (non-)linear models can be evaluated for 

learning the PSM scoring function. Because ionbot can very easily be fitted with new or 

improved models, and because ionbot is implicitly highly adaptive, any such 

improvements will very likely result in more accurate PSM scoring functions. Finally, this 

highly adaptive nature of ionbot can also allow dedicated optimization for specific 

experimental conditions, thereby increasing identification sensitivity and accuracy even 

further. 
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Methods 

The search space 

Observed MS2 spectra are matched against a peptide search space that is computed in 

silico from a known proteome using a specific simplified enzymatic cleavage pattern 

(e.g., for trypsin). In the Human proteome dataset used in this research (see section 

Datasets), cleaving after lysine or arginine results in 512.990 unique peptide 

sequences. This number increases to 2.148.714 by allowing for two missed cleavages. 

Furthermore, proteins can undergo chemical modifications, with some modifications 

observed more frequently (e.g. oxidation) than others 19. Public repositories that list 

previously observed modifications, such as unimod.org, currently contain more than 

1000 different modifications that are known to alter a specific amino acid in a peptide. 

Therefore, the peptide search space should be expanded by all possible modified 

versions of each peptide. Each modification changes the m/z pattern of the MS2 

spectrum generated by the modified peptide and can, potentially, also alters the MS2 

peak intensity pattern 20 and expected LC retention time 6,21. To make matters worse, 

candidate matches for an MS2 spectrum can become very hard to distinguish due to the 

expanded search space 2  

The vast majority of peptide identification engines consider only a few of the most 

expected protein modifications. This is known as a closed search. In contrast, in an 

open search one tries to consider all possible peptidoforms (considering all possible 

modification patterns for a peptide) by adding these to the search space. Even though 
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this space is still considerably smaller than the one evaluated by de-novo identification 

engines (which consider all possible peptide sequences as well), as the number of 

modifications taken into account increases, the search space expands exponentially, 

putting a strong computational load on the peptide identification task.  

To reduce this computational burden, ionbot limits the open search by setting a 

maximum on the number of modifications allowed within one peptide. In a closed 

search, the space consists of all peptidoforms that carry at most two expected (variable) 

modifications simultaneously. Next, to an unlimited number of expected modifications 

that are fixed. In an open search, the space is further expanded by all peptidoforms that 

can be constructed by (i) adding one of the 1000+ post-translational, chemical 

derivative, or artefactual peptide modifications listed in the unimod.org repository, (ii) 

considering the delta-masses generated by the modifications in (i) only at the MS1 level, 

(iii) adding a single amino acid substitution, or (iv) by removing any number of N-

terminal amino acids from the peptide to obtain a semi-tryptic peptide. For (i) and (iii), all 

possible unmodified locations for the modification or substitution are considered. For (ii) 

ionbot tries to match delta-masses observed only at the MS1 level and therefore not 

part of the MS2 fragmentation spectrum. For (iv), semi-tryptic peptides are considered 

up to a length of seven amino acids.  

The candidate match set 

The PSM scoring function in ionbot is learned from a candidate match set that is a small 

subset of the search space, while still being large enough to still contain the true PSMs 

and to learn an accurate scoring function. To achieve this, ionbot employs a sequence 
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tag strategy driven by Machine learning scoring models, and a set of biased expert-

driven PSM scoring functions. 

A sequence tag is a short amino acid sequence with a prefix mass and a suffix mass 

that allocates its position within a peptide. Tags are typically computed from a graph 

representation of an MS2 spectrum 22,23. This spectral graph exploits fragment ion mass 

differences but ignores the relationship between the tag’s amino acid sequence and the 

observed MS2 peak intensity pattern. Intensity information is typically exploited only to 

prefer tags that match higher-intensity peaks.  

Instead, ionbot implements a data-driven approach to construct constrained sequence 

tags. By constraining the tags to the first three (prefix) or the last four (suffix) amino 

acids in a tryptic peptide, predictive Machine learning models can accurately score a 

tag from a feature vector representation of the tag and the corresponding MS2 

spectrum, thereby eliminating time consuming spectral graph construction, while also 

exploiting MS2 peak intensity information. For each observed MS2 spectrum, the prefix 

model scores 8000 3-mers and the suffix model scores 16.000 4-mers, all constructed 

from nineteen amino acids – structural isomers leucine and isoleucine are treated as a 

single residue – and oxidized methionine, which was added due to its high 

prevalence. For each MS2 spectrum, the T-top scoring tags from both the prefix and the 

suffix model are used to reduce the search space to those peptides that match any of 

these tags within a user-defined MS1 mass error tolerance. For candidate peptides with 

only fixed, expected or no modifications, this mass error tolerance is increased to 

7.5Da, as justified in the Results section. The parameter T should be chosen large 

enough such that only unlikely peptides are removed from the search space. Here, we 
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set T=50 as increasing T resulted in just a small identification increase (1%-3%) for all 

datasets while substantially increasing compute time. 

The implementation of a set of biased PSM scoring functions further differentiate ionbot 

from traditional identification engines. These biased functions each consider just one 

source of matching information and are listed in Table 3. For peak counting and 

explained intensity information, ionbot also considers different subsets of fragment ion 

types. The candidate match set is then further reduced to the top-ranked matches for 

each biased PSM function, except for the intensity correlation function for which ionbot 

considers the top-3 ranked matches.  

The prefix and suffix tag prediction models 

This section explains how the prefix and suffix models score the corresponding 3-mer 

and 4-mer tags. Both are two-class classification models trained on publicly available 

spectral libraries (see section Datasets). For a given MS2 spectrum and tag, each 

model computes the probability that the k-mer matches the peptide that generated the 

spectrum. For the prefix model this is the 3-mer corresponding to the N-terminal three 

amino acids in the peptide, and for the suffix model this is the 4-mer corresponding to 

the C-terminal four amino acids in the peptide. The feature vector representation 

implemented in these models contains discriminative information about both the 

spectrum and the tag. This allows for modelling the relationship between the tag’s amin 

acid sequence and the observed MS2 peak intensities. 

To represent the tag, a one-hot-encoding of the k-mer amino acids was considered, but 

this yielded much inferior results. Instead, as implemented in our MS²PIP tool 11, amino 
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acids in the k-mer are encoded by each of five amino acid properties: mass, 

hydrophobicity, helicity, basicity and iso-electric point estimates.  

The MS2 spectrum is represented by the observed peak intensities, normalized by total 

ion current of the spectrum 24, of the relevant fragment ions that can be explained by the 

tag. These are the first three a-, b-, and c-ions for the prefix model, and the first four x-, 

y- and z-ions for the suffix model, both with variable H2O- and NH3-losses, and with 

fragment ion charge states 1+ and 2+ considered as well. Variable methionine oxidation 

is also encoded by adding three binary features that indicate the presence of an 

oxidation at any position in the tag (excluding the last amino acid in the suffix model tag, 

which is restricted to lysine or arginine). Lastly, the precursor charge state and 

precursor mass are encoded as features as well. 

Each PSM in the training set is represented by a feature vector for each model, which 

are collectively labeled as the positive class. For the negative class, the MS2 spectrum 

is matched to N different random k-mers from which features vectors are created. For 

the suffix model, these negative examples remain constrained to lysine or arginine at 

position four. We found N=200 to be a sufficient number of negative k-mer examples, 

while balancing with the computational cost of computing the models. 

As in MS²PIP, accurate predictive gradient boosted tree models (GBT) are learned with 

the open-source XGBoost tool 25. The boosting algorithm fits an additive decision tree 

ensemble on the data that allows for extremely fast predictions, which is crucial, 

considering that ionbot computes hundreds of millions of predictions for a typical 

spectrum file. 
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To train and evaluate the prefix and suffix tag scoring models (Methods), the Orbitrap-

HCD-best and Orbitrap-HCD-TMT-10 datasets (Table 5) were split into a training and 

testing (5%) set. The split was computed such that both the positive and all negative 

feature vectors computed from a tag are either in the training or in the testing set. GBT 

hyperparameters were optimized using cross-validation on the training set. 

The PSM scoring function 

Ionbot adopts the semi-supervised learning approach pioneered by the Percolator tool 

26. Each PSM in the candidate match set is encoded as a 43-dimensional feature vector 

in which each feature represents a different source of matching information. These 

features are listed in Table 4. The 36 X-ions-counts and X-ions-explained features each 

consider one type of fragment ion. Combining these into one PSMs scoring function 

together with the other features is left to the semi-supervised the Linear Support Vector 

Machine (LSVM) algorithm implemented in Percolator. For the intensity-correlation 

feature, MS2PIP is called to predict all b- and y-ion peak intensities with the Pearson 

correlation between the predicted and observed intensities as the value. The RT-pred-

error feature is computed as the difference between the corrected observed retention 

time and the calibrated prediction of DeepLC. The correction is obtained by grouping 

the PSMs by peptidoform and then, for each group, using the retention time of the PSM 

with the lowest prediction error as the corrected observed retention time. As shown in 

the Results section, this substantially increases the relevance of the LC error feature in 

the PSM scoring function as it is more robust towards peptidoform with long elution 

windows. 
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The RT-pred-error feature requires calibration to correct for different experimental 

conditions. This calls for a limited set of highly confident true PSMs obtained without 

using the feature. This is realized by first learning the PSM function without the RT-

pred-error feature, then selecting the 1000 highest scoring first-ranked matches to 

calibrate the DeepLC predictions and add the feature to the scoring function. This 

function is then learned again from the candidate match set. 

Finally, ionbot follows the well-established concatenated target-decoy method for 

computing significance statistics to call true PSMs at a controlled FDR. This means that 

the learned PSM scoring function selects the highest scoring PSM for each spectrum, 

from which q-values and other statistics are computed. 

Note that ionbot is not restricted to using the Percolator tool. Other Machine learning 

algorithms can be applied to learn the PSM scoring function as well, including 

unsupervised and/or non-linear models. Here, we limited ionbot to the LSVM as it is 

already well-established in the Proteomics community.  

Entrapment peptide database 

To estimate a potential matching bias, we adopted the entrapment peptides approach 

as described in 27. Herein, shuffled target sequences are added to the target database, 

the entrapment peptides, that act as true target peptide. The target database is shuffled 

nine times to create the entrapment peptides that are added to the target database. The 

decoy database was constructed by shuffling the sequences in the extended target 

database. 
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MSFragger and open-pFind search settings 

We compared ionbot with MSFragger (version 3.1 in fragpipe 14.0) and open-pFind 

(pFind version 3.1.5). We set the following settings equal for each search engine: 

20ppm precursor mass error tolerance, peptide length in [7,30], delta-mass (mass range 

allowed for unexpected modifications) in [-150Da,500Da], a maximum of two missed 

cleavages, oxidation of M as expected and carbamidomethylation of C as fixed 

modification. Other settings were left to the default open search settings for each 

engine. 
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Datasets 

Spectral libraries  

The Human Orbitrap-HCD-best and Orbitrap-HCD-TMT-10 spectral libraries were 

downloaded from the NIST Libraries of Peptide Tandem Mass Spectra1. PSMs in these 

libraries were filtered to contain unique peptide sequences that end with a lysine or 

arginine only. For peptides that are matched with different spectra, one is selected at 

random to avoid peptide bias. PSMs are encoded as feature vectors as described in the 

Methods section. Table 5 shows the number of positive and negative examples in each 

dataset for training the prefix and suffix tag models. 

Evaluation projects 

To evaluate ionbot, we selected five MS2 HCD spectrum datasets of different sizes that 

were obtained from different labs and with different overall experimental conditions 

(Table 6). One dataset (Breast) was labeled with super-SILAC and another 

(TMTCPTAC) with TMT10. All RAW files were downloaded from the PRIDE repository 

28 and converted to the Mascot MGF format using ThermoRawFileParser 29 with the 

MS2 peak picking option enabled. Spectrum files belonging to the same sample were 

merged.  

  

 
1 https://chemdata.nist.gov 
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Tables 

 

ID Peptide Modification Intensity-

Correlation 

RT-

pred- 

error 

Protein(s) 

1 IENNDNKPVTNSR [34]Methyl 0.956 8.6E-03 YTHD1,YTHD3 

1 IENNENKPVTNSR - 0.958 6E-03 YTHD2 

2 GGVSIAAIK Gly->Ser[G] 0.973 4.1E-02 H11 

2 SGVSIAAIK - 0.98 1.8E-03 H13 

3 IEEIAAK - 0.904 1.3E-02 CO5 

3 IEQIAAK - 0.993 2.8E-02 RBP2 

4 PAPPKPEPR - 0.961 2.4E-04 HMGN4 

4 PAPPKPEPK [122]Formyl 0.962 4.4E-03 HMGN2,HMGN3 

5 GQVGGDVNVEMDAAPGVDISR - 0.82 6.6E-03 K1C14 

5 GQTGGDVNVEMDAAPGVDISR - 0.867 1.6E-03 K1C16 

6 ADIDVSGPK - 0.92 1.5E-04 AHNK 

6 VPGIDATTK - 0.958 2.3E-05 AHNK 

7 IPVEVAYK - 0.966 9.3E-04 PLEC 

7 VGDVYIPR - 0.966 1.1E-03 SRSF2,SRSF8 

8 VIIQEEGTR - 0.991 1.8E-02 DESP 

8 ISSPATINSR [7]Deamidated 0.874 3.2E-03 P00761 

9 AQYEEIAQR  0.966 2.2E-03 K22O 

9 AIEPNDYTGK  0.956 3.2E-03 GGCT 

10 NDEIIDATQK - 0.903 5.7E-03 SETD2 

10 IPGNTNVNYR - 0.95 5.4E-02 BPTF 

11 ENIAQAVEHR - 0.981 2.6E-02 GOGB1 

11 IGGYEPIFTMSAQQPSIIPFTAQAYEEISR semi-tryptic 0.966 3.3E-02 PIEZ1 

 

Table 1 | Examples of MS2 spectra with two highly plausible co-eluting matches. Every ID in the 

table shows two matches for one MS2 spectrum. For each match, the table shows the peptide sequence 

(Peptide), its modifications to form the identified peptidoform (Modification), the intensity-correlation, the 

RT-pred-error (divided by the maximum retention time observed in the corresponding dataset), and the 

protein(s) that contain the peptide. IDs 1—5 are examples of highly similar matches. IDs 6—11 show 

matches with highly dissimilar matches. 
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Id Peptide Modification Intensity-
Correlation 

RT-pred- 
error 

Protein(s) 

12 FNSIPQYSPVTFDR 
 

0.912 2.5E-02 BBX 

12 QIEAIDQIHIEYAK 
 

0.755 8.0E-03 ACTN4 

12 IMDPPSNEAVIISIR [35]Oxidation 0.947 1.5E-02 DHX36 

12 IAENNIQPIFAVTSR 
 

0.838 1.5E-03 ITB2 

13 IISYIQR 
 

0.998 2.2E-03 SAMH1 

13 VAIDVGYR 
 

0.976 1.7E-02 ALDR 

13 FYEAFSK 
 

0.963 2.9E-02 HS90B 

13 IGQGYIIK 
 

0.882 3.2E-03 RL3 

14 ISKGANPVEIR 
 

0.783 4.9E-03 CH60 

14 AIGDQIEGHSR 
 

0.821 2.8E-02 OTUD3 

14 TYYYNTETK 
 

0.976 6.6E-02 PR40A 

14 NEIPITHETK 
 

0.948 2.0E-02 MALT1 

14 YIEDGGIERK 
 

0.926 2.9E-02 HYEP 

15 EYWMDPEGEMKPGR [35]Oxidation 0.923 1.2E-02 TCP4 

15 EICNAYTEINDPMR [4]Carbamidomethyl, 
[35]Oxidation 

0.752 4E-04 SYK 

15 TITVRDTMSDIPEVR [35]Oxidation 0.834 5.8E-02 DNMT1 

15 FPQAITSNTPIKPSNK 
 

0.923 2.7E-03 MAN1 

15 MDENEFVAVTSTNAAK [35]Oxidation 0.896 3.4E-02 DPYL4 

 

Table 2 | Examples of MS2 spectra (Id) with four or five highly plausible co-eluting matches. Every 

Id in the table shows multiple matches for one MS2 spectrum. For each match, the table shows the 

peptide sequence (Peptide), its modifications to form the identified peptidoform (Modification), the 

intensity-correlation, the RT-pred-error (divided by the maximum retention time observed in the 

corresponding dataset), and the protein(s) that match the peptide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biased scoring function Description 

b1y1-peak-count total number of b- and y-ions matched considering only charge 1+ 
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b1b2y1y2-peak-count total number of b- and y-ions matched considering charge 1+ and 2+ 

peak -count total number of X-ions matched with X in [a,b,b-H2O,b-NH3,c,x,y,y-

H2O,z], considering charge 1+ and 2+ 

b1y1-intensity-explained total explained intensity of matched b- and y-ions matched considering 

only charge 1+ 

b1b2y1y2-intensity-explained total explained intensity of matched b- and y-ions matched considering 

charge 1+ and 2+ 

intensity-explained total explained intensity of matched X-ions matched with X in [a,b,b-

H2O,b-NH3,c,x,y,y-H2O,z], considering charge 1+ and 2+ 

intensity-correlation Pearson correlation between observed and MS2PIP predicted b- and 

y-ion intensities 

average-rank ranks the PSMs by the average rank for ions-count, ions-explained and 

intensity-correlation 

 

Table 3 | Biased PSM scoring functions that filter the search space. Each function considers some 

plausible form of matching information. 

 

Name Description 

charge charge state of match 

peplen length of matched peptide 

precursor_mass MS1 precursor mass 

num_peaks number of peaks in the MS2 spectrum 

max_peak intensity of highest peak in MS2 spectrum 

XY-ion-count number of XY-ions matched with X in [a,b,b-H2O,b-NH3,c,x,y,y-H20,z] and Y 

charge state +1 or +2 

XY-ion-

explained 

total explained intensity for the XY-ions matched with X in [a,b,b-H2O,b-

NH3,c,x,y,y-H20,z] and Y charge state +1 or +2 

intensity-

correlation 

Pearson correlation between observed and MS2PIP predicted b- and y-ion 

intensities 

RT-pred-error difference between corrected observed and DeepLC  predicted retention time 

 

Table 4| The 43 features used in the ionbot PSM scoring function feature vector. Note that XY-ion-

count and XY-ion-explained each constitute 18 different features. 

 

 

 

 

 

 

 

 

Dataset Version #Positives #Negatives 

Orbitrap-HCD-best 05-19-2020 212.761 42.531.154 

Orbitrap-HCD TMT-10 10-30-2019 318.972 63.794.400 
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Table 5: Spectral libraries used to train the prefix and suffix models. For each library the number of 

computed feature vectors labeled as positive (#Positives) and computed feature vectors labeled as 

negative (#Negative) is show. Libraries were downloaded from chemdata.nist.gov. 

 

 

Name Accession #MS/MS 

spectra 

Sample Machine 

HEK293  PXD001468 1.121.149 HEK293 cell Orbitrap Q-Exactive 

CD8T PXD000561 406.913 CD8T cell Orbitrap Elite 

Brain PXD001250  669.350 Mouse brain Orbitrap Q-Exactive 

Breast PXD000815  382.022 Breast cancer 

tumor 

Orbitrap Q-Exactive 

TMTCPTAC PXD012703 1.064.359 Tumor tissue Orbitrap Q-Exactive 

Plus 

 

Table 6: Evaluation datasets used in the Results section. The first four datasets were downloaded 

from the PRIDE repository (Accession). The TMT datasets was downloaded from the CPTAC portal. 
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Figures 

 

 
 

Fig. 1 | Comparing different implementations of the ionbot search engine. (a) shows the number of 

identifications in HEK239 for the different implementations. These are a closed search (dark blue), a 

standard open search (orange), an open search using non-optimal models (red) (for the TMTCPTAC 

dataset, models (tag-models, MS2PIP and DeepLC) trained on unlabeled HCD were used, while for all 

other datasets models trained on TMT labeled data were used), an open search without using the RT-

pred-error feature (green), an open search without using the intensity-correlation feature and biased 

scoring function (light blue), and an open search without intensity-correlation and RT-pred-error (yellow). 

(b) shows the identification overlap between a closed and open HEK239 search. For the closed searches, 

spectra with overruled identifications are shown in red. For open searches, matches with an unexpected 

modification are shown in green, while wide error matches are shown in yellow. (c) shows the 

identification overlap between an open HEK239 search and the same open search without using the 

intensity-correlation and RT-pred-error information. (d) true observed versus DeepLC predicted retention 

time for CD8T. (e) corrected observed versus DeepLC predicted retention time for CD8T. (f) compares 

corrected observed versus predicted retention times for HEK239 searches using (with-RT) and not using 

(no-RT) the RT-pred-error feature. (g) shows intensity-correlation (R) for PSMs identified in HEK239 

identified with using R but not identified not using R (no R). (h) plots the intensity-correlations for spectra 

identified in R and no R, but with a different match. (i) shows R for PSMs identified in no R but not 

identified in R. 
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Fig. 2 | Identification comparison between ionbot, open-pFind and MSFragger for HEK239. (a) 

shows the number of PSM and unique peptide identifications for each engine. (b) shows the identification 

overlap between the three open search engines at PSM level (left), and at unique peptide sequences 

level (right). (c) shows the value of the intensity-correlation feature for matches in the different sections of 

the venn diagrams shown (b). The color of the outliers match the colors of the different sections. Outliers 

with value smaller than zero are not shown.  
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Fig. 3 | Evaluating co-eluting matches in HEK239. (a) shows the edit distance between two identified 

matches in one MS2 spectrum. Only MS2 spectra with two identified matches are shown. (b) shows the 

same identification counts as Fig. 2a with the lower-ranked co-eluting matches (edit distance > 2) added 

in blue. The next six boxplots compare different sources of matching information between the first-ranked 

and lower-ranked co-eluting matches. This information is (c) the number of b- and y-ion peaks matched, 

(d) the length of the matched peptide, (e) the total explained intensity of the b- and y-ion peaks matched, 

(f) the intensity-correlation, (g) the RT-pred-error and (h) the PSM score. (i) shows the percentage of the 

lower-ranked matches identified as first-ranked PSM in both MSFragger and open-pFind (green), only 

open-pFind (orange), and only MSFragger (blue). In (j), for the lower-ranked PSMs unique to ionbot 

(yellow section in (i)), the percentage of unique peptide matches identified as first-ranked PSM (from 

another MS2 spectrum) in both MSFragger and open-pFind (green), only open-pFind (orange), and only 

MSFragger (blue) is shown. 
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