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ABSTRACT

We revisit the differential energy distribution of steady-state dynamical models. It has been shown that the differential energy distri-
bution of steady-state spherical models does not vary strongly with the anisotropy profile, and that it is hence mainly determined by
the density distribution of the model. We explore this similarity in more detail. Through a worked example and a simple proof, we
show that the mean binding energy per unit mass 〈E〉, or equivalently the total integrated binding energy Btot = M〈E〉, is independent
of the orbital structure, not only for spherical models but for any steady-state dynamical model. Only the higher-order moments of the
differential energy distribution depend on the details of the orbital structure. We show that the standard deviation of the differential
energy distribution of spherical dynamical models varies systematically with the anisotropy profile: radially anisotropic models tend
to prefer more average binding energies, whereas models with a more tangential orbital distribution slightly favour more extreme
binding energies. Finally, we find that the total integrated binding energy supplements the well-known trio consisting of total kinetic
energy, total potential energy, and total energy on an equal footing. Knowledge of any one out of these four energies suffices to
calculate the other three.
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1. Introduction

In stellar dynamics, the most fundamental quantity of a self-
gravitating system is the phase space distribution function
f (t, x, υ). It describes the density of stars in the six-dimensional
phase space and contains all the dynamical information. As the
mass density ρ(t, x) is obtained by integrating f (t, x, υ) over
velocity space, there are an infinite number of dynamical mod-
els with different orbital structures that correspond to a given
density. In stationary spherical symmetry, various techniques
to generate dynamical models with a different anisotropy pro-
file for a given density profile have been presented, for exam-
ple by Osipkov (1979), Richstone & Tremaine (1984), Dejonghe
(1984, 1986, 1989), Merritt (1985b), Cuddeford (1991), Gerhard
(1991), and Cuddeford & Louis (1995). Well-known examples
of spherical models for which different analytical distribution
functions have been derived include the Plummer, Hernquist,
and Jaffe models (Jaffe 1983; Merritt 1985b,a; Dejonghe 1987;
Hernquist 1990; Cuddeford 1991; Baes & van Hese 2007).

It is customary to ignore possible contributions from mat-
ter that is not bound to the stellar system under consideration,
hence it is convenient to adopt the symbol E = −E ≥ 0 for
the binding energy per unit mass. A characteristic of dynam-
ical models that has drawn some attention is the differential
energy distribution N(E), that is, the distribution of mass as a
function of E. It is a natural diagnostic for dynamical mod-
els that is easily calculated from N-body simulations (e.g.,
van Albada 1982; Hanyu & Habe 2001; Di Cintio et al. 2013;
Errani & Peñarrubia 2020). It has been argued that the differen-
tial energy distribution is a fundamental partitioning of a stellar
system, as equilibrium stellar dynamical systems are collision-
less systems in which all particles retain their energies (Binney
1982; Efthymiopoulos et al. 2007; Hjorth & Williams 2010).

Given that for a fixed mass density dynamical models with
a widely varying orbital structure can be generated, one would
expect that these different models would also have strongly dif-
ferent differential energy distributions. The opposite turns out to
be the case, however, in different case studies of spherical mod-
els. Binney & Tremaine (1987) considered two different models
with the same Jaffe density profile, an isotropic model, and a
model consisting of only radial orbits, and they showed that they
have a very similar differential energy distribution. Dejonghe
(1987) presented a family of Plummer models with an isotropic
anisotropy profile in the central regions, but strong anisotropy in
the outer regions. He concluded that the differential energy dis-
tribution of the models in this family did not differ drastically,
even when comparing models that range from completely radial
to strongly tangentially anisotropic in the outer regions. A simi-
lar conclusion was drawn by Cuddeford & Louis (1995) based
on a similar family of anisotropic Plummer models. Finally,
Binney & Tremaine (2008) presented the differential energy dis-
tribution for three spherical models with a Hernquist density pro-
file, but with different anisotropy profiles: a radially anisotropic,
an isotropic, and a tangentially anisotropic model. While the dis-
tribution functions of these models are very different, their dif-
ferential energy distributions are, again, very similar.

All of these studies came to a similar qualitative conclusion,
namely that the differential energy distribution generally does
not seem to vary strongly with the anisotropy profile and hence
mainly depends on the mass distribution. However, no satisfac-
tory explanation has been provided for this systematic trend. The
goal of the present paper is to quantify the similarity of the dif-
ferential energy distribution of steady-state dynamical models in
more detail. In Sect. 2 we analyse the differential energy distri-
bution for a family of Hernquist models that covers an extreme
range in the anisotropy profile (ranging from completely radial
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to completely circular orbits). We show that all these models
have the same mean binding energy per unit mass, which con-
tributes to the similarity of their differential energy distributions.
In Sect. 3 we generalise this result for all steady-state dynamical
models corresponding to a given mass density, and we derive a
general relation between the total integrated binding energy and
other measures for the total energy content. In Sect. 4 we discuss
our results, and Sect. 5 contains a summary.

2. The Hernquist model

We start our analysis with a simple but illustrative example: the
Hernquist model. This model, introduced by Hernquist (1990),
has a very simple density profile

ρ(r) =
M
2π

b
r (b + r)3 , (1)

where M represents the total mass and b a scale radius. The (pos-
itive) gravitational potential is

Ψ(r) =
GM
b + r

. (2)

The total potential energy of the Hernquist model is (Hernquist
1990; Baes & Ciotti 2019),

Wtot = −
GM2

6b
. (3)

2.1. Constant anisotropy models

Baes & Dejonghe (2002) discussed different dynamical mod-
els that all generate the Hernquist model. They considered,
amongst others, a one-parameter family of models with constant
anisotropy β. In Appendix A we derive explicit expressions for
the differential energy distribution of this family of models. We
note that this family covers a very wide range of orbital struc-
ture, ranging from a model with all stars on purely radial orbits
(β = 1), over an isotropic model (β = 0), to a model with
all stars on circular orbits (β = −∞). We note that in accor-
dance with the density slope–anisotropy relation (An & Evans
2006; Ciotti & Morganti 2010; Van Hese et al. 2011), only mod-
els with β 6 1

2 have positive distribution functions, which means
that models with β > 1

2 are nonphysical. We can, however, still
formally derive the differential energy distribution for models
with β > 1

2 , but these are all negative at large binding energies.
In the left panel of Fig. 1 we plot the differential energy

distributions for different members of this family of constant
anisotropy Hernquist models. The models corresponding to β =
1
2 , β = 0, and β = − 1

2 are the same models as shown in Fig. 4.5
of Binney & Tremaine (2008), Fig. 1 covers a wider range in the
anisotropy profile.

The first obvious conclusion is that the differential energy
distributions are very similar, in spite of the very different
anisotropy of the models. Inspecting the different curves more
closely, we note that the shape of the differential energy distribu-
tion changes in a systematic way as the anisotropy of the model
changes from purely radial to purely circular orbits. N(E) is a
decreasing function of E at both low and high binding energies,
and an increasing function of β at intermediate binding energies.
In other words, tangentially anisotropic models seem to have a
slight preference for stars on orbits with more extreme binding
energies, whereas radial models slightly prefer average binding

energies. On average, the different differential energy distribu-
tions seem to have the same mean value.

This qualitative impression can be quantified by looking at
the moments of the differential energy distribution. As the dif-
ferential energy distribution is just the distribution of mass as a
function of binding energy, we obviously must have

∫ Ψ0

0
N(E) dE = M, (4)

with Ψ0 the depth of the potential well and M the total mass of
the system. All of the differential energy distributions presented
in Appendix A and shown in the left panel of Fig. 1 satisfy this
normalisation. Even the non-physical differential energy distri-
bution (A.10) of the hypothetical purely radial model satisfies
this normalisation.

Next, we look at the mean binding energy per unit mass,

〈E〉 =
1
M

∫ Ψ0

0
N(E)E dE. (5)

For all the constant anisotropy Hernquist models, 〈E〉 turns out
to have the same value, irrespective of the value of β,

〈E〉 =
GM
4b

. (6)

This is an interesting finding: in spite of the fact that the
anisotropy can be extremely different, ranging from purely radial
to purely circular orbits, the mean binding energy is exactly the
same. We can express this result in an equivalent way by intro-
ducing the total integrated binding energy Btot as

Btot ≡ M〈E〉 =

∫ Ψ0

0
N(E)E dE. (7)

Taking into account expression (3) we find for the family of con-
stant anisotropy Hernquist models the relation

Btot = − 3
2 Wtot. (8)

The total integrated binding energy is hence independent of the
value of β.

Since the normalisation and the mean value of all differen-
tial energy distributions are identical, deviations between them
must be found in the higher-order moments only. The standard
deviation of the differential energy distribution is calculated as

σE =

[
1
M

∫ Ψ0

0
N(E)

(
E − 〈E〉

)2
dE

]1/2

. (9)

For the family of Hernquist models with a constant anisotropy,
the standard deviation decreases slightly but systematically with
increasing β, ranging from 0.0458 for the model with purely cir-
cular orbits, over 0.0375 for the boundary model with β = 1

2 ,
to 0.0299 for the nonphysical model with only radial orbits (all
in units GM/b). This confirms the systematic shift from a slight
excess for extreme binding energies for tangential models to a
preference for average binding energies for radially anisotropic
models.
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Fig. 1. Differential energy distributions for Hernquist models with different anisotropy profiles. Left panel: models with a constant anisotropy for
different values of the anisotropy parameter β. Right panel: models with an Osipkov-Merritt anisotropy profile for different values of the anisotropy
radius ra. We note that the discontinuity in the Osipkov-Merritt distribution function of these models leaves its mark.

2.2. Osipkov-Merritt models

In order to exclude the possibility that the property (6) is a
special property of models with a constant anisotropy, we also
calculate the differential energy distribution corresponding to
Hernquist models with an Osipkov-Merritt anisotropy profile
(Osipkov 1979; Merritt 1985b). These models are characterised
by an anisotropy parameter β(r) that increases smoothly from 0
at small radii to 1 at large radii, that is the models are isotropic
in the centre and completely radially anisotropic in the out-
skirts. The transition from isotropic to radial is characterised
by an anisotropy radius ra. The distribution function for the
Osipkov-Merritt Hernquist model can be calculated analytically
(Hernquist 1990; Baes & Dejonghe 2002), but the differential
energy distribution needs to be determined numerically.

The result is shown in the right panel of Fig. 1 for differ-
ent values of the anisotropy parameter. This plot shows a sys-
tematic trend when the anisotropy radius increases from ra = 0,
corresponding to the hypothetical model with only radial orbits,
to ra = ∞, corresponding to the isotropic model. The differen-
tial energy distributions all asymptotically behave as the pure
radial model at low binding energies, and they asymptotically
approach the isotropic model at high binding energies. The larger
the anisotropy radius, the more the differential energy distribu-
tion approximates the one corresponding to the isotropic model.

We have also numerically calculated the moments of the dif-
ferential energy distribution for these Osipkov-Merritt models.
First of all, all the differential energy distributions obviously
satisfy the normalisation (4), which is good validation test for
the accuracy of our calculations. Secondly, it turns out that they
also all satisfy the relation (6), or equivalently relation (8), that
is, the mean binding energy per unit mas is independent of the
anisotropy radius. The fact that we find the same relation as for
the constant anisotropy models strongly suggests that the mean
binding energy per unit mass, or equivalently, the total integrated
binding energy, of all Hernquist models is exactly the same,
independent of the anisotropy profile.

Finally, we can also quantify the difference between the dif-
ferent differential energy distributions through the standard devi-
ation. We find that, for the Osipkov-Merritt Hernquist models,

σE increases systematically from 0.0299 to 0.0403, in units of
GM/b, when the anisotropy radius increases from ra = 0 (model
with only radial orbits) to ra = ∞ (isotropic model). This is a
similar trend as for the constant anisotropy models: more radi-
ally anisotropic models tend to have smaller values of σE, or in
other words, to prefer more average binding energies.

3. The total integrated binding energy of
equilibrium dynamical models

The analysis in the previous section suggests that the mean bind-
ing energy per unit mass 〈E〉, or equivalently the total integrated
binding energy Btot, of spherical dynamical models with a fixed
density profile is independent of the details of the anisotropy pro-
file. In this section we show that this hypothesis is true, not only
for spherical models but for any steady-state dynamical model.
This turns out to be a simple exercise.

To prove this conjecture, we start with the general expres-
sion for the differential energy distribution provided by
Binney & Tremaine (2008),

N(E) =

∫
dx

∫
dυ f (x, υ) δ

(
Ψ(x) − 1

2 |υ|
2 − E

)
. (10)

The total integrated binding energy is thus given by

Btot =

∫
E dE

∫
dx

∫
f (x, υ) δ

(
Ψ(x) − 1

2 |υ|
2 − E

)
dυ. (11)

Permuting the order of integration yields

Btot =

∫
dx

∫
f (x, υ) dυ

∫
E δ

(
Ψ(x) − 1

2 |υ|
2 − E

)
dE (12)

or

Btot =

∫
Ψ(x) dx

∫
f (x, υ) dυ −

1
2

∫
dx

∫
f (x, υ) |υ|2 dυ.

(13)
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The inner integral in the first term on the right-hand side of this
equation equals the mass density, whereas the integral in the sec-
ond term is the total kinetic energy:

Btot =

∫
ρ(x) Ψ(x) dx −

1
2

∫
ρ(x) 〈υ2〉(x) dx. (14)

The first term is the total potential energy of an equilibrium
dynamical system (Binney & Tremaine 2008). With the nota-
tions

Wtot = −
1
2

∫
ρ(x) Ψ(x) dx, (15)

Ttot =
1
2

∫
ρ(x) 〈υ2〉(x) dx, (16)

we obtain for the total integrated (binding) energy

Btot = −2 Wtot − Ttot. (17)

Invoking the virial theorem, which states that Wtot + 2 Ttot = 0
or Etot = Wtot + Ttot = −Ttot < 0, with Etot the total energy, we
ultimately obtain the expression

Btot = 3 Ttot = − 3
2 Wtot = −3 Etot. (18)

This proves our hypothesis that the total integrated binding
energy of a steady-state dynamical model is independent of the
details of the orbital structure. We also note that the casual argu-
ment Btot = −Wtot − Ttot = −Etot is erroneous.

4. Discussion

4.1. The similarity of the differential energy distributions

The original starting point of this research was the observa-
tion in previous work that the differential energy distribution of
steady-state spherical dynamical models generally does not seem
to vary strongly with the anisotropy profile and hence mainly
depends on the mass distribution. While Binney & Tremaine
(1987, 2008), Dejonghe (1987), and Cuddeford & Louis (1995)
all concluded that models with fixed density profile all have a
similar differential energy distribution, the level of similarity has
not been quantified.

The first main conclusion of this work is a quantification
of this statement: we demonstrate that all dynamical models
corresponding a fixed density distribution have the same mean
binding energy per unit mass. Since the normalisation and the
mean value of the differential energy distribution of any dynam-
ical model consistent with a given density distribution is identi-
cal, deviations between them must be found in the higher-order
moments only. This explains, at least to some degree, why the
distributions are so similar, in spite of the fact that the orbital
structure can vary from completely circular to completely radial
orbits.

To the best of our knowledge, this simple fact has never been
demonstrated. Dejonghe (1987) does discuss µE(r), the mean
binding energy per unit mass as a function of radius, in his analy-
sis of a set of anisotropic Plummer models. Fig. 2 from that paper
shows how µE(r) changes as a function of the anisotropy of the
models (parameterised by a parameter q). At large radii, models
with a tangential anisotropy have a slightly smaller mean bind-
ing energy per unit mass than models with a radial anisotropy,
and vice versa at small radii. This anisotropy dependence is also
clear from the explicit formula for µE(r), as written in Eq. (28) of
Dejonghe (1987). Integrating this quantity over the entire phys-
ical space results in what we denote as 〈E〉. This integral results
in 〈E〉 = 9π/64, independent of q as required.

4.2. Systematic differences in the differential energy
distributions

The second general conclusion from our work relates to
these second-order differences between the differential energy
distributions corresponding to spherical models with differ-
ent anisotropy profiles. Both the constant anisotropy and the
Osipkov-Merritt Hernquist models presented in Sect. 2 showed
a systematic behaviour between the anisotropy profile and the
shape of the differential energy, as parametrised by the stan-
dard deviation. The bottomline is that more radially anisotropic
models tend to prefer more average binding energies, whereas
models with a more tangential orbital distribution slightly favour
more extreme binding energies. We note that these differences
always need to be symmetric, because the mean binding energy
is independent of the anisotropy profile.

Inspecting previous work that discussed the differential
energy distribution as a function of the anisotropy profile,
the same trend is seen. It is most clearly present in the two
sets of Plummer models discussed by Dejonghe (1987) and
Cuddeford & Louis (1995). As shown in their Fig. 3 and Fig. 3a,
respectively, the models with a radial anisotropy have a clearly
peaked differential energy distribution with a maximum around
〈E〉 = 9π/64, whereas the differential energy distribution of tan-
gential models is much broader and less strongly peaked. For the
most strongly tangential models shown by Cuddeford & Louis
(1995), the distribution is even decidedly boxy.

The reason for this systematic shift needs to be sought in the
different contribution of potential and kinetic energy to the bind-
ing energy. In a dynamical model mainly consisting of radial
orbits, many particles, especially at large radii, spend a consid-
erable fraction of their time near the apocentre. Their kinetic
energy is modest, so the binding energy corresponding to these
orbits is roughly equal to the (positive) potential energy, with
almost no kinetic energy subtracted. On the other hand, since all
particles on strongly radial orbits also cross the inner regions,
there is little additional room for highly bound particles on tan-
gential orbits in the central regions. The final result is that radi-
ally anisotropic models contain few particles with either very
small or very large binding energies, and thus display a pref-
erence for average binding energies. Strongly tangential mod-
els on the other hand show the opposite behaviour: they contain
both tightly bound particles that remain in the very inner regions,
whereas the particles in the outer regions still have a significant
kinetic energy, almost at the same magnitude of the potential
energy. The result is that tangentially anisotropic models prefer
more extreme binding energies. Interestingly, this excess at both
small and large binding energies is nicely balanced such that the
average binding energy is independent of the anisotropy profile.

4.3. The total integrated binding energy

The last result from our study concerns the actual value of
the 〈E〉, or equivalently of the total integrated binding energy
Btot = M〈E〉. It turns out to be quite straightforward to demon-
strate that, for any steady-state dynamical model, Btot can be
written as expression (17). We can write Btot in this form due
to the simple fact that the binding energy per unit mass is the
sum of the binding potential and the kinetic energy per unit
mass, that is, it is a linear combination of these two contribu-
tions. Any higher-order moment of the differential energy dis-
tributions contains mixed combinations of these contributions.
Interestingly, we now have three different linear combinations
of the total potential and total kinetic energy of a steady-state
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dynamical model:

2 Wtot + Ttot = −Btot, (19)
Wtot + Ttot = Etot, (20)

Wtot + 2 Ttot = 0, (21)

which leads to

Btot = 3 Ttot = − 3
2 Wtot = −3 Etot. (22)

The total integrated binding energy thus supplements the well-
known trio consisting of total kinetic energy, total potential
energy, and total energy on equal footing. The four energies
(Btot,Ttot,Wtot, Etot) form a quadruple, in which knowledge of
any one out of these four suffices to calculate the other three.
This result is the more remarkable in view of the fact that knowl-
edge of N(E), say from an N-body calculation, would not seem
to suffice in order to calculate the total kinetic and/or potential
energies separately. Clearly it does.

These relations can be extended to the case of alternative
theories of gravity where the force differs from the Newto-
nian r−1 potential. The main result, expression (17), does not
depend on the nature of the potential. In the case of an inter-
particle power-law potential of the form r−p, as studied by
many previous authors (e.g., Ispolatov & Cohen 2001; Iguchi
2002; Di Cintio et al. 2013, 2015, 2017; Marcos et al. 2017),
the scalar virial theorem can be written as (Binney & Tremaine
2008, Problem 7.1)

p Wtot + 2 Ktot = 0. (23)

Combining this with the expressions (17) and (20) leads to a
generalisation of Eq. (22),

Btot =

(
4 − p

p

)
Ttot = −

(
4 − p

2

)
Wtot = −

(
4 − p
2 − p

)
Etot. (24)

5. Summary

The starting point for this paper is the qualitative observation
that the differential energy distribution of steady-state spherical
models does not vary strongly with the anisotropy profile. Our
investigation, based on a detailed study of a family of Hernquist
models and a rigorous general proof, has yielded the following
conclusions.

Firstly we demonstrate that all dynamical models corre-
sponding a fixed density distribution have the same mean bind-
ing energy per unit mass. Differences between differential energy
distributions are only visible in the higher-order moments. This
helps to explain why the distributions are so similar, even for
orbital structures ranging from completely circular to completely
radial orbits.

Secondly we show that the shape of the differential energy
distribution changes systematically with the anisotropy profile
for spherical dynamical models with a given density distri-
bution, radially anisotropic models tend to prefer more aver-
age binding energies, whereas models with a more tangential
orbital distribution slightly favour more extreme binding ener-
gies. These differences are always symmetric because the mean
binding energy is independent of the anisotropy profile. This
systematic effect can be understood as the result of the differ-
ent contribution of potential and kinetic energy to the binding
energy.

Finally, we demonstrate that the total integrated binding
energy supplements the well-known triplet consisting of total
kinetic energy, total potential energy, and total energy on an
equal footing. The four energies form a quadruple, in which
knowledge of any one out of these four suffices to calculate the
other three.
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Appendix A: Differential energy distributions for the
constant anisotropy Hernquist models

For a spherical dynamical model characterised by a general dis-
tribution function f (E, L), expression the differential energy dis-
tribution can be written as

N(E) = 16π2
∫ rm(E)

0
dr

∫ √2r2(Ψ−E)

0

f (E, L) L dL√
2(Ψ − E) − L2/r2

, (A.1)

with rm(E) the maximum radius that can be reached by a star
with binding energy E, defined through Ψ(rm(E)) = E. In this
Section we derive explicit expressions for the differential energy
distribution for Hernquist models with a constant anisotropy,
including the limiting cases of models consisting of purely radial
or purely circular orbits.

A.1. Isotropic model

For isotropic models, the distribution function is function of E
only and can be calculated from the density by means of Edding-
ton’s formula (Eddington 1916). If the distribution function only
depends on binding energy, f (E) can be taken outside the inte-
grals in Eq. (A.1) and the inner integral can be evaluated analyt-
ically. The result is

N(E) = 16
√

2 π2 f (E)
∫ rm(E)

0

√
Ψ − E r2 dr. (A.2)

For the isotropic Hernquist model, the distribution function can
be written in terms of elementary functions, and also the remain-
ing integral in expression (A.2) can be evaluated analytically.
The final result is (Hernquist 1990),

N(E) =
b

12πG
1

ε4 (1 − ε2)2

×

[
3 arcsin ε
√

1 − ε2
− ε (1 − 2ε2) (3 − 8ε2 − 8ε4)

]
×

[
3 (1 − 4ε2 + 8ε4) arccos ε

ε

+(1 − 4ε2) (3 + 2ε2)
√

1 − ε2
]
. (A.3)

where ε is the dimensionless binding energy,

ε =
E

GM/b
. (A.4)

A.2. Models with a constant anisotropy

The isotropic case can be considered as a special case of the
more general class of models with distribution function of the
form f (E, L) = fA(E) L−2β. These models are characterised by
an anisotropy parameter β(r) = β that is independent of radius.
The isotropic case corresponds to β = 0, models with a radial
anisotropy have 0 < β < 1, and models with a preference for tan-
gential orbits have β < 0. Inserting this distribution function in
Eq. (A.1) and solving the inner integral, one obtains (Cuddeford
1991; Evans & An 2006)

N(E) =
(2π)5/2

2β−1

Γ(1 − β)

Γ
(

3
2 − β

) fA(E)
∫ rm(E)

0

r2−2β dr
(Ψ − E)β−1/2 . (A.5)

Baes & Dejonghe (2002) presented an explicit expression for the
distribution function of constant anisotropy Hernquist models in

terms of hypergeometric functions, and showed that this distri-
bution function is positive, and hence physical, as long as β 6 1

2 .
Inserting this expression into equation (A.5) and evaluating the
resulting integral, we find a general expression for the differ-
ential energy distribution of the Hernquist model with constant
anisotropy β,

N(E) =
2b
G

Γ(3 − 2β) Γ(5 − 2β)
Γ
( 9

2 − 3β
)
Γ
( 7

2 − β
) (1 − ε)

× 2F1

(
1
2 − β,

3
2 − β,

9
2 − 3β, 1 − ε

)
× 2F1

(
− 3

2 + β, 5
2 + β, 7

2 − β, ε
)
. (A.6)

For all integer and half-integer values of β, this daunting expres-
sion can be written in terms of elementary functions. Setting
β = 0 recovers the expression (A.3). A particularly simple case
is β = 1

2 , the model with the most radial anisotropy that still cor-
responds to the positive distribution function. The result is (see
also Binney & Tremaine 2008, Problem 4.7)

N(E) =
3b
G

(1 − ε)2. (A.7)

The expressions for other integer and half-integer values of β are
more complex. For example, for β = − 1

2 we have

N(E) =
b

3G
(10 − 10ε + 3ε2)

(1 − ε)4

× (1 − 6ε + 18ε2 − 10ε3 − 3ε4 + 12ε3 log ε). (A.8)

A.3. Radial orbit model

In the limit β → 1 we have a dynamical model with only
radial orbits. As a radial orbit has zero angular momentum,
such models are characterised by a distribution function of the
form f (E, L) = fR(E) δ(L2). Inserting this expression into equa-
tion (A.1), we immediately find

N(E) = 4
√

2 π2 fR(E)
∫ rm(E)

0

dr
√

Ψ − E
. (A.9)

For the case of the Hernquist model, this case is a bit cumber-
some, as the Hernquist model cannot be supported by a model
consisting of only radial orbits. Indeed, it has only a r−1 cusp,
whereas a r−2 cusp is required for a radial orbit model to be
consistent (Richstone & Tremaine 1984). However, we can still
formally derive the differential energy distribution for this hypo-
thetical orbital configuration by evaluating the integral (A.9).
The result is

N(E) =
16b

15πG
(5 − 6ε)

[
arccos

√
ε +

√
ε (1 − ε)

]
. (A.10)

This expression can also be obtained by setting β = 1 in the
general expression (A.6). This differential energy distribution is
negative for 5

6 < ε < 1.

A.4. Circular orbit model

Finally, in the limit β → −∞, all stars are on purely circular
orbits. The distribution function of such models can be written
as (Richstone & Tremaine 1984)

f (x, υ) =
1
π
ρ(r) δ(vr) δ(vt + r Ψ′). (A.11)
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Inserting this expression in Eq. (10), we find after some calcula-
tion

N(E) = 4π
∫ ∞

0
ρ(r) δ

(
Ψ + 1

2 r Ψ′ − E
)

r2 dr. (A.12)

If the density and the potential are known, this integral can
be evaluated and written as a function of E. For the Hernquist
model, this yields the following simple expression

N(E) =
2b
G

(
3

√
1 + 8ε

− 1
)
. (A.13)
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