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Lung cancer is the leading cause of cancer-related death 
worldwide (1). Although smoking rates continue to de-

cline in most developed countries, a substantial portion 
of the population remains at high risk for lung cancer 
(2). Two large randomized controlled trials, the National 
Lung Screening Trial in the United States and the Dutch-
Belgian NELSON trial (NELSON is a Dutch acronym 
for “Nederlands-Leuvens Longkanker Screenings Onder-
zoek”), demonstrated that annual screening with low-
dose CT of individuals at high risk led to a reduction in 
lung cancer mortality in the screening groups compared 
with the control groups (3,4). After the National Lung 
Screening Trial and the subsequent positive reimburse-
ment recommendation by regulatory organizations, lung 

cancer screenings with low-dose CT in populations at 
high risk are being implemented in the United States 
(5,6). Following the positive results of the National Lung 
Screening Trial and NELSON trial, as well as the positive 
recommendations by societies such as the European So-
ciety of Radiology and the European Respiratory Society 
(7,8), many European countries are considering initiating 
screening programs, as well.

Within a screening program, participants undergo an-
nual low-dose CT scanning. Based on the interpretation 
of the reading radiologist, the screening panel will deter-
mine whether the screening test is positive or negative, as 
well as what type of follow-up is needed. Classification 
schemes have been adopted to standardize CT reporting 
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Purpose: To determine whether deep learning algorithms developed in a public competition could identify lung cancer on low-dose 
CT scans with a performance similar to that of radiologists.

Materials and Methods: In this retrospective study, a dataset consisting of 300 patient scans was used for model assessment; 150 patient 
scans were from the competition set and 150 were from an independent dataset. Both test datasets contained 50 cancer-positive scans 
and 100 cancer-negative scans. The reference standard was set by histopathologic examination for cancer-positive scans and imaging 
follow-up for at least 2 years for cancer-negative scans. The test datasets were applied to the three top-performing algorithms from the 
Kaggle Data Science Bowl 2017 public competition: grt123, Julian de Wit and Daniel Hammack (JWDH), and Aidence. Model out-
puts were compared with an observer study of 11 radiologists that assessed the same test datasets. Each scan was scored on a continu-
ous scale by both the deep learning algorithms and the radiologists. Performance was measured using multireader, multicase receiver 
operating characteristic analysis.

Results: The area under the receiver operating characteristic curve (AUC) was 0.877 (95% CI: 0.842, 0.910) for grt123, 0.902 (95% 
CI: 0.871, 0.932) for JWDH, and 0.900 (95% CI: 0.870, 0.928) for Aidence. The average AUC of the radiologists was 0.917 (95% 
CI: 0.889, 0.945), which was significantly higher than grt123 (P = .02); however, no significant difference was found between the radi-
ologists and JWDH (P = .29) or Aidence (P = .26).

Conclusion: Deep learning algorithms developed in a public competition for lung cancer detection in low-dose CT scans reached perfor-
mance close to that of radiologists.

Supplemental material is available for this article.
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they made the software they had written publicly available under 
an open-source license. A leaderboard with the results of this 
competition is available; however, at the time it was unknown 
whether these algorithms could have value in a clinical lung 
cancer screening setting. As such, there were two key questions 
to address: how the performance of the computer systems com-
pares with that of radiologists, and if the algorithms perform well 
on independent datasets from sources that were not used in the 
Kaggle Data Science Bowl 2017 (DSB2017) competition.

The purpose of this study, therefore, was to assess and compare 
the performance of the models to that of radiologists for identify-
ing lung cancer on low-dose chest CT scans using scans from the 
DSB2017 test set and scans from an independent external dataset.

Materials and Methods

The DSB2017 Competition
The DSB2017 competition was set up in two stages: (a) model 
development, training, and testing on an initial test set of 198 
scans and (b) model testing on an additional set of 500 scans. 
The test performance on the 500 scans was used to determine 
the final ranking of the submitted algorithms. The metric used 
for ranking was the logarithmic loss metric (hereafter, referred 
to as logloss), which measures the performance of a binary clas-
sification when the prediction is a probability value between 0 
and 1. In short, logloss is the logarithmic transform of the sum 
of the probabilities that an algorithm assigns to the samples 
that it misclassifies. Further details about the setup of the com-
petition can be found in Appendix E1 (supplement).

Datasets
The scans for DSB2017 originated from the National Lung 
Screening Trial (ClinicalTrials.gov: NCT00047385), the 
Danish Lung Cancer Screening Trial (ClinicalTrials.gov: 
NCT00496977), and the screening program at the Lahey Hos-
pital and Medical Center (Burlington, Mass). Institutional re-
view board approval and informed consent were obtained dur-
ing inclusion into the screening trials. Scans that were positive 
for cancer were selected from individuals diagnosed with lung 
cancer and confirmed at histopathologic examination. For the 
cancer-positive scans, the screening CT scan obtained before the 
lung cancer diagnosis was included. Only scans in patients for 
whom the diagnosis followed within 1 year of the CT scan were 
included. Noncancer scans were selected from individuals who 
did not have a lung cancer diagnosis during the course of the 
screening program and for whom the minimum follow-up pe-
riod was 2 years. The noncancer scans were enriched with scans 
in which suspicious pulmonary nodules (Lung-RADS 3 and 
above) were present to ensure that the dataset would not con-
tain a large proportion of CT scans without any nodules pres-
ent. Each CT scan originated from a different participant. All 
images were supplied in Digital Imaging and Communications 
in Medicine format.

The DSB2017 attracted considerable interest, with almost 
2000 teams joining the competition. All winning teams pub-
licly released their code under a permissive open-source license. 

and management recommendations. The Lung Imaging Report-
ing and Data System (Lung-RADS) classification is used for 
interpreting chest CT screening scans in the United States (9). 
Lung-RADS has six possible categories—1, 2, 3, 4A, 4B, and 
43—and these categories correspond to four different levels of 
follow-up. With the Lung-RADS classification, the radiologist 
must identify all pulmonary nodules in the CT scan and assess 
their size and type. Based on this information, the radiologist 
assigns the corresponding Lung-RADS category.

Accurate detection and risk assessment of pulmonary nod-
ules is a crucial component of a successful screening program. 
However, reading of screening CT scans by radiologists is time-
consuming and expensive and is associated with substantial in-
terobserver variability (10,11). Computer algorithms, particu-
larly artificial intelligence algorithms, may help by assisting in 
the detection and classification of lung nodules, by assisting in 
the three-dimensional measurement of lung nodules, or by pro-
viding an accurate lung cancer risk estimate for each pulmonary 
nodule or at the scan level. Such computer support may help 
optimize the interpretation of screening CT scans and may lead 
to better management recommendations that increase the cost-
effectiveness of screening.

In 2017, the high-profile Kaggle Data Science Bowl was 
launched (https://www.kaggle.com/c/data-science-bowl-2017). This 
competition challenged computer and data scientists to develop 
software that could accurately determine when lesions in the 
lungs are cancerous. The top 10 teams in the final ranking of 
the competition received monetary prizes on the condition that 

Abbreviations
AUC = area under the ROC curve, JWDH = Julian de Wit and 
Daniel Hammack, DSB2017 = Kaggle Data Science Bowl 2017, 
Lung-RADS = Lung Imaging Reporting and Data System, PanCan 
= Pan-Canadian Lung Screening trial, ROC = receiver operating 
characteristic

Summary
An observer study showed that two of the three top-performing algo-
rithms from a public competition (Kaggle Data Science Bowl 2017) 
attained performances that were not significantly worse than that of 
11 radiologists for estimating lung cancer risk on low-dose CT scans.

Key Points
 n An enriched dataset of 300 chest CT scans (100 cancer-positive 

and 200 cancer-negative scans) was assessed in an observer study 
of radiologists; these same scans were then input into the three 
top-performing models (ie, grt123, Julian de Wit and Daniel 
Hammack [JWDH], Aidence) from the Kaggle Data Science Bowl 
2017 to assess lung cancer risk.

 n The average area under the receiver operating characteristic curve 
(AUC) was 0.917 (ranging from 0.841 to 0.944) for the radiolo-
gists, and the model AUCs were 0.876 for grt123, 0.883 for 
JWDH, and 0.881 for Aidence.

 n The AUC was lower for the grt123 model than for the radiologists 
(P = .02), whereas there was no evidence of a difference in AUC 
between the radiologists and either JWDH (P = .29) or Aidence 
(P = .26).

Keywords
Lung, CT, Thorax, Screening, Oncology
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CT scan was obtained. For the remaining 100 scans negative 
for cancer, we randomly selected 50 cancer-negative scans with 
a nodule larger than 8 mm and 50 random cancer-negative 
scans without a nodule larger than 8 mm, as annotated by the 
PanCan radiologists during the screening trial. Patients with 
multiple lung cancers were not included in this study. Note 
that this dataset is enriched in a similar fashion to the enrich-
ment of the DSB2017 data. This dataset allowed us to compare 
the performance of the algorithms with that of radiologists on 
the DSB2017 test data and on an external dataset. Details on 
the nodule characteristics for the included scans can be found 
in Table E3 (supplement).

A web-accessible workstation was developed on which radi-
ologists could review chest CT scans. The web workstation in-
cludes common tools found in a professional medical viewing 
workstation, such as the ability to scroll through the scan in any 
orthogonal direction, change the window and level settings, pan 
and zoom, change section thickness, and select sliding maxi-
mum and minimum projections. The reading time per scan was 
measured by the software. No time limit was imposed.

Radiologists and radiology residents with experience in chest 
reading were approached for this study. Participation was on a 
voluntary basis. After agreeing to participate, the radiologists re-
ceived written instructions and filled out a questionnaire about 
their professional experience and their experience with reading 
lung cancer screening CT scans. In total, 11 readers participated 
(M.B., K.C., A.D., B.G., F.A.M.H., P.A.d.J., J.M., E.R., E.T.S., 
M.S., and S.S.), with varying levels of experience. They consisted 
of seven radiologists with 7–30 years of experience in chest ra-
diology; two general radiologists with 7–25 years of experience 
in radiology; and two radiology residents, each with more than 
2 years of experience in chest radiology. For each scan, the ra-
diologist had to assign a score on a continuous scale between 0 
(very low likelihood) and 100 (very high likelihood) for being 
indicative of cancer. The radiologists were encouraged to use the 
full scale. The radiologists were informed that about one-third 
of the scans were cancer positive, but they were blinded to clini-
cal information and the results of the algorithms. They were in-
structed to start with a training batch of 30 scans, taken from 
the remaining scans from the PanCan set and the DSB2017 test 
set, to become acquainted with the web viewing environment 
and the task. After each scan, the observer could decide either to 
continue or to stop and continue at a later time.

Statistical Analysis
The primary outcome measure in this study was the area un-
der the ROC curve (AUC) for presence of malignancy. We 
compared the performance of each of the top three algorithms 
independently with the radiologists using multireader, mul-
ticase ROC analysis. We used the publicly available iMRMC 
software (version 4.0.3; U.S. Food and Drug Administration)  
(https://github.com/DIDSR/iMRMC/releases/tag/iMRMC-v4.0.3). 
The average ROC curve of the radiologists was computed us-
ing the diagonal average, which is area preserving, meaning that 
the AUC of the average ROC curve equals the average of all the 
separate AUC values of the individual ROC curves. The ROC 

We summarized the links to the code in Table E1 (supple-
ment). The labels of the final test set of 500 scans were released 
by Kaggle several weeks after the competition ended. For this 
study, the raw scores of the top 10 algorithms were obtained 
from Kaggle, and receiver operating characteristic (ROC) anal-
ysis was performed to achieve a more clinically useful analysis 
of the results of the competition.

External Validation Data
Data from the Pan-Canadian Early Detection of Lung Can-
cer (PanCan) trial (ClinicalTrials.gov: NCT00751660) were 
included in this study as external validation data. The PanCan 
trial enrolled 2537 participants, and all low-dose baseline CT 
scans were considered for inclusion in this study. Details on the 
population and CT scanning protocol are provided in previ-
ously published studies (14,15). The data were acquired at five 
institutions across Canada between 2008 and 2010. Lung can-
cer status was set on the basis of histopathologic examination 
for cancer-positive scans and imaging follow-up for at least 2 
years for noncancer scans. The PanCan dataset is an indepen-
dent test dataset; the data are not publicly available and none of 
the top 10 teams from the DSB2017 had access to these scans.

To obtain an external validation of the algorithms, the code 
of the top 10 algorithms was downloaded and then reviewed by 
a team of experienced research software engineers. For the top 
three solutions—grt123, Julian de Wit and Daniel Hammack 
(JWDH), and Aidence—the team compiled a software package 
that could be used to process unseen CT scans. All systems re-
quired training deep learning networks on DSB2017 training 
data and, in some cases, on additional data such as the Lung 
Image Database Consortium (12) or the LUNA16 (13) data (see 
open-source code links in Table E1 [supplement]). To verify code 
correctness, the scores on the DSB2017 test set were recomputed 
and a correlation test between the scores that were submitted 
to DSB2017 and the recomputed scores was performed (see 
Appendix E2 and Table E2 [supplement]). Subsequently, the 
grt123, JWDH, and Aidence models were applied to all baseline 
CT scans from the PanCan dataset.

Observer Study
We conducted a retrospective observer study with a dataset of 
300 CT scans. Because we were unsure of the effect size prior to 
this study, we did not perform power calculations; instead, we 
determined the number of scans based on a trade-off between 
sample size and reading effort. An enriched set was chosen to 
prevent compiling a dataset in which the vast majority of scans 
would be normal, which would have hindered a proper ROC 
analysis. We included 150 scans from the DSB2017 test set 
containing 50 cancer-positive scans, as well as 150 baseline CT 
scans from the PanCan dataset containing 50 cancer-positive 
scans. The 100 cancer-negative and 50 cancer-positive scans 
from the DSB2017 test set were randomly extracted from the 
full DSB2017 test set, which contained 349 cancer-negative 
and 151 cancer-positive scans. For the PanCan data, we ran-
domly selected 50 cancer-positive scans from patients who were 
diagnosed with lung cancer within 1 year after the included 
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performance, and no performance drop was seen on the inde-
pendent validation data (Fig 2C compared with Fig 2B). Figure 
2A shows the performance of the top three algorithms on the full 
set of 300 scans that were included in the observer experiment. 
The statistical analysis showed that the average AUC among the 
11 radiologists was higher than that of the grt123 algorithm 
(P = .02); whereas the AUCs from the other two models were 
not significantly worse compared with those of the radiologists 
(JWDH, P = .29; and Aidence, P = .26) (Table 2).

Discussion
The reading of screening CT scans by radiologists is an im-
portant component of a lung cancer screening program. Inte-
grating support by artificial intelligence tools into this reading 

curve from each of the top three algo-
rithms was compared with the average 
radiologist ROC curve on the full set 
of 300 scans from the observer study 
using the methods by Gallas et al (16) 
implemented in iMRMC. This method 
uses U statistics to provide unbiased es-
timates of the variance components, and 
we used the method that decomposes 
the total variance into eight moments 
from first principles. In the multireader, 
multicase analysis, the first modality was 
set to radiologists analyzing the CT im-
ages, and the deep learning algorithm 
was set as the independent second mo-
dality, representing an algorithm analyz-
ing the CT images. The 95% CIs for the 
individual ROC curves were computed 
using bootstrapping with 1000 itera-
tions using a Python (version 3.6; Python Software Foundation; 
https://www.python.org/) (open source) script developed in house.

Results

DSB2017 Competition Results
The results of the competition are shown in Table 1, where the 
performance of the top 10 algorithms on the DSB2017 test set 
of 500 scans was ranked using the logloss metric. The AUCs 
are also included in Table 1. The ROC curves corresponding to 
these submissions on the 500 test scans from the competition 
test set are depicted in Figure 1. The AUC values of the top 10 
algorithms were high and ranged between 0.849 and 0.883.

Observer Experiment
For the top three solutions (grt123, JWDH, and Aidence), 
software packages that can process unseen CT scans were 
compiled, and the correlation scores between the recomputed 
and the submitted scores of the algorithms were all above 0.99 
(Table E2 [supplement]). The grt123, JWDH, and Aidence 
models were all successfully applied to all 300 CT scans from 
the observer experiment.

All readers completed the full set of 300 scans of the observer 
experiment, and the average reading time per scan ranged from 
96 seconds to 275 seconds. The AUC values were 0.877 (95% 
CI: 0.842, 0.910) for grt123, 0.900 (95% CI: 0.870, 0.928) 
for Aidence, and 0.902 (95% CI: 0.871, 0.932) for JWDH 
when the models were assessed on all 300 scans (Table 2). For 
the radiologists, the AUCs ranged from 0.841 (95% CI: 0.800, 
0.882) to 0.944 (95% CI: 0.923, 0.963), with an average AUC 
of 0.917 (95% CI: 0.889, 0.945). The ROC curves from the 
top three algorithms on the 150 scans from the DSB2017 da-
taset, the 150 scans from the PanCan dataset, and the full da-
taset from the observer study are shown in Figure 2. In these 
figures, the ROC curve of the average reader performance is also 
plotted. Individual ROC curves for all observers are depicted in 
Figure E1 (supplement). The top three algorithms showed good 

Table 1: Top 10 Teams from the DSB2017 and Model Performance Statistics

Rank Team Name Logloss Score AUC

1 grt123 0.39975 0.876
2 Julian de Wit & Daniel Hammack 0.40117 0.883
3 Aidence 0.40127 0.881
4 qfpxfd 0.40183 0.877
5 Pierre Fillard (Therapixel) 0.40409 0.879
6 MDai 0.41629 0.871
7 DL Munich 0.42751 0.855
8 Alex Andre Gilberto Shize 0.43019 0.858
9 Deep Breath 0.43872 0.849
10 Owkin Team 0.44068 0.876

Note.—Results are shown from the 500 test scans from the Kaggle Data Science Bowl 2017 
(DSB2017). AUC = area under the receiver operating characteristic curve, logloss = logarith-
mic loss metric.

Figure 1: Receiver operating characteristic (ROC) curves for the top 10 algo-
rithms on the 500 scans from the Kaggle Data Science Bowl 2017 test set. AUC = 
area under the ROC curve.

http://radiology-ai.rsna.org
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of screening; however, this has not yet been investigated and 
thus, there is no scientific evidence supporting this idea. If fu-
ture validation studies show that this approach is feasible, policy 
changes will be needed because to qualify for reimbursement in 
the United States, every screening CT scan must be categorized 
according to Lung-RADS by a board-certified radiologist.

Future development of the deep learning models should fo-
cus on providing more information to the user (eg, the loca-
tion of the suspicious pulmonary nodules that have been found 
by the model). This should be feasible to accomplish because 
winning solutions used an approach in which they first detected 
lung nodule candidate locations and subsequently used the de-
tected locations to produce a malignancy risk score at the scan 
level. Subsequently, studies are needed that focus on evaluating 
how the use of these algorithms can be integrated with the work 
of radiologists to positively change the follow-up recommenda-
tions in a screening program.

In this study, we tested only the discriminative power of the 
algorithms. The performance of the algorithms was evaluated on 
an enriched set of scans, which does not reflect disease preva-
lence in real-world lung cancer screening practice. Therefore, to 
guarantee accurate and reliable predictions in real-world situa-
tions, the predictions of the algorithms will need to be calibrated 
and future studies should investigate the most optimal cutoff 
points for decision-making.

The performance of the algorithms and the observers was 
highest on the subset of 150 scans from the PanCan trial. Because 

process may improve the efficiency and accuracy of screening. 
The Kaggle DSB2017 competition resulted in 10 open-source 
algorithms that were capable of detecting lung cancer on a CT 
scan. At the time of the competition, however, the algorithms 
were not compared with readings by radiologists, and thus it 
was difficult to assess the clinical effect of these algorithms. To 
address this gap, we performed a study to compare the top-
performing algorithms to radiologists. We found that two of 
the top three algorithms from the DSB2017 competition were 
able to provide lung cancer risk predictions based on a CT 
scan with a performance close to that of radiologists. These 
results, which were found by using a test dataset from the origi-
nal competition and an independent test dataset, offer several 
opportunities to optimize the reading of lung cancer screening 
CT scans.

The algorithms used in this study produce a score between 
0 and 1 for each CT scan that indicates the likelihood that the 
participant will have a lung cancer diagnosis within 1 year. No 
location of a possible cancer or explanation for the score of the 
deep learning models is provided, however. Therefore, currently 
this score can only be used as a sign that a radiologist needs to 
carefully check the CT scan for abnormalities. Potentially, direct 
estimation of the malignancy risk may one day be an effective 
way to optimize current guidelines. Alternatively, these algo-
rithms could be used to triage normal scans with the result that 
only possibly abnormal scans are sent for radiologist review. Such 
triaging may have a substantial effect on the cost effectiveness 

Table 2: Performance of Readers and Top Three Algorithms

Parameter DSB2017 PanCan All Scans P Value*

Reader
 R1 (Che) 0.909 (0.872, 0.945) 0.928 (0.888, 0.963) 0.918 (0.891, 0.944) NA
 R2 (Che) 0.899 (0.856, 0.943) 0.970 (0.950, 0.987) 0.938 (0.915, 0.959) NA
 R3 (Che) 0.894 (0.852, 0.935) 0.938 (0.903, 0.969) 0.919 (0.891, 0.944) NA
 R4 (Rad) 0.837 (0.782, 0.893) 0.850 (0.789, 0.905) 0.841 (0.800, 0.882) NA
 R5 (Che) 0.920 (0.881, 0.957) 0.966 (0.945, 0.985) 0.944 (0.923, 0.963) NA
 R6 (Res) 0.871 (0.823, 0.915) 0.951 (0.922, 0.974) 0.911 (0.883, 0.937) NA
 R7 (Res) 0.918 (0.877, 0.958) 0.953 (0.924, 0.976) 0.935 (0.910, 0.958) NA
 R8 (Rad) 0.899 (0.858, 0.936) 0.927 (0.888, 0.961) 0.913 (0.884, 0.937) NA
 R9 (Che) 0.930 (0.895, 0.963) 0.945 (0.910, 0.974) 0.939 (0.913, 0.960) NA
 R10 (Che) 0.927 (0.886, 0.965) 0.938 (0.901, 0.970) 0.932 (0.908, 0.958) NA
 R11 (Che) 0.856 (0.801, 0.908) 0.935 (0.900, 0.966) 0.897 (0.864, 0.928) NA
 Average reader 0.896 (0.853, 0.939) 0.937 (0.907, 0.966) 0.917 (0.889, 0.945) NA
Algorithm
 grt123 0.845 (0.790, 0.894) 0.905 (0.862, 0.944) 0.877 (0.842, 0.910) .02
 JWDH 0.880 (0.831, 0.924) 0.920 (0.879, 0.954) 0.902 (0.871, 0.932) .29
 Aidence 0.885 (0.842, 0.927) 0.917 (0.877, 0.950) 0.900 (0.870, 0.928) .26

Note.—There were 150 DSB2017 scans and 150 PanCan scans. Unless otherwise indicated, data are areas 
under the receiver operating characteristic curve; data in parentheses are 95% CIs. AUC = area under the 
receiver operating characteristic curve, Che = chest radiologist, JWDH = Julian de Wit and Daniel Ham-
mack, DSB2017 = Kaggle Data Science Bowl 2017, NA = not applicable, PanCan = Pan-Canadian Lung 
Screening trial, Rad = radiologist, R = reader, Res = resident.
*P value is shown for the comparison of the algorithm AUC with the average reader AUC.

http://radiology-ai.rsna.org
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this set of scans was enriched in a way that was similar to that of 
the DSB2017 data, we do not expect that the difference can be 
explained by case selection. Potentially, the standardized CT im-
aging protocol of the PanCan trial (1.25-mm section thickness) 
played a role, but this is speculation.

The deep learning models developed in the competition 
were created in a relatively short amount of time (3 months) 
and with a predefined, relatively small training dataset consist-
ing of approximately 400 cancer scans and 1000 benign scans 
(https://www.kaggle.com/c/data-science-bowl-2017). What the 
performance of the deep learning models will be when more 
data and more time are available to train and develop these 
models is unknown. 

A limitation of the developed deep learning models is that 
they use only one CT scan per patient. In a lung cancer screen-
ing setting, multiple prior scans are often available in addition 
to the current scan. The availability of these different scans is 
important as growth of a nodule on CT is the most important 
predictor of cancer, and growth cannot be assessed from a single 
scan. Future research should focus on developing computer so-
lutions for the scenario in which both current and prior scans 
are available. The 2019 study by Ardila et al (17) is a good first 
example and showed a performance similar to or higher than 
that of radiologists, but it remains unclear how this proprietary 

algorithm would be used in screening (18). The authors of an-
other recent study designed a neural network with clinical fea-
tures and imaging features annotated by radiologists as input to 
assess the lung cancer risk of follow-up CT scans and showed 
good performance on an independent dataset (19).

This study showed that two of the top three algorithms from 
the DSB2017 competition achieved a performance not signifi-
cantly worse than the average of the performance of 11 radiolo-
gists for estimating the cancer risk from a CT scan on a dataset 
consisting of scans from the test set of the competition and from 
an independent validation set. Further research should focus on 
how these artificial intelligence models can be used most effec-
tively to assist in the interpretation of lung cancer screening CT 
scans in a screening setting.
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