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ABSTRACT 

The importance of young athletes in the field of professional cycling has sky-rocketed during the past 

years. Nevertheless, the early talent identification of these riders largely remains a subjective 

assessment. Therefore, an analytical system which automatically detects talented riders based on their 

freely available youth results should be installed. However, such a system cannot be copied directly 

from related fields, as large distinctions are observed between cycling and other sports. The aim of this 

paper is to develop such a data analytical system, which leverages the unique features of each race 

and thereby focusses on feature engineering, data quality, and visualization. To facilitate the 

deployment of prediction algorithms in situations without complete cases, we propose an adaptation 

to the k-nearest neighbours imputation algorithm which uses expert knowledge. Overall, our proposed 

method correlates strongly with eventual rider performance and can aid scouts in targeting young 

talents. On top of that, we introduce several model interpretation tools to give insight into which 

current starting professional riders are expected to perform well and why.  

Keywords: Sports Analytics, Scouting Analytics, Missing Value Imputation, Predictive Modelling, 

Interpretable Machine Learning 
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1. Introduction 
Cycling has become a global sport during recent decades (Van Reeth, 2016). The sport attracts up 

to 25 million live viewers for popular races (Van Reeth, 2019) and budgets skyrocket up to €130 million 

for an individual race (Andreff, 2016). In comparison to other sports, the margins in cycling are small, 

with multiple pre-race favorites, and with seven-hour races often ending with differences of only 

seconds. These small margins are further complicated by the varying race tactics. Two broad types of 

races can be distinguished: (1) one-day races where the first-arriving participant is also the overall 

winner, and (2) stage races where participants race over multiple days and the summed-up time over 

all days (stages) is used to determine the final ranking. A special feature of the latter is that many 

participants also focus on stage victories or climbers or sprinters classifications, while not competing 

for the general classification. This leads to several competitors with differing goals, which might profit 

from the actions of others in achieving their own goals. This highly competitive setting has caused 

professional teams to search for small competitive gains by deploying various strategies in search of 

success.  

One such strategy is the recruitment of young talented riders, which has become more important 

during recent years. The most popular cycling race on the planet, the Tour de France, can be seen as 

an indicative example of this changing trend. During the years 2000-2018, the average age of the 

overall winner1 was above 30 years. However, the two most recent winners of the Tour de France, 

Egan Bernal (2019 winner) and Tadej Pogačar (2020-2021 winner) were respectively aged 22 and 21 

years old at the time of their first victories. These figures might seem anecdotal at first, but overall, the 

sport has seen a rejuvenation, with young riders performing extremely well. For instance, when looking 

at the ProCyclingStats (PCS) points scored by neopro riders (professional athletes in the first two years 

of their professional career) there is an increase of around 20% over 10 years. This also resulted in the 

induced interest of teams in these riders, reflected by a drop in average starting age of a stunning 1.5 

years during the period 2018-2020.  

Despite the growing importance of young rider recruitment, we observe a limited development of 

the techniques to detect such young talents. Talent identification has mainly focused on physiological 

aspects, such as the overall oxygen uptake (Nevill et al., 2005), as predictors of future performance. 

While this characteristic is suited for detecting whether someone has the ability to become a 

professional athlete, it is proven to be unreliable in predicting competitive success at the highest levels 

(Menaspà, Sassi & Impellizzeri, 2010). More recent measures are primarily focused on power output-

related measures, which are more reliable (Larson & Maxcy, 2016). Nevertheless, obtaining such 

measures is a non-trivial task, as this information is not publicly available, and teams need to conduct 

                                                           
1 The age of the original winner, before any doping-related alterations to results, was used. 
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costly tests to obtain such information. Doing such tests for a wide range of riders would proof 

extremely costly and a waste of valuable resources. Hence, teams are forced to put a system in place 

to cost-effectively pre-select the riders undergoing such tests. Several talks with industry experts 

revealed that this is still largely done based on a subjective assessment of the young riders, stating the 

immense importance of mental strength and perseverance. However, the process remains largely 

subjective and prone to human errors 

One possible solution could lay in the development of an analytical tool which automatically detects 

promising riders based on open-source data, which could then be selected for physical scouting and 

physiological testing (e.g., power output testing). To the best of our knowledge no such method has 

been developed in the cycling domain. This while research in other sports fields (e.g., Liu, Schulte & Li, 

2018) already experimented with such analytical models, whose suggestions outperform actual team 

preferences with regard to eventual performance of players. The reason that no such tool has been 

developed for cycling lays in the uniqueness of the cycling sport and the nature of the data.   

The main objective of this study is therefore to design a data analytical system that is capable of 

accurately predicting future performance of athletes based on youth race performances. The data is 

scraped from the PCS website (procyclingstats.com), which is a publicly available website containing 

stats from all cycling races. Since not all riders compete in all races, building an analytical model on the 

historical results of riders in the individual races of the youth categories is challenging due to the high 

number of missing values (often over 50%). Therefore, special academic interest is given to the 

different imputation methods to keep the unique characteristics of each race. For example, a point 

system were only points are accumulated through races in which a rider participates (e.g., the Official 

World Golf Ranking) would leave out important details as riders might only thrive in certain types of 

races. This consideration is of much less importance in other sports, where the sporting environments 

are much more standardized. To accurately predict race performance we benchmark several 

prediction algorithms that have achieved superior performance in academic literature. The goal of our 

system is to come up with a list of potential future top performers and to provide insights into which 

features are critical to the models. Since interpretability is of major importance in scouting analytics 

(e.g., Liu, Schulte & Li, 2018), we also put large emphasis on how the results of our black-box prediction 

algorithms can be visualized and interpreted. Hence, our analytical approach should provide insights 

to both scouts and fans which results and indicators to keep track off to identify potential future 

prospects.  

The remainder of this study is structured as follows. Section 2 discusses advances made in scouting 

analytics and cycling analytics, followed by the used methodology in Section 3. Section 4 elaborates on 

the performance and outcome of the various techniques. Section 5 discusses the implications of these 

results, while we end with a concluding remark and a critical note in Section 6.  
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2. Related Work 
This section discusses current advances in literature. Section 2.1. describes how the interest in 

cycling analytics increased in recent years. Nonetheless, this growth in academic interest did not lead 

to an analytical approach to detect young cycling talents. This while talent identification has seen some 

interesting developments in a variety of fields. Several interesting developments in talent 

identification, and how they differ or relate to the cycling field are therefore discussed in Section 2.2. 

2.1. Cycling Analytics 
In recent years, there has been an emergence of cycling-related data analytical studies. While some 

studies use analytical approaches to facilitate recreational and commuter cycling (e.g., Kumar, Nguyen, 

& Teo, 2016), less efforts have been made to use analytics to boost rider and team performances. 

Initial introductions towards data analytical methods in the field were made by Hilmkil et al. (2018). 

The authors were able to predict a cyclist’s heart rate at various moments in the training ride using a 

long short-term memory (LSTM) model. The study can be regarded as a proof-of-concept, indicating 

the feasibility of data analytical approaches in the field of cycling. 

This proof-of-concept was quickly followed by a range of studies who focus on practical applications 

to the cycling community. For instance, Kataoka and Gray (2018) develop a real-time analytical system 

to predict power performance of professional riders at the Tour de France (deployed on 2017 edition) 

based on GPS and wind sensor data. This would allow fans to have reliable estimates of the 

performance of athletes during the race. Another interesting study by De Spiegeleer (2019) predicts 

the average velocity of a stage, the difference between the average stage velocity and the velocity of 

a rider and, finally, the head-to-head wins between two riders in a stage, using open data from the PCS 

website. This popular information-tracking website was also used in other relevant studies. For 

instance, Kholkine et al. (2020) proofs that it is feasible to build a model which is capable to predict 

race rankings based on previous race rankings scraped from the PCS website, while Karetnikov (2019) 

was capable to predict individual rider performance in key mountain stages using a combination of 

private training data and the open data available on the PCS website. These studies, and the wide 

usage of the website among fans, has clearly established the PCS website as the go-to source for open 

cycling data. 

Another interesting observation can be made with regard to the used methodology. While several 

studies (Karetnikov, 2019; Kataoka & Gray, 2018) compare more complicated deep learning 

architectures with gradient-boosted trees, gradient-boosted trees are consistently ranked as top 

performing algorithm. While De Spiegeleer (2019) observes ridge regression to outperform gradient 

boosting in only one out of the three prediction tasks, extreme gradient boosting (XGBoost) is ranked 

first on two out of three tasks, which further re-enforces the superiority of the algorithm. 



5 
 

While extensive research interest has been paid to the performance prediction of current riders, 

there has been no interest in the early detection of successful riders. Nevertheless, such talent 

identification can deliver useful competitive gains when deployed correctly. This is especially true in 

the current professional cycling context, where riders are turning professional at a very young age and 

are showing competitive results from the very beginning of their career. In the next section, we will 

focus more on the theory behind talent identification, and related concepts from other sports. 

2.2. Talent Identification 
Vaeyens et al. (2008) define talent identification as “the process of recognizing current participants 

with the potential to excel in a particular sport”. It should be distinguished from talent development, 

which can be regarded as a phase following talent identification, where prospects are “provided the 

most appropriate learning environment to realize this potential”. Our study is situated in the talent 

identification phase, rather than the talent development phase. This has important implications, as the 

definition of future performance should not be defined too far into the future as unsatisfactory results 

in the more distant future may be the result of incorrect talent development rather than false talent 

identification. 

Achieving the highest level in sports is an important goal, not only for the athlete, but also for other 

instances involved, such as sponsors, governmental bodies, and coaches (Anshel & Lidor, 2012). All 

these stakeholders wish to allocate their scarce resources as efficient as possible to achieve their 

respective goals. To do so, teams should allocate their resources towards a number of talented riders 

who have a high potential. However, in a systematic literature review of Johnston et al. (2018) on 

talent identification, the authors conclude that little is known about the correct application of talent 

identification in sports and that further and more diverse research is needed.  

Some sports have, however, received more academic interest with regard to analytical scouting 

than others. In the past the National Hockey League (NHL) has received a lot of attention. This can be 

attributed to the fact that the NHL is well-suited for the study of decisions and drafting because of four 

factors: the number of drafting rounds, lack of trading restrictions, hard salary caps, and unique 

provision of league-wide scouting services (i.e., the NHL even provides a scouting ranking of all youth 

players) (Tingling, 2016). While developments are made in this area are useful, they cannot be 

translated directly to cycling. Its unique combination between individual and team sport and the 

immense impact of the used route on the outcome of a cycling race, makes the sport notoriously hard 

to compare to other sports (De Spiegeleer, 2019). Nevertheless, the knowledge of related fields is 

useful to draw some general conclusions from, while we should remain cautious towards in-depth 

transfer of practices. 

One such general conclusion can be made about the accuracy-interpretability trade-off in scouting 

analytics (Liu, Schulte & Li, 2018). Special attention should be given to interpretability and visualization 



6 
 

when dealing with analytical talent identification, since scouts tend to believe their gut feeling is more 

than analytical models. Hence, a highly interpretable model can be easily justified by scouts and is 

conversely more easily adopted in the industry (Baesens, 2014). A similar sentiment was detected 

during our conversations with cycling industry experts. The goal of a successful scouting tool should be 

to give reliable estimates, while being easily interpretable for experts who have no experience with 

analytical models. Several suggestions have been made with regard to interpretability. Cohort-based 

approaches are one of the most popular methods which ‘cluster’ players into groups of players with 

comparable profiles and predict future success based on the cohort’s success. For example, Weissbock 

(2015) clusters hockey players according to age, height, and scoring rates. One advantage of the cohort 

model is that predictions can be explained by referencing to similar players, which many domain 

experts find intuitive. Another example can be found in baseball where the Player Empirical 

Comparison and Optimization Test Algorithm (PECOTA) allows to forecast player performance in a 

highly accurate and interpretable way (Koseler & Stephan, 2017). It is thus advisable to compare 

prospects with known top performers rather than to simply give a list of potentially interesting 

prospects. Another interesting insight can be drawn from handball, where player profiles are depicted 

using spider plots (Blom, 2019). When the dimensions display relatable dimensions, these plots are 

easy to interpret for sports scouts.  

Other outcomes from related domains are less transferable. For instance, consider the three most 

important NHL scouting features used in Liu, Schulte and Li (2018): Central Scouting Service (CSS) 

ranking, regular season points total, and plus-minus score. Cycling does not have a scouting ranking, 

which makes such a variable infeasible. The regular season-points and plus-minus score are available 

in cycling but due to the uniqueness of cycling including these features is not straightforward. Simply 

calculating the regular season points total would not consider the fact that riders sometimes act as 

team leaders and sometimes as helpers (‘domestiques’). This would also not incorporate the fact that 

riders from countries such as Belgium or France have much more access to the popular races than 

riders from more distant countries, which automatically leads to a higher accumulation of points. This 

is even further aggravated by the different routes used in each race. While some riders may be quite 

weak on long and relatively flat stages, they may do quite well on high mountain stages, and vice versa. 

While the Tour de France is generally regarded as the most important race in the world, we rarely see 

the winners of that race competing in other high-level races such as Paris-Roubaix. This uniqueness of 

each race on the calendar should also be reflected when building a model and creating its input 

features. A natural solution is to take the race results per race, rather than aggregating per season. 

This translates into a very sparse data matrix with a disproportionate number of missing values, as not 

all riders participate in all races, hindering the creation of a performant predictive model. 
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In sum, we observe large distinctions between cycling and other sports, which makes it hard to 

translate knowledge from other fields into the field. This creates the necessity of the development of 

a field-specific data analytical methodology for talent identification. When creating such methodology, 

the unique characteristics of each race need to be represented in the data. This leads to a heavy focus 

on feature engineering, data quality and interpretation. Therefore, the handling of missing values and 

the visualization of eventual results is of special interest to this research.  

3. Methodology 

3.1. Data 
The used data were collected from the PCS (procyclingstats.com) website, which keeps track of all 

youth results. A list of popular youth competitions is created (listed in Appendix Table A1), and for each 

of these races all the available results are scraped from the period 2005-2020, as almost no youth 

results were available prior to 2005. These scraped results are used as the basis of the independent 

variables (see 3.2. Feature Engineering). Given the scarcity of results in earlier years, we decide to only 

select riders who turned professional in the years 2010-2019. Before 2010, we observe the riders to 

have too little observed race results (i.e., less than 40 observations), leading to heavy time-based 

sample bias. Riders who turned professional in 2020 or 2021 are also not selected, as they did not yet 

have two full years of observed dependent period. Overall, this resulted in a sample of 1,060 athletes. 

The goal of our model is to predict the performance during a period in the rider’s professional career, 

based on the results he achieved as youth competitor. This implies that, for instance, when modelling 

a rider turning professional in 2018, all his results up until 2017 will be used as input for the 

independent variables, while results from 2018 onwards will be used as input for the dependent 

variable. We choose this set-up as this is the best reflection of how talent identification models would 

be deployed in real-life situations. 

The dependent variable is computed as the PCS points scored in the first two years as a professional 

athlete. This definition closely follows the regulations of the Union Cycliste Internationale (UCI; 

international cycling federation), which state that starting professional athletes (defined as competing 

in one of the top two tier levels) should be awarded contracts of at least two years. By measuring their 

performance during these two years, we can directly measure the return on investment of the hiring 

team. This limited time window also filters out potential negative effects of bad talent development. 

The choice for PCS points rather than the official UCI points is inspired by the fact that this points 

system has remained stable during the entire period 2010-2020, while the current UCI ranking system 

only dates back to 2016. The PCS ranking also awards points for riders achieving specific goals such as 

winning the best climbers' classification in the Tour de France. This is a prestigious result, with multiple 

competitors each year, yet no points are awarded for winning this classification in the UCI ranking, 
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while the PCS ranking does award points for this and similar achievements. Another interesting feature 

of the PCS ranking is the fact that it rewards all riders that finish the most prestigious races, while the 

UCI ranking only awards point to the first sixty riders. It is unlikely that a rider performs a lot of work 

in the first half of the race and still manages to finish in the top-60. In the UCI system this rider would 

not receive any point for the, although this rider has performed well for the team as a domestique. 

Nevertheless, being selected for this race already reflects the fact that the rider in question is of high 

value to the team. Therefore, we argue that PCS points reward domestiques in a fairer way than the 

UCI points system does. The adequateness of the ranking also inspired other researchers who 

quantified professional cycling athlete performance on the PCS ranking (e.g., Miller & Susa, 2018; van 

Erp, Sanders & Lamberts, 2021). 

3.2. Feature Engineering 
The independent variables have to be representative of the unique characteristics of each race, 

thus we look at the performance per race as few races are truly comparable to each other due to 

distinctiveness in used route as well as level of competition. Therefore, we calculate the best overall 

position of a rider per race, if they would have participated. This means that for each race listed in 

Appendix Table A1, we create a variable indicating the best overall result of the observed rider. Riders 

that participated but abandoned during the race, are awarded the ranking of the last finishing rider 

plus one. However, the best overall result is an incomplete measure, as there is a significant difference 

in ending 9th while in the same group as the winner at the finish line, compared to finishing 7th and 

reaching the finish line two minutes after this winner. Therefore, we also compute the minimal time 

difference to the winner. Finally, we also add an indicator variable whether someone had ever actually 

participated to the race.  

While these features already incorporate many dynamics of the races, they still do not account for 

the fact that, during stage races, many participants simply aim for stage success, rather than for the 

overall ranking. Therefore, we also add the number of stage victories per race (across all 

participations), and the best result one has achieved across all stages. 

Several other, more general, features are computed as well, like the number of observed results 

(i.e., number of race participations), total number of abandons, and the ratio between both (abandon 

ratio). These variables indicate how present the rider was in the youth circuit as more successful riders 

are more likely to be selected for most of the races, as well as having some indication of the mental 

strength of riders. Mental strength was indicated by the domain experts as being a large determinant 

in how they evaluate talents. Mentally stronger riders are arguably less likely to abandon after 

misfortune during the race.  

Other features make a distinction between the U23 (aged 19-22) and Junior (aged 17-18) 

categories. Some athletes develop quicker than others as they mature at an earlier age. Therefore, 
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there are many examples of talents that performed very well in very early age categories, while 

performing relatively weak at later age. This combined with the stronger competition in the U23 circuit, 

makes the U23 and Junior categories of differing importance. Therefore, we define several features 

for both the U23 and Junior categories: the number of victories, victory ratio (wins/participations), 

podium (places 2 and 3) and top 5 (places 4 and 5) ratios. Finally, we also measure the ratio of the 

number of wins, podium ratio, and top 5 ratio in the U23 category compared to the Junior category as 

upwards or downwards trends may be extrapolatable to the professional category. 

Rider age is not included as this variable could hinder the performance of the model in several ways. 

First of all, there exists a ‘too-good-too-soon’-effect, where very talented riders turn professional at 

an extremely young age resulting in a somewhat disappointing start of their careers. This would 

translate into a low amount of PCS points scored in the first two years of a professional career. A good 

predictive model would then pick up the combination of young age and good youth results as indicative 

of bad performance. At first this would seem like a good prediction as the first two years could be 

underwhelming. Nevertheless, these riders are still talented and should be targeted. Therefore, simply 

looking at performance would filter out the presence of this effect, leading to the detection of talented, 

extremely young riders. Second, an even more detrimental cohort effect could be in play as well. For 

example, it could be that the set of 19–21-year-old riders in the training sample (i.e., the ones that 

turned professional at that age) is more talented than the 23–25-year-old sample. In that case our 

model would again put much emphasis on age as a predictor, whereas the impact of age is actually 

based upon an external effect.  

Tables 1 and 2 provide an overview of all the (groups of) features and how many features there are 

per feature group. In Table 2 best result, participation, and minimum time difference are computed for 

the 24 stage races and 36 one day races, but stage wins and stage best results are only computed for 

the stage races. In total there are 242 features: 14 aggregated features + 24 stages races x 5 features 

+ 36 one day races x 3 features.  To give some further insight in how these features are created, 

consider the results from the stage race Sint-Martinusprijs Kontich (Junior race) depicted in Figure 1.  

The depicted rider won the first two stages (i.e., position 1; indicated in black): a team time trial (TTT) 

and an individual stage (no special indication). This resulted in him leading the general classification 

after stage 2 (i.e., position 1; indicated in yellow). He dropped to place 5 after his 23rd place in the 

individual time trial (ITT), his further results in stages 3b and 4 (i.e., 82nd and 35th) had no further impact 

on his general placing, resulting in his 5th place in the general classification and 9th in the points 

classification. 
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Figure 1: Results from one rider in the sample used for example calculation. Rider would have one stage win + best result 5th. 

 

Table 1: Aggregate features: feature names and description. Features are calculated across all races. 

Feature Name Description 

# Results Total number of scraped youth results 

# Abandons Total amount of abandons among results 

Abandon ratio Ratio results/abandons 

Victory ratio Junior Number of victories in Junior category divided by number of Junior results 

Podium ratio Junior Number of podiums (places 2-3) in Junior category divided by number of Junior 
results 

Top 5 ratio Junior Number of top-5’s (places 4-5) in Junior category divided by number of Junior results 

Victories Junior Absolute number of victories as Junior  

Victory ratio U23 Number of victories in U23 category divided by number of U23 results 

Podium ratio U23 Number of podiums (places 2-3) in U23 category divided by number of U23 results 

Top 5 ratio U23 Number of top-5’s (places 4-5) in U23 category divided by number of U23 results 

Victories U23 Absolute number of victories as U23  

Evolution wins Number of victories in U23 category divided by wins in Junior category (0 if divided 
by 0) 

Evolution podium ratio Podium ratio U23 category divided by Podium ratio Junior category (0 if divided by 
0) 

Evolution wins Top 5 ratio U23 category divided by Top 5 ratio Junior category (0 if divided by 0) 
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Table 2: Non-aggregate (single race-based) features by group: feature names and description. Features are calculated per 
race. Stage races have five features, one day races three. 

Feature Group Type of 

Race 

Number 

Features 

Example Features 

Best Result Stage 24 giro-ciclistico-d-italia--GC-best-result 

 One day 36 gp-industria-e-commercio2--best-result 

Participation Stage 24 driedaagse-va 

n-axel--participation 

 One day 36 liege-la-gleize--participation 

Minimum Time Difference Stage 24 tour-des-pays-de-savoie--minimum-TimeDiff 

 One day 36 Tour-des-flandres--minimum-TimeDiff  

Stage Wins Stage 24 grand-prix-ruebliland--stage-victory, tour-du-pays-de-vaud-
-stage-victory 

Stage Best Results Stage 24 trofeo-karlsberg--stage-best-result, int-junioren-rundfahrt-
niedersachsen--stage-best-result 

If a rider would only have these race results, he would have the following feature values: a value of 

6 for number of results (5 stages + general classification),  a Junior victory ratio of 0.20 (1/5: his win in 

stage 2, the win in stage 1 is not counted in either the nominator or the denominator as this was a 

team time trial), a podium ratio in Junior races equal to 0 (no placings 2 or 3), a top 5 ratio equal to 

0.20 (result in general classification), and the number of abandons and abandon ratio equal to 0 as 

there was no abandon, just like all other aggregate features (e.g., victory ratio U23). The participation 

feature of the Sint-Martinusprijs Kontich receives a value of 1, while all other participation values 

receive a value of 0, as no participation to other races was recorded. His best GC result in the race 

would be a value of 5, and the minimum time difference 30 seconds (not displayed in Figure 1). The 

stage wins and stage best result features would both receive a value of 1. The rider would receive 

missing values for all other non-aggregate features. This would imply a total of 164 missing values for 

the rider in question (59 best result + 59 minimum time difference + 23 stage wins + 23 stage best 

results). 

3.3. Value Imputation Overview 
Our sample contains a very high number of missing values, with only 49.57% of all the possible 

feature values observed since rider and coaches choose the races which suit the rider’s capacities best. 

This results in an atypical situation in which no single complete case (i.e., an observation which has a 

value for each unique feature) is observed in the data, this while most data analytical models can only 

be used with complete datasets (Kowarik & Templ, 2016).  A typical method of handling missing values 
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in a predictive setting is value imputation. However, most of these methods need to be adjusted when 

dealing with extreme missing-rates (Piri, 2020).  

The three most popular single imputation methods are: mean imputation, regression imputation, 

and k-nearest neighbours (KNN) imputation (Jadhav, Pramod & Ramanathan, 2019). Mean imputation 

replaces the non-observed values with the mean of the observed values of the variable and is 

commonly used due to its simplicity (e.g., Piri, 2020; Dolatsara et al., 2020). Regression imputation 

uses a regression model, which can be any type of regressor, to predict the missing values, by using 

the complete cases as training set and the missing cases as deployment set. KNN imputation 

(Troyanskaya et al., 2001) is similar to regression imputation as it also uses the neighbours of the 

missing case from the complete cases to see which average value the k nearest neighbours have.  

Mean imputation can be directly implemented as no complete cases are needed. This ease-of-usage 

might explain the popularity of the method despite the large reduction in data variance it induces. On 

top of this, we also observe the simple technique to yield highly competitive results towards final 

predictive performance when extremely high missing-rates are encountered (e.g., Luo et al., 2018). 

Regression imputation and KNN imputation are less directly applicable due to the need for complete 

cases to estimate missing values.  

Multivariate Imputation by Chained Equations (MICE; Van Buuren & Groothuis-Oudshoorn, 2010) 

is a solution proposed to handle this issue for regression imputation. The method iteratively regresses 

estimates for the missing values after an initial random imputation. We set the number of iterations 

at 10, acting as a trade-off between computational time and reaching of convergence. As base 

regressor, we choose random forest (Breiman, 2001) due to the algorithm’s capacity to handle non-

linear relationships as well as its good performance without parameter tuning (Fernández-Delgado, 

Cernadas, Barro & Amorim, 2014).  

KNN imputation has no adaptation that handles situations without complete observations. This also 

translates to the situation where KNN imputation is only used in situations where complete cases are 

observed. This makes the algorithm unsuited for our problem at hand. Nevertheless, the algorithm is 

identified as the best imputation method for predictive modelling (Jadhav, Pramod & Ramanathan, 

2019). Therefore, we suggest an alternative method for value imputation, where we group the races 

based on domain knowledge into groups that do have complete cases on which KNN imputation can 

be applied (see Appendix Table A1 for the assigned imputation group per race). The addition of this 

imputation method brings the number of tested imputation methods to three: simple mean 

imputation, chained equation regression imputation, and race group-based KNN imputation. Each of 

the three imputation methods will be deployed for the other steps in the experimental set-up.  
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3.4. Proposed Imputation Method 
We create eight race categories in total. A first category is the Big Tour category, which are races 

that take place during a period of over a week and over varied terrain. Diverse riders with good 

recuperation skills excel in the overall classification of this type of race. The importance of the races 

also attracts riders from quite wide geographical origins and the longitude and importance of the races 

make it more interesting for some to solely focus on stage victories rather than the overall 

classification. A related category is the Stage Race Climb category of French stage races over very 

mountainous terrain, attracting many riders from France and neighbouring countries who can climb 

well. Both categories exist for the U23 stage races, while Junior stage races are all summarized into 

one Stage Race Junior category, which is more diverse. This due to the fact that Juniors have more 

limited calendar options. Regarding the one-day races, we also follow a similar method, with the One 

Day Junior races forming one category, and the U23 races divided into Cobbles and Hilly U23. Cobbled 

races are quite unique as they are the sole type of races which favor more heavy riders, while also 

being located in and near Belgium. This as opposed to the hilly one-day races, which are on a hilly 

terrain, favoring more light-weight riders, while also being primarily located in Italy. All other races are 

categorized as Rest.  

Our extension to the KNN-imputation method is explained in Figure 2 in a simplified example with 

only 6 observations, 7 features, and 2 imputation categories (as opposed to <1,060 observations (fold-

dependent), 242 features and 8 categories in the full data set). We observe the data as it is before 

imputation in the upper panel. The features are divided into groups, based on whether they are 

completely observed and the above discussed imputation groups. If we would use traditional KNN 

imputation, we would impute the missing observations (indicated by white blocks), using the non-

missing values (black numbers) of complete cases. However, in our case, there are no complete cases 

(i.e., there is no single row where all cells are filled). Yet, if we would split up the data based on 

imputation category, we do get complete cases. This split would result into two groups: completely 

observed + cobble races and completely observed + big tour. Note that we always incorporate 

completely observed in order to have more accurate estimations. In Figure 2, this would result into 

riders 3 and 4 being complete cases of completely observed + cobble races and riders 1 and 2 being 

complete cases of completely observed + big tour. This enables KNN imputation for all features in both 

groups. In this simple example, we set K (i.e., the number of neighbours considered) equal to 1. In the 

middle panel, this is deployed for the completely observed + cobble races group. For instance, rider 1 

gets the same results as rider 3, as he is more similar to rider 3 than to rider 4. Similarly, rider 6 gets 

an imputed result, based on his similarity to rider 4. In the lower panel, this methodology is repeated 

for the completely observed + big tour group of variables, using riders 1 and 2 as complete cases, thus 

not using the results created in the middle panel. When combining the results from the two steps, one 
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gets a fully imputed data set as is displayed in the lower panel.  Note that in the actual case we use 

more observations and set K equal to 5, rather than 1, leading to more reliable estimates.  

 

Figure 2: Imputation using feature categorization. Missing features are imputed per race category: in this example cobble 
races vs. big tours. E.g., Paris-Roubaix results do not influence Tour de l’Avenir imputations. 
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3.5. Feature Selection 
Our extensive feature engineering leads to 242 features in total, which is an enormous amount in 

relation to the sample size of 1,060 athletes. As an implication, a feature selection method has to be 

applied to cope with the curse of dimensionality (Jain, Duin & Mao, 2000). Without deploying a feature 

selection method, the analytical models will be slower, less comprehensible, and likely to perform 

worse in terms of accuracy (Kursa & Rudnicki, 2010).  

Two broad types of model-agnostic selection algorithms exist: filter and wrapper methods (Guyon 

& Elisseeff, 2003; Verbeke et al., 2012; Kocheturov, Pardalos, & Karakitsiou, 2019). While filter 

methods only look at the features independently of each other, wrapper methods also try to filter out 

redundant features. These are features that do correlate with the dependent variable but contain no 

additional information over the already included features. This results in a more optimal set of features 

when compared to filter methods. 

A very popular wrapper method is the Boruta algorithm (Kursa & Rudnicki, 2010). The base 

algorithm used is random forest and the method is based on the idea of ‘shadow variables’. These are 

created by replacing the actual feature values with random permutations of these values. When the 

resulting feature importances are not significantly lower than the actual feature importances, it is 

decided that the feature in question is redundant and can be excluded from the eventual feature list. 

Typically, the mean decrease in impurity (Gini coefficient) or accuracy is used as estimator of variable 

importance. However, these methods are unstable and have no theoretical foundation (Molnar, 2020). 

A solution to these shortcomings lays in the use of Shapley additive explanations (SHAP; Lundberg & 

Lee, 2017). By averaging the SHAP values per feature across all individual predictions, one can derive 

the importance of that variable, resulting in stable estimates with a theoretical foundation. These 

importances are used to statistically test the differences between actual features and shadow features 

in the Boruta algorithm. A more elaborate explanation of the SHAP framework is given in Section 3.8. 

Interpretability. Note that the feature selection step is performed after the value imputation step, but 

before any algorithm is applied. 

3.6. Algorithms 
Due to its interpretability and simple mathematics, Ordinary Least Squares (OLS) regression is 

widely used in the field of statistics and predictive analytics (Gujarati & Porter, 2009). By minimizing 

the squared error for the parametric formulation of an additive linear model, one can create an easily 

interpretable model, which can be quite competitive in situations where the underlying relationship is 

not overly complex. This is also observed in the field of cycling analytics, where it is commonly included 

in the list of tested algorithms and where ridge regression is the only algorithm which has 

outperformed XGBoost in any cycling-related setting (De Spiegeleer, 2019). We implement a simple 

linear regression algorithm, rather than ridge regression as it is assumed that both algorithms would 
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act very similar due to the regularization effects being canceled out due to the Boruta-SHAP feature 

selection step. This was also validated in preliminary testing. 

Next to OLS, we also include a regression tree using the Classification And Regression Tree (CART) 

implementation. This algorithm is easily interpreted, while the splitting mechanism allows for some 

more variation in the fitted relationship compared to the linear relationship in OLS regression. In 

regression trees, splits are made in order to maximally decrease either the mean-squared-error. The 

observations in the ‘leaves’ at the end of the tree are averaged to get the dependent value . Decision 

trees are extremely likely to overfit, which can be handled by cost-complexity pruning (Breiman, 

Friedman, Stone & Olshen, 1984). By adding a complexity term (𝛼|𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑁𝑜𝑑𝑒𝑠|) to the cost of 

the tree, the tree is penalized for unnecessary splits. Larger values for the cost-complexity parameter 

(𝛼) result into heavier penalization and ‘smaller’ trees, hence cross-validation of the cost complexity 

parameter is necessary.  

To minimize the danger of overfitting, Breiman (2001) proposed the use of random forest models 

in regression. These models are ensemble learners which combine the regression outcome of multiple 

single regression trees. These single regression trees are then iterated several times, with slight 

changes in order to make the final averaged result more robust. Two important steps are used to 

ensure enough variability across trees: (1)each tree is trained on a new bootstrap copy of the training 

data set rather than the actual training set, and (2)during the splitting (i.e., creating branches of the 

tree) only a random subset of variables is considered. The algorithm is selected in our experimental 

set-up as it is very robust and performs well without heavy parameter tuning. The number of trees is 

set sufficiently large at 500 and the number of random predictors to select at each tree split equals the 

square root of the number of predictors. 

Gradient boosting algorithms learn to predict the error by iteratively adjusting these towards the 

optimum, which means that the loss function is optimized based on the gradient. Instead of only using 

first order derivates of the loss function, XGBoost (Chen & Guestrin, 2016) also uses second order 

derivatives to reach the optimum. This allows for a computationally efficient calculation of the most 

accurate predictions. This high performance is also translated into related cycling analytics studies, 

where the algorithm is consistently identified as the top performer (e.g., De Spiegeleer, 2019; 

Karetnikov, 2019; Kataoka & Gray, 2018). While being highly performant, the algorithm is also 

extremely sensitive to the hyperparameter settings. Therefore, careful tuning of these parameters is 

required (Chen & Guestrin, 2016).. An important parameter is the number of boosting rounds, as this 

determines how many iterations are used to determine optimal tree structure. Just like in regression 

trees, the optimal structure is also determined by the cost-complexity parameter 𝛼. The learning rate 

is also checked as this determines improvement step size which ensures an optimum between non-

convergence and local optima being fitted.  Maximal tree depth is also validated, as this performs 
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regularization . Finally, both the default squared error and  the Tweedie loss function are considered 

as objective function. 

Since the overall number of observations is rather limited (1,060), no deep learning methods are 

deployed, as they are assumed to underperform when dealing with small training samples (e.g., 

Kataoka & Gray, 2018). Rather, we add a shallow multilayer perceptron that uses a feed-forward 

propagation algorithm optimized by BFGS with one hidden layer. This simple implementation is 

preferred in real-life business cases with limited sample size over deeper structures and gradient 

descent-based optimizers (Dreiseitl & Ohno-Machado, 2002). In this implementation, the weight decay 

and hidden layer size are the most important parameters to validate as these determine model 

complexity (Bogaert, Ballings and Van den Poel, 2018). The candidate values for all implemented 

algorithms are summarized in Table 3. 

Table 3: Candidate search grids. Hyperparameters were optimized per algorithm through an exhaustive grid search. Values 
display validated parameters with their candidate settings. 

Algorithm Parameter Candidate Settings 

Linear Regression / / 

Decision Tree 𝛼 [0.001,0.005,0.01,0.02, 0.05, 0.1, 0.2, 0.5, 1, 2]  

Random Forest / / 

XGBoost Learning rate [0.1,0.3,0.5,0.7,0.9] 

 Boosting round [100,200,300,400] 

 𝛼 [0,4,8,12,16,20] 

 Maximal tree depth [6,8,10,12] 

 Objective function [Squared error, Tweedie] 

Perceptron Decay [0.001, 0.01, 0.1] 

 Hidden layer size [1, 2, 3, …, 20] 

 

3.7. Experimental Set-up 
As a season follows the subsequent one and riders compete against each other in the same season, 

rather than act as individualistic competitors, one can safely say that the assumption of independent 

and identically distributed data is clearly violated. This influences our experimental set-up, as a 

traditional cross-validated approach is not adequate in this situation. Rather, we follow a rolling 

window approach where all available information is used up until the moment of prediction (Vomfell, 

Härdle & Lessmann, 2018). In order to have an unbiased estimation of performance, we use five 

different periods for testing: starting years 2015-2019. The process is visualized in Figure 3, with the 

green training period for building the model, orange validation period for tuning the hyperparameters 

(and final training) and red testing period for evaluating final performance. A single train-validation 
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split is used to optimize the hyperparameters as is common in predictive modelling studies (Schetgen, 

Bogaert & Van den Poel, 2021). Hence, the validation period is only used for hyperparameter tuning 

and the combined training and validation period is eventually used for fitting the final model. This 

process is repeated five times (i.e., once per evaluation period) in order to ensure robust results. 

The rolling window approach is deployed for each value imputation – regression algorithm 

combination as discussed above. Since XGBoost has the unique advantage that it can cope with missing 

values without imputation required by treating these missing value as a unique observation value, we 

also deploy XGBoost without any imputation method. By adding this implementation, we have a 

baseline model that can validate the added value of the various imputation methods. This baseline 

method does not involve a feature selection step, as this computation is infeasible with the missing 

values. Besides a model-based benchmark, another baseline method is added based on a simple but 

sensible heuristic. We look at the rider’s consistency in the last five years of his youth career by 

determining a weighted average of the top-10 ratios during this period. Eq. (1) computes our heuristic-

based benchmark with t being the number of years before the start of the career. For instance, the 

top10-ratio achieved 2 years before the start of the rider’s career is given a weight of 0.50 (1/2).  In 

total we compare 17 unique configurations: (3 imputation methods x 5 regression algorithms + 2 

baseline models). Table 4 provides an overview of the deployed configurations and how they are 

referred to in the results. 

 

∑
𝑡𝑜𝑝10 𝑝𝑙𝑎𝑐𝑖𝑛𝑔𝑠 (−𝑡)/𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛𝑠 (−𝑡)

𝑡

5

𝑡=1

          (1) 

 

 

 

Figure 3: Rolling cross-validation time window. Green stands for training, orange for validation, and red for testing. 
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Table 4: Overview Configurations. Each configuration was evaluated through the 5k rolling cross-validation. Two baselines 
were considered and 5 algorithms x 3 imputation techniques. 

Model Name Imputation Method Algorithm 

BASELINE 1 None XGBoost 
BASELINE 2 None Aggregation Heuristic 
linreg_knn Grouped KNN Linear Regression 
dt_knn Grouped KNN Decision Tree 
xgb_knn Grouped KNN XGBoost 
rf_knn Grouped KNN Random Forest 
mlp_knn Grouped KNN Perceptron 
linreg_mean Mean Imputation Linear Regression 
dt_mean Mean Imputation Decision Tree 
xgb_mean Mean Imputation XGBoost 
rf_mean Mean Imputation Random Forest 
mlp_mean Mean Imputation Perceptron 
linreg_regression Chained Equation Regression Linear Regression 
dt_regression Chained Equation Regression Decision Tree 
xgb_regression Chained Equation Regression XGBoost 
rf_regression Chained Equation Regression Random Forest 
mlp_regression Chained Equation Regression Perceptron 

3.8. Evaluation 
A typical way of measuring the predictive accuracy of a continuous outcome is by calculating the 

root-mean-squared-error (RMSE) between predicted value �̂�𝑖and observed value  𝑦𝑖, according to the 

formula depicted in Eq. (2), with N the number of observations.  

√∑
( �̂�𝑖 − 𝑦𝑖)2

𝑁

𝑁

𝑖=1

     (2) 

However, this measure is only indicative of how well the algorithm predicts the eventual points 

scored, which is not in line with the goal of most cycling teams. Rather than having the most accurate 

estimates, cycling teams want an estimation of how the riders will perform comparatively against each 

other. Some generations may be more or less talented than others, yet the teams will still want to have 

the most performant riders per generation. This entails that the ordering of the algorithm is important. 

The strongest riders should be ranked on top, regardless of the eventual points they will be scoring. A 

good measure to compare the actual rankings with the predicted rankings is the Spearman rank 

correlation, which is a nonparametric technique for evaluating the degree of linear association 

between two independent variables (Gauthier, 2001). Compared to the traditional Pearson 

correlation, it operates on the ranks of the data rather than the raw data, which makes it highly suitable 

for the task at hand. It is calculated according to Eq. (3), with 𝑑𝑖  being the difference between ranks of 

predicted value �̂�𝑖and observed value  𝑦𝑖. 

1 − 6 ∑ 𝑑𝑖
𝑁
𝑖=1

𝑁3 − 𝑁
     (3) 
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Another interesting way of dividing professional athletes is by assigning them into the top 10%, top 

25%, or top 50% buckets of all athletes (Persson et al., 2020). By doing so, you divide the athletes into 

an absolute top bin, a just-below-the-top bin, an intermediate bin, and a less successful bin. One major 

advantage of applying this technique to both the predicted values �̂� and the observed values 𝒚 is that 

we can deploy typical measures from classification tasks. Accuracy calculates how many riders are in 

the same bin in the observed values 𝒚 and the predicted values �̂�. However, an issue with simple 

accuracy is the fact that the measure does not incorporate the fact that we are working with a 

continuum. For instance, consider a rider which the algorithm ranks between the 9th and 10th percentile 

and the observed rank is between the 10th and 11th percentile. It is obvious that this is a small error, 

yet accuracy will count this as a misclassification. On the other hand, if the algorithm ranks the 

observation between the 20th and 21st percentile, this will be regarded as correct as both are in the 

same bin (top 25%). While such errors are inherently linked to the binning of continuous observations, 

accuracy within n (Gaudette & Japkowicz, 2009) filters out this type of misevaluation. Predicted 

classifications that are n (in our case 1) classes of the actual classification are also considered correct. 

For instance, someone that actually ranks in the top 10% will be evaluated as accurate if he or she is 

predicted to be in either the top 10% or top 25%. This measure may be too lenient but does give a 

fairer representation of the risks the team managers are taking with decisions based on the model. 

Therefore, we report accuracy within one rather than accuracy. 

Of special interest to the professional teams, is the absolute top bin of the top-10% riders. These 

riders are the ones they want to contact by preference. By considering this bin as the desired class, we 

can deploy typical measures from binary targeted marketing campaigns such as churn or acquisition. 

A popular measure based on those top decile bins is the lift which compares the actual top 10% riders 

in the suggested bin to the actual rate (i.e., 10%) in the dataset (Eq. 4). In other words, the lift derives 

how much better the model is compared to randomly contacting riders 

𝐿𝑖𝑓𝑡 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 𝑟𝑖𝑑𝑒𝑟𝑠 𝑤ℎ𝑜 𝑎𝑟𝑒 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑡𝑜𝑝10% − 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑎𝑡𝑒
  (4) 

All four performance measures (i.e., RMSE, Spearman rank correlation, accuracy within one, and 

lift) are calculated for each possible configuration in each  fold. Solely for baseline 2 (weighted average 

top-10 ratios) the RMSE is not calculated, as this baseline simply ranks the riders and does not provide 

point estimates. This means that RSME is calculated 80 times (16 configurations x 5 evaluation 

periods), and all other metrics 85 times (17 configurations x 5 evaluation periods) in the final evaluation 

step. 

3.9. Interpretability 
As discussed above, interpretability is particularly important for sports scouting tools. Prediction 

algorithms can be divided into white-box and black-box models. The former have the advantage of 
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being interpretable, while the latter are much harder to comprehend, leading to ‘blind’ suggestions. 

We have selected two white-box algorithms (i.e., linear regression, and regression tree) and three 

black-box algorithms (i.e., XGBoost, random forest, and multilayer perceptron), which may suffer from 

the accuracy-interpretability trade-off. However, over the past years many efforts have been made to 

make these black-box models more interpretable, with Shapley additive explanations (SHAP; Lundberg 

& Lee, 2017) being the current state-of-the-art in interpretable data science. SHAP combines strengths 

of local surrogate models with Shapley values by creating an additive feature attribution method. In 

other words, it builds a model of the predicted values, with a linear addition of input variables. Those 

‘attributions’ are embedded in game theory, with each feature being a player and the prediction error 

being the ‘game’ outcome. By doing so, it explains the marginal contribution of each feature towards 

the individual predictions. This means that the model will not only tell which riders to focus on, but 

also why this rider is selected and what features increase or decrease the rider’s ranking.   

While this methodology is useful to teams to explain the ranking of an individual rider, one 

downside of this implementation is that it does not discriminate well enough towards the different 

rider types. Four main types of riders exist, both on the professional level as well as during youth 

categories: flat terrain, uphill, all terrain, and sprinters (Menaspà et al., 2012). This is interesting, as 

these types would be interpretable for professional team scouts. By comparing how the new targets 

compare against current top performers during their youth period, scouts can have a decent idea 

about the rider type. An easy-to-interpret visualization tool to compare sport performance are spider 

charts (Blom, 2019). However, a spider chart only works well with a limited number of variables. 

Therefore, we derive the principal components of the features to uncover the underlying rider types, 

which are then visualized on the resulting spider chart. By comparing the prospect’s value on the chart 

against current top performers who were in the training sample, the scout should gain insights into 

the rider type of the prospect. Thus, while the SHAP framework is used for explaining individual 

performance predictions, principal component analysis will be used for indicating rider type, 

independently from the expected performance. 

4. Results & Discussion 

4.1. Results  
As discussed in the Methodology the performance measures are calculated per evaluation period. 

These (five) unique results per configuration-evaluation period tuple are aggregated by reporting the 

median as the mean would be biased by outlier years. These median results are displayed in Table 5. 

The top performer per performance metric is indicated in bold, while outperformance of the baseline 

methods is underlined. 
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Table 5: Median rolling cross-validated results across period 2015-2019. Underlined values indicate a better performance 
than the baselines; the top performer is indicated in bold. Grouped KNN imputation before random forest performs best with 

regard to ranking riders. Chained equation regression imputation before  linear regression performs best with regard to 
identifying top performers. 

 

RMSE Spearman Accuracy 
Within One 

Lift 

BASELINE 1 
(XGB no impute) 

272.13 
 

0.4658 
 

0.8304 
 

3.3333 

BASELINE 2 
(Heuristic) 

/ 
 

0.4015 
 

0.8218 
 

2.7272 

linreg_knn 265.92 0.4718 0.8571 3.6364 
dt_knn 360.97 0.2590 0.7692 1.6667 
xgb_knn 251.86 0.5001 0.8440 2.7273 
rf_knn 261.33 0.5420 0.8273 3.3333 
nn_knn 338.75 0.2756 0.7778 0.8333 
linreg_mean 264.11 0.4659 0.8550 3.6364 
dt_mean 344.82 0.2696 0.7818 2.5000 
xgb_mean 273.67 0.4200 0.8273 2.5000 
rf_mean 271.25 0.4833 0.8716 2.7273 
nn_mean 328.96 0.0498 0.7321 0.0000 
linreg_regression 253.86 0.4810 0.8550 4.2857 
dt_regression 395.92 0.3168 0.7818 2.1429 
xgb_regression 286.06 0.4128 0.8034 2.5000 
rf_regression 265.31 0.5355 0.8532 2.5000 
nn_regression 313.99 0.2652 0.7768 1.8182 

The results indicate that it is feasible to use predictive models to facilitate scouting for professional 

cycling teams. The top performing algorithms have a Spearman rank correlation between 0.40 and 

0.69, which indicates a strong relation between actual performance and predicted performance 

(Dancey & Reidy, 2007). This means that the resulting lists as provided by the algorithms are good 

indications of which riders to target. The results imply that the resulting lists from our study are capable 

of creating business value when provided to the scouts. A similar observation can be made when 

inspecting the lift score of the models. Several lift scores go above 3.00, indicating that the models 

would perform over three times as good as randomly selecting riders in the top 10% bucket, with the 

best performing configuration in this top decile (i.e., linreg_regression) even having a lift above 4.00. 

The same conclusions hold for the accuracy of the models. Regarding accuracy within one the 

learners yield satisfying results with values approaching the 90%, which means that teams can select 

riders from the top 10% of the list with large confidence that they will not be weak performers (i.e., 

the bottom 50%). Overall, the algorithms do not score particularly well regarding the RMSE. Hence, 

our methodology is capable of deriving which riders will perform best, without knowing the actual 

points performance of the riders.  

Several configurations outperform the baseline methods, as indicated by their underlining in Table 

5. The configurations linreg_knn, xgb_knn, rf_knn, linreg_mean, rf_mean, linreg_regression, and 
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rf_regression outperform both baselines across most of the reported metrics. Interestingly, we 

observe that single regression tree, and 1-hidden-layer-perceptron are consistently among the weak 

performers. Our suggested KNN adaptation is the only imputation method which, in combination with 

XGBoost, is capable of outperforming the baseline methods. This implies that the proposed KNN 

method is the most informative imputation method, as it is the only imputation method which seems 

to add value to the XGBoost regression algorithm compared to XGBoost without imputation. With 

regard to the baseline methods, we notice that baseline 1 (i.e., XGBoost without imputation) 

outperforms baseline 2 (i.e., heuristic method). This indicates that advanced analytical approaches are 

preferred over simple heuristics. In general, the baseline methods never outperform the imputed 

predictive learners. We observe the differences to be quite large, indicating the added value of the 

proposed method above non-handling of missing values and the use of simple heuristics. 

Table 6: Results riders turning professional in 2019: underlined if better than baselines; top performer in bold. Reported 
results are based on unique measurement from last fold. Results are biased through COVID19-influenced season 2020. 

Nonetheless, the methods perform adequate besides an increase in RMSE. 

 

RMSE Spearman Accuracy 
Within One 

Lift 

BASELINE 1 
(XGB no impute) 

458.93 
 

0.4931 
 

0.7890 
 

0.9090 

BASELINE 2 
(Heuristic) 

/ 
 

0.4553 
 

0.8315 
 

3.3333 

linreg_knn 435.33 0.4718 0.8991 3.6364 
dt_knn 493.96 0.2590 0.7523 0.9091 
xgb_knn 444.22 0.4271 0.8440 2.7273 
rf_knn 430.56 0.5308 0.8257 2.7273 
nn_knn 479.37 0.2756 0.7982 3.6364 
linreg_mean 437.23 0.4396 0.8716 3.6364 
dt_mean 501.09 0.2685 0.7798 1.6667 
xgb_mean 489.48 0.3748 0.8257 1.8182 
rf_mean 432.85 0.4833 0.8716 2.7273 
nn_mean 494.54 -0.2409 0.6330 0.0000 
linreg_regression 435.67 0.4810 0.8807 4.5455 
dt_regression 521.40 0.2590 0.7982 0.9091 
xgb_regression 433.02 0.4081 0.8257 3.6364 
rf_regression 417.00 0.5779 0.8532 3.6364 
nn_regression 466.07 0.3714 0.7890 1.8182 

The performance across the various evaluation periods was observed to remain fairly stable, with 

top performing algorithms having similar performance in most years. This is helpful, as this means that 

the expected performance of the models is quite reliable. Only in the starting year 2019 (first two years 

2019-2020), we observe a significant rise in RMSE as displayed in Table 6. This rise in RMSE is due to 

the year 2020, where a lot of races were canceled due to the COVID-19 pandemic. This led the 

algorithms to overestimate the actual points scored. However, the algorithms still score well with 



24 
 

regard to the other performance measures. This means that the methodology is capable of still ranking 

the top performers on top regardless of shocks such as the COVID-19 pandemic.  

To investigate whether configurations are significantly different from each other, we apply the 

Friedman test (Demšar, 2006). The Friedman test indicates significant differences across configurations 

for the RMSE measure (𝜒𝐹
2 = 51.26, 𝑝 <  0.001), Spearman rank correlation (𝜒𝐹

2 = 54.00, 𝑝 <

 0.001), accuracy within one (𝜒𝐹
2 = 46.14, 𝑝 <  0.001), and top decile lift (𝜒𝐹

2 = 44.25, 𝑝 <  0.001). 

The Nemenyi post-hoc test (Verbeke et al., 2012) is performed for pairwise comparisons between 

configurations. The test results provide evidence towards the rf_knn configuration being preferred 

with regard to ranking the riders, as it is capable of statistically outperforming 4 other configurations 

at the 5% significance level in terms of RMSE and Spearman rank correlation. A similar argumentation 

can be made towards the extremely weak performance of the nn_mean configuration on all measures 

besides RMSE. No statistically significant differences are detected among the top performers across 

the various metrics. Detailed test results can be provided upon request. 

With regard to the best overall configuration, one could make two distinct suggestions. The 

combination of the KNN imputation with random forest regression prediction (rf_knn) is the best in 

generally ranking the riders. This is demonstrated by its top performance in Spearman correlation, and 

highly competitive RMSE scores in Table 5, as those measures are the only measures that do not 

consider the arbitrary binning. The regression imputation with linear regression prediction 

combination (linreg_regression), on the other hand, is the best method regarding the top decile, as 

measured by the lift score. The major downside of this methodology may be the longer computation 

time due to the iterative nature of the imputation method. Overall, both configurations are 

competitive compared to all other configuration with rf_knn being slightly preferred over 

linreg_regression when modelling overall rider ranking and linreg_regression slightly preferred when 

targeting the top decile of riders. 

A final argument in model selection can be the time required to come up with suggested rider 

rankings. The clear bottleneck in model computation is the value imputation step. The computation 

time of this step per fold is depicted in Table 7. Whereas the grouped KNN and mean imputation 

methods take only a couple of seconds, the chained equation regression step takes almost 10 hours 

for the calculation of the largest imputed dataset. This will only further increase with the addition of 

additional riders to the dataset. As fast imputation allows quick interpretation of new youth race 

results, this could potentially hinder teams in moving fast with regard of the contacting of a new 

interesting prospect. Therefore, grouped KNN and mean imputation are suggested above chained 

equation regression imputation, which is a further argument towards selecting rf_knn over 

linreg_regression. Overall, we propose two distinct methods depending on the situation. If fast 

computation times and overall ranking are of main interest, the rf_knn configuration should be 
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deployed. While the linreg_regression solution would be preferred when time is no limitation and 

when the top decile of riders is of primary interest. 

 Table 7: Computation time imputation methods (in seconds). Regression imputation is computationally much more 
expensive than KNN imputation or mean imputation. KNN imputation gives a good trade-off between predictive 

performance and computation time. 

Fold KNN imputation Mean imputation Regression imputation 

2015 1.92 0.06 13025.15 

2016 1.59 0.03 15035.95 

2017 2.46 0.06 20488.19 

2018 2.75 0.03 26363.01 

2019 3.46 0.03 32997.33 

4.2. Algorithm Drivers 
The subsequent section elaborates on which features heavily influence the predictions given by the 

algorithms. As we propose two distinct solutions, both are individually discussed. For each 

interpretation, we are using the configurations fitted on the dataset of professional riders turning 

professional until 2018, as the lower points scored in 2020 (from riders starting in 2019) could 

introduce significant noise in the training data.  

Table 8 depicts the resulting coefficient values of the linreg_regression configuration. A first 

observation is that the Boruta-SHAP feature selection method retains a fairly limited number of 

features: only seven features are selected. This exclusivity implies the importance of the races that are 

selected. The Tour des Flandres U23, Tour du Pays de Vaud, and the Driedaagse van Axel should all, 

although not exclusively, be considered by scouts who want to detect talents that will already score 

during their first two professional years. It is rather surprising that no features are selected which are 

based on the very famous youth races Tour de l’Avenir and Giro Ciclistico. The Tour des Flandres U23, 

Tour du Pays de Vaud, and the Driedaagse van Axel are races that could be regarded as suiting ‘classics 

specialists’ (all terrain + flat terrain), while the races Tour de l’Avenir and Giro Ciclistico might attract 

more sprinters and climbers (uphill). However, it could be that stage race riders and sprinters score 

better on overall consistency, as measured by Podium ratio U23 and Top 5 ratio Junior. It is remarkable 

how those two variables dominate the model. The maximal value of Podium ratio U23 in the fitted 

sample is 0.6667. This would imply that the variable on its own could influence predicted value by 

almost 1,000 points. The best performing riders as young professionals are thus the ones that are the 

most consistent in both the Junior and U23 categories. Rather than having one top performance, it is 

important to be consistent throughout each race. Remarkably, the victory ratio is not selected. It seems 

that the model favors riders that are always among the top performers rather than the specific rider 
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that has the best end sprint.  Note how trend features (comparing consistency evolution from Junior 

category to U23 category) have no effect on the model. 

 

Table 8: Coefficients final regression imputation - linear regression model. Model highly depends on consistency, as 
measured through podium ratio U23 and top 5 ratio Junior. 

Variable Coefficient Value 

Tour des Flandres U23 best result -0.001 

Tour du Pays de Vaud GC best result -0.061 

Podium ratio U23 1391.267 

Driedaagse van Axel stage best result -0.123 

Tour des Flandres U23 participation -2.267 

Top 5 ratio Junior 1190.966 

Trofeo Comune di Vertova participation -0.106 

Another interesting observation is the positive effect of non-participation to the Tour des Flandres 

U23 and Trofeo Comune di Vertova. This is especially surprising given the positive effect of a good 

result in the Tour des Flandres U23. This opposing effect can be explained by the extensive imputation 

method applied. If one has a good imputed best result in the Tour des Flandres U23, this value is based 

on a range of other results from the chained equations step. This means that the model implicitly 

incorporates a wider range of results as one would initially identify based on Table 8. However, this 

phenomenon reduces the extent to which the model can be regarded as a white-box model. Overall, 

the model mainly fits on the consistency of the riders in the races as selected for this study. This means 

that it fails to learn more nuanced differences based on race-based results. This could explain why 

rf_knn performs better with regard to overall ranking the riders.  

Figure 4 visualizes the feature importances as measured by the average SHAP value across all 

training observations for the rf_knn configuration. While consistency remains the key influencer, we 

see some large distinctions. First of all, the importance of consistency in the Junior category is 

removed. It is replaced by the victory ratio in the U23 category. This places much more importance on 

the winning capabilities and the U23 results. The influence of specific race results is much larger than 

in the regression imputation - linear regression model. This is not only reflected in the larger 

importance values, but also in the wider range of races selected. Second,  the races picked up by the 

rf_knn model are more diverse than the race features in Table 8. World Championships U23, Tour de 

l’Avenir, European Championships, ZLM tour, Tour de Normandie, and Olympia’s Tour are all famous 

youth race events. The fact that these races are all selected, combined with the rf_knn configuration’s 

top performance in terms of RMSE and Spearman correlation, really indicates that this configuration 

is the best in deriving the drivers of eventual points ranking.  
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Remember that the feature selection step is performed after the value imputation step, but before 

any algorithm is applied. This implies that the selected feature set is solely dependent on the used 

imputation technique. As a result, one can conclude that the adapted KNN method results in the most 

diverse, informative feature set. This feature set can be leveraged by a complex ensemble method 

such as random forest. On the other hand, the chained equation regression imputation method 

yields less interpretable features which works very well with the linear regression model when the sole 

goal is to target the top decile.   

 

Figure 4: SHAP-based variable importances of KNN imputation – random forest regression model. Model shows a large 
dependence on consistency, but is also influenced by key races.  

The distinctions between the drivers in Table 8 and Figure 4 are remarkable. After contacting a  

domain expert (i.e., head of development of a WorldTour team),  he/she identifies both the specific 

race-based drivers in Table 8 and Figure 4 as informative. The domain expert, however, anticipates the 

resulting drivers to reflect slightly different rider types. For having the most diverse set of suggested 

riders both configurations should be considered and seen as an addition to the current practices, rather 

than as a complete substitute. 

5. Managerial Implications 
Table 9: Top 10 predicted top performers according to linear regression model. Several riders have already exhibit good 

performance at the professional level. 

Rider Professional Since 

Repa Vojtech 2021 

Larsen Niklas 2020 

Pidcock Thomas 2021 

Colleoni Kevin 2021 

Stewart Jake 2020 

Meeus Jordi 2021 
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Hailemichael Mulu Kinfe 2020 

Van Gils Maxim 2021 

Rodenberg Frederik 2020 

Van Wilder Ilan 2020 

Both methods are useful depending on the eventual goal of the user. For instance, if a fan wants to 

know which talents he should keep an eye on, he should simply deploy the linear model and check 

which riders are suggested as the top performers. The suggested top decile will normally account for 

40-50% of the actual top decile. Table 9 depicts the deployment of this technique (linreg_regression) 

on the riders who turned professional during the years 2020 and 2021. Dependent data from 2019 was 

not included as the average underperformance of athletes might induce noise in the algorithm.  

Of course, the main application lays in its professional usage. The resulting model can be used to 

both detect new talents, as well as suggest how well current starters will perform. If a rider is heavily 

underperforming compared to what is predicted by the model, this could indicate that something is 

going wrong with the talent development of this rider and might lead to changes in how this rider is 

being deployed in races, and his psychological guidance. Interestingly, we observe several prospects in 

Table 9 who have already showed some good form at the professional level. For instance, Tom Pidcock 

already finished in the top-5 of the Strade Bianchi, one of the most important races on the calendar, 

and Jake Stewart finished second in the Omloop Het Nieuwsblad, another highly prestigious race. The 

model clearly delivers useful suggestions, but some riders are less performant. Especially riders that 

started in 2020 can be expected to start showing satisfactory results, such as Hailemichael Mulu Kinfe 

or Niklas Larsen. A quick inspection shows that Larsen has raced relatively little, probably due to fewer 

races being hosted due to the global COVID-19 pandemic, yet this discrepancy between performance 

and expectations might be a good starting point for his team leaders as to ensure if the talent 

development is going as desired. Hailemichael Mulu Kinfe highlights the overdependence of the model 

on the two consistency features as he has mainly competed and thrived in some of the lesser 

competitive youth races. 

Note that the usage of the linreg_regression model is mostly useful for teams focusing on the top 

decile, and thus the top tier of riders. Teams who don’t have the budget to attract such riders, or an 

insufficiently good reputation could repeat a similar analysis for the actual/predicted ranking of their 

riders using the rf_knn configuration. The main usage of this method is to be situated in talent 

identification, rather than talent development. By deploying the algorithm on each rider which is 

present in the youth results without turning professional, one can identify the most promising youth 

riders. Again, the used data is scraped before the start of the 2021 season, which means that talents 
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that start doing well during this season will not yet be detected by the model. However, they should 

be automatically picked up by the algorithm when deployed later on.  

Two young riders, Rait Ärm and Luca Colnaghi, are some of the algorithm’s top suggestions when 

deployed on the set of current youth riders. Note that the actual list is much longer, but we limit 

ourselves to these two suggestions as an example of how the methodology can be used. While the 

suggested list can already be a useful starting point, a scout will typically want to know more about 

these riders and why they are selected. When deploying the SHAP framework and building the 

surrogate model, one can derive the individual explanations per prediction by checking the individual 

SHAP values per feature and checking which ones have the largest absolute value. A positive SHAP 

value indicates an increasing influence on the predicted value and a negative SHAP value a decreasing 

effect. One can then generate a plot based on these SHAP values, with absolute value of the SHAP 

value visualized on the x-axis. The results for these two predictions are displayed in Figures 5 and 6 

with prediction-enhancing SHAP values in red, and prediction-reducing values in blue. The actual 

feature value is depicted in light grey left of the predictor name, as well as the individual predicted 

value (𝑓(𝑥)) above the main figure and the sample average (𝐸[𝑓(𝑥)]) below the x-axis. 

 

Figure 5: SHAP values Ärm Rait: Positive drivers (red) and negative drivers (blue). Rider is selected due to large number of 
podiums and European Championship result. 
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Figure 6: SHAP values Colnaghi Luca: Positive drivers (red) and negative drivers (blue). World Championship driver is 
imputed: KNN imputation method is capable of imputing the Hilly U23 capabilities into one single feature. 

The individual SHAP values explain why the riders receive relatively large scores. For instance, we 

can observe that Rait Ärm (Figure 5) is selected due to his high number of podium finishes and his good 

result at the European Championship.  His results in other important races and lack of actual wins are 

however somewhat worrisome. Further inspection of this rider (which can also easily be done by 

scouts through the procyclingstats website) indicates that he is currently riding for the development 

team of Groupama-FDJ where he can occasionally ride professional races alongside his youth program. 

He recently placed inside the top 10 of the GP Monseré, indicating his capabilities against professional 

riders as well. The methodology could be a push to teams to contact the rider and follow him in other 

races. His case is a nice example how the method should be used as an additional tool to scouts, 

initiating further investigation. 

Luca Colnaghi (Figure 6) can act as another interesting example. He has several positive indicators, 

but some of these, such as the World Championship, are imputed. This means that these results are 

based on his other results. Inspection shows that he indeed is a good performer in (other) hilly classics, 

which makes this beneficial imputed value feasible. The KNN imputation method is thus capable of 

imputing the Hilly U23 capabilities into one single feature, which reduces the importance of many 

other Hilly U23 features, which is why relatively few are selected by Boruta-SHAP. 

A final usability towards end users should lay in the interpretation of the rider type. Menaspà et al. 

(2012) identified four rider types: flat terrain, uphill, all terrain, and sprinters. To detect this we apply 

principal component analysis on the same training data (of riders starting before 2019) after KNN 

imputation. The derived components are then deployed on the unseen deployment set of non-

professional riders. The number of principal components (PC) is set equal to four to derive the rider 

types as outlined by Menaspà et al. (2012). The results are rather intuitive as they fit very well to four 

archetypical riders. Only PC4 has to be inversed to reflect climbing rather than non-climbing. We select 

four riders in the training data set, who are exemplary of the rider types. Filippo Ganna (current ITT 

world champion) is selected for the flat terrain category, Caleb Ewan (winner of several sprint stages 

in the Tour) for the sprinter category,  Egan Bernal (Tour de France 2019 winner) for uphill specialists, 

and Michal Kwiatkowski (former world champion) for all terrains. By visualizing the suggested rider in 

comparison with these riders, the scouts can have a good insight into which type of rider they are 

dealing with. 

These spider plots are displayed in Figure 7 for the above discussed rider Rait Ärm. The rider is 

visualized as being most similar to the flat terrain specialist Caleb Ewan (i.e., they both have a square-

like shape), but however scores lower on all capabilities. This means he is a sprinter, but probably not 

of world class. Note how our deployment sample only contains riders that are not yet contacted by 
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professional teams and are thus likely lacking the top performers of the 2019 and 2020 seasons in the 

U23 circuit, who are more likely to be displayed in Table 9. 

 

  

 

Figure 7: Spider plot Rait Ärm. Four principal components are visualized which represent all terrain (PC1), sprinters (PC2), flat 
terrain (PC3), and uphill (PC4). Compared with four archetypical professionals. Most similar to sprinter Caleb Ewan. 

Finally, one should consider the robustness of the system. A disadvantage of automated 

applications rises due to the fact that individuals involved could alter their behavior in order to get an 

incorrect, overly optimistic evaluation. In theory, one could try to peak towards the races whose 

features are selected by the Boruta-SHAP technique. However, those races are already the most 

important races on the calendar, where each participant tries to be in top shape. Thus, peaking 

towards these races would just be similar to what young riders are currently doing. Another strategy 

could lay in solely participating in races where the athlete expects to perform well. This is, however, 

already done to a certain extent, explaining the good performance of the grouped KNN imputation 

technique. Also, riders do not have the sole decision-making power in this regard, as the team coaches 

must select them for races. On top of this, riders can also be selected for races that they do not desire 

to participate in. Therefore, we think that , while theoretically feasible, unfair influencing of predicted 

future performance will not be feasible in practice, as current strategies are already close to rating-

optimizing behavior. 
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6. Conclusions and Future Research 
In this paper, we produced an analytical system that retrieves publicly available youth cycling 

results and uses imputation methods and predictive algorithms to predict future performance of riders 

who still have to become professional athletes. The results show that the detection of young cycling 

talents based on youth race results is feasible despite the tendency of the observed data to have many 

missing values. The resulting algorithms are capable of reaching the most important objective of 

cycling teams, which is predicting the order of the riders in this points-ranking.  

The baseline methods (i.e., XGBoost without value imputation and a simple consistency-based 

heuristic) were outperformed across all metrics, which indicates the need for high-quality value 

imputation and the use of predictive regression techniques over simple heuristics.  To cope with the 

high missing value rate in the data we suggest a method that uses expert knowledge on feature groups 

to form groups with complete cases and then uses KNN imputation on these groups. Our proposed 

KNN method in combination with random forest is identified as the best overall performer (rf_knn), 

while being highly competitive in terms of computation time, and is therefore suggested in situations 

with extreme missing rates. Users that are interested in identifying solely the top tier rider are 

recommended to use chained equation regression imputation combined with linear regression 

(linreg_regression). 

As a topic for future research, we could include performance results from outside the traditional 

youth cycling circuit. Recently, the sport witnessed the emergence of top performers from other fields 

such as cyclo-cross, football, or even ski-jumping. Future research might focus on how to detect 

potential targets across all sports fields. 

 Since the independent data can be regarded as sequential data, another research avenue could be 

to include models suited for sequential data, such as recurrent neural networks. The number of 

observations is however limited, and this type of model tends to perform quite weak in cases with a 

limited number of observations (e.g.. Kataoka & Gray. 2018). This, combined with the even greater 

problem of missing values when using year-per-year data rather than aggregating into best results, 

make us confident that our approach is the best possible solution.  

Our methodology was only deployed and tested for one specific dependent variable. (i.e., the PCS 

points in first two years of career). However, it should also be deployable for more specific dependent 

variables such as whether a rider ever wins a cobbled classic or whether he finishes inside the top-10 

of the general classification of a grand tour. This would heavily increase the (moving) dependent period 

to the entire career, rather than a mere two years. The youth results of riders who are currently at the 

end of their career are not stored well enough to facilitate such an approach at this point in time.  

An application that will remain hard in the following years, is the analytical scouting of talented 

domestiques (team helpers). While the PCS points system already rewards them in a fairer way than 
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the UCI points system, their work remains undervalued, as no scoring system is in place which values 

the amount of work they put in. In future research efforts, it might be interesting to evaluate diverse 

ways of quantifying these efforts, based on race reports or video coverage. Recent developments in 

text mining and image classification (e.g., De Bock & Verstockt, 2020) might prove useful in 

determining such metrics. 

 Finally, as our method was only developed for the male professionals as the youth results of female 

athletes are less well-kept track of. This, combined with the still changing female youth calendar, made 

our methodology less suited for the female circuit. However, it might be interesting to check if the 

results are similar when the methodology is applied on female prospects once the desired amount of 

data is available. 

In order to comply with privacy regulations, no personal data was used which was not available to 

the general public.  
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Appendix 
Table A1: Selected Youth Races 

Race  Category  Country  

Gent-Wevelgem Kattenkoers  Cobbles  Belgium  

Ronde van Vlaanderen Beloften  Cobbles  Belgium  

Liège - Bastogne - Liège U23  Hilly U23  Belgium  

Tour de l'Avenir  Big Tour  France  

Coppa della Pace - Trofeo F.lli Anelli  Hilly U23  Italy  

G.P. Palio del Recioto  Hilly U23  Italy  

Giro Ciclistico d'Italia  Big Tour  Italy  

Giro Ciclistico della Valle d'Aosta - Mont Blanc  Big Tour  Italy  

Gp Capodarco Comunita Di Capodarco  Hilly U23  Italy  

Gran Premio della Liberazione  Hilly U23  Italy  

Gran Premio Industrie del Marmo  Hilly U23  Italy  

Gran Premio Sportivi di Poggiana  Hilly U23  Italy  

Il Piccolo Lombardia  Hilly U23  Italy  

Le Triptyque des Monts et Châteaux  Rest  Belgium  

Paris-Roubaix Espoirs  Cobbles  France  

Ronde de l'Isard  Stage Race Climb  France  

Ruota d'Oro - GP Festa del Perdono  Hilly U23  Italy  

Tr. Città di S. Vendemiano  Hilly U23  Italy  

Trofeo Piva  Hilly U23  Italy  

Circuito Belvedere Hilly U23  Italy  

Eschborn Frankfurt U23  Rest  Germany  

European Chamionships U23 ITT  ITT  Varying  

European Continental Championships U23  Hilly U23  Varying  

World Champioships ITT U23  ITT  Varying  

World Championships U23  Hilly U23  Varying  

Omloop der Vlaamse Gewesten  Cobbles  Belgium  

Tour du Valromey  Stage Race Junior  France  

Liège la Geize  Stage Race Junior  Belgium  

Bernaudeau Junior  One Day Junior  France  

Course de la Paix Junior  Stage Race Junior  Czech Republic  

GP General Patton  One Day Junior  Luxembourg  

Grand Prix Rüebliland  Stage Race Junior  Switzerland  

GP dell Arno  One Day Junior  Italy  

Keizer der Juniores  Stage Race Junior  Belgium  

La Coupe du President de la ville Grudziadz  Stage Race Junior  Poland  

Trofeo Karlsberg  Stage Race Junior  Germany  

Paris Roubaix Juniors  Cobbles  France  

Ronde van Vlaanderen voor junioren  Cobbles  Belgium  

Sint-Martinusprijs Kontich  Stage Race Junior  Belgium  

Driedaagse van Axel  Stage Race Junior  Netherlands  

Tour de l’Abitibi  Stage Race Junior  Canada  

Tour du Pays de Vaud  Stage Race Junior  France  

Trofeo Buffoni  One Day Junior  Italy  

Trofeo Commune di Vertova  One Day Junior  Italy  

Trofeo Emilio Paganesi  One Day Junior  Italy  
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Le Trophee Centre Morhiban  One Day Junior  France  

Chrono des Nations Junior  ITT  France  

Giro Internazionalle della Lunigiana  Stage Race Junior  Italy  

Internationales Junioren Rundfahrt Niedersachsen  Stage Race Junior  Germany  

European Chamionships Junior  One Day Junior  Varying  

UCI World Championships ITT Junior  ITT  Varying  

UCI World Championships Junior  One Day Junior  Varying  

Olympia Tour  Rest  Netherlands  

Tour d’Alsace  Stage Race Climb  France  

Tour de Normandie  Rest  France  

Ster ZLM Tour  Rest  Netherlands  

Paris-Arras Rest France 

Paris-Tours U23 Rest France 

Tour de Berlin  Rest  Germany  

Tour des Pays de Savoie  Big Tour  France  

 


