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Chapter 1

Introduction

1.1 Neutrino oscillations and accelerator based
experiments

The research on neutrino oscillations is a rapidly moving field, with a
large potential for fundamental discoveries in the near future. Refining
measurements of the neutrino mixing angles, unraveling the neutrino
mass hierarchy, possible confirmation of the existence of sterile neutri-
nos, and the determination of the CP-violating phase are only some
of the current goals of the international neutrino community. In the
following we give a short overview of the phenomenology of neutrino
oscillations.

1.1.1 Neutrino oscillations

Neutrinos oscillate because the neutrino mass eigenstates are not the
neutrino flavor eigenstates. We give a short overview of the general pic-
ture of neutrino oscillations without delving into proposed mechanisms
for neutrino mass generation. The flavor eigenstate να with α = e, µ, τ
are orthogonal 〈να|νβ〉 = δαβ and can generally be described by a linear
combination of any number of mass eigenstates νk

|να〉 = Uαk |νk〉 . (1.1)

Uαk is a general complex matrix describing the mixing of mass states
into flavor eigenstates and summation over repeated indices is implied.
For the following we assume that there are three mass eigenstates, the
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mixing matrix is a unitary 3-by-3 matrix such that

|νk〉 =
(
U−1

)
kα
|να〉 = U∗αk |να〉 . (1.2)

To illustrate neutrino oscillations we assume a neutrino with flavor α and
momentum p created in some weak interaction. If the neutrino travels
over some distance L in vacuum the probability of observing a neutrino
with weak flavor β is given by

P (α→ β)(L) =

δαβ − 2R

∑
k>j

UαjU
∗
αkU

∗
βjUβk

[
1− exp

(
−i

∆m2
jk

2E
L

)] . (1.3)

Here ∆m2
jk = m2

j − m2
k is the difference between the squared masses

of the states |νj〉 and |νk〉. One thus sees that neutrino flavor states
oscillate between mass states j and k over a length L with wave number
determined by the fraction ∆m2

jk/E.

To derive this result, we consider a pure flavor state |να〉 at time t = 0
with momentum p. We can represent this state as a linear combination
of mass eigenstates by using Eq. (1.1). It are the mass eigenstates, la-

beled by k, that will evolve as plane waves with energy Ek =
√
p2 +m2

k.

The evolution of the initially pure α state is thus given in terms of the
mass states by

|να(x, t)〉 = Uαke
−i(Ekt−p ·x) |νk〉 . (1.4)

Substituting in the flavor eigenstates we get the evolution of an α state
to a superposition of β states at time t

|να(x, t)〉 = Uαke
−i(Ekt−p ·x)U∗βk |νβ〉 . (1.5)

Squaring the amplitude 〈νβ|να(x, t)〉 results in

P (α→ β)(t) = |〈νβ|να(x, t)〉|2 = UαkU
∗
βkU

∗
αiUβie

−i(Ek−Ei)t, (1.6)

Eq. (1.3) follows from this expression by assuming that the neutrino
masses are small compared to their energy such that Ek ≈ E +m2

k/2E
with E = |p|, and that t ≈ L.

A common parametrization for the 3-by-3 unitary mixing matrix is the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The PMNS matrix
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Introduction

is parametrized by 3 angles (θ12, θ23, θ13) and 1 complex phase eiδCP as

UPMNS = 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 0 0
−s13e

iδCP 0 s13

 c12 s12 0
−s12 c12 0

0 0 0

 .

(1.7)

Here cij and sij are shorthand for cos(θij) and sin(θij) respectively.

The angle δCP is a source for CP violation. For antineutrinos, assuming
CPT symmetry the oscillation probability is related to the neutrino
oscillation probability by P (να → νβ) = P (νβ → να). The oscillation
probability for anti-neutrinos P (να → νβ) can be obtained from P (να →
νβ) by considering the complex conjugate of U , i.e. by substituting U
for U∗ in Eq. (1.3). Clearly, if U is a real matrix, P (να → νβ) = P (να →
να). For a general complex matrix however this is not the case and CP
violation is implied unless δCP is either 0 or π or any of the mixing
angles are trivial.

To see this explicitly we write Eq. (1.3) as

P (να → νβ) = δαβ − 4
∑
i>j

R
(
UαiU

∗
βiU

∗
αjUβj

)
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

I
(
UαiU

∗
βiU

∗
αjUβj

)
sin

(
∆m2

ijL

2E

)
. (1.8)

Only the last term in this expression is affected when U is substituted
for its complex conjugate such that the CP -violating asymmetry ACP

is given by

ACPαβ = P (να → νβ)− P (να → νβ)

= 4
∑
i>j

I
(
UαiU

∗
βiU

∗
αjUβj

)
sin

(
∆m2

ijL

2E

)
. (1.9)

The four-tensor Jαβ,ij ≡ I
(
UαiU

∗
βiU

∗
αjUβj

)
which appears in these

expressions is antisymmetric with respect to exchange of the two flavor
indices and with respect to exchange of the mass indices. From the
unitarity of U

UαiU
∗
βi = δαβ, UαiU

∗
αj = δij , (1.10)

it follows that the magnitude of all non-vanishing components of Jαβ,ij
is the same, they differ only by an overall sign. The magnitude of the
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non-zero components is called the Jarlskog invariant and denoted J . The
CP -violating asymmetry is proportional to this one parameter, and is
commonly written as

ACPαβ = 16Jαβ sin

(
∆m2

21L

4E

)
sin

(
∆m2

32L

4E

)
sin

(
∆m2

31L

4E

)
, (1.11)

where Jαβ = Jαβ,12. The Jarlskog invariant can be expressed in terms
of the elements of the PMNS matrix as

Jαβ = c12s12c23s23c
2
13s13 sin (δCP )

∑
γ

εαβγ , (1.12)

with the antisymmetric accounting for the sign. From this expression
one indeed sees that to allow CP -violation in neutrino oscillations J
should be non zero, and hence all 3 mixing angles and δCP should be
non-trivial.

As a last remark we discuss the parametrization of the PMNS matrix.
An arbitrary unitary N ×N matrix can be parametrized by

N2 = 2N2 −N(N − 1)−N

real parameters. Here the first term simply counts the number of real
numbers in a complex N ×N matrix, the second term comes from the
constraint that all columns should be mutually orthogonal, and the third
term is obtained from the constraint that every column should have unit
norm. In the case of a 3× 3 unitary matrix one would therefore expect
9 parameters to be required instead of the 4 in the PMNS matrix. From
Eq. (1.6) one sees that the elements of the mixing matrix for the mass
states and the flavor states enter the oscillation probability in complex-
conjugated pairs. The oscillation probability is thus invariant under
redefinition of any of the mass or flavor states with an overall phase.
This allows to remove 2N − 1 phases from the parameters that describe
the mixing matrix, by fixing the relative phases between the different
states, without affecting the phenomenology of neutrino oscillations.

With this absorption of phases, the PMNS matrix describes mixing for
3 lepton generations where 3 right handed neutrinos are introduced that
are considered to be Dirac fermions. This global symmetry is lost in
the case where one considers Majorana fermions, which are particular
solutions of the Dirac equation for which the Majorana condition

Ψ = ±CΨ
T ≡ Ψc (1.13)

holds. Here C is the charge-conjugation matrix (C = iγ2γ0 in the Dirac
representation) and the right-hand side defines the charge-conjugate of

4
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Ψ. Charge-conjugation transforms particle spinors into anti-particle
spinors and vice versa, and for solutions that satisfy the Majorana
condition particles and anti-particles are hence indistinguishable. For
the charged leptons such solutions are ruled out because anti-particles
have opposite charge with respect to particles. For the neutral neutrino
however the Majorana condition can in principle be met. In this case the
condition of Eq. (1.13) does not allow for the absorption of 5 phases and
the mixing matrix U that can be considered as a more general version
of the PMNS matrix, is parametrized as

U = UPMNS

eiη1 0 0
0 eiη2 0
0 0 0

 , (1.14)

including the Majorana phases η1 and η2. Given the discussion above,
the Majorana phases do not affect neutrino oscillations in vacuum (or in
matter [1]), as Eq. (1.6) is invariant with rephasing of rows or columns
of the mixing matrix. A Majorana solution, which couples the particle
to antiparticle solutions, would however allow for processes that violate
total lepton number conservation. As such, the main prospect in de-
termining the nature of neutrinos, be it Majorana or Dirac, is in the
observation of neutrinoless double beta decay [2].

On the other hand, in this discussion we have considered mixing of 3
generations of neutrinos, corresponding to the 3 flavor states which enter
in electroweak interactions. Some models consider the case of sterile
neutrinos, in which mass mixing occurs between 3 + n neutrino states,
of which the n sterile states do not interact. In this case the PMNS
matrix can be considered as a sub-matrix of a larger matrix. As such
the unitarity conditions of Eq. (1.10) do not apply when the sums are
restricted only to the 3 interacting states. A possible consequence is
that the CP -violating asymmetry of Eq. (1.11) differs in magnitude for
different neutrino flavors. For more extensive discussions on neutrino
mass terms, mass generating mechanisms, and their implications on
neutrino oscillations we refer to Refs. [1, 3, 4].

1.1.2 Accelerator-based neutrino experiments

Neutrinos are produced in weak interactions, and there are several sources
of neutrinos which can be detected on laboratories on earth. Extrater-
restrial neutrinos are among others created in the nuclear reactions in
the center of the sun, in the collisions of highly energetic cosmic rays
with the atmosphere, and in supernovae. Terrestrial sources include

5
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neutrinos from nuclear reactors, from β-decay of nuclei, and neutrinos
created with particle accelerators.

The intense neutrino beams created in accelerators provide great oppor-
tunities for experimental measurements of neutrino oscillation parame-
ters. If the energy profile of the neutrino beam is known, detectors can
be placed at optimized positions in the beamline in order to look for
oscillation at specific values of L/E.

There are two main factors which complicate the setup of such a neu-
trino experiment. The first is that neutrinos only interact weakly, this
means that their direct observation is impossible with traditional particle
detectors. Instead, one measures the particles which are produced in
interactions of the neutrino with the detector material. Due to the
small cross sections of the weak interaction at the couple of GeV scale,
neutrino detectors consist of a massive amount of target material to
interact with. For this reason, in current and future experiments the
active material in detectors consists mainly of atomic nuclei, and hence
the neutrino-nucleus cross section has to be known.

The second complication stems from the fact that the neutrino beams
from accelerators are not mono-energetic but span over an energy range
of several GeV. To see how this leads to severe complications, one may
consider as an example the inclusive interaction

νl + 12C→ l− +X, (1.15)

where only the outgoing charged lepton is measured. The measured
amount of events in a bin with width ∆ centered around a lepton
scattering angle of the lepton θ′l in a neutrino detector is then given
by

N(θ′l) =

∫ θ′l+∆/2

θ′l−∆/2
dθl

∫
dElε(El, θl)

∫
dEνΦ(Eν)

dσ(Eν)

dθl dEl
, (1.16)

with Φ(Eν) the neutrino flux and dσ(Eν)/ dθl dEl the differential cross
section for fixed Eν , lepton angle and energy El. For completeness
we added the factor ε to represent the detector efficiency which is a
function of the lepton kinematics. Because the residual system X is not
characterized, all possible interaction mechanisms which may occur at
certain energy should in principle be taken into account to describe the
event rate that is measured.

In the idealized case, where experimental uncertainty plays no role and
∆ is negligible, the event rate of Eq. (1.16) is an integral transform

dN

dθl
=

∫
dEνΦ(Eν)K(θl, Eν) (1.17)

6
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with kernel

K(θl, Eν) =

∫
dElε(El, θl)

dσ(Eν)

dθl dEl
. (1.18)

Characterizing the (oscillated) neutrino flux Φ(Eν) from measured final
state kinematics means solving the inverse transform. This problem is
intractable even in the ideal case, and is further complicated by the
fact that the description of the cross section requires challenging nuclear
and hadron physics, such that the kernel is not exactly known. To
characterize the flux in the analysis of neutrino experiments, simulations
of the measured experimental signal are performed which are compared
to the experimental data. Through these comparisons, parametrizations
of the flux that are consistent with the experimental data are deter-
mined. Apart from (oscillation) parameters that determine the flux,
simulations need to take into account the neutrino flux before oscillation,
the response of the detector, the interaction cross section, and ideally
the uncertainty on these quantities.

1.2 Neutrino interactions

Given the discussion in the previous sections it is clear that it is im-
portant to have good knowledge of the interaction cross sections for
the processes which contribute to a neutrino experiment. On top of
that, neutrino scattering experiments also provide a unique view of the
axial response of hadrons and nuclei, which is not directly accessible in
experiments with electromagnetic probes. Both these facts have spurred
interest in, and have led to significant developments in the theoretical
description of electroweak interactions with hadrons and nuclei [5, 6].
The first accelerator-based experiments, examples are MiniBooNE [7]
and T2K [8], were mostly limited to measurements of the outgoing lepton
in charged-current interactions. Therefore a lot of theoretical approaches
have been applied to the calculation of inclusive neutrino-nucleus scat-
tering. With the enhanced capabilities and better understanding of cur-
rent and future detectors the need to describe semi-inclusive interactions
in which some of the final-state hadrons are detected is growing [5, 9].
In this respect it it important to stress that the signal in current and
future neutrino experiments is always necessarily semi-inclusive, rather
than exclusive. In an exclusive signal, the kinematics of the final-state
hadrons are fully determined, which is for example the case in studies of
electron induced one proton knockout from nuclei. In these experiments
one measures the final state proton (denoted p) and scattered electron

7
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(denoted e′) in the interaction

e+A→ e′ + p+B, (1.19)

where the energy and momenta of the initial-state electron and nucleus, e
and A respectively, are fully known. By energy-momentum conservation
one can then fully characterize the kinematics of the unmeasured hadron
system B. One can then restrict the experimental sample to those events
for which the system B has a specific invariant mass, corresponding
e.g. to a specific excited state of nucleus. In a typical neutrino exper-
iment on the other hand, the incoming neutrino energy is not a fixed
variable. This means that the kinematics of the final-state cannot be
fully characterized on an event-to-event basis. This situation, in which
part of the hadron final-state is measured, is referred to as semi-inclusive.

Pion production is an important reaction mechanism, both for the inclu-
sive as the semi-inclusive case. The pion, being the lightest meson, is the
most common reaction product in inelastic interactions with the nucleon
for hadronic invariant masses of W ≈ 1.1−1.4 GeV, and will contribute
to the inclusive cross sections measured in experiments [10, 11]. On
the other hand, in experiments that are sensitive to the content of
the hadronic final state, single (and at higher energies multi-pion) pion
production is a significant contribution to the measured signal.

1.2.1 Neutrino-induced single pion production

There are a number of models that aim to describe pion production
in the kinematic phase space relevant to neutrino experiments [10, 12–
25]. Many of these models focus on the kinematic region around the
∆(1232) resonance, although progress has been made in the description
of the process at higher invariant masses [15, 24, 26–28]. We highlight
in particular the approach of Hernandez et al. [14], which combines
the direct resonance excitation of the ∆(1232) with the lowest order
background diagrams required by ChPT. The model has been extended
over the years with among others the addition of higher mass resonances,
and partial unitarization in the delta region [29–33]. The main drawback
comes from the fact that the tree-level background grows too quickly
beyond the delta region, which yields unnaturally large cross sections.
This unphysical behavior of the background is mitigated in the approach
of Ref. [25], by introducing a phenomenological regularization factor for
high-W . In the approach of Ref. [28], resonance contributions are instead
added incoherently to a phenomenological background which grows only
slowly with W .
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The current state-of-the art model for electroweak pion production is the
Dynamic Coupled Channels (DCC) model presented in Refs. [24, 34].
The dynamical model takes into account coupled-channels unitarity and
is constrained by data of meson-baryon scattering and electromagnetic
production of pions and other meson-baryon channels. The model is
applicable from the pion-production threshold up to W = 2 GeV.

In general, the major uncertainty and issue in any of these approaches
to electroweak SPP is the knowledge of the axial form factors of the
resonances. While a reasonable guess of some of the couplings can be
made by assuming PCAC and pion-pole dominance, this does not fix all
possible axial couplings and does not predict the Q2 dependence of the
form factors [26].

Much of the work on electroweak SPP is applicable to the reaction on
a free nucleon. In accelerator-based experiments, the target consists
mainly of nuclei, and nuclear effects need to be taken into account. Some
approaches for SPP off the nucleus have been presented with the explicit
goal of describing neutrino scattering data [12, 18, 23, 35–39]. With
the current and upcoming measurements of the hadronic final-state, it
becomes important to describe the semi-inclusive process in which an
outgoing pion is detected. In this respect the recent implementation of
the DCC model amplitudes [24] in the effective spectral function model
presented in Ref. [35, 40] is notable. This model should be able to
describe the relevant kinematic degrees of freedom for the semi-inclusive
process, although it has currently not yet been applied to flux-averaged
neutrino pion production data.

Additional complications in neutrino-induced SPP off nuclei come in
the form of final-state interactions (FSI). Because the incoming en-
ergy is unknown on an event-to-event basis it becomes impossible to
make kinematic cuts on e.g. the missing energy. This means that it
is impossible to restrict the experimental data to direct single pion
production, and pions which rescatter in the nuclear medium are part
of the signal. Because treating all the relevant FSI channels explicitly in
a microscopic manner is an intractable problem, experimental analyses
resort to classical intra-nuclear cascade models. The cascade models
applied to neutrino-scattering data are mostly based on the model of
Salcedo et al. [41], although the most recent models are developed in
the context of neutrino event generators [42–46].

9
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1.2.2 Neutrino event generators

Because of the large-scale problem posed by the need to describe all
relevant neutrino-induced processes in addition to the FSI of hadrons
the weapon of choice in analysis of experiments is the neutrino event
generator. Commonly used generators include GENIE, NuWro, and
NEUT [42–44]. In such programs a Monte Carlo simulation of neutrino-
nucleus scattering events is performed, based on input of the interac-
tion cross sections for different channels. Because there presently is
no definite unified description of all interaction channels available, the
interaction cross sections for different processes are obtained by stitching
together different theoretical approaches, which might pose some risk of
double counting. Moreover, for some interaction channels only limited
kinematic degrees of freedom are available in the generator, e.g. the
inclusive cross section. In such cases, the kinematics of the outgoing
hadrons are often computed based on a different model, which may be
inconsistent with the approach used to supply the inclusive cross section
in the first place.

The treatment of FSI in these generators is done with cascade models, in
which the initial neutrino interaction with the bound nucleon is detached
from the final-state interactions (FSI) for the outgoing hadrons. Put
differently, the cascade model affects only the kinematics of the particles
in the final state, while it does not affect the magnitude of the cross
section used as an input. An important exception to this rule is the
GiBUU (Giessen Boltzmann-Uehling-Uhlenbeck) project [46, 47], which
instead of a cascade model uses a transport approach to model the flow
of particles through a nuclear mean-field potential.

In any case, the predictions of event generator rely on theoretical input
for the cross sections. Neutrino event generators will generally use
approximate treatments of nuclear effects and of processes with a large
number of kinematic degrees of freedom. On the one hand this is
because Monte Carlo simulations of all interactions are computationally
intensive, and can rapidly become inefficient in a large multi-dimensional
phase space. On the other hand the implementation of state-of-the-art
models is labor intensive.

The results of event generators that are used in the analysis of neutrino
experiments should ideally be informed by, or benchmarked against, the
results of more complete treatments of the interaction in order to asses
the relevant uncertainties.

10
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1.3 Outline

In the present work we will address the description of the semi-inclusive
cross section for neutrino SPP within a relativistic approach which in-
corporates fully the kinematic and modeling degrees of freedom of the
process.

In Chapter 2, we present the general formulae for lepton scattering of
nucleons and nuclei. In Chapter 3, the model for SPP off nucleons used
in this work is discussed at length. This is the most recent version of the
model presented in Ref. [31]. We perform an extensive benchmarking by
comparison to established models for pion electroproduction, and pion-
nucleon scattering data. Then, in Chapter 4 we describe the modeling of
the nucleus in this work, and discuss the influence of the description of
the nucleon wavefunction as a relativistic distorted wave. We present a
comparison of results with the NuWro event generator and experimental
data, originally published in Ref. [37], in Chapter 5.

The results obtained with the relativistic distorted wave treatment are
compared to plane wave results and experimental data in Chapter 6,
and finally conclusions are given in Chapter 7.
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Chapter 2

Lepton scattering off
nucleons and nuclei

In this chapter we present the kinematics and general formalism for the
calculation of the lepton-nucleus scattering cross section. The presented
formulae are general such that the formalism presented here is directly
applicable for both electron and neutrino interactions. First we show
the kinematics of the process and how the cross section for scattering
off nucleons and nuclei is computed. Next, we take a closer look at
the invariant matrix element that determines the probability of the
interaction. By treating the lepton current in the plane wave Born
approximation we can write the matrix element as a contraction of the
lepton and hadron tensors. We give the explicit expressions for the
lepton tensor, and show how by making use of rotational invariance
the dependence on the angle between lepton and hadron planes can
be written in terms of sines and cosines. The hadron current, which
depends on the type of interaction and nuclear model, will be described
in following chapters.

2.1 Kinematics and cross section

The kinematics for a lepton scattering off a nucleus are depicted in
Fig. 2.1. The incoming lepton has four momentum Kµ = (E,k), and
the outgoing lepton K ′µ = (E′,k′). The four momentum transferred to
the hadronic system is Qµ = (ω = E − E′,q = k − k′). The vectors
k and k′ define the lepton scattering plane. We follow the conventions
of Bjorken and Drell [48], as laid out in appendix A. will derive the
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Figure 2.1: Kinematics for the pion-nucleon production off the nu-
cleus.

expression for the cross section explicitly for the pion-production case,
for other interaction mechanisms the expressions will be provided as
they are derived with the same considerations.

The differential cross section is proportional to the density of final states
per unit flux. For every on-shell fermion with mass m and momentum
p in the final state the Lorentz-invariant phase space factor is given by

mdp

E(2π)3
, (2.1)

while for a boson one has,

dp

2E(2π)3
, (2.2)

with the energy given by the well-known dispersion relation E =
√

p2 +m2.
The normalization factors proportional to 1/E make these phase space
volumes Lorentz-invariant. The factor m/E for fermions follows from
the normalization of the spinors given in Eqs. (A.38-A.39), which yields a
number density E/m . For bosons, the Klein-Gordon equation, Eq. A.18,
when considered for either strictly positive or strictly negative energy
solutions yields a number density of 2E [48], hence the normalization of
Eq. (2.2). For the incoming lepton and hadronic target the kinematics
are assumed to be fixed, such that the factor dp

(2π)3 is not needed, i.e. the

cross section is expressed per incoming lepton and per target. The flux

14



Lepton scattering off nucleons and nuclei

is the relative colinear velocity of the incoming lepton and the hadron
target, which is

|vi − vA| = |
pi
Ei
− pA
EA
| = | pi

Ei
| = 1, (2.3)

in the laboratory system where the target is at rest and if the incoming
lepton can be considered massless.

For single-pion production off nuclei, the final state consists of 4 parti-
cles, the lepton K ′µ, the pion Pµπ = (Eπ,pπ), and the outgoing nucleon
PµN = (EN ,pN) illustrated in Fig 2.1, and additionally the residual
nucleus PµB = (EB,pB). Their masses are denoted m′, mπ, MN , and
MB respectively, while the masses of the initial state lepton and nucleus
arem andMA. All final-state particles satisfy the free dispersion relation
E2 = k2 + m2 after the scattering, the number of kinematic degrees of
freedom for every particle is thus 3, these are included in the phase
space factors of Eqs. (2.1-2.2). With the conventions explained above,
this leads to the general expression of the cross section as

dσ(E) =
m

E

m′

E′
dk′

(2π)3

mN

EN

dpN

(2π)3

1

2Eπ

dpπ
(2π)3

MB

EB

dpB

(2π)3

× (2π)4δ4(Kµ + PµA −K ′µ − P
µ
N − Pµπ − P

µ
B)|M|2, (2.4)

where the delta function accounts for four-momentum conservation. The
squared invariant matrix element |M|2 contains the dynamics of the
scattering process, including the spin degrees of freedom, and is dis-
cussed in the next section.

We can trivially integrate over the three-momentum of one of the par-
ticles by using the delta function. As we don’t generally detect the
outgoing nuclear system, we will integrate out its momentum, which
then leads to

dσ(E) =
mm′MNMB

2(2π)8EE′ENEπEB
dk′dpNdpπ (2.5)

δ(E +MA − E′ − EN − Eπ − EB)|M|2. (2.6)

At this point the energy-conserving delta function can be used to elimi-
nate one additional degree of freedom. We perform the integral over the
magnitude of the outgoing nucleon’s momentum |pN | by using following
property of the delta function∫

dxδ(a− f(x))g(x) =

[
g(x)

|∂f∂x |

]
f(x)=a

. (2.7)
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In this case, we can rewrite the argument of the delta function as

E +MA − E′ − Eπ −
√

p2
N +m2

N −
√

(q− pN − pπ)2 + (M0
B + E∗B)2,

(2.8)
where the last term is the total energy EB of the residual hadronic
system with an invariant mass MB = M0

B + E∗B that recoils with a
momentum q− pN − pπ. We can thus identify f(pN ) as

f(pN ) =
√
p2
N +m2

N +

√
(q− pN − pπ)2 + (M0

B + E∗B)2. (2.9)

The derivative with respect to pN is now easily computed and yields

|∂f(pN )

∂pN
| = | pN

EN
+
pN
EB

(
1 +

pN · (pπ − q)

p2
N

)
|. (2.10)

Further using the fact that d3k = k2dkdΩk = E|k|dEdΩk, the final
result for the exclusive cross section as a function of energies and solid
angles in the lab frame reads

d8σ(E)

dE′dΩdEπdΩπdΩN
=
mi

E

m′k′MNkπkNMB

2 (2π)8EBfrec
|M|2 (2.11)

with

frec =
EN
pN
|∂f(pN )

∂pN
| = |1 +

EN
EB

(
1 +

pN · (pπ − q)

p2
N

)
| (2.12)

the recoil factor that takes into account the phase space correction due
to kinetic energy carried away by the residual nucleus. We here point out
a commonly used approximation of neglecting the nuclear recoil energy.
In this case we neglect the kinetic energy of the residual system, and its

energy is simply EB = M0
B+E∗B, such that f(pN ) =

√
p2
N +M2

N and the

recoil factor becomes 1. If part of the final state particles are not fully
observed, this is a rather good approximation. This can be understood
from the expression of the recoil factor in Eq. (2.12), which tends to 1
when EN << EB. Indeed, if the mass of the final nucleus is large it can
carry a lot of momentum without gaining much kinetic energy, hence it
does not change the energy balance by a significant amount.

Using exactly the same line of reasoning, just excluding the terms that
account for the pion phase space, one obtains for the semi-inclusive one-
nucleon knockout cross section

d5σ(E)

dE′dΩ′dΩN
=
mi

E

m′k′MNkNMB

(2π)5 frecEB
|M|2, (2.13)
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Lepton scattering off nucleons and nuclei

where frec is obtained from Eq. (2.12) by setting the pion momentum
to 0.

It is interesting to explicitly consider the kinematic degrees of freedom
in scattering off nuclei, to illustrate the assumptions made to derive the
expressions for the exclusive cross sections of Eqs. (2.11) and (2.13). All
particles are on-shell before or after the scattering, as such their four-
vectors are completely described by three parameters, the magnitude
and direction of momentum,

Kµ =
(√

p2 +m2,p
)
, (2.14)

if the invariant mass m is assumed to be known. In lepton-nucleus
scattering in which n ≥ 1 hadrons are created we will have (2 + 1 +
n + 1) × 3 kinematic degrees of freedom, where the first term counts
the initial lepton and nucleus, the next term the scattered lepton, n the
number of created hadrons, and the last term is the residual nucleus. The
three momenta of the initial state particles are assumed to be known,
which allows to eliminate 6 variables. We can always choose an arbitrary
inertial frame for the calculation, e.g. the LAB frame in which pA = 0,
to remove 3 of them. In this inertial frame we are free to choose the
direction of the spatial axes, e.g. as in Fig. 2.1 the x− z plane is defined
as the leptonic plane, with q along the z-axis, obviously this choice is
arbitrary. This leaves (n+ 2)× 3 independent variables, of which 4 can
be eliminated by energy-momentum conservation, leaving 3n+ 2. A set
of non-trivial variables in the system shown in Fig. 2.1 is the following: 3
variables to define the leptonic side of the interaction e.g. (|k|, |k′|, θl) or
equivalently (ω, |q|, E). Then n−1 hadrons are described by 3 variables
each, e.g. their three-momentum (|p|, cos θ, φ). For the final hadron only
the solid angle is needed, as the magnitude of the momentum of the n-th
remaining hadron can be determined from energy conservation

ω +MA =

n−1∑
i=1

(√
p2
i +m2

i

)
+

√√√√M2
B +

(
q−

n−1∑
i=1

(pi)− pn

)2

+
√

p2
n +m2

n.

(2.15)

One sees that the invariant mass of the residual system MB is assumed
to be known, and a fixed variable, this corresponds to an exclusive
situation. In many situations, neutrino-nucleus scattering in particular,
one deals with a semi-inclusive situation, in which the kinematics of
all particles are not fully determined. In this case the invariant mass
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MB may take multiple values which are model dependent. We discuss
the kinematics and modeling of the semi-inclusive lepton-nucleus cross
section in Chapter 4.

Lastly, we give the expression for single pion production of a free nucleon
in the lab frame. As there is no residual nucleus in this case, the integral
over the recoiling nucleon’s momentum can be performed directly in the
same way as above. Energy conservation can be used to eliminate the
magnitude of the pion momentum, the energy conserving delta function
reads

δ(E +MN − E′ −
√
k2
π +M2

π −
√

(q− kπ)2 +M2
N ) (2.16)

which yields a recoil factor

frec = |1 +
Eπ
ENk2

π

kπ · (kπ − q)| (2.17)

with the cross section

d5σ(E)

dE′dΩ′dΩπ
=
mi

E

m′k′mNkπ

(2π)5ENfrec
|M|2. (2.18)

2.2 The invariant matrix element

In the previous section we simplified the kinematic prefactors in the
cross section by energy and momentum conservation. The cross section
is proportional to the squared invariant matrix element which may be a
function of the remaining kinematic variables

|M (P1, P2, · · · , PN )|2 =
∑

i,f
|Mif (P1, P2, · · · , PN )|2 (2.19)

where
∑

i,f implies the appropriate sum and average over unobserved
degrees of freedom of the initial and final state systems, such as spins,
and the Pi denote a set of independent kinematic variables. In this
section we show how the squared matrix element decomposes into a
lepton and hadronic tensor, and we give the expressions for the lepton
tensor treating the leptons as plane waves. To simplify the notation
we do not explicitly write any dependence on spin or kinematics unless
needed.

The invariant amplitude for a semi-leptonic interaction, where all energy
states are asymptotically stable is written in coordinate space as

Mif =

∫
dx

∫
dyjµl (x)Sµν(x,y)jνH(y) (2.20)
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Where jl and jH are the lepton and hadron currents respectively which
are four-vectors, while S is the propagator that connects both vertices.
In this work we will work exclusively in the plane wave born approxima-
tion for the lepton current, the propagator for the exchange of a single
massive boson then has the form

Sµν(x,y) =

∫
dqe−iq · (x−y) Γµν

M2
B −Q2

, (2.21)

with MB the mass of the boson, and Q2 the squared four-momentum
transfer. The vertex factor for the exchange of a massive boson, summed
over the polarization is

Γµν = −gµν +
QµQν

M2
B

≈ −gµν (2.22)

where the second term arises from the longitudinal polarization of the
exchanged boson, and thus does not enter for massless photon exchange.
For the weak interaction the boson is either the W and Z that both have
masses of around 90 GeV, such that for the region of Q2 considered in
this work this term can be dropped, thus yielding a vertex factor gµν for
all electroweak interactions.

The lepton current for plane wave Dirac particles, using the definitions
laid out in appendix A, is

jµl (x) = ei(k−k
′) ·xu(k′, s′)Γµl u(k, s), (2.23)

with a vertex factor Γµl which we leave unspecified at this point. With
this we can compute the integrals over q and x immediately, the integral
over the exponential leads to momentum conservation in the leptonic
vertex and the propagator. The resulting expression for the transition
amplitude is

Mif = u(k′, s′)Γµu(k, s)
−1

M2
B −Q2

∫
dye−iq ·yjµH(y). (2.24)

We now denote

J µ(q) =

∫
dye−iq ·yijµH(y), (2.25)

and define the hadron tensor Hµν = J µ(q)(J ν(q))†. With this short-
hand the squared matrix element is

|Mif |2 =
1

(MB −Q2)2
lµνHµν , (2.26)

19



The invariant matrix element

where Lµν(s, s′) is then defined as [u(k′, s′)Γl,µu(k, s)][u(k′, s′)Γl,νu(k, s)]†

where the spin degrees of freedom for the initial and final state leptons
are s, s′ respectively. We thus find that with single boson exchange, and
with plane wave leptons, the lepton and hadron vertices can be treated
separately. While the hadron part of the interaction is challenging
to describe for most interaction mechanisms, the lepton vertex can be
readily evaluated with the conventional Feynman rules. Derivations and
expressions for the lepton tensor are readily found in e.g. Refs [49, 50],
here we will only give a short overview consistent with the conventions
used in this work.

The relevant electroweak vertex factors for the lepton current are

ΓµW =
g√
2
γµ

1

2

(
1± γ5

)
, (2.27)

ΓµZ =
g

cos θW 2
γµ

1

2

(
1− γ5

)
, (2.28)

and

Γµγ = eγµ, (2.29)

for the coupling to the W and Z bosons, and photon (γ) respectively.
The factor 1

2

(
1± γ5

)
is the projection operator with the + sign for

the right-handed neutrino and − for the left-handed antineutrino. We
now proceed by showing the result for the charged-current couplings to
the W±, i.e. for the interactions νl → l− and νl → l+ from which the
other processes can be readily determined. We consider the sum over
initial and final helicities explicitly to make use of the closure relation
of the Dirac spinors, but the projection operators present in the current
will select only the allowed spin states. With our convention of spinor
normalization we then get,

lµν =
∑
s,s′
L(s, s′) =

g2

8
Tr

[
(/k +m)

2m
γµ
(
1± γ5

) (/k
′
+m′)
2m′

γν
(
1± γ5

)]
.

(2.30)
We will further neglect the initial lepton mass m in the numerator, valid
for neutrinos and electrons in this work. One then finds that all terms
that involve m′ in the numerator are also zero as they involve 3 gamma
matrices, and can write

lµν =
g2

16m′m
Tr
[
γβγνγαγµ

(
1± γ5

)]
kαk

′
β. (2.31)
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The trace is easily evaluated with well-know theorems and is given
explicitly by

lµν =
g2

4m′m

[
kµk′ν + kνk′µ − gµνkαk′α ± iεµναβkαk′β

]
. (2.32)

Here gµν is the metric tensor, εαβγδ the Levi-Cevita tensor. We find
a symmetric real part and an anti-symmetric imaginary term which
depends on the neutrino’s helicity.

For electron scattering we can make use of the same result when the
electron mass is neglected by substituting the coupling constant g2/2→
e2. Indeed, in the massless limit the projection operator 1

2

(
1± γ5

)
that

enters in the neutrino interactions projects out the positive/negative
helicity of the electron, such that the same tensor enters in polarized
electron scattering. When the electron is not polarized, one averages
over the two initial helicity states and the antisymmetric term disap-
pears. Hence to treat electromagnetic and electroweak interactions on
the same footing it is convenient to factor out the coupling constant and
lepton masses and define

Lµν = kµk′ν + kνk′µ − gµνkαk′α − ihεµναβkαk′β (2.33)

with h the initial leptons helicity.

For this reason it is customary to also factor out a constant coupling
from the hadron tensor. The coupling constants that arise in the three
point vertex of a W , Z, and photon with point-like fermions (quarks)
are

GW = g cos θc2
√

2, (2.34)

GZ =
g

2 cos θW
, (2.35)

and
Gγ = e, (2.36)

respectively. Now, combining Eq. (2.26) with the result for the lepton
tensor and factoring out the constants from the hadron current we have

|MW |2 =
1

(M2
W −Q2)2

g2

4m′m
g2 cos2 θc

8
LµνHµν (2.37)

We can neglect Q2 in the propagator and use GF√
2

= g2

8MW
to get

|MW |2 =
G2
F cos2 θc
m′m

LµνHµν . (2.38)
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Rosenbluth decomposition

For the coupling to the Z we have MW = MZ cos θW and we obtain the
same expression, but without the Cabibbo mixing angle

|MZ |2 =
G2
F

m′m
LµνHµν . (2.39)

And finally the photon-mediated interaction gives

|Mγ |2 =

(
e2

Q2

)
1

2m′m
LµνHµν . (2.40)

2.3 Rosenbluth decomposition

In this section we show how the contraction of lepton and hadron current
can be decomposed in physically meaningful terms, and moreover how
the dependence on the azimuth angle between lepton and hadron planes
can be made explicit in terms of cosines and sines.

The matrix element is invariant, as it is a Lorentz scalar defined by
the contraction of the lepton and hadron current which are four-vectors.
We are thus free to choose a specific reference system in which it is
calculated, without affecting the results. Needless to say we will benefit
from choosing a reference frame that is meaningful. A common choice
is to use a spherical coordinate system with respect to the direction of
the exchanged boson, we will however use a Cartesian coordinate system
with the boson along the z-axis, the results are of course the same. The
initial and final state leptons define a plane, and by choosing this plane
to be the 1-3 (xz) plane, the symmetric and anti-symmetric parts of the
lepton tensor are easily identified as kµ and k′µ are both zero for µ = 2.
For the off-diagonal elements of the lepton tensor Lµν that contain an
index 2 the symmetric term disappears and these terms are thus purely
complex and anti-symmetric under exchange of the indices. On the
other hand, for the terms that do not contain an index 2 the complex
antisymmetric part disappears and these are thus real and symmetric.

With this the contraction of lepton and hadron tensor can be written as

With this the contraction of lepton and hadron tensor can be written
with following 10 terms

LµνHµν = L00H
00 + L11H

11 + L22H
22 + L33H

33 (2.41)

+ 2
[
L01<H01 + L03<

(
H03

)
+ L13<

(
H13

)]
(2.42)

+ 2
[
L02=H02 + L12=

(
H12

)
+ L32=

(
H32

)]
. (2.43)
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We have used that the real part of the hadron tensor is purely symmetric
and the imaginary part purely antisymmetric by construction

Hµν =
1

2
(Hµν +Hνµ) +

1

2
(Hµν −Hνµ)

=
1

2

[(
(J µ)†J ν + (J ν)†J µ

)
+
(

(J µ)†J ν − (J ν)†J µ)
)]

=
1

2
[2< (Hµν) + 2= (Hµν)] . (2.44)

If we now orientate our axes such that the exchanged bosons momentum
q = k−k′ is aligned with the 3 (z) axis it is interesting to consider what
happens when the hadronic system is rotated along this axis with respect
to the lepton plane. As the hadron current is a four vector, any Lorentz
transformation Λµν of the hadronic system as a whole corresponds simply
to the Lorentz transform of the hadron current. For a specific orientation
of the hadron system, one can denote the value of the hadron tensor as
Hµν

0 . We can then write the hadron tensor elements of the same system
after a rotation over an angle φ along the q-axis by using

Hµν = (RµαJ
α
0 )∗ (RνβJ

β
0 ) = RµαR

µ
βH

µν
0 . (2.45)

It is clear that the components of the hadron tensor that are composed
only of time-like and elements parallel with q do not change, the result for
the other relevant terms in Eq. (2.41) are the ones that mix up the time-
like and the longitudinal components with the transverse components

H01 = cosφH01
0 − sinφH02

0 , H02 = sinφH01
0 + cosφH02

0 ,

H31 = cosφH31
0 − sinφH32

0 , H32 = sinφH31
0 + cosφH32

0 . (2.46)

And the ones that mix up the transverse components by themselves

H11 = cos2 φH11
0 + sin2H22

0 +
1

2
sin 2φ

(
H12

0 +H021
)

H22 = cos2 φH22
0 + sin2H11

0 −
1

2
sin 2φ

(
H12

0 +H021
)

H12 = cos2 φH1
0 2− sin2 φH21

0 +
1

2
sin 2φ

(
H11 −H22

)
. (2.47)

In contrast to the previous ones, here we can find linear combinations
that are invariant under a rotation, H11 + H22 = H11

0 + H22
0 , and the

imaginary part of H12

=(H12) = cos2 φ=(H12
0 )− sin2 φ=(H21

0 ) (2.48)

=
1

2
cos2 φ(H12

0 −H21
0 )− 1

2
sin2 φ(H21

0 −H12
0 ) (2.49)

=
1

2

(
H012−H21

0

)
= =(H12). (2.50)
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Substituting Eqs. (2.46) and (2.47) in Eq. (2.41) we then find

LµνH
µν = L00H

00
0 + 2L03<

(
H03

0

)
+ L33H

33
0

+
L11 + L22

2

(
H11

0 +H22
0

)
+ 2L12=

(
H12

0

)
(2.51)

+ 2
[
L01<

(
H01

0

)
+ L13<(H13

0 ) + L02=(H02
0 ) + L23=(H23

0 )
]

cosφ
(2.52)

+
L11 − L22

2

(
H11

0 −H22
0

)
cos 2φ (2.53)

+ 2
[
−L01<(H02

0 ) + L02=(H01
0 )− L13<(H23

0 ) + L23=(H13
0 )
]

sinφ
(2.54)

+ (L22 − L11)<(H12
0 ) sin 2φ. (2.55)

The power of this explicit separation of an azimuth angle φ is that it
represents a physical degree of freedom in the scattering process. In
the case of single-nucleon knockout or single-pion production on a free
nucleon the φ angle represents the azimuth angle of the particle with
respect to the H0 reference system, which is usually taken with the
outgoing hadron in the lepton plane. In the case of pion production on a
nucleon, where an outgoing pion and nucleon are detected one can define
for example the average azimuth angle φ = φπ+φN

2 , and the difference
∆ = φπ−φN , as independent variables, where the latter is then invariant
under rotation of the system along q. In experiments where the lepton
is measured in coincidence with the outgoing hadron, this separation is
used to probe distinct (combinations of) hadron tensor elements which
are sensitive to certain parts of the current. Also, it should be pointed
out that all possible φ dependencies disappear after integration over φ.
This means that cross sections for which this angle is not observed, can
be completely described with only the terms in Eq. 2.51.
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Chapter 3

Single-pion production off
the nucleon

We consider single-pion production (SPP) of nucleons, the process de-
picted in Fig. 3.1, a single gauge boson (γ, Z,W±) is exchanged between
lepton and hadron vertices and a single pion is produced. The kinematics
are expressed in terms of the four-vectors

kµ + kµi = k′µ + kµπ + kµN , (3.1)

with k and k′ for the initial and final lepton respectively. The four-
vectors kπ and kN denote respectively the final-state pion and nucleon,
the initial nucleon is denoted ki. The energy and momenta are denoted
as kµi = (Ei,ki) with the magnitude of the momentum denoted as |ki| =
ki when it can be unambiguously distinguished from the four-vector.
The four-momentum exchanged between lepton and hadron vertices is
Qµ = kµ−k′µ and as is customary we define the squared four-momentum
transfer Q2 = −QµQµ such that it is positive.

As discussed in Chapter 2 the cross section for this process is given by

d5σ

dE′dΩ′dΩπ
=
F2
X

(2π)5

k′

E

mNkπ
ENfrec

LµνH
µν , (3.2)

where X ≡ CC,WNC,EM with

F2
CC = G2

F cos2 θc, F2
WNC = G2

F , F2
EM =

1

2

(
4πα

Q2

)2

, (3.3)

for charged-current, weak neutral current, and electromagnetic interac-
tions respectively.
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Figure 3.1: Lepton-induced single pion production off the nucleon in
the CMS.

It is convenient to evaluate the cross section in the hadron center-of-
momentum system (CMS) in which we denote the kinematic variables by
a superscript ∗. In the CMS the final hadron system is at rest k∗π = −k∗N .
We can then readily identify the Lorentz invariant

E∗Nfrec = E∗N |1− (W − E∗N )/E∗N | = W, (3.4)

where we introduced the hadronic invariant mass

W 2 = (kµπ + kµN )2 = (Qµ + kµi )2 = s. (3.5)

We thus have

d5σ

dE′dΩ′dΩ∗π
=
F2
X

(2π)5

k′

E

mNk
∗
π

W
LµνH

µν , (3.6)

or alternatively written in terms of invariants,

d5σ

dWdQ2dΩ∗π
=
F2
X

2 (2π)4

k∗π
E2

LµνH
µν . (3.7)

The hadron tensor contains all the non-trivial information on the pro-
cess, we sum over the final and average over the initial nucleon spins to
write

Hµν =
1

2

∑
si,sf

Jµ,∗ (kπ, kN , Q, si, sf ) Jν (kπ, kN , Q, si, sf ) . (3.8)
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Single-pion production off the nucleon
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Figure 3.2: Feynman diagrams for the direct (left) and crossed (right)
exchange of baryon resonances.
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Figure 3.3: Feynman diagrams for the direct (left) and crossed (right)
nucleon exchange.

Using the Dirac spinors to describe the initial and outgoing nucleon
states the hadron current is

Jµ (kπ, kN , Q, si, sf ) = u (kN , sf )Oµ (kπ, kN , k)u (ki, si) . (3.9)

Most of our understanding of leptonic single-pion production comes
from detailed studies over the past half century of photon and electron
induced pion production on nucleons. There has been an impressive
amount of theoretical and experimental development in the field of
electromagnetic scattering off nucleons and pion production reactions
in particular [51]. In the kinematic region W < 2 GeV, Q2 . 3 GeV2

the pion production process proceeds predominantly through the direct
excitation of baryon resonances which decay into a pion-nucleon pair,
schematically depicted on the left in Fig 3.2. These resonances are
characterized by their invariant mass MR, width Γ, isospin I, spin J ,
parity P , and for SPP the branching ratio for decay into a pion and
nucleon βπN . Resonance properties have been studied in a multitude of
hadronic and electroweak interactions [52] For electroweak interactions
the main model-dependency lies in describing the excitation of a given
resonance by a gauge boson for a certain Q2 and W . The Q2 dependence
is usually parametrized by form-factors that are measured at W = MR,
while the W dependence is given by a (modified) Breit-Wigner form.

Next to the direct channel, in which resonance excitation results in a
final state with specific I(JP ) quantum numbers, baryon resonances can
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Figure 3.4: Feynman diagrams for the pion in-flight (left), pion-pole
(middle) and contact-term (right).

contribute in the crossed channel, depicted on the right in Fig. 3.2. In
this case the resonance contributes to multiple I, J final states. Crossing
symmetry relates the form-factors for this crossed distribution directly
to the ones in the direct channel within an isobar model.

Apart from the resonance exchanges in the s and u-channel, the de-
scription of SPP requires so-called ’background’ contributions. These
diagrams can be derived from an effective pion-nucleon Lagrangian.
The background in this work is built from direct- and crossed nucleon
exchanges shown in Fig. 3.3. And additionally the other contributions
built from the 3-point and 4-point vertices shown in Fig. 3.4. In addition
to these low-energy π −N diagrams, the t-channel exchange of heavier
virtual mesons, i.e. as depicted on the left in Fig 3.4 are found to be
non-negligible beyond the delta region. The lightest mesons allowed
in electroweak pion-production and included in most models of electro-
magnetic SPP are the ω and ρ vector mesons. We do not include these
explicitly in this work.

We will discuss the contribution of these diagrams to the transition
operator Oµ in Section 3.3. First we discuss the isospin decomposi-
tion of the current, and give the relation between the electromagnetic
and electroweak vector currents in Section 3.1. The assumption of
PCAC may be used to constrain the axial couplings in the model and
is discussed in Section 3.2. Finally in Sections 3.4-3.6, we show results
for electromagnetic interactions, pion-nucleon scattering, and neutrino-
induced interactions.
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Single-pion production off the nucleon

3.1 Isospin decomposition of the current and
CVC

We first consider the isospin decomposition of SPP by the electromag-
netic current, and show how the vector part of the weak current can be
obtained from the electromagnetic current under the conserved vector
current hypothesis (CVC).

While the electromagnetic interaction does not conserve strong isospin,
we can still make use of the isospin formalism by considering that the
electromagnetic current contains an isoscalar and isovector component

JµEM = V µ
s + Vµ. (3.10)

The bold font indicates transformation as a vector in isospin space, while
the letter V indicates that the four-vector current describing the coupling
to the nucleon transforms as vector1 under Lorentz transformations.
Under isospin symmetry the different charged pions are identified as
states in an isospin triplet,

π+ = |1, 1〉 , π0 = |1, 0〉 , π− = |1,−1〉 . (3.11)

The proton and neutron are described by an isospin doublet

p = |1
2
,
1

2
〉 , n = |1

2
,−1

2
〉 . (3.12)

The physical final states are then coupled to states of total isospin 3/2
and 1/2 by the Clebsch-Gordan decomposition

|πN〉 = |1, Iπ3 〉 ⊗ |1/2, IN3 〉 (3.13)

=

3/2∑
I=1/2

I∑
I3=−I

〈
1 1/2 Iπ3 I

N
3

∣∣ I I3 〉 |I, I3〉 . (3.14)

The I3 dependence of the matrix elements of the isovector current Vµ

is determined by the Wigner-Eckart theorem

〈I, I3|Vq|I ′, I ′3〉 = 〈I I3 1 q| I ′ I ′3 〉
〈
I
∣∣∣∣V ∣∣∣∣I ′〉, (3.15)

with q = 0 for the z component and ±1 for the spherical components.
For electromagnetic interactions, the charge is conserved and only the

1. Because of the presence of the pseudoscalar pion the current for SPP actually
transform as an axial-vector, however it is customary to still refer to it as the vector
current.
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Isospin decomposition of the current and CVC

q = 0 component can contribute. With this we see that the amplitudes
for the four physical electromagnetic interactions can be written as linear
combinations of 3 distinct isospin amplitudes, the isoscalar, and two
isovector amplitudes for the isospin 3/2 and 1/2 final states. We can
define matrix elements for independent isospin components as e.g.

Sµ =

√
1

3
〈1
2
,
1

2
|V µ
s |

1

2

1

2
〉

V µ
1/2 =

√
1

3
〈1
2
,
1

2
|V µ

0 |
1

2
,
1

2
〉 (3.16)

V µ
3/2 =

√
1

3
〈1
2
,
1

2
|V µ

0 |
3

2
,
1

2
〉.

With these definitions and making use of Eq. (3.13) the physical ampli-
tudes for electromagnetic interactions are written as

〈π+n|JµEM |p〉 = V µ
3/2 −

√
2
(
V µ

1/2 + Sµ
)

(3.17)

〈π−p|JµEM |n〉 = V µ
3/2 −

√
2
(
V µ

1/2 − S
µ
)

(3.18)

〈π0p|JµEM |p〉 =
√

2V µ
3/2 +

(
V µ

1/2 + Sµ
)

(3.19)

〈π0n|JµEM |n〉 =
√

2V µ
3/2 +

(
V µ

1/2 − S
µ
)
. (3.20)

The assumption of isospin symmetry and the structure of the current of
Eqs.(3.10-3.12) thus introduces significant constraints, yielding relations
between the four physical amplitudes by relating them to three isospin
amplitudes. Separation of the isovector and isoscalar components are
seen to require measurements off proton and neutron targets, however
the different amplitudes are complex-valued such that the relation be-
tween the cross sections for different reactions are in general non-trivial.

For the weak charged-current interaction which proceeds through the
exchange of a W± boson one has

JµCC± = Vµ −Aµ. (3.21)

The charged current is completely isovector, and consists of currents
which transform as a vector and axial-vector under Lorentz transfor-
mations. The CVC hypothesis now postulates that vector current Vµ

in the electromagnetic interaction and the weak interaction correspond
to the same isovector current. Explicitly the vector part of the phys-
ical amplitudes for charged-current SPP, using the same definitions of
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Single-pion production off the nucleon

Eq. 3.16 are thus given by

〈π+p|V µ
+ |p〉 = 〈π−n|V µ

− |n〉 = 3V µ
3/2, (3.22)

〈π+n|V µ
+ |n〉 = 〈π−p|V µ

− |p〉 = V µ
3/2 + 2

√
2V µ

1/2, (3.23)

〈π0p|V µ
+ |n〉 = 〈π0n|V µ

− |p〉 = −
√

2V µ
3/2 + 2V µ

1/2. (3.24)

The isospin amplitudes on the right-hand side are the same as in Eqs. (3.17-
3.20), which hence can be obtained from knowledge of the electromag-
netic interaction.

3.2 The axial current and PCAC

Chiral symmetry in QCD for the light quarks is a spontaneously broken
symmetry, hence producing Goldstone bosons which are identified with
the pseudoscalar mesons (the three pions when considering only up and
down flavors). However, because the quarks have small and differing
masses the symmetry is also explicitly broken such that the Goldstone
bosons attain a mass. As such the axial current is not conserved, and
its divergence is proportional to the pion mass, this is referred to as
the Partially Conserved Axial Current (PCAC) hypothesis For practical
purposes we may use

∂µJ
µ,i
A (x) = QµJ

µ,i
A (q) = fπm

2
ππ̂

i(Q) (3.25)

where Jµ,iA (q) is the axial current in momentum space with isospin index
i, which takes values 0 or ±1 for interactions that proceed through
exchange of a Z or W± bosons respectively. The interpolating pion
field π̂i(Q) has corresponding isospin and four-momentum Q. This
relates matrix elements due to the axial-current to the (off-shell) pion-
nucleon interaction. In particular this yields the Goldberger-Treiman
relation between the pion-nucleon coupling and the beta-decay of the
neutron [53]. For an electroweak scattering amplitude with final state
X on the nucleon due to the axial current, Eq. (3.25) implies that

〈X|QµJµA,i |N〉 = fπ
m2
π

m2
π +Q2

〈X|πi(Q)N〉 , (3.26)

where the amplitude on the right hand side is shorthand for the pion-
nucleon interaction of off-shell pions with four-momentum Q. The pion-
nucleon coupling is of course only determined for on-shell pions Q2 =
−m2

π. When one assumes that the pion scattering amplitude varies
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The axial current and PCAC

slowly for small Q2, e.g. 〈X|πiN〉 |Q2=0 ≈ 〈X|πiN〉 |Q2=−m2
π

we have a
relation between the physical amplitudes

〈X|QµJµ,iA (Q2 = 0) |N〉 ≈ fπ 〈X|πi(Q)N〉 |Q2=−m2
π
. (3.27)

With this assumption the part of the axial current that is not orthogonal
to Qµ at Q2 = 0 may be determined from the pion-nucleon amplitudes.

This relation has been used to directly describe the inclusive cross section
for meson production in neutrino interactions at Q2 = 0 from the cross
section of pion-nucleon (and nucleus) interactions [54–57]. Indeed in the
limit of Q2 = 0, i.e. for a forward scattered lepton with negligible mass,
only the longitudinal part of the current enters and

LµνH
µν |Q2=0 = E′2

(
H00 − 2H03 +H33

)
. (3.28)

The cross section is seen to be proportional to QµQνH
µν , such that

because of vector current conservation (QµJ
µ
V = 0) the vector current

does not contribute, and that under the assumption of Eq. (3.27), it is
completely determined by the pion nucleon scattering cross section.

The PCAC relation in Eq. (3.27) is used to constrain the axial couplings
to the resonances in the model for electroweak SPP. The single pion
production amplitude through an intermediate resonant state denoted
simply by |R〉, by the axial current is schematically

〈πNf |ΓRπN |R〉 〈R|ΓµRQN,A |N〉 . (3.29)

where ΓµRQN,A describes the coupling at the resonance-nucleon-boson
vertex, and ΓRπN describes the coupling of the resonance to the pion
and nucleon. With the PCAC relation of Eq. (3.27) we thus have

〈πNf |ΓRπN |R〉 〈R|QµΓµRQN,A(Q2 = 0) |Ni〉 (3.30)

≈ fπ 〈πNf |ΓRπN |R〉 〈R|ΓRπN |π(Q)Ni〉 . (3.31)

Such that (part of) the axial coupling ΓµRQN,A(Q2 = 0) can be deter-
mined from the strong resonance decay vertex. Furthermore Eq. (3.25)
implies that the divergence of the axial current should be zero in the limit
of vanishing pion mass. This will be seen to not generally hold for the
resonant axial currents because of the contribution of a pseudoscalar
coupling, but may be imposed by assuming a pion-pole form for the
pseudoscalar coupling.

While PCAC may be used to construct the axial couplings to different
components in a model, this might not yield a total amplitude for which
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Single-pion production off the nucleon

Eq. (3.27) holds, i.e. one that reproduces the pion-nucleon scattering
amplitude. This has been shown in Ref. [24], where the F2 structure
function for neutrino interactions at Q2 = 0, which by Eq. (3.28) is
proportional to QµJ

µ
A, obtained with the models of Refs. [26, 58] is

compared to the structure function constructed from the pion-nucleon
amplitudes of the DCC model of Refs. [57, 59]. Hence as an overall test
of PCAC and consistency of the different components of the model,
one may evaluate the elastic pion-nucleon amplitudes from a model
for neutrino-induced SPP. We do this in Section 3.5 and perform a
comparison to elastic pion-nucleon scattering data.

3.3 Modeling electroweak SPP

In the following we give the expressions used to model electroweak SPP.
We first give general expressions for the currents corresponding to the
resonance contributions and the background, parametrized by form-
factors and isospin coefficients. The form-factors and isospin coefficients
for specific SPP channels are then summarized in Section 3.3.5. We give
the expressions for the matrices Oµn such that

Jµ =
∑
n

u (kN , sf )Oµnu (ki, si) , (3.32)

with n the different contributions to the current.

3.3.1 Spin 1/2 resonances

The matrices for the diagram corresponding to s-channel spin 1/2 reso-
nances are

OµR1/2
= Iiso,sΓRπN (kπ) SR (kR) ΓµQRN (Q), (3.33)

where kR = ki +Q. The crossed (u-) channel contribution is

OµCR1/2
= Iiso,uγ

0
[
ΓµQRN (−Q)

]†
γ0 SR (kR) ΓRπN (kπ), (3.34)

and kR = Kf −Q in this case. One can easily verify that

γ0
[
ΓµQRN (−Q)

]†
γ0 = ΓQRN (Q), (3.35)

for the vertex function in Eqs. (3.37) and (3.38). The constants Iiso
collect the factors arising from the coupling of the isospin at the weak
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Modeling electroweak SPP

and strong vertices, and are given for the different interactions in Sec-
tion 3.3.5.

We split up the QRN vertex for spin 1/2 resonances of definite parity
into the vector and axial part

ΓµQRN = (ΓQRN,V − ΓQRN,A) γ̃5 (3.36)

where γ̃5 = γ5 for negative parity and γ̃5 = 1 for positive parity
resonances. The vector part is

ΓµQRN,V =
F1

µ2

(
Qµ /Q+Q2γµ

)
+ i

F2

µ
σµαQα, (3.37)

which is explicitly gauge-invariant as QµΓµQRN,V = 0. The reduced mass
µ = MR +MN is introduced to make the form-factors dimensionless.

The vertex for the axial current has an axial-vector and pseudoscalar
term given by

ΓµQRN,A = GAγ
µγ5 +

GP
MN

Qµγ5. (3.38)

The vector and axial form factors in these expressions depend on the
interaction channel and are given in Section 3.3.5.

The propagator is

SR(kR) =
/kR +MR

k2
R −M2

R + iMRΓ(k2
R)

(3.39)

where Γ(k2
R) is the energy-dependent full width of the resonance which

is discussed in Section 3.3.3. Finally, the decay vertex to pion-nucleon
is given by

ΓRπN =
√

2
fπNR
mπ

/kπγ
5γ̃5. (3.40)

3.3.2 Spin 3/2 resonances

For spin 3/2 resonances, the spin-structure leads to a matrix element of
the form

OµR3/2
= Iiso,sΓ

α
RπN SR,α,β (kR) ΓµβQRN (Ki, Q) , (3.41)

for the s-channel contribution. While for the u-channel one has

OµCR3/2
= Iiso,uγ

0
[
ΓαµQRN (KN ,−Q)

]†
γ0 SR,α,β (kR) ΓβRπN . (3.42)
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Again, the isospin coefficients Iiso are discussed in Section 3.3.5.

We again decompose the QRN vertex into vector and axial part as

ΓβµQRN =
(

ΓβµQRN,V + ΓβµQRN,A

)
γ̃5. (3.43)

In this case the vector current is generally described by four form-factors

ΓβµV =

[
CV3
M

(
gβµ /Q−Qβγµ

)
+
CV4
M2

(
gβµQ · kR −QβkµR

)
(3.44)

+
CV5
M2

(
gβµQ · ki −Qβkµi

)
+ CV6 g

βµ

]
γ5, (3.45)

but to explicitly impose vector current conservation CV6 = 0 leaving 3
form-factors. For the axial current we have 4 form factors,

ΓβµA =
CA3
M

(
gβµ /Q−Qβγµ

)
+
CA4
M2

(
gβµQ · kR −QβkµR

)
(3.46)

+ CA5 g
βµ +

CA6
M2

QβQµ, (3.47)

where one sees that the divergence of the axial current that is propor-
tional to QµΓβµ, is determined by CA5 and the pseudoscalar form-factor
CA6 , such that these can be determined by the pion coupling under the
assumption of PCAC. Again the explicit expressions for the form-factors
are given in Section 3.3.5.

The propagator for spin 3/2 resonances is obtained from the Rarita-
Schwinger theory and contains the spin 3/2 projection operator. It is
given by

Sµν3 =
/kR +MR

k2
R −M2

R + iMRΓ(W )

[
gµν − 1

3
γµγν − 2

3

kµRk
ν
R

M2
R

+
kµRγ

ν − kνRγµ
3MR

]
.

(3.48)

The RπN vertex, finally is described as

ΓµπNR =

√
2fπNR
mπ

kµπγ
5γ̃5. (3.49)

3.3.3 Resonance widths and coupling constants

The coupling constants in the strong vertex of the resonance are related
to the decay width to πN . The differential decay width is

dΓ =
dkπ

2Eπ (2π)3

MN dkN

EN (2π)3 (2π)4 δ4 (kR − kπ − kN )
∑
|M|2, (3.50)

35



Modeling electroweak SPP

where the squared matrix element is summed and averaged over initial
and final spins. We evaluate the total width in the CMS system where
k∗π = −k∗N . Using the same method as outlined in Chapter 2 we make
use of the δ-function to integrate over the nucleon momentum k∗N and
the magnitude of the pions momentum to obtain

ΓπN =
MNk

∗
π

2 (2π)2W

∫ ∑
|M|2 dΩ∗π =

MNk
∗
π

2πW

∑
|M|2, (3.51)

as in the CMS after summing over the spins of all particles the decay is
isotropic. We can now compute the matrix elements from the vertices
described above. For spin 1/2 resonances we have

∑
|M|2 =

Iiso
2

f2
πNR

m2
π

Tr

[
/kR +W

2W
γ0/kπγ̃

5γ0 /kN +MN

2MN
/kπγ̃

5

]
, (3.52)

which together with Eq. (3.51) yields

Γ
1/2
πN (W ) =

Iiso
4π

f2
πNR

m2
π

k∗π
(W ±MN )2

W
(E∗N ∓MN ) . (3.53)

While for the spin-3/2 resonances we have

∑
|M|2 =

Iiso
4

f2
πNR

m2
π

Tr

[
Sµν3/2(W )kπ,µγ

0γ̃5γ0 /kN +MN

2MN
kπ,ν γ̃

5

]
(3.54)

where Sµν3 is the Rarita-Schwinger propagator resulting in [60]

Γ
3/2
πN (W ) =

Iiso
12π

f2
πNR

m2
π

(k∗π)3

W
(E∗N ±MN ) . (3.55)

In both cases Iiso = 1(3) for isospin 3/2(1/2) resonances and the up-
per(lower) sign corresponds to positive(negative) parity resonances. With
these formulae the strong couplings are fixed by requiring that the partial
width at resonance mass is

ΓπN (MR) = βπNΓexp, (3.56)

where Γexp and βπN are the experimentally determined full width and
branching ratio to pion-nucleon. Table 3.1 gives an overview of the
values used for the included resonances.

In most models for SPP it is necessary to regularize the behavior of
the resonance tree-level amplitudes for invariant masses far away from
the resonances peak [61–66]. For this reason a cut-off form-factor is

36



Single-pion production off the nucleon

Table 3.1: The couplings fπNR for each resonance are determined
from the listed width and branching ratio βπN

MR (MeV) Γexp (MeV) βπN fπNR
P33 1232 120 1 2.18
S11 1535 150 0.45 0.16
P11 1430 350 0.6 0.49
D13 1515 115 0.6 1.62

introduced which multiplies both the s and u channel amplitudes and is
symmetric under interchange of s and u [61–63]

F (s, u) = F (s) + F (u)− F (s)F (u). (3.57)

The form-factor F (x) is given by the combination of a Gaussian and
dipole

F (x) = exp

(
−
(
x−M2

R

)2
λ4
R

)
λ4
R(

x−M2
R

)2
+ λ4

R

(3.58)

where x is s or u. This function is inspired by the multi-dipole Gaus-
sian form-factor proposed in Ref. [67], although the dependence on
the resonance spin and width proposed in that work is not used here.
Instead the dipole is included for both spin-1/2 and 3/2 and a cut-off
λR = 1200 MeV is used for all resonances. With this we find the desired
behavior of retaining the original resonance shape for s ≈ M2

R, while
avoiding the unphysical behavior for higher s.

The width that enters the resonance propagator is the full width of
the resonance, which consists of the partial width ΓπN for decay to
pion-nucleon and the ’inelastic’ width Γin. In Ref. [31] only the energy
dependence of ΓπN was explicitly taken into account and the full width
was parametrized as

Γ(W ) = ΓπN (W ) + (1− βπN )Γexp, (3.59)

with Γexp the constant experimental full width. Other parametrizations
of the full width, which include explicitly aW dependence of the inelastic
width [33], or additionally a decrease of the width for high-W [63, 65]
are found to not affect the cross section strongly because of the presence
of the hadronic form factor of Eq. (3.58). Therefore, in the present work
we keep the parametrization of Eq. (3.59), to be consistent with Ref. [31]
although more elaborate parametrizations may be explored.
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3.3.4 Non-resonant background

The nucleon and cross nucleon poles have the same structure as the spin
1/2 resonances discussed above, we have

ONP =
−gA√

2fπ
/kπγ

5 /ks +MN

s−M2
N

ΓµQNN , (3.60)

for the nucleon pole in the s channel, and obtain the u-channel contri-
bution by taking the Hermitian conjugate and replacing s by u

OCNP =
−gA√

2fπ
ΓµQNN

/ku +MN

u−M2
N

/kπγ
5, (3.61)

with kµu = pµ − kµπ . The vertex function is here defined in the familiar
form

ΓµQNN = ΓµQNN,V − ΓµQNN,A, (3.62)

with

ΓµQNN,V = F1(Q2)γµ + i
F2(Q2)

2MN
σµαQα, (3.63)

and

ΓµQNN,A = GA(Q2)γµγ5 +
GP (Q2)

M2
N

/QQµγ5. (3.64)

Note the difference in the coupling proportional to F1 in comparison
to the previously discussed spin 1/2 resonance case, in which the first
term is constructed such that the spin-1/2 resonance current satisfies
CVC as a matrix equation. We use the parametrization of Kelly [68] for

the vector-current form factors F
p/n
1 and F

p/n
2 for protons and neutrons.

The axial form factors are parametrized by dipoles under the assumption
of pion-pole dominance of the pseudoscalar form factor GP

GA(Q2) =
gA(

1 +Q2/M2
A

)2 , GP (Q2) =
GA(Q2)M2

N

m2
π +Q2

, (3.65)

with MA = 1.05 GeV. The first order ChPT Lagrangian includes a
four-point coupling that gives a vector and axial contribution OµCT =
OµCT,V +OµCT,A with

OµCT,V = FCT (Q2)
−gA√

2fπ
γµγ5, (3.66)

OµCT,A = Fρ(t)
1√
2fπ

γµ. (3.67)
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There is a purely axial pion-pole term

OµPP = Fρ(t)
−1√
2fπ

Qµ

Q2 −m2
π

(/Q+ /kπ)

2
. (3.68)

and the purely vector pion in flight term, i.e. the t-channel pion exchange

OµPF = FPF (Q2)
−gA√

2fπ

2kµπ −Qµ
t−m2

π

/ktγ
5. (3.69)

3.3.5 Isospin coefficients and form factors

The operators for the different components of the model where intro-
duced in a general form applicable to electromagnetic and weak SPP.
The difference between physical processes is contained in the isospin
coefficients and form-factors. The different physical amplitudes are
related by using the isospin decomposition of Section 3.1 which define
the isospin coefficients once the couplings are fixed. In order to describe
electroweak SPP one needs to define the couplings corresponding to the
V µ

3/2, V
µ

1/2, and Sµ amplitudes.

As resonances are isospin-eigenstates, the s-channel resonance diagrams
only contribute to their respective isospin amplitude. For isospin 1/2
resonances we thus have a isovector and isoscalar amplitude each with
their own coupling described by the appropriate form-factors. In the
diagrammatic approach followed here, it is more natural to introduce
the form-factors that correspond to the coupling of the exchanged bo-
son at the hadron vertex. Proton and neutron currents for a nucleon
resonance are defined as respectively the sum and difference of isovector
and isoscalar currents defined in Section 3.1 e.g. for the contribution of
the isospin-1/2 resonances

〈π0p|JµEM,I=1/2|p〉 = (V µ
1/2 + Sµ) = V µ

p , (3.70)

〈π0n|JµEM,I=1/2|n〉 = (V µ
1/2 − S

µ) = −V µ
n . (3.71)

As the amplitudes are proportional to the form-factors we may thus
define isovector and isoscalar form factors as

FV = Fp − Fn (3.72)

FS = Fp + Fn. (3.73)

The isospin 3/2 resonances only contribute to the isovector current, thus
the coupling to protons and neutrons is the same and described by the
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Table 3.2: The form factors and isospin coefficients for the resonance
contributions to the electromagnetic current

R3/2 CR3/2 R1/2 CR1/2 other

p→ π0p
√

1/3 CV
√

1/3 CV
√

1/2Fp
√

1/2Fp 0

p→ π+n −
√

1/6 CV
√

1/6 CV Fp Fn −1F V1
n→ π−p

√
1/6 CV −

√
1/6 CV Fn Fp 1F V1

n→ π0n
√

1/3 CV
√

1/3 CV −
√

1/2Fn −
√

1/2Fn 0

Table 3.3: The isospin coefficients for the charged-current interactions.

R3/2 CR3/2 R1/2 CR1/2 others

p→ π+p
√

3/2
√

1/6 0 1 1

n→ π0p −
√

1/3
√

1/3
√

1/2 −
√

1/2 −
√

2

n→ π+n
√

1/6
√

3/2 1 0 −1

isovector form-factors CV . With the coupling between the boson and ini-
tial nucleon to produce a resonance determined by form-factors, one can
apply the same couplings in the crossed-channel resonance contributions.
The resulting form-factors and isospin factors for the different channels
accessible in the electromagnetic current are summarized in Table 3.2.
The nucleon and crossed nucleon pole diagrams have the same structure
as the R1/2 and CR1/2 columns. For the other background diagrams,
only the pion-in-flight term and the vector part of the contact term
contribute, and they are both purely isovector, corresponding to the
last column in Table 3.2. To enforce vector-current conservation, the
form-factors in these terms are set to the same vector form-factor in the
nucleon-pole terms

FCT
(
Q2
)

= FPF
(
Q2
)

= F V1
(
Q2
)

= F p1
(
Q2
)
− Fn1

(
Q2
)
. (3.74)

The charged-current interaction is purely isovector hence the form-factors
in every diagram correspond to the same FV = Fp − Fn and FA. From
the relations in Section 3.1 we obtain the isospin coefficients in Table 3.3.

I. Vector current form factors

The form-factors for the vector current can be inferred from electro-
magnetic pion production under the CVC hypothesis as detailed in
Section. 3.1. For the isospin 1/2 resonances this requires measurements
on both proton and neutron targets, in order to separate the isovector
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and isoscalar contribution. The extraction of ’bare’ electromagnetic cou-
plings to the resonances from scattering data is not model-independent
but depends on the interplay between the different contributions to the
current. In particular the interference between background and resonant
diagrams has to be under control, and moreover the cross-channel dia-
grams for the resonances contribute to multiple spin-isospin final states,
such that separating them from the direct-channel resonances is not
possible. A wealth of data on electroproduction of pion on nucleons
is available, and many different approaches give a good description of
the data, however only a limited number of models have been used to
describe electromagnetic and weak interactions in a consistent way.

In the tree-level approach followed here different strategies have been
used to determine the vector coupling in CC scattering from the elec-
tromagnetic data. The form-factors used in Ref. [31] were determined
by Lalakulich et al. [26] by fitting the experimental helicity amplitudes
obtained at W = MR for the delta, D13, S11, and P11.

The helicity amplitudes of the resonances are extracted from scatter-
ing data and are thus inherently model-dependent. However, in the
analysis of experimental data many different models are used to obtain
a practically model-independent measurement [51]. The resonant form-
factors extracted in Ref. [26], and subsequently used to describe neutrino
scattering in Refs. [14, 29–31, 37, 60] were fit in 2007. In this section, we
compare the helicity amplitudes obtained with these form factors to the
recent compilation of data from Ref. [69] and update the form factors if
necessary in light of this more recent dataset.

The helicity amplitudes are defined as matrix elements for resonance
production with definite spin projection by transverse and longitudinal
photons, for details we refer to Refs. [51, 70].

The relation between the helicity amplitudes and the resonance form
factors defined in previous sections are

A1/2 =

√
N

3

[
C3

(
M2
N ±MNMR +Q2

MNMR

)
− C4Q · kR − C5Q · kN

]
(3.75)

A3/2 =
√
N [C3 (MN ±MR) + C4Q · kR + C5Q · kN ] (3.76)

S1/2 = ±
√

3N

2

qz
MR

[
C3

MR

MN
+ C4

M2
R

M2
N

+ C5

(
M2
R +M2

N +Q2

2M2
N

)]
(3.77)
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for spin 3/2 resonances whereN = πα
MN

(MR∓MN )2+Q2

M2
R−M2

N
and the upper(lower)

sign corresponds to positive(negative) parity. For spin 1/2 resonances
one has

A1/2 =
√

2N

[
F1

µ2
Q2 +

F2

µ
(MR ±MN )

]
(3.78)

S1/2 = ±
√
Nqz

[
F1

µ2
(MR ±MN )− F2

µ

]
. (3.79)

These relations agree with Refs. [51, 70, 71], keeping in mind that the
definition of the resonance form-factors in Ref. [70] are different but
related straightforwardly to our definitions, and that opposite parity
transitions in Ref. [70] are defined by multiplication to the left of the
ΓRQN vertices by γ5, while in our case they are defined by multiplication
to the right.

Delta (P33(1232): We compare different parametrizations to the data
for the Delta helicity amplitudes compiled in Ref. [69] in Fig. 3.5. The
parametrizations due to Lalakulich [26] and Kabirnezhad [27] are ob-
tained from the form factors they reported, where we useMR = 1232 MeV
in both cases. For the Lalakulich form factors we added an additional mi-
nus sign to the transverse amplitudes. We show the results of Kabirnezhad
because this parametrization is used in a model which shares the parametriza-
tion of the background with the one presented here, and is currently
in the process of being implemented in the GENIE and NEUT event
generators [25]. We do not however take into account any possible
deviations due to different values of the resonance width or mass in these
results. The MAID07 results are obtained from the parametrization of
the electromagnetic amplitudes that are reported in Ref. [66] which are
trivially related to the helicity amplitudes. The MAID amplitudes where
rescaled by a factor

√
115/130 to account for the difference in width of

the delta used in MAID07 as explained in Ref. [66].

We see that the Lalakulich form factors provide a fair parametrization
of the helicity amplitudes, although they tend to zero slower than the
data. It is interesting to note that the S1/2 amplitude would be slightly
better described when it is multiplied by qLAB

qCMS
= M∆/MN . The form

factors implied by using a scaled value for S1/2 can be obtained by
inverting the relation between the helicity amplitudes, and we have
checked that cross section results obtained with form factors defined by
scaling S1/2 with M∆

MM
S1/2 do not differ appreciably because the scalar

amplitude is very small. Moreover the resulting form-factors are not
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MN
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Figure 3.6: Helicity amplitudes A3/2 (dashed lines, dark-blue data),
A1/2 (solid lines, dark-blue data) and S1/2 (dotted lines,
dark green data), for the D13 resonance obtained with the
form-factors of Lalakulich [26], and the parametrization of
MAID07 as reported in Ref. [66].

easily parametrized, in particular losing the proportionality between C3

and C4 which is enforced in the Lalakulich parametrization, informed
by the result that when the Delta amplitude is purely magnetic A1/2 =√

3A3/2 and S1/2 = 0 and hence Eqs. (3.75-3.77) imply C4 = −MN
M∆

C3.
While different parametrizations could clearly be found, for simplicity
and consistency with Refs. [14, 30, 31] we retain the form factors of
Lalakulich in this work which are quoted here for completeness

C3 =
2.13/DV (Q2)

1 +Q2/4M2
V

(3.80)

C4 = −1.51/2.13C3 (3.81)

C5 =
0.48/DV (Q2)

1 +Q2/0.776M2
V

. (3.82)
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Figure 3.7: Form factors obtained by inverting the helicity amplitudes.

D13(1535): The helicity amplitudes for the D13 resonance computed
from the form factors by Lalakulich, adding again a minus sign in the
vector amplitudes and taking MR = 1535 are compared to the data and
the MAID07 parametrization. Lalakulich obtained results for both pro-
ton and neutron form-factors, here we compare the proton amplitudes to
the data. Instead of a comparison of the neutron amplitudes, we compare
the isovector amplitudes obtained with form-factors CV = Cp−Cn to the
results of MAID07, as these are directly relevant to neutrino interactions.

We note that for the D13 we obtain good results for the transverse
cross section in comparison to electron scattering only when using the
Lalakulich form factors with opposite sign. Such a sign ambiguity was
not relevant to the original work of Lalakulich as no interfering back-
ground was included.

We have inverted Eqs. (3.75-3.77) numerically to obtain the form factors
shown in Fig. 3.7 from the helicity amplitudes, we use MR = 1535 in
all cases. One finds a very good agreement between the form factors
from the different models, barring relatively large differences around
Q2 = 0. Given this agreement we choose to parametrize the form factors
obtained from the MAID07 amplitudes, as we find a slightly better result
for photoproduction with these, and moreover the values at Q2 = 0
are closer to the values used in Ref. [33], which was included in the
extraction of axial form factors of the delta in Ref. [30] which we will
use as described in a further section.
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With the values at Q2 = 0 numerically defined, we use the combination
of an exponential and a dipole to describe the form factors, but add a
first order polynomial to the C5 form factors. The result is

Cp3 = −2.72 GD
(
Q2, 1.53

)
e−0.38Q2

, (3.83)

Cp4 = 3.13 GD
(
Q2, 0.84

)
e−0.66Q2

, (3.84)

Cp5 = −1.66 GD
(
Q2, 0.80

)
e−0.96Q2 (

1− 2.513Q2
)
, (3.85)

CV3 = −3 GD
(
Q2, 2.00

)
e−0.54Q2

, (3.86)

Cp4 = 4.73 GD
(
Q2, 1.13

)
e−0.73Q2

, (3.87)

Cp5 = −3.65 GD
(
Q2, 0.99

)
e−0.97Q2 (

1− 1.150Q2
)
, (3.88)

(3.89)

where Q2 enters with unit GeV2 and GD(Q2, x) =
(
1 +Q2/(xM2

V )
)−2

a
modified dipole with MV = 0.84 GeV. A more meaningful parametriza-
tion might be found, but the aim is simply to have a convenient descrip-
tion of the form-factors implied by the MAID amplitudes. Note that
the parametrization is not perfect, and as the shape of the amplitudes,
especially for high Q2, is quite sensitive to small differences in the form
factors these functions do not exactly reproduce the original amplitudes
at high Q2.

S11(1520): For the spin 1/2 resonances only the proton form factors
were obtained in Ref. [26]. To estimate the coupling to the neutron the
isoscalar amplitude was assumed to be negligible such that Fn = −Fp.
Through comparison of the electromagnetic cross sections around W =
1.5 GeV with the results of MAID07 and the ANL-Osaka DCC model
of Ref. [34], we find that this approach might not be satisfactory for the
S11.

In Fig. 3.8 the proton and isovector helicity amplitudes of the S11(1520)
are shown using the form factors of Lalakulich under the assumption
that Fn = −Fp. The results are compared to the data compiled in
Ref. [69] and the results of the MAID07 analysis. We note that the S1/2

amplitude obtained from the Lalakulich form-factors has been multiplied
by a factor MR/MN in order to obtain agreement with the original
results reported in Ref. [26]. The proton helicity amplitudes of the
S11 resonance decrease slowly with Q2, hence there is a pronounced
contribution to the cross section up to large values of Q2. In contrast,
the helicity amplitudes for the neutron decrease much faster than the
proton ones in the results of the MAID07 analysis. One sees however
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in the text. The isovector amplitudes shown in the right
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that the A1/2 amplitude obtained from the Lalakulich for-factors in
general overshoots the data, while the S1/2 is slightly too large for
Q2 > 2 GeV. Comparing the data shown in Ref. [26] that was originally
used to constrain these form-factors with the recent compilation shown
in Fig. 3.8, one sees that this set of data, which includes electromagnetic
η production, is simply lower in magnitude than those originally used in
the fit. In general however, while improvements are certainly possible,
the Q2 dependence and the magnitude of the amplitudes for the proton
is quite reasonable, and when combined with the other components of
the model gives adequate results for the angle-integrated electromagnetic
SPP cross sections on protons.

Under the assumption that Fn = −Fp, this is found to not be the case for
SPP on neutron targets, in comparison to the ANL-Osaka DCC model
and the MAID07 results of Refs. [34, 66], and one overshoots the cross
section around W = 1500 MeV. This is consistent with the comparison
to the isovector amplitudes shown in the right panel of Fig. 3.8 one sees
in the MAID07 results that at low Q2 indeed A1/2,n ≈ −A1/2,p but that
at high Q2 A1/2,V ≈ A1/2,p, i.e. the neutron amplitude is found to drop
off much faster than the one for the proton with increasing Q2. The
isovector scalar amplitude seems to be similar in MAID07 and using the
Lalakulich form-factors with Fn = −Fp, except at low Q2. In MAID07
the neutron amplitude is large compared to the proton one at low Q2,
and drops of fast such that beyond Q2 ≈ 1 GeV the isovector amplitude
is practically the same as the proton one. In the Lalakulich approach on
the other hand S1/2,V is doubled compared to the proton result making
it closer to the proton amplitude in MAID07. Based on these results
and the resulting comparisons presented in Section 3.4, we choose to
retain the parametrization of Lalakulich for the proton form-factors,
albeit with an overall minus sign as already pointed out in Ref. [31]

F p1 = −2
GD(Q2, 1)

1 +Q2/
(
1.2M2

V

) [1 + 7.2 ln
(
1 +Q2/(GeV2

)]
,

F p2 = −0.84GD(Q2, 1)
[
1 + 0.11 ln

(
1 +Q2/

(
GeV2

))]
.

We use a simple prescription to obtain a behavior of the isovector form
factor that is similar as the MAID07 result, namely that we define
Fn1,2(Q2) = −1

2F
p
1,2(Q2). This is simply based on the fact that with

this FV (Q2) = 3
2Fp(Q

2), which agrees better with the MAID07 result
shown in Fig. 3.8 than than the Lalakulich result FV (Q2) = 2Fp(Q

2)
shown in the same figure.

48



Single-pion production off the nucleon

−80

−60

−40

−20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3 3.5 4

proton

−200

−150

−100

−50

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4

isovector

A
1
/
2
,
S
1
/
2

(1
03

G
eV

−
1
/
2
)

Q2 (GeV2)

Lalakulich
MAID07

Hernandez

Q2 (GeV2)
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P11(1440): For the Roper (P11(1440)) we also include here the re-
sults obtained with the form-factors of by Hernandez et al. [71] that
are obtained from a fit of proton helicity amplitudes, and which were
used to describe the vector coupling in describing neutrino-induced two
pion production. The amplitude A1/2 shows the same behavior in all
three descriptions, rising sharply from negative to positive values. The
Hernandez and MAID07 results satisfy the data at Q2 = 0 while the
Lalakulich result underestimates only slightly, for higher Q2 however
the result by Lalakulich seems to provide a more satisfying description.
For the scalar amplitude we find that the Hernandez and Lalakulich
results are similar for small Q2. Here is should be noted that these
results were fitted to data in 2007, and that the current data differ to
some extent for the scalar amplitude. It is noteworthy that the scalar
amplitude obtained by Lalakulich drops sharply and changes sign around
Q2 = 1.5. This behavior is indeed supported by the data used in the
original fit [26], however the same data were included with a positive
sign in later publications [51, 69].

For the neutron amplitude, Lalakulich again assumes that the isoscalar
current is small such that Fn = −Fp, the corresponding isovector am-
plitudes Ap − An are shown in the right panel of Fig 3.9. Hernandez
et al. assume instead that An = −2/3Ap and Sn = 0, following the
predictions of quark models [71]. We see that this prescription provides
similar results as the MAID07 analysis especially for the isovector A1/2,
although a larger disagreement is found for the proton amplitude to
begin with.

In Fig. 3.10 we show the form-factors implied by these helicity ampli-
tudes. In obtaining the form-factors from the MAID07 helicity am-
plitudes we include a minus sign in the scalar amplitude consistent
with Ref. [71]. We see that the different F2 form factors agree too
a large extent for both the proton and isovector types. The main
differences arise in F1, here Hernandez and MAID07 agree in sign while
the Lalakulich result is opposite. This sign discrepancy has been noted
and corrected for by a number of authors [39, 71]. The MAID07 form
factors have a bending point at low Q2 which follows from the quick rise
in the scalar amplitude, which makes them cumbersome to parametrize
in a meaningful way.

In view of these results, because the isovector amplitudes are similar
with respect to those in MAID07, we choose to use the Hernandez
parametrization for simplicity. In view of the comparison to data in
Fig. 3.9 it is clear that a better description of the amplitudes would
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Lalakulich [26], Hernandez [71] and from the Helicity
amplitudes of the MAID07 analysis. In extracting the
form-factors from the MAID amplitudes the scalar am-
plitude is multiplied by a minus sign consistent with
Hernandez [71].

however be attainable. For completeness we quote the form-factors here

F p1 (Q2) =
−5.7/GD(Q2)

1 +Q2/1.4M2
V

, (3.90)

F p2 (Q2) =
−0.64

GD(Q2)

(
1− 2.47 ln

(
1 +

Q2

GeV2

))
(3.91)

where GD(Q2) =
(
1 +Q2/M2

V

)−2
a dipole with cut-off mass MV =

0.84 GeV. The assumption that An = −2/3Ap and Sn = 0 then results
in following formula for the isovector form factors evaluated at W = MR

F V1 =
F p1
(
(MN +MR)2 + 5Q2/3

)
+ 2/3F p2 (MN +MR)µ

(MN +MR)2 +Q2
, (3.92)

F V2 =
F p2
(
5(MN +MR)2 − 3Q2

)
µ− 2F p1Q

2 (MN +MR)

3µ ((MN +MR)2 +Q2)
. (3.93)

II. Axial form-factors

While the vector form-factors can in principle be determined from the
available electron scattering data, for the axial current no extensive
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Table 3.4: The axial couplings C5
A(0)/FA(0) from PCAC for the dif-

ferent resonances.

P33(1232) D13(1535) S11(1520) P11(1440)

1.2 2.1 0.21 0.51

dataset is available. One can make use of PCAC and the assumption
of pion pole dominance to fix the values of some of the form-factors at
Q2 = 0 by relating them to the pion-nucleon couplings as explained in
Section 3.2. The PCAC relation at Q2 = 0 applied to the weak and
hadronic vertices of the spin 1/2 resonance is then

QµΓµRQN,A(Q2 = 0) = FA(0)/Qγ5γ̃5 (3.94)

= fπΓπNR(kπ = Q) = fπ

√
2fπNR
mπ

/Qγ5γ̃µ. (3.95)

which is satisfied when

FA(0) = fπ

√
2fπNR
mπ

. (3.96)

The divergence of the axial current is proportional to

u(kR)

(
FA(Q2)/Q− GP

2M
Q2

)
γ5γ̃5u(ki) (3.97)

= u(kR)

(
FA(Q2)(MR ±MN )− GP

2M
Q2

)
γ5γ̃5u(ki) (3.98)

where the Dirac equation was used to write /Q in terms of the constant
masses. It is seen that the divergence does not generally disappear in the
limit of zero pion mass, however if one assumes that the pseudoscalar
form-factor is dominated by a pion pole then with

GP = 2MN (MR ±MN )
FA(Q2)

Q2 +m2
π

, (3.99)

the divergence goes to zero when m2
π = 0. The assumption of pion-pole

dominance and PCAC thus gives a prediction for the axial current at
Q2 = 0 and relates the Q2 dependence of the pseudoscalar form-factor
to the axial one.

For the spin-3/2 resonances one sees that the terms proportional to C3
A

and C4
A disappear when the current is contracted with Qµ, and hence

PCAC offers no prediction for these form-factors. Under the assumption
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that the pseudoscalar term, proportional to C6
A, is again of the pion-pole

form we find by similar reasoning as above

C5
A(0) = fπIiso

√
2fπNR

mπ

√
3

(3.100)

C6
A(Q2) = −M2

N

C5
A(Q2)

Q2 +mπ
. (3.101)

with Iiso = 1(
√

2) for isospin 3/2(1/2) resonances. The values for
FA(0) and C5

A(0) for the resonances obtained in this way are given in
Table 3.4. These values are the same as those given in Ref [26] and we
adopt them for the non-delta resonances in this work. For the delta we
use a slightly different value CA5 (0) = 1.12, obtained from Ref. [30] as
explained in section 3.3.6. We take the sign convention consistent with
Lalakulich, such that the vector-axial interference term is positive and
the νµ induced cross section is hence larger than the corresponding νµ
cross section.

For the Q2 dependence of the form-factors no clear guiding princi-
ple exists, and the most straightforward approach would be to fit to
electroweak SPP data. The neutrino-induced single pion production
cross section has been measured for different channels by numerous
experiments, however most experiments utilize nuclear targets. In that
case the pure SPP signal is obscured by initial and final state nuclear
interactions. This fact combined with the broad neutrino fluxes and
incomplete measurement of the hadrons in the final state makes it almost
impossible to reconstruct the relevant kinematic variables (i.e Q2, W ,
and ideally cos θ∗) in these experiments. A number of experiments have
measured neutrino induced SPP on deuterium which can be used for
a fit, notably the ANL [72] and BNL [73] bubble chambers. In these
experiments the relevant kinematic variables can be reconstructed more
accurately because of the absence of mayor nuclear effects. However,
tensions between the different experimental data exists, in particular
between the magnitude of the cross sections in the ANL and BNL exper-
iments. This tension seems to be resolved by applying a renormalization
of the flux in the BNL data [74, 75]. Moreover in Ref [76], it is suggested
that final-state deuterium effects have not been fully taken into account
in the analysis of these data.

For these reasons only the form factors of the dominant delta-resonance
can generally be constrained by the experimental data. As in Ref. [14]
we use the model of Adler for the delta, namely that

C4
A(Q2) = −C

5
A(Q2)

4
, C3

A(Q2) = 0, (3.102)
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leaving only the Q2 dependence of C5
A to be determined. In a number

of works, the Q2 dependence of C5
A within the framework of the model

presented here (delta and crossed delta plus background) was fit to the
π+ production ANL data for W < 1.4 GeV. In these fits the form-factor
was parametrized by a dipole and C5

A(0) was treated as a free parameter
next to a single cut-off mass MA,∆ for the dipole. In Ref. [14] a value
of CA5 (0) = 0.86 was found, significantly smaller than the PCAC value
relation. With the addition of the Olsson phases in the direct delta
contribution in Ref. [30], a value in closer accordance with the PCAC
prediction was found. We will use this result for the delta form factors
as described in Section 3.3.6.

Within the dynamic coupled-channels model of Refs. [24], the PCAC
restrictions at Q2 = 0 are satisfied exactly in the sense that they are
directly constructed from the πN amplitudes in the same framework
which reproduce pion-nucleon scattering amplitudes with high degree
of precision. Moreover the interference between the resonances and
background are under control as unitarity is satisfied in the coupled-
channels approach. Within this model, with the axial form-factors
described by dipoles, the agreement with the BNL data was found to be
excellent, but to describe the ANL data the axial coupling to the delta
had to be reduced by ≈ 0.8. Recently the DCC model was compared to
the HNV model [77], in this comparison the axial coupling to the delta
in the DCC model was reduced by a factor 0.9 compared to the PCAC
value, in which case the models agree quite well for W < 1.4 GeV for
the pπ+ and nπ0 production channels.

For the resonances other than the delta we follow Ref. [26] and use a
form-factor which drops slightly faster than a dipole at high-Q2

GA(Q2) = GA(0)

(
1 +

Q2

M2
A

)−2(
1 +

Q2

3M2
A

)−1

(3.103)

with MA = 1.05 GeV and GA = FA or GA = CA5 for the spin 1/2 and
3/2 resonances respectively.

3.3.6 Partial unitarization in the Delta region

A necessity when constructing electroweak single-pion production am-
plitudes is controlling the relative phase between the different interfering
components of the model. The background constructed from tree-level
diagrams yields a real amplitude, and the only relative imaginary part
in the currents stems from the inclusion of the phenomenological widths
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in the resonance propagators. Following the parametrization of Sec-
tion 3.3.3 the widths in the crossed resonance poles are zero, and their
contribution is real. Unitarity however demands that both the resonant
and non-resonant contributions have complex phases. The constraint of
unitarity together with the assumptions that only pion-nucleon states
are considered and that the electromagnetic interaction is negligible can
be shown to lead to Watson’s theorem [78]

AαSPP = |AαSPP |ei(δ
α
πN+nπ). (3.104)

Where AαSPP on the LHS is a multipole amplitude for electroweak single
pion production in a channel defined by quantum numbers α = l, J, I, ε
i.e. relative pion nucleon angular momentum and spin, isospin and boson
polarization. δαπN then is the phase shift of elastic pion nucleon scattering
in the same channel α. This relation holds below the 2 pion production
threshold, or generally as long as the contribution of final-states beyond
πN are negligible in the specific partial wave channel.

In building a model for electroweak pion production based on a multipole
decomposition one could assume the most practical approach and add
to every multipole a phase δα(W,Q) such that Watson’s theorem is
satisfied [63].

Splitting the amplitude up in a resonant and background piece, one
can see that far away from resonance the background should satisfy
Watson’s theorem by itself such that it is necessarily complex. In unitary
isobar models [51, 66], this constraint is implemented by applying to
the background the phase implied by the background in pion-nucleon
scattering. Then, as every resonance only contributes to the partial
wave channel with its quantum numbers, the resonance contributions
are multiplied by a W-dependent phase such that Watson’s theorem is
satisfied. In a (coupled-channels) dynamical model on the other hand
the phases are under control by explicitly treating the pion-nucleon
rescattering [24, 34].

In Ref. [30] Alvarez-Ruso et al. partially unitarized the HNV model
presented above in the delta region by determining phases that multiply
the vector and axial currents for the direct delta excitation such that
Watson’s theorem is satisfied for the most important vector and axial
partial waves. A derivation of Watson’s theorem and the definition of the
multipole amplitudes in the helicity basis is presented and discussed in
Ref. [30], we just sketch the main idea here. The amplitude of the HNV
model in a multipole channel where the only allowed direct resonance
contribution is the delta can be schematically written as

A(W,Q2) = B(W,Q2) +R∆(W,Q2)eiφΓ (3.105)
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i.e. as a real background contribution B and the resonant delta contri-
bution for which the phase φΓ(W ) = tan−1 MRΓ(W )

s2−M2 is completely deter-
mined by the propagator. One can then multiply the delta contribution
by an additional phase Ψ(Q2,W ), thus fixing its relative phase with
respect to the background such that the amplitude satisfies Watson’s
theorem

=(Ae−iδπ) = −B(Q2,W ) sin(δπ)+R(Q2,W ) sin
(
φΓ(W ) + Ψ(Q2,W )− δπ

)
= 0

(3.106)
hence

Ψ(Q2,W ) + φΓ(W ) = δπ + sin−1

(
B(Q2,W )

R(Q2,W )
sin δπ

)
. (3.107)

This procedure is referred to as partial unitarization because the back-
ground is still treated as real, and the relative phases are only determined
in a single partial wave and isospin channel.

Separate Olsson phases for the vector and axial current where deter-
mined taking into account the contributions of the background described
in Section 3.3.4, the direct- and crossed channel delta, and the crossed
D13. The vector current in both cases was parametrized by the Lalakulich
form-factors [26] for the delta and the ones of Ref. [23] for the D13,
identical or similar to the ones used in this work. A parametrization of
the vector and axial phases is given in appendix D of Ref. [30] and we
apply them to the delta resonance in this work. With the determination
of the phases, the fit of the axial coupling of the delta was performed
within Adler’s model for the axial form-factors, yielding a coupling
consistent with the Goldberger-Treiman relation

CA5 (0) = 1.12± 0.11, MA = 953.7± 62.6 MeV. (3.108)

where MA is the cut-off in the dipole form-factor. We will use this result
for the delta coupling in this work, which is possible because the model
in the region W < 1.4 GeV is practically identical to what is used in the
fit [14, 23].

Eq. (3.107) implies that if we want to modify a part of the model which
contributes to the π+p channel, the Olsson phases Ψ(Q2,W ) have to be
determined again. If the relative contribution of background and delta
contribution remains approximately the same, and e.g. only the phase
of the delta contributions is significantly affected by a modification, the
Olsson phases can be retained by simply subtracting from Ψ(Q2,W ) the
modification of the phases.
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Figure 3.11: The MAID07 SPP solution [66] is shown alongside the
cross section when only the born terms are considered.
We compare it to the JPAC Regge model of Ref. [79]
and a compilation of neutral pion photoproduction data
on the proton. The bottom panel shows the same on a
logarithmic scale.

3.3.7 Reggeized background

The background contribution stemming from diagrams of Section 3.3.4
are constructed from a non-linear sigma model Lagrangian truncated
at tree-level [14]. In principle ChPT provides the recipe to improve
the description of the background from this Lagrangian order-by-order,
however direct calculation of higher-order diagrams is cumbersome and
a multitude of unknown constants would need to be constrained by data.
It should be understood that the introduction of form-factors at the ver-
tices (and in the case of resonances the effective width in the propagator)
effectively includes corrections beyond tree-level. The cross section due
to the background however still grows rapidly at high invariant mass,
even after the introduction of the form-factors. This increase of the
background at high W is kept under control in phenomenological mod-
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eling by the interference with the resonant contributions, and in some
cases by introducing W -dependent cut-offs. At high energies however
it is not natural to describe SPP with tree-level exchanges even with
effective form-factors, and Regge theory proves to be a more robust
approach. As an example, in Fig 3.11 we show the cross section of
the full MAID07 model [66] and the result when only the Born terms
are taken into account. There is an excellent agreement with the data
in the resonance region, it is seen that the background contribution
grows quickly with energy and that the interference with the resonant
contributions leads to large cancellations. On the other hand, the JPAC2

Regge model [79], which is constrained for photon energies of 6 GeV and
larger, should lead to a natural description of the cross section at high
energy. One sees that the Regge model seems to account for practically
all the strength for Eγ = 2.5 GeV and above. In this respect it is also
important to note that the Regge model only gives a description of the
low-|t| (small cos θ∗) cross section, and that a backward peak in the cross
section is not described, hence an underprediction of the cross section
would be expected, but as the forward peak largely dominates the cross
section at high energy it accounts for practically all of the strength.

The result in Fig. 3.11 illustrates that beyond a certain point in energy
one could construct a background contribution which incorporates a
Regge description rather than one build from tree-level diagrams. In
this way a whole class of diagrams beyond the nucleon born terms and
t-channel exchanges of the lightest mesons is taken into account. Such an
approach was applied to the analysis of photon and electroproduction
data by Aznauryan and collaborators in Refs. [81, 82], where it was
found that indeed an isobar model with a (unitarized) background that
incorporates Regge poles is able to describe the data up to W ≈ 2 GeV
without the introduction of additional W -dependent phases in the res-
onant contributions [51]. Similarly, background contributions based on
the extrapolation of Regge amplitudes constrained by high-energy scat-
tering data to lower W have been used successfully in conjunction with
resonant contributions in the so-called Regge-plus-resonance approach
for e.g. Kaon electroproduction [83, 84].

In Ref. [31] a Regge model constructed from the background contribu-
tions of Section 3.3.4 was presented. By smoothly transitioning from the
tree-level ChPT background to a Regge model, the unphysical behavior
of the background at high-W is mitigated and one is able to extend the

2. The result of the JPAC model correspond to an independent implementation within
our framework, we have checked that the same total cross section is obtained with
the results available via the JPAC website [80].
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description of electroweak SPP to higher invariant mass in a natural
way. We present and discuss this model in the following.

I. Regge Poles

We briefly describe the assumptions underlying Regge theory, and give
the necessary expressions needed to appreciate the scattering amplitude
resulting from the contribution of a Regge pole. For some excellent
reviews and more in-depth discussions we refer the reader to Refs. [85–
88]. Per illustration we consider the scattering, 1 + 2 → 3 + 4 of equal
mass particles of spin-0. The extension to non-zero spins is in principle
straightforward, but comes with complications which do not add to the
aim of the present discussion, see e.g. Refs. [85, 86, 89].

We introduce the partial wave expansion of the scattering amplitude in
the s-channel, which for spinless particles can be written as

〈3, 4|M|1, 2〉 ≡ A(s, t) =
∞∑
l=0

Al(s)Pl(zs), (3.109)

where zs(s, t) ≡ cos θs the s-channel CMS scattering angle. The partial
wave amplitudes Al(s) are defined by the projection

Al(s) =
1

2

∫ 1

−1
dzsPl(zs)A(s, t(zs, s)), (3.110)

for positive integer values 0 ≤ l. A partial wave amplitude in this ex-
pansion represents the exchange of angular momenta l in the s-channel,
and yields a natural description of the small and intermediate s-region.
For low s the higher order partial waves are kinematically suppressed,
and a truncation of the sum is feasible, thus the cross section is largely
understood by the exchange of resonances with small angular momenta.
For values beyond the resonance region (

√
s & 2.5 GeV) a truncation

of the partial wave sum becomes unfeasible, and an inclusion of higher
order partial waves becomes necessary. Such an approach quickly be-
comes intractable, and it is natural to reconsider the relevant degrees of
freedom. For describing forward scattering at high invariant mass, one
sees that −t > 0 is small compared to s, and that the probed values of t
are closer to the masses of particle exchanges in the t-channel than s is
to the typical mass of particles exchanged in the s-channel. For hadron
reactions at high s, it is observed that relatively large scattering cross
sections are often dominated by a large forward peak in cos θs (small
−t), while processes with relatively small cross sections lack this peak.
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One finds that the interactions which allow for the exchange of particles
in the t-channel exhibit such a forward peak, while the interactions for
which no t-channel exchanges are allowed lack it [87].

As such one may just as well consider the t-channel partial wave expan-
sion of the amplitude

A(s, t) =
∞∑
l=0

Al(t)Pl(zt) (3.111)

where now zt(s, t) ≡ cos θt, the t-channel CMS scattering angle. In the
same way as before the partial-wave amplitudes are

Al(t) =
1

2

∫ 1

−1
dztPl(zt)A(t, s(zt, t)). (3.112)

This series is a natural description in the physical region of the t-channel,
i.e. for positive t > (2m)2 and s < 0 with |zt| ≤ 1. It is however of no
direct use in the physical s-channel where zt grows indefinitely. Indeed
zt becomes proportional to s, in particular in the considered equal mass
case one has

zt = 1 +
2s

t− 4m2
(3.113)

such that Pl(zt) ∼ sl for large s and the partial wave series cannot be
truncated.

In order to make use of the t-channel degrees of freedom in the s-channel
region we assume that we can analytically continue the partial wave
amplitude to complex values of l to yield a function A(l, t) such that
A(l, t) = Al(t) for positive integer values of l on the real axis. In this
case we can recast the series of Eq. (3.111) as a contour integral by using
the Sommerfeld-Watson theorem

A(s, t) =

∞∑
l=0

Al(t)Pl(zt) =
−1

2i

∮
C
A(l, t)

Pl(−zt)
sin(lπ)

dl, (3.114)

where the contour C shown in Fig. 3.12 contains all the poles generated
by the factor 1/ sin(lπ) in the right-hand l-plane.

Clearly the function A(l, t) seems to be completely arbitrary, as one
may interpolate between the values Al(t) in an infinite number of ways.
We will discuss the details of the analytic continuation shortly, but to
illustrate the Regge pole model we will for now assume what is called
’maximal analyticity of the second kind’, namely that A(l, t) has only
isolated singularities in l [90]. This is the fundamental assumption of
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Figure 3.12: Integration contours in the complex angular momentum
plane, the original contour C which includes all the poles
on the real axis is deformed to a semi-circle at infinity
S and a line integral L at R(l) = −1/2. In doing so we
pick up the residue of the isolated poles at positions α,
α1 shows a typical pole in the upper-half complex plane
characteristic of Regge’s original work while α2 shows a
pole on the real axis at small negative α which one would
encounter in the physical s-channel in the scattering of
spin-zero particles.

61



Modeling electroweak SPP

0

1

2

3

4

5

0 1 2 3 4

π

b1

π2

ρ, ω

f2, a2

ρ3, ω3

f4, a4

J

t(m2) (GeV2)

απ,b1(t) = 0.74(t−m2
π)

αρ,ω(t) = 0.53 + 0.85t

Figure 3.13: Meson spin as function of their squared mass. Mesons
with the same quantum numbers are found to lie on linear
Regge trajectories. The vector mesons of ω, ρ, f2, a2 lie
on a degenerate linear trajectory. The pion and b1 share
a different linear trajectory.

62



Single-pion production off the nucleon

Regge theory, Regge showed that this condition holds for certain non-
relativistic potential scattering models [91]. This should not hold in
a general particle physics context however, as we expect to encounter
singularities other than simple poles, but in certain conditions the am-
plitude can be expected to be dominated by the contributions of these
isolated Regge poles.

We can now use Cauchy’s theorem to deform the contour C to the
contour L + S which consists of a line-integral and a semi-circle in the
right-half plane as shown in Fig. 3.12. When doing this, as we assumed
no other singularities are present, we may pass only isolated singularities
in the complex plane. The position of the singularities will depend on
t and is written α(t), while the residue of the singularity is denoted as
β(t), e.g. for a simple pole we have

A(l, t)→ β(t)

l − α(t)
for l→ α(t). (3.115)

When deforming the contour over n poles we pick up their residues in
the amplitude

A(s, t) =
−1

2i

∮
L+S

A(l, t)
Pl(−zt)
sin lπ

dl

−
n∑
i=0

π
βi(t)Pαi(t)(−zt)

sin(παi(t))
. (3.116)

The s-dependence of the amplitude is fully described by the Legendre
functions, which for large s behave as Pl(zt) ∼ zlt ∼ sl. As such one
sees that the rightmost pole in l will dominate the amplitude at large
values of s. The integral over the semi-circle in the right hand plane
gives a zero contribution as the amplitude is presumed to disappear for
large l. The remaining integral over the line L is referred to as the
background integral which, with the contour shown in Fig. 3.12, lies at
R(l) = −1/2. This is the value of l such that for large zt the Legendre

function still behaves as P1/2(zt) ∼ z
−1/2
t , hence for sufficiently large

s ∼ zt the contribution of the background integral can be neglected
with respect to the poles for which it is implied that R(α(t)) > −1/2.
With the Regge pole dominance of the amplitude, we extrapolate to
the physical s-channel, where then for large s and small −t > 0 the
amplitude is predicted to behave quite generally as

A(s, t) ∼ − β(t)

sinπα(t)

(
s

s0

)α(t)

, (3.117)
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with α(t) the position of the rightmost pole in the l-plane, for which
unitarity demands that R(α(t)) ≤ 1.

The interpretation of the Regge pole amplitude is as follows, one sees
that the factor 1/ sinπα(t) will generate poles when l = α(t) takes an
integer value. Because the amplitude A(l, t) should match the partial
wave amplitudes Al(t) in the physical t-channel at integer values of l,
the amplitude should reduce to the one for an exchange of a particle
with definite spin l and mass for which α(m2) = l. The trajectory α(t)
should hence describe the spin-mass relation of the particles that are
exchanged in the t-channel. In Fig. 3.13 we show a so called Chew-
Frautschi plot depicting the spin-mass relation of a number of mesons
with the same quantum numbers [90]. The Regge-trajectories α(t) can
hence be experimentally determined, and are found to be linear in the
physical t-channel. By extrapolation of this amplitude to large s and
small −t > 0, the exchange of a Regge-pole trajectory hence takes into
account the t-channel exchange of a whole class of particles with the
same quantum numbers and increasing angular momentum.

This Regge-pole dominance hinges on a number of non-trivial assump-
tions such that one could have some doubts about the applicability to
describe scattering in particle physics. Before providing some context
for the made assumptions, it is important to remember that there is
a large amount of experimental evidence for the Regge behaviour of
high energy cross sections [86, 87], and because of this one might simply
consider modelling amplitudes in terms of Regge poles inherently useful.

The main assumption that we made was of maximal analyticity of the
second kind. This is however not crucial to the Regge-pole dominance
of forward scattering cross sections and many of the assumptions un-
derlying this maximal analyticity may be softened somewhat without
hampering the applicability of the result. One of the critical assumptions
is that it is possible to analytically continue the partial wave amplitude
in the right-hand l plane down to a certain value of R(l) ≤ 1 in such a
way that the integral over the semi-circle at infinity can be neglected.
One sees that a definition such as the one in Eq. (3.112) is not suitable
for this purpose because the Legendre functions diverge for large l off the
real axis in the complex plane. There is a way in which the amplitude
can be analytically continued such that it dissapears fast enough at large
|l| in the righthand plane, and moreover it can be shown that in this case
the continuation is uniquely defined by the values of Al(t) for integer l.

The uniqueness is guaranteed by Carlson’s theorem which, loosely stated
for our purposes, asserts that an analytic function which is zero for a
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set n ∈ {N,N + 1, N + 2, ...} of non-negative integers on the real axis is
either zero everywhere or diverges too fast at large |l|. Thus, given an
amplitude A(l, t) which matches the partial waves amplitudes Al(t) at
all l and disappears for large l in the righthand plane, any alternative
amplitude which would satisfy these constraints can generally be written
as

A∗(l, t) = A(l, t) + F (l, t), (3.118)

with a function F (l, t) that is zero for integer values of l. By Carlson’s
theorem then, either A∗(l, t) does not disappear fast enough at the semi-
circle or F (l, t) is identically zero everywhere, such that A(l, t) is the
unique amplitude with the required large l behaviour defined by the
Al(t).

This amplitude is provided by the Froissart-Gribov projection, we will
only state the final results in order to introduce and discuss the con-
cept of signature in Regge theory, for details we refer the reader to
Refs. [85, 86]. The construction requires the assumption of analyticity
and unitarity of the amplitude such that the amplitude A(s, t) can be
represented by a fixed-t dispersion relation. If one then substitutes this
form of the amplitude in the definition of the t-channel partial wave
amplitude of Eq. (3.112), we can exchange the order of integration and
obtain for positive integer values of l

Al(t) =
1

π

∫ ∞
zt(s0,t)

dzt

[
Ds(s, t) + (−1)lDu(s, t)

]
Ql(zt), (3.119)

where Du/s are the so called u and s-channel discontinuities [85], s0 is
the s-channel threshold, and Ql(z) are the Legendre functions of the
second kind. We will tacitly assume that the dispersion relation is valid
and that this integral converges for all l with R(l) ≥ −1/2. In general, if
N(t) subtractions are made one will encounter singularities other than
Regge poles in the complex plane for R(l) ≤ N(t) ≤ 1, where the
upper bound for N(t) in the s-channel physical region follows from the
Froissart bound [92]. This is not problematic however, these singularities
will also yield contributions to the amplitude, which in the many cases
(for small −t) can be considered to be less important than the leading
Regge-pole [85].

The whole l dependence is now provided by the Ql(z) and the phase
(−1)l which permit analytic continuation. The Ql(z) are well behaved
for large |l| and provide convergent behaviour over the semi-circle at
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infinity as long asR(l) > −1/2 as we require 3. The factor (−1)l however
would be analytically continued to e−iπl which diverges for large I(l).
This issue is circumvented by considering separately the even and odd
partial waves such that we get two amplitudes

A±(l, t) =
1

π

∫ ∞
zt(s,t)

[Ds(s, t)±Du(s, t)]Ql(zt) dzt (3.120)

where A+(l, t) = A(l, t) for even l and A−(l, t) = A(l, t) for odd l. These
amplitudes are referred to as having positive and negative signature
τ = (−1)l, and both separately behave as required for the manipulation
of the Sommerfeld-Watson transform. The Legendre functions Pl(zt)
that enter in Eq. (3.114) are symmetric with respect to z for even l and
antisymmetric for odd l such that the physical amplitude is recovered
from the ones with definite signature as

A(s, t) =
1

2

[
A+(s, zt(s, t)) +A+(s,−zt(s, t))

+A−(s, zt(s, t))−A−(s,−zt(s, t))
]
. (3.121)

Thus if we find a Regge pole with positive or negative signature in one
the separate amplitudes its contribution to the physical amplitude is

A(s, t) = −π
2

β(t)

sinπα(t)
(Pα(−zt)± Pα(zt)) . (3.122)

For large real values of zt we have Pα(−zt) ∼ e−iπαPα(zt), such that in
the physical s channel for large values of s we finally obtain

A(s, t) = −β(t)
τ + e−iπα(t)

sinπα(t)

(
s

s0

)α(t)

(3.123)

as the contribution of a Regge pole with signature τ = (−1)l, which
differs from Eq. (3.117) only through the appearance of the signature
factor τ + e−iπα.

3. The background integral is placed along the line R(l) = −1/2 because this provides
the most convergent behaviour of the Legendre functions for large zt, P−1/2(zt) ∼
z
−1/2
t , such that the physics it contains can be neglected with respect to the pole

contributions for large s. As such one might think that the Regge-pole model is only
applicable when R(α(t)) ≥ −1/2. While this is indeed the region in which the Regge
pole dominance works the best, this is not a fundamental lower bound. It is possible,
using a technique originally presented by Mandelstam [93], to push the background
integral to arbitrarily small values of R(l). The price one has to pay is tha additional
singularities will show up which at some point (larger −t > 0) will become more
important than the Regge poles [85, 87].
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With the concept of signature in hand it is instructive to revisit the
Chew-Frautschi plot in Fig. 3.13. One sees that the signature factor
cancels the pole corresponding to a meson with the wrong signature, e.g.
the π and b1 have positive and negative signature respectively and hence
lie on independent trajectories. It is experimentally found however that
απ(t) ≈ αb1(t), and the same is found for e.g. the ρ and f2. The property
that Regge trajectories overlap, is known as weak exchange degeneracy,
while the property that the residues β(t) of different trajectories are the
same is called strong exchange degeneracy. When combining Regge pole
contributions of trajectories with opposite signature which exhibit both
weak and strong exchange degeneracy one gets

A(s, t) = β(t)
φ(t)

sinπα(t)

(
s

s0

)α(t)

, (3.124)

with φ(t) = 1 or φ(t) = e−iπα(t) when the trajectories are subtracted or
added respectively.

II. Reggeized Born-term model

As we have seen, Regge theory provides the s-dependence of scattering
amplitudes at high invariant masses in terms of Regge trajectories which
in this case can be interpreted as the t-channel exchange of a whole
family of mesons with increasing angular momentum. Given an allowed
exchange, the trajectory α(t) is known, but Regge theory does not di-
rectly describe the t(i.e. cos θ∗) or Q2 dependence of the residue. For this
a model is needed. The most general strategy is to identify the dominant
allowed Regge trajectories, i.e. the allowed t-channel exchanges, and
parametrize the t-dependence in a general way using a number of free
parameters which can be fit to data. The success of such an approach
clearly depends on the availability of detailed scattering data, which is
problematic, in particular for modeling neutrino-induced interactions.

To overcome this, a procedure of ’Reggeized’ tree-level diagrams for t-
channel meson exchanges can be used instead. The idea of the Reggeized
t-channel exchange model is to use the same parameters as in a tree-level
diagram that are applicable at low energies in the parametrization of the
Regge amplitudes. This is motivated by the fact that in the region of
applicability, i.e. for small negative t, one is not far removed from the
physical t-channel pole. A heuristic argument for this approach can
be found by considering the behavior of a Regge amplitude when one
approaches the physical t-channel pole. For a pion exchange, omitting
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a possible Q2 dependence and phase, one may write

Aπ,Regge(s, t) = β(t)α′πΓ [−απ(t)]
(
α′πs

)απ(t)
(3.125)

where the pion trajectory is απ(t) = α′π
(
t−m2

π

)
with typically α′π ≈

0.7 GeV2. The function β(t) represents the unknown, but presumably
smooth and slowly varying, t-dependence of the amplitude. The gamma
function includes the pole generating factor 1/ sinπα as

Γ [−α(t)] = −π (sin [παπ(t)] Γ [απ(t) + 1])−1 , (3.126)

such that when one extrapolates t→ m2
π the amplitude approaches

β(t)πα′

sin [παπ(t)]
→ β(t)

t−m2
π

, (3.127)

i.e. the t-channel pion pole. When considering small positive values of
−t it thus is reasonable to assume that β(t) can be described by the tree-
level pion exchange, which is referred to as the ’reggeizing’ of t-channel
exchanges. Such arguments are of course not formal, and the reggeiz-
ing procedure should be considered at best a reasonable guess for the
parametrization of the amplitude. Nonetheless this procedure leads to
remarkably good results, especially when one considers that practically
no parameters are fit to high-energy data. In particular this technique
has been successfully used to describe photoproduction of pions [79, 94],
and has been extended to finite Q2 to model electroproduction [95–100].

The procedure is then as follows: given an allowed t-channel meson
exchange in the low-energy sector one replaces the tree-level propagator

1
t−m2 by a Regge propagator P which is parametrized as

P(t, s) = α′φ(t)Γ [−α(t)]
(
α′s
)α(t)

(3.128)

where α(t) is the Regge trajectory which is taken to be a linear function
α(t) = α′t + α0. The appearance of the slope of the trajectory multi-
plying s in the propagator is rather arbitrary, one merely needs to set a
scale for s, but we follow Ref. [99] and use this convention. An additional
t-dependent phase is added through the factor φ(t). Comparing this ex-
pression with Eq. (3.124), one sees that this corresponds to the addition
of degenerate poles of opposite signature. Indeed, for the SPP reactions
under study here, there is no reason to explicitly exclude a degenerate
trajectory of opposite signature. The assumption is hence made that
for these trajectories there is also strong exchange degeneracy, such that
the residue associated with the exchange of degenerate trajectories may
be described by the lightest meson that lies on it.
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We will use the model developed in Ref. [99], based on reggeizing of the
background amplitudes presented in Section 3.3.4. This approach has
the benefit of being consistent with the background, at least in certain
kinematic limits. The drawback is that the background model does
not include explicitly any t-channel meson exchanges beyond the pion.
Therefore this Regge model is not complete, as not all allowed or even
dominant Regge trajectories are included in the model.

III. Vector current

For the vector-current we use the approach of Guidal, Laget and Van-
derhaeghen (GLV) which was originally applied to charged pion photo-
production in Ref. [94]. For charged pion photoproduction the pion and
rho are the dominant trajectories, at small −t the data exhibits a sharp
peak which cannot be reproduced with the pure reggeized pion and rho
exchange however. To reproduce this forward peak in the approach of
GLV one reggeizes instead an extended set of low-energy Born diagrams
in addition to the pure pion exchange. The justification for doing so
given in Ref. [94] comes from the fact that the pure t-channel pion
exchange is not gauge invariant by itself, but requires the addition of
the nucleon s and u-channel exchanges in pseudoscalar coupling. In our
case, as we use pseudovector coupling, additionally the vector part of
the contact-term has to be included as described in section 3.3.4. If we
adopt an electric coupling, in which the photon only couples to protons,
the gauge-invariant vector-current background contributions are

OµBG = OµPF +OµCT,V +OµNP,V +OµCNP,V , (3.129)

where the operators correspond to those in Eqs. (3.69), (3.66), (3.60),
and (3.61) respectively. The assumption of electric coupling implies that
one should set Fn1 = F p,n2 = 0. With this, the minimal amount of terms
are kept which need to be added to the pion-in-flight term to have a
gauge-invariant operator.

In order to reggeize the pure pion exchange one would replace the
tree-level pion propagator by the Regge propagator, however no pion
propagator is present in the CT , NP , and CNP terms. To reggeize the
whole operator of Eq. (3.129), we multiply by a factor (t −m2)P(s, t)
instead. This procedure has the required effect of replacing the classical
by the Regge propagator in the PF term, while giving the other diagrams
the suitable high-energy behavior. The pion Regge trajectory can be
extracted from the pion spectrum and we use απ,a1(t) = α′π,a1

(
t−m2

π

)
with α′π,a1

= 0.74 GeV−2 as shown in Fig. 3.13. For photoproduction of
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pions off on-shell nucleons, by construction, this model is the same as the
original GLV model presented in Ref. [94], although we do not include
the far smaller contribution of the ρ exchange in the vector current as
it is not present in the low-energy background to begin with.

When this model is extended to electroproduction Q2 > 0, in principle
only the Q2 dependence of the F1(Q2) form factor should be added, then
to retain CVC it should be added to the PF and CT terms as discussed
before. It is found however that in this case the transverse cross section is
not well described for high s. In Ref. [96] Kaskulov and Mosel proposed
an s-dependent form factor F1(Q2, s) which aims to take into account
that the possibly highly off-shell intermediate nucleon oscillates into
higher mass resonances explicitly. A more practical parametrization of
such an effective form factor was introduced by Vrancx and Ryckebusch
in Ref. [98],

F p1 (Q2, s) =

(
1 +

Q2

(Λ∗(s))2

)2

(3.130)

with

Λ∗(s) = Λ0 + (Λ∞ − Λ0)

(
1− M2

s

)
(3.131)

which reduces to the on-shell dipole form factor with cutoff Λ0 = MV =
0.84 GeV when s = M2

N . For the crossed nucleon pole, the functional
form of Eq. (3.130) stays the same with substitution of s by u and

Λ∗(u) = Λ0 + (Λ∞ − Λ0)

(
1− M2

2M2 − u

)
(3.132)

The (only) free parameter Λ∞ was fitted to experimental data in Ref. [98],
and we use the same value Λ∞ = 2.194 GeV. Other effects and correc-
tions to this model where discussed in Ref. [98], for simplicity however
we do not include any of them here, we find that the description of the
photo and electroproduction data with this minimal model is already
quite satisfactory [99].

The main ingredients that are lacking in this model for the vector current
are additional Regge trajectories, notably the ω and ρ meson trajecto-
ries, which are not explicitly included in the low-energy background. The
lack of the ω exchange means that the Regge model does not provide any
background for neutral-current neutral pion production, which would be
dominated by ω exchange. This is also the case of course for the low-
energy model to begin with, the only contribution to the background for
electromagnetic π0 production comes from the nucleon and cross nucleon
poles, while rest does not contribute.
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Figure 3.14: The axial contact term (top) and pion-pole (bottom)
are interpreted as effective ρ-meson exchanges, figure
from [31].

IV. Axial current

For the axial current one faces the problem that there are no explicit
t-channel exchanges in the axial current in the model presented here. To
Reggeize the axial current, the axial part of the contact term, and pion-
pole are identified as effective ρ-meson exchanges as shown schematically
in Fig. 3.14, we motivate this in the following.

The axial current for an explicit ρ exchange corresponds to the opera-
tor [101]

Oµρ =
gρNNgWρπ

t−m2
ρ

FA(Q2){gµα +
QµQα

Q2 +m2
π

}
(
γα + i

kρ
2MN

σανK
ν
ρ

)
,

(3.133)
where the second term between braces corresponds to a pion-pole term,
and a transition form factor is added for which FA(Q2 = 0) = 1.
PCAC [101] implies that

gρNNgWρπ = m2
ρ/fπ, (3.134)

such that for Q2 = 0 and kρ = 0 the non-pole and pion-pole terms
give the same amplitude as the axial part of the contact term and the
pion-pole terms of Eqs. (3.67) and (3.68) respectively4. To construct a
Regge model from the low-energy background, we thus set kρ = 0 and
reggeize the axial part of the contact term and the pion-pole term using

4. For on-shell Dirac spinors energy-momentum conservation implies that u(kf )/Qu(ki) =

u(kf )
(
2MN + /Kπ

)
u(ki) = u(kf ) (/Q+ /Kπ)

2
u(ki).
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a ρ trajectory in the same way as before. For the spin-1 ρ the Regge
propagator may be written as

Pρ(s, t) = −α′ρφρ(t)Γ [1− αρ(t)]
(
α′ρs
)αρ(t)−1

, (3.135)

where αρ(t) = 0.53 + α′ρt with α′ρ = 0.85 GeV−2 as shown in Fig. 3.13.
One sees that αρ(t) ≈ 1 when t = m2

ρ such that again the Regge
propagator resembles a simple t-channel pole close to the ρ mass.

At this point, no additional low-energy diagrams in the axial current
resembling an exchange in the t-channel are available, hence the Regge
model based on the background is in principle complete. From pion-
nucleon scattering data one knows that the ρ-exchange is dominant in
the charge-exchange process [102–104] which by PCAC is related to the
charged-current neutral pion production channels. For the elastic scat-
tering, related to the charged-current charged pion production channels,
the pomeron trajectory is instead dominant [104]. The pomeron has
α0 ≈ 1 and corresponds to the exchange of no quantum numbers except
for angular momentum in the t-channel.

In Ref. [31] it was proposed to reggeize also the axial contribution of the
nucleon and crossed nucleon pole in conjunction with the CT,A and PP
terms. Unlike in the vector case, where the argument is made that the
(electric) nucleon Born-terms are required in conjunction with the pion-
in-flight term to satisfy CVC, in the axial current the CT and PP terms
together already satisfy PCAC, as do the axial parts of the nucleon terms
by themselves. Hence there is no good reason to include these terms
beyond the analogy with the vector-current, and based on the idea that
the Regge model should resemble the full low-energy background when
−t is small. We then have for the reggeized axial current

OµA,Regge =
[
OµCT,A +OµPP +OµNP,A +OµCNP,A

] (
t−m2

ρ

)
Pρ(s, t)

(3.136)
where the operators are defined in Eqs. (3.67), (3.68), (3.60), (3.61). In
addition, the axial transition form factor FA,ρ is added to the CT and
PF terms for which we use

FAρπ(Q2) =
(
1 +Q2/Λ2

ρ

)−2
, (3.137)

with Λρ = ma1 = 1260 MeV inspired by a meson-dominance frame-
work [105]. As the CT and PF terms already satisfy PCAC by them-
selves there is no reason to apply this form factor in the nucleon terms.
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In analogy with the vector case, we may define an off-shell axial form-
factor of the same form as before

GA
(
Q2, s [u]

)
= gA

(
1 +

Q2

(Λ∗A(s [u]))2

)−2

, (3.138)

with again

Λ∗A(s) = MA +
(
ΛA∞ −MA

)(
1− M2

s

)
, (3.139)

and

Λ∗A(u) = MA +
(
ΛA∞ −MA

)(
1− M2

2M2 − u

)
, (3.140)

for the direct and crossed-channel respectively. The parameter ΛA∞ is
again the only free parameter introduced in the axial sector which was
fitted to data in Ref. [99]. It was found that a large value of ΛA∞ =
7.2 GeV was required to reproduce the magnitude of the (rather limited)
total cross section data for W > 2 GeV. This seems to indicate indeed
that other trajectories are required in the axial current, which with the
choice of reggeizing also the axial nucleon and cross nucleon poles are
compensated in some way.

V. Hybrid model

So far the choice of the phase φ(t) in the reggeized pion and rho ex-
changes has not been discussed. In view of building a model valid at
energies beyond the resonance region, the phases that are added in the
propagator in the vector and axial sector can only affect the vector-
axial interference terms in the cross section. It is known that at high-
energies and for forward scattered leptons, i.e. where the Regge model is
most reliable, the vector-axial contribution to the inclusive cross section
becomes small, and hence the relative phase between the vector and
axial contribution has only a small effect on the total cross section. In
view of extrapolating the reggeized background to lower values of s, and
combining it with resonant contributions, the phases do indeed represent
a more important degree of freedom which may be informed by data.
For simplicity however we take φ(t) = 1 for both the vector and axial
sectors, in this case the relative phases are completely determined by
the low-energy model.

We combine the high-energy model with the low-energy one in a ’hybrid’
model by a smooth W -dependent transition as

Oµhybrid,BG = cos2 [φ(W )]OµLEM + sin2 [φ(W )]OµRegge (3.141)
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with

φ(W ) =
π

2

(
1− 1

1 + exp
[
W−W0
L

]) . (3.142)

The width and the center of the transition are L = 200 MeV and W0 =
1600 MeV respectively. This means that below W = 1400 MeV the
model is practically identical to the low-energy one, while above W =
1800 MeV the background is completely determined by the Regge model.
We note that we consider the crossed resonance contributions as part
of the LEM background in this work. Indeed they lack the resonant
phases of the direct-channel resonances, and moreover compared to he
direct channel exchanges lack the suppression of the amplitude from the
propagator at high s. This makes the crossed-channel resonances more
background-like than resonant, and indeed in many models they are not
even explicitly included.

Finally, it is clear that building a Regge model from the available low-
energy background has some advantages, the main one being that only

a limited number of free parameters is introduced (Λ
(A,V )
∞ in this case),

because most parameters are already determined by the low-energy
model or can be estimated in a reasonable way. The low-energy La-
grangian proves too restrictive however, and additional exchanges should
be included. Most importantly the ω is necessary to describe neutral-
current neutral pion production, and the pomeron should be included
in the axial section to better describe charged-current charged pion
production. It would be beneficial to do away with the restraint of
sticking to the content of the low-energy Lagrangian and instead build
a more complete Regge model, either fully or only partly based on
reggeized born terms, which includes the constraints of high-energy
strong and electromagnetic scattering data in a more satisfying way.
Work in this direction is in progress, a comparison of a more complete
reggeized Born-term model to electromagnetic, pion-nucleon scattering,
and the available neutrino scattering data was presented in Ref. [100]
with promising results.

3.4 Results for electromagnetic SPP and the
vector current

In electron induced single-pion production it is customary to write the
differential cross section as

dσ

dE′ dΩ′ dΩ∗π
= Γem

dσ

dΩ∗π
, (3.143)
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where

Γem =
α

2π2

E′

E

1

Q2

1

1− εkγ . (3.144)

here kγ =
W 2−M2

N
2MN

is the lab-frame energy of an on-shell photon that
would yield the same invariant mass W , and the longitudinal polariza-
tion is

ε =

[
1 + 2

|q|2
Q2

tan2 θl/2

]−1

, (3.145)

where q and the electron scattering angle θl are taken in the lab frame.
The differential cross section for SPP induced by a (virtual) photon is

dσ

dΩ∗π
=

dσT
d cos θ∗π

+ ε
dσL

d cos θ∗π
+
√
ε (1 + ε)

dσLT
d cos θ∗π

cosφ∗ (3.146)

+ ε
dσTT
d cos θ∗π

cos 2φ∗ + h
√
ε (1 + ε)

dσ′LT
d cos θ∗π

sinφ∗. (3.147)

The different terms in this expression can be identified in terms of the
elements of the hadron tensor as

dσT
d cos θ∗π

= σ0
H11 +H22

2
, (3.148)

dσL
d cos θ∗π

= σ0
1

Q2

[
q∗2H00 − 2ω∗q∗H03 + ω∗2H33

]
= σ0

Q2

ω∗2
H33 =

Q2

q∗2
H00, (3.149)

dσLT
d cos θ∗π

= σ0

√
Q2

ω∗
ReH13, (3.150)

dσTT
d cos θ∗π

= σ0
H11 −H22

2
, (3.151)

dσLT ′

d cos θ∗π
= σ0

√
Q2

ω∗
ImH13, (3.152)

with σ0 = αMN |k∗π |
4πWkγ

, and where in Eq. (3.149) the conservation of vec-
tor current has been used explicitly. The hadron tensor elements are
computed for φ∗π = 0 and the partial cross sections dσi/ d cos θ∗π thus do
not depend on the pion azimuth angle. For real photons (ε = 0) only
σT contributes, and the term proportional to sinφ∗ is only accessible
in polarized electron scattering. The angle integrated cross section only
gets contributions from the σT and σL terms and is given by

dσ

dE dΩ′
= Γem

∫
dΩ∗π

dσ

dΩ∗π
= Γem (σT + εσL) , (3.153)
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Figure 3.15: Total cross sections for single pion photoproduction

with

σi = 2π

∫
d cos θ∗π σi

(
Q2,W, cos θ∗π

)
(3.154)

used as shorthand for the angle-integrated partial cross sections.

3.4.1 Photoproduction of pions

We first compute the cross section for SPP by real photons. While the
vector current does not contribute to the weak process at Q2 = 0 and is
suppressed at low values of Q2, the photoproduction cross section gives
insight in the W dependence of the cross section and the contribution
of different ingredients. We compare the photoproduction cross section
obtained within the hybrid model with experimental data in Fig. 3.15.
In the comparison we also include the results of the ANL-Osaka DCC
model [34] and the MAID07 analysis [66] obtained from the published
multipole amplitudes as described in appendix C.

We find a good agreement in the threshold region, dominated by the
delta and born terms, and for the charged pion production channels
a satisfying agreement is found up to the second resonance region in
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particular for the positive pion production channel. Although heavier
resonances are lacking the behavior of the high-Eγ cross section is quite
well described for this channel, certainly much better than were we to
use the low-energy model.

In the neutral pion production channels the lack of background contribu-
tions in the high-energy model becomes obvious. As discussed previously
the high-energy Regge model currently do not include the ω-exchange
such that the cross section goes to zero beyond the resonance region. It
is also seen that the cross section is underestimated between the first and
second resonance regions. Purely for illustrative reasons, we include the
t-channel ω-exchange in the low-energy background of the hybrid model.
We use the operator

Oµω =
gωπγgωNN
t−m2

ω

ενµραQνKt,ρgαβγ
β (3.155)

where Kt = Q − Kπ the t-channel four momentum, with standard
parameters gωπγ = 0.314

mπ
and gωNN = 15 taken from Ref. [94]. The

result in Fig. 3.15 show that indeed the ω exchange gives the correct
magnitude in this region needed to fill the dip, however we will neglect
its contribution further on.

3.4.2 Electroproduction of pions

Instead of comparing the model directly to data we will compare the
results to the MAID07 [66] and ANL-Osaka Dynamic Coupled-Channels
(DCC) [34] analyses. The MAID07 and DCC results are computed
from the multipole amplitudes available at Ref. [106] and Ref. [107]
respectively as detailed in appendix C. As such we compare directly
the inclusive longitudinal and transverse responses of the hybrid model
to what is obtained in state-of-the-art analyses of electron scattering
data. This gives a more direct view of the Q2 and W dependence of the
integrated cross sections than by comparing to angular distributions.

In Fig. 3.16, we compare the W dependence of σT and σL for several
values of Q2 for proton targets. We see that the Q2 dependence of the
delta is well described, as well as the resonances around W = 1.5 GeV.
In the region between both peaks the MAID07 and DCC model give
different results as Q2 increases, and the hybrid model is seen to under-
shoot both models. We tend to value the result of the ANL-Osaka DCC
model more here, on the one hand because it is more recent and hence
uses a more comprehensive dataset. Additionally the DCC model is more
complete, it is able to describe consistently hadronic and electromagnetic
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Figure 3.16: Angle integrated cross sections for electroproduction of
pions on the proton as functions of W for different
values of Q2. The transverse(longitudinal) cross sec-
tions obtained with the hybrid model are shown by
solid(dashed) lines. For the ANL-Osaka and MAID07
models the transverse(longitudinal) cross sections are
depicted by circles(crosses). The left(right) column shows
neutral(charged) pion production
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interactions, and is able to describe the inclusive electron scattering cross
section while MAID07 takes only SPP into account.

In Fig. 3.17, the same comparison is made but in this case for neutron
targets. The hybrid model is found to agree with the MAID07 result in
the dip, but then when the Regge background takes over tends to give
similar results to the DCC.

The Q2 dependence of the cross section is again described reasonably
well, but it becomes more obvious that the height of the delta peak
becomes larger in the hybrid than in the other models at high Q2. This
is however partly due to the interpolation in W which is performed in
the multipole amplitudes, such that the delta peak is not fully resolved.
To show this in more detail, we compare the Q2 dependence at a number
of fixed values of the invariant mass, corresponding to the regions of the
delta peak (W = 1232 MeV), the second peak at W = 1520 MeV, and
the dip between both (W = 1350 MeV). The results for the delta are
shown in Fig. 3.18, and excellent agreement is found for all interaction
channels, including for the small longitudinal response for the charged
channels.

The results for W = 1350 MeV and W = 1520 MeV are shown in
Figs. 3.19 and 3.20 respectively. In the dip we clearly find a severe
underestimation of the neutral pion production channels at low-Q2 which
is again consistent with the lack of e.g. the ω exchange as noted in the
description of photoproduction.

For W = 1520 the DCC and MAID07 models give similar results for the
charged pion production channels, in agreement with the hybrid model
when Q2 is larger than about 0.5 GeV2. For neutral pion production it
is interesting to note that the DCC model shows a distinctive bump for
Q2 < 1 GeV. The hybrid model gives a similar shape and magnitude as
the MAID07 model.

3.4.3 The Charge-changing vector current

The previous comparisons of cross sections were all done for electro-
magnetic interactions, for which both the isovector and isoscalar am-
plitudes contribute. The charged-current neutrino induced interaction
however only has contributions from the isovector current. As explained
previously, a separation of isoscalar and isovector contributions requires
measurements on both proton and neutron targets, and is not necessarily
unambiguous if only a limited number of neutron target data exist.
Given that there exist differences between the models in the description
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of the electromagnetic processes as shown in the previous section it is
of importance to ask how well the vector current is determined by the
analysis of electron scattering data.

To see how well the isovector current is constrained by the state-of-
the art models for electromagnetic interactions and to see how the
hybrid model fares, in Fig. 3.21 we show again the results of the hybrid
model, MAID07, and the DCC model, this time for the vector cur-
rent contribution to the cross section for the different charged-current
neutrino-induced SPP processes. We obtain the isovector contribution
in MAID07 and the DCC from the partial-wave amplitudes as described
in appendix C.0.1.

The absence of the photon propagator (Q2)−2 means that the Q2 de-
pendence of the resulting cross section will be different in the neutrino
case than for electrons. We show the Q2 dependence at fixed values of
W in Fig. 3.21. In order to retain all kinematic factors we show simply
the contribution of the vector-vector current to the double differential
cross section at a fixed incoming energy of 3 GeV. We find that the
discrepancies between the different models found in the electromagnetic
case disappear to a large extent for the weak charge-changing isovector
current. Only for charged pion production the hybrid model clearly
undershoots the MAID07 and DCC analyses when W grows. It should
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be noted that this channel is dominated by the delta peak and that the
cross section drops quickly beyond the delta region, the cross section at
W = 1.5 GeV is less than 5 percent of the one around the delta.

We may again compare the models in an energy-independent way by
comparing longitudinal and transverse contributions, but we will first
define responses which contain most of the kinematic dependence on Q2

and W . Following Eq. (3.7), the inclusive cross section is

d2σ

dWdQ2
=
G2
F cos θc

2 (2π)4

k∗π
E2

∫
dΩ∗πLµνH

µν . (3.156)

From the Rosenbluth separation in Eqs. (2.51-2.55), and because the
vector current yields a symmetric hadron tensor we then have

d2σ

dWdQ2
=
G2
F cos θc

2 (2π)3

k∗π
E2
×[(

L00 − 2
ω∗

q∗
L03 +

(
ω∗

q∗

)2

L33

)
H00

0 +
L11 + L22

2

(
H11

0 +H22
0

)]
,

(3.157)

after integration over the pion angles. If the outgoing lepton mass can
be neglected the lepton current is also conserved such that

d2σ

dWdQ2
=
G2
F cos θc

2 (2π)3

k∗π
E2

[(
Q2

q∗2

)2

L00H
00
0 +

L11 + L22

2

(
H11

0 +H22
0

)]
.

(3.158)
The relevant lepton tensor elements in the zero mass limit can be writ-
ten [77],

L00 = q∗2
ε

1− ε ,
L11 + L22

2
=
Q2

2

1

1− ε . (3.159)

With this we have

d2σ

dWdQ2
=
G2
F cos θc

2E2 (2π)3

kW
1− ε (RT + εRL ) , (3.160)

where kW = kγ = (W 2−M2
N )/(2MN ). This expression is similar as the

one in Eqs. (3.143-3.144) for electron scattering but with a factor Q2

absorbed in the responses

RT =
k∗π
kW

Q2

(
H11

0 +H22
0

)
2

,
k∗π
kW

Q2Q
2

q∗2
H00

0 . (3.161)
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We will present the functions RL/T instead of the partial cross sections
relevant to electroproduction as the former include more of the kinematic
dependence of the electroweak cross section.

The results are shown in Fig. 3.22, with these definitions one sees that
the responses vary only weakly with Q2, it is mainly the relative magni-
tude of resonances which changes instead of the overall cross section.
The hybrid model performs better for the charged-current than for
the electromagnetic case. It is interesting to see that where in the
electromagnetic case the DCC and MAID07 models differed mainly
for large Q2, here the opposite tends to happen for π+ production off
the neutron. In general we find that the models tend to agree to a
larger extent for all channels for the weak charge-changing vector current
than what seemed to be the case in the electromagnetic charged-pion
production channels. It is also clear that the second resonance region is
expected to play a rather significant role in neutrino interactions, due
to the slow drop with Q2 of the S11(1520) combined with the absence
of the factor (Q2)−2. We will revisit the vector-current contribution in
flux-folded signals when comparing to neutrino data in Section 3.6.

3.5 Results for pion-nucleon scattering

The axial current at Q2 = 0 for the hybrid model was constructed by
using PCAC and pion-pole dominance both for the background and
different resonant contributions. For the resonances in particular the
axial form-factors that contribute to QµJ

µ at Q2 = 0 were set consis-
tently with the pion-resonance couplings for on-shell pions, while the
background in the non-linear sigma-omega model exhibits PCAC by
construction [14]. We point out again that extrapolation to the on-shell
pion couplings by the Goldberger-Treiman relation is an approximation
in itself, and that the axial couplings for Q2 = 0 should be expected
to deviate from these values [53]. Nonetheless, by using the on-shell
couplings, the model can be applied to compute the elastic pion-nucleon
scattering cross sections. Following Ref. [104] we may write the cross
section for π +N → π′ +N as

dσπN
dt

=
π

q2
CMS

1

8πW

(
|T++|2 + |T+−|2

)
. (3.162)

The pion nucleon scattering T -matrices are then seen to be obtained
from the currents in the hybrid model as [57]

T+± =

(
M

2fπ

)2

〈pN , sN = ±|QµJµ(A)|pi, si = +〉 (3.163)
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where the subscript A referring to the axial part of the current can in
principle be dropped as for the vector current QµJ

µ
V = 0.

In this section, we compare the cross section computed from the hybrid
model to elastic and charge-exchange pion-nucleon scattering data and
the results of the SAID analysis [108, 109]. This provides a further
consistency check of the different components of the model, as the PCAC
relation should apply for the total amplitude while we apply it to the
different components, in the ideal case this construction should yield
the pion-nucleon scattering amplitudes when the different components
of the model are combined.

In Fig. 3.23, the results for the different angle-integrated elastic and
charge-exchange (CEX) cross sections are shown. We find a rather
good description of the cross section, although some trends are clearly
visible. For each of the channels the delta peak is seemingly shifted
slightly towards lower energies while the region beyond the delta is
slightly underpredicted. This is due to the background contributions
which interfere constructively with the delta for low Pπ and as such give
a correct description of the threshold region but then when the sign
of the imaginary part of the delta changes result in a decrease of the
cross section. On the other hand, when we include only the resonance
contributions and no crossed-resonances or background, the delta peak
is better reproduced, but the threshold region is underpredicted.
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Both the elastic channels are underpredicted at high values of W , most
obviously for π− scattering. This is of course partly due to the lack of
higher mass resonances. The magnitude of the charge-exchange cross
section on the other hand is quite well reproduced for high Pπ, in
particular at high energies the Regge background from ρ-exchange is
seen to give a good reproduction of the magnitude.

In Fig. 3.24, we compute the total pion-nucleon scattering cross section
from the model by making use of the optical theorem

σtot =
1

2qCMSW
= (T++ + T+−) |t=0. (3.164)

This comparison is sensitive to the imaginary part of the amplitude,
and not to the absolute value. In the hybrid model the only imaginary
contributions arise from the propagators in the direct resonance contri-
butions, and in the case of the delta also from the Olsson phase which is
multiplied with the axial current [30]. With the addition of the Olsson
phase the total cross section can be reproduced in the delta region and
for the π− scattering the agreement is reasonable up to and including
the second resonance region. For the positive pion channel one sees that
in the high-energy region the imaginary part of the amplitude becomes
negative however.

Finally, in Fig. 3.25, we show the comparison with the data and the
SAID results as function of the CMS pion angle for different values of
W in the delta region. As with the comparison of the integrated cross
sections the agreement is satisfactory for all channels.

3.6 Results for neutrino induced SPP

For electromagnetic SPP a vast amount of qualitative data exists, which
allows models to be constrained and extract resonance couplings in a
reliable manner [51]. For the electroweak process however, no such
extensive dataset exists, and the available data is of limited quality. We
will compare the results of the hybrid model with the ANL [72], BNL [73]
and BEBC [110] bubble chamber data. Apart from limited statistics, a
complicating factor in these data is that the incoming neutrino energy
is not fixed, but is instead given by a broad distribution. While in semi-
inclusive neutrino-nucleon (or deuteron) measurements, it is in principle
possible to extract total cross sections as function of the energy, and it
is possible to reconstruct relevant kinematic variables, the uncertainty
on the normalization and shape of the flux can severely complicate this

89



Results for neutrino induced SPP

0

5

10

15

20

25

30

35

π+p π+p π+p

0

0.5

1

1.5

2

2.5

3

3.5

π−p π−p π−p

0

2

4

6

8

0 40 80 120 160

CEX

0 40 80 120 160

CEX

0 40 80 120 160

CEX

d
σ
/
d
Ω

(m
b
/
sr

)

W = 1190 MeV

SAID
Hybrid

W = 1230 MeV W = 1250 MeV

d
σ
/
d
Ω

(m
b
/
sr

)
d
σ
/
d
Ω

(m
b
/s

r)

θ∗π (deg) θ∗π (deg) θ∗π (deg)

Figure 3.25: Cross section in terms of center-of-mass scattering angle
for elastic and charge-exchange pion nucleon scattering
obtained from the axial current in the hybrid model near
to the delta region.

90



Single-pion production off the nucleon

0

0.4

0.8

1.2
pπ+

σ
(E

ν
)

(1
0
−
3
8

cm
2
)

0

0.25

0.5 nπ0

0

0.2

0.4

1 10

nπ+

W < 1.4
W < 2.0

Eν (GeV)

Figure 3.26: Total cross sections for the three neutrino-induced SPP
channels. We show the reanalyzed ANL (red squared)
and BNL (blue circles) along with the BEBC (green
triangles) data. The filled data correspond to a cut
W < 2 GeV while the empty ones are for W < 1.4 GeV.
The thin black lines show the vector-vector contribution
in the hybrid (dashed) and ANL-Osaka DCC (dotted)
models for W < 1.4 GeV.

task. This leads to disagreement in magnitude between the originally
published ANL and BNL total cross section data, which has been pointed
out and seemingly resolved in Refs. [74, 75, 111]. Nonetheless tensions
between model-data comparisons still persist, and in particular it turns
out to be difficult to consistently describe the bubble chamber data and
the more recent Minerνa data taken on nuclear targets [112].

Comparisons of the hybrid model results with neutrino-nucleon scat-
tering data have been presented in Refs. [113, 114], here we include
some additional comparisons with different data and observables, and
we compare the vector-vector contribution to what is obtained with the
DCC model of Ref. [34] when relevant.
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3.6.1 Total cross sections

In Fig. 3.26, we compare the total cross sections obtained within the
hybrid model with experimental data. For the ANL and BNL data we
show the results of the reanalysis of Ref. [75]. The experimental data
is tainted by large errorbars and, especially for SPP on the neutron,
by some discrepancies between different experiments. Being optimistic,
in general the experimental cross sections tend to allow at least a 20%
margin. Nonetheless, clear trends arise from this comparison. We find
a rather satisfying agreement with the data for π+ production of the
proton, which is largely dominated by the delta especially in the lower
energy region. For the π0 channel the agreement tends to be good, in
the high energy region the model converges close to the BEBC data. For
lower energies the BNL data is systematically underpredicted, while the
model provides a better agreement with the ANL data. The description
of π+ on the neutron is problematic however, we see that the BEBC data
for which a cut W < 1.4 GeV is applied tends to be underestimated by
a factor 2. A similar discrepancy is found for the high-W data at Eν ≈
2 GeV. Per illustration we have included in Fig. 3.26 the contribution of
the vector-vector current obtained with the ANL-Osaka DCC model [34]
and we find that it provides a similar magnitude as the vector-vector
contribution in the Hybrid model. In the high-energy region spanned
by the BEBC data the vector-axial contribution becomes completely
negligible, and hence the total cross section comes purely from the sum
of the non-interfering axial-axial and vector-vector contributions. It is
fair to assume that the ANL-Osaka DCC model takes into account the
electron scattering data in constructing the vector current as good as
possible, certainly much better than the hybrid model, and as we have
seen in the previous section for W < 1.4 GeV gives results very similar to
the MAID07 analysis. The agreement of the vector-vector contribution
in both models then clearly implies that the discrepancies in describing
the neutrino data should be sought in the description of the axial form-
factors.

3.6.2 Q2- and W -dependence

In Fig. 3.27 the BEBC flux-averaged cross section in terms ofQ2 is shown
and compared to the data. The experimental errors are again quite
large which makes that the data does not provide a clear constraint
on the model. As was he case for the total cross section, the worst
agreement comes from π+ production off the neutron, where the factor
2 discrepancy with experimental data is visible for low-Q2 when W <
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Figure 3.27: Q2-dependence of the BEBC-flux averaged cross section
in the hybrid model (purple lines) is compared to the
data (green crosses). The black dashed line shows the
vector-vector contribution in the hybrid model while the
black crosses show the one obtained in the DCC model
of Ref. [34]. In the top row a cut W < 1.4 GeV is applied
in both the model and the data, while in the bottom row
1.4 GeV < W < 2 GeV.
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vector contribution in the hybrid model while the black
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Ref. [34] where Q2 up to 2.5 GeV2 are included. The
vector-axial contribution (VA, yellow lines) is computed
in the hybrid model.

1.4 GeV, while on the contrary the higher-W data for this process is
described much better. For both π+ production off the proton and π0

production at small W we see that the BEBC data is overpredicted at
low-Q2 with reasonable agreement with the higher-Q2 data.

In all comparisons we show again the vector-vector contribution sepa-
rately and compare it to the one obtained from the DCC model. As
the vector-axial contribution is completely negligible this again means
that the discrepancies should be due purely due to the description of
the axial current. As a matter of fact, to show just how well the vector
current tends to be described within the hybrid model for a flux-averaged
signal we show in Fig. 3.28 the cross sections in terms of W . While
discrepancies are clearly present in the vector current as seen in the
previous section, we find that the overall shape of the cross section is
very similar in both approaches. In particular the high-W behavior of
the DCC model is very similar to the one of the hybrid model which
uses a Regge-pole description. The largest discrepancy in the high-W
region is found for π+ production off the proton, where the DCC is
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and for the BEBC with a proton target (solid squares).
A cut W < 1.4 GeV is applied to the model and the data.

larger than the hybrid model, which explains the discrepancy in the
Q2 distribution for these kinematics shown in Fig. 3.27. As the cross-
section is far smaller here than in the low-W region we do not consider
this problematic for the time being, although it indicates that a small
contribution of higher-mass isospin-3/2 resonances could be needed for
a more detailed description of this channel when only higher W are
considered.

Given the overprediction of the low-Q2 BEBC data for π+ production off
the proton, it is interesting to compare these results to what we obtain
for the ANL data which was used to determine the axial form-factor
of the delta in Ref. [30]. The comparison is shown in Fig. 3.29, the
difference between the BEBC and ANL results is due to the difference
in flux, with the BEBC operating at much larger energies, a cut W <
1.4 GeV is applied for both experiments. A clear discrepancy of the
data-model comparison is found when comparing the two datasets. The
agreement with the ANL data is of course expected as it was used to fit
the axial form-factor of the delta. The BEBC data is described quite well
for large Q2 as found previously, but tends to values similar to the ANL
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Figure 3.30: W -dependence of the ANL data (green dots), the hybrid
model results (purple lines) have been normalized to the
same are as the data in the shown region of W .

data for low Q2 while the model predicts a cross section that is some
20 percent larger. Thus, either the experimental data is inconsistent,
or the axial form factor of the delta is not well constrained by only
the low-energy ANL data for which the vector-axial contribution is a
complicating factor compared to the high-energy data.

We note that the ANL data is obtained from a predominantly deuteron
target and that we make no effort here to include nuclear corrections in
this comparison. It is unclear which, if any, corrections due to deuteron
effects have been made in the experimental data reported by ANL. For
the BEBC data we show the results obtained with a proton fill of the
detector and a deuteron-fill. A quite significant decrease is found for
small Q2, although the large uncertainties dominate this effect.

In the fit of the axial coupling to the delta [30] which we use in this
work, deuteron corrections where implemented following the approach
of Ref. [32]. In said approach the momentum distribution implied by
the initial-state deuteron wavefunction is taken into account, with the
neutron acting as a spectator. Practically speaking, the off-shell inclu-
sive cross section is folded with the deuteron momentum distribution,
i.e. the plane-wave impulse approximation. The resulting smearing of
the cross section, because of the fast drop in the deuteron momentum
distribution, is reported to lead to at most a 7-percent reduction of
the cross section compared to the free proton result [30]. In recent
work [76, 115] the effects of FSI on the neutrino-deuteron SPP cross
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Figure 3.31: W -dependence of the BNL data (green dots), the hybrid
model results (purple lines) have been normalized to the
same are as the data in the shown region of W .

sections where taken into account explicitly, the results show that in
interactions on the deuteron where the final-state is p + n, FSI effects
are sizable while with a p+ p final state the spectator approach suffices
to describe the interaction. In Ref. [76], the authors apply corrections to
the ANL and BNL total cross sections due to deuteron effects indicating
an increase up to 10 percent for the charged pion production channels.
This model has to our knowledge not yet been applied to the Q2 or W
distributions, but one might expect that effects would be largest at small
Q2 as hinted to by the BEBC data.

Deuteron corrections and flux uncertainties aside, the large underes-
timation of the total π+ production cross section off the neutron is of
course indicative of different problems in this channel. The crossed delta
contributes strongly to this reaction, and large cancellations between
the crossed delta and the background are present. This observation
spurred the authors of Ref. [29] to introduce an additional contact term
derived from the difference between the Rarita-Schwinger spin-projector
and the pure spin-3/2 projector. The strength of the contact term was
fitted to data and a better description of this channel was obtained, while
retaining a reasonable description of the other interaction channels, with
the only cost seemingly being that the experimental φ∗π distributions
seem to be mirrored as can be seen in Ref. [77]. We do not include this
contact term here, in view of these results however it seems interesting
to assess the effect of consistent higher spin interactions, in particular
in the crossed channel.
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Another possibility for resolving the discrepancy might be found in
the axial form-factors of the other components of the model. The
W -dependence shown in Fig. 3.28 shows that the second resonance
region (here the S11 and D13) play a large role in this channel. While
the delta contribution is determined by a fit to the data (in the pπ+

channel), for these resonances we make use of PCAC and a simple
ansatz for the Q2-dependence of the form factors. Moreover for the
D13 the form-factors that cannot be determined by PCAC are simply
set to zero. In Ref. [26] Lalakulich showed, by setting the undetermined
form-factors (CA4 and CA3 ) to one, that the contribution of the other
terms can be of a similar size if not larger than the C5 terms. Given
the rather complex behavior of the form-factors in the case of the vector
current, where notably the S11 helicity amplitudes drop slowly with Q2,
it would be optimistic to assume that the Q2-dependence of the axial
form factors for resonances beyond the delta is well determined. This
is evidenced by the comparisons in Fig. 3.27, but also more clearly by
duality studies [116, 117]. There, one finds that for the total inelastic
electromagnetic structure functions a resonance description oscillates
around, and converges smoothly to the structure functions obtained
from DIS, this property is referred to as quark-hadron duality. This
is at variance with what is obtained in the case for neutrino interactions
in many models, one finds that the resonant contributions undershoot
the DIS structure function and drop off too quickly [116, 117]. In
Ref. [118], for purely illustrative purposes, Sato showed that when the
Q2 dependence of the axial helicity amplitudes (or form-factors) was
taken to be the same as those for the vector current, duality was found
also for neutrino interactions.

The discrepancy is however already visible in comparison to data where
W < 1.4 GeV, such that in the absence of significantW -smearing higher-
mass resonances are mostly rejected. A shape-only comparison to the
W distribution found in the ANL and BNL experiments is shown in
Figs. 3.30 and 3.31 respectively. In these comparisons both the model
and the data are normalized to one. We find a good agreement for the
delta-dominated charged pion production off the proton for both exper-
iments, but for the other interaction channels (especially for the higher-
energy BNL data) the relative contribution of the delta peak tends to be
overestimated. Surprisingly, we do tend to find a good agreement with
the shape of the high-W cross section. Given the comparison to these W -
distributions, and knowing that we underpredict the nπ+ cross section,
if we assume that the delta contribution is well constrained it seems
that the data imply that the high-W region is instead underpredicted
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and that the intermediate W region is more significantly filled. Due
to the large scatter on the data however it is impossible to draw any
definite conclusions from this comparison, and the broadening along the
delta may just as likely be due to experimental precision. Based on
invariant mass, a candidate for inducing an increase in the dip between
the delta and D13/S11 region could be the Roper resonance (P11(1440)).
The problem is that its branching ratio to pion-nucleon is small and its
width is large such that it only provides a small contribution, as such
even when we increase the axial coupling to the Roper to twice its PCAC
value, the effect on the total cross section is far too small to affect the
model-data comparison significantly.

3.7 Conclusions

We have presented the model of Ref. [113] for electroweak single pion
production off the nucleon and discussed minor modifications made in
this work. We have benchmarked the vector-current of the model by
comparison to the ANL-Osaka DCC and MAID07 analyses of electro-
production [34, 66]. We find reasonable agreement for electromagnetic
interactions, and have pointed out where the model is lacking. We
find moreover that the DCC and MAID07 models can disagree up to
a factor 2 for charged pion production reactions at large values of Q2.
We have extracted the charge-changing vector current from the MAID07
and DCC analyses and performed a comparison to the hybrid model
presented in this work. Contrary to the electromagnetic case, we find
that the DCC and MAID07 results agree much better for the isovec-
tor current, and that the hybrid model gives a good reproduction of
these results especially when considering the relative simplicity of the
model. The axial couplings in the hybrid model are estimated from the
pion-nucleon couplings through the PCAC hypothesis. We have as an
additional benchmark used the axial current to compute pion-nucleon
scattering observables with good results. Finally we showed results
for flux-averaged neutrino-induced pion production and compared them
to the ANL, BNL and BEBC datasets [72, 73, 75, 110]. We find a
reasonable description of neutrino induced positive pion production off
the proton and neutral pion production, but underestimate the positive
pion production of the neutron by almost a factor two for high energies.
We argue, by comparing the vector-vector contribution of the hybrid
model to the one of the ANL-Osaka DCC for flux-averaged results,
that the discrepancies in describing neutrino data should be due to the
description of the axial current.
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Chapter 4

Scattering off nuclei

In this chapter we explain our approach for the description of single pion
production of nuclei. We treat the process described schematically by
the conservation of four-momenta

kµ + PµA = k′µ + kµπ + kµN + PµB, (4.1)

where kµ = (E,k) and k′µ = (E′,k′) describe the initial and final-
state lepton respectively. The initial state nucleus PµA = (MA,kA = 0)
is at rest in the lab-frame, and the final-state nucleus PB = (EB =
M0
B+E∗B+TB,pB) is left in a state with invariant mass MB = M0

B+E∗B
and excitation energy E∗B.

Following the definitions in Chapter 2 the cross section is given by

d8σ(E)

dE′dΩdEπdΩπdΩN
= F2

X

k′

E

MNkπkNMB

2 (2π)8EBfrec
LµνH

µν
X (4.2)

with the recoil factor

frec = |1 +
EN
EB

(
1 +

kN · (kπ − q)

|kN |2
)
|. (4.3)

where q = k− k′. The couplings are

F2
CC = G2

F cos θ2
c , F2

WNC = G2
F , F2

EM =
1

2

(
4πα

Q2

)2

, (4.4)

for charged-current, weak neutral-current and electromagnetic interac-
tions respectively.
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4.1 Kinematics

The 2 → 4 scattering process, where one of the final state particles
is left in an arbitrary excited state requires 9 non-trivial independent
kinematic variables. For single-pion production these can be chosen
as (E,E′, cos θl, Eπ,Ωπ,ΩN ,MB). From these variables, given that the
direction the incoming beam is known and the initial nucleus is at rest
in the lab frame, the four-vectors of all particles can be determined.
Energy and momentum conservation, with ω = E − E′, give

ω +MA = EB + EN + Eπ, (4.5)

pB = −pm = q− kN − kπ. (4.6)

We can define the missing mass

Mm = MB +M −MA = M0
B + E∗B +M −MA (4.7)

such that

ω = Mm + TB + TN + Eπ, (4.8)

and the missing energy is Em = Mm + TB. The kinetic energy of the
final-state nuclear system with invariant mass MB = M0

B +E∗B is given
by

TB =

√
M2
B + (q− kπ − kN )2 −MB, (4.9)

One can solve Eqs. (4.8 - 4.9) for the nucleon momentum, the solution
is given in Ref. [119].

We will however simplify this by neglecting the small kinetic energy of
the recoiling nuclear system. The recoil energy is small as the residual
nucleus is heavy and hence can gain quite some momentum with a
relatively small gain in kinetic energy. The momentum with which the
residual system recoils comes from the knockout of a bound nucleon with
a momentum of the order of the Fermi momentum. The kinetic energy
is then

TB =
√
M2
B + p2

m −MB ≈
p2
m

2MB
+O(

p4
m

M2
B

). (4.10)

If we assume values suitable for a carbon nucleus, MB ≈ 11MN and
|pm| . kF ≈ 220 MeV, we obtain TB . 2.5 MeV, and clearly this
decreases with larger nuclear masses. If we neglect the recoil energy, the
missing energy is Em = Mm = MB +M −MA, and the nucleon energy
is simply given by TN = ω − Eπ − Em.

102



Scattering off nuclei

4.1.1 Missing energy distribution

We will model the nucleus with the relativistic mean field (RMF) frame-
work. The RMF model and structure of the wavefunctions are described
in more detail in Appendix B.

In the central RMF potential one finds that nucleons occupy discrete
orbitals that are labeled by the relativistic angular momentum quantum
numbers κ mj , with fixed energy-eigenvalues for every κ, the states are
degenerate in mj . The residual nucleus can then be left in an excited
state corresponding to knockout of a nucleon from these orbitals. The
semi-inclusive cross section is then

d8σ

dE′dΩ′dEπdΩπdΩN
=∫

dEmδ (ω − Em − TN − Eπ)F2
X

k′

E

MNkπkNMB

2 (2π)8EB
LµνH

µν

= F2
X

k′

E

kπ

2 (2π)8Lµν
∑
κ

(
MNkNMB

frecEB
Hµν
κ

)
, (4.11)

e.g. it is the sum of exclusive cross sections, each for a different fixed
missing energy Em = −Eκ corresponding to the shells. We discuss the
hadron tensor and its dependence on the kinematics in the next section.

Such a pure shell model treatment is known to be an approximation to
more realistic missing-energy profiles that are obtained in experimental
one-nucleon knockout studies. Electron scattering data shows that the
discrete states obtain a width, and are partly de-occupied with some of
the strength appearing at large missing energies beyond the shell-model
region. This spreading and de-occupation is understood to be due to
correlations not included in the mean-field (both long- and short-range)
and the effect of FSI [120]. These more complex missing energy and
momentum profiles have been taken into account in neutrino interac-
tions in particular in the factorized plane wave impulse approximation
(PWIA). In such an approach the off-shell single-nucleon cross section
is weighted by an effective spectral function [40, 121–123]. A similar
missing-energy profile, that takes into account also a background due to
short-range correlations, based on the spectral function of Ref. [121, 124],
was added to the same RDWIA approach described in the next section
in Ref. [125] to describe one nucleon knockout in neutrino experiments.
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4.2 Nuclear currents

The hadron tensor for the interaction with a shell labeled by the angular
momentum κ is

Hµν
κ =

Nκ

2J + 1

∑
mj ,sN

[
Jµ
(
mj , sN , Q

µ, kµN , k
µ
π

)]†
Jν
(
mj , sN , Q

µ, kµN , k
µ
π

)
(4.12)

where sN and mj are the projections of the spin of the final-state nucleon
and the angular momentum of the bound state, and we average over the
2J + 1 possible states for mj . The occupation of the state is Nκ, which
in the pure shell model will also simply be 2J + 1 per shell.

To make approximations to the hadron current clear, it is instructive to
first consider the current in momentum space

Jν =
1

(2π)3/2

∫
dp′N

∫
dp′πψ

sN (p′N ,kN)φ∗ (p′π,kπ)
Oν
(
Qµ, k′N , k

′
π, p
′
m

)
ψ
mj
κ

(
p′m = p′N + p′π − q

)
. (4.13)

Here ψsN (p′,pN ) and φ∗ (p′,kπ) are the outgoing nucleon and pion
wavefunctions which are functions of the primed momenta and have
asymptotic momenta kN and kπ. The bound state wavefunction is ψκ,
and the projections of spin and angular momentum of the bound state
are denoted by superscripts sN and mj respectively.

In our spherical-symmetric nucleus the outgoing nucleon and pion are
described by energy eigenstates, the energies are defined by the on-shell
dispersion relation E2 = k2 +M2 with k the asymptotic momentum. In
the nuclear interior however the wavefunctions are not states with fixed
momentum, the momentum operator acting on the wavefunctions yields
the primed momenta. As such the transition operator should be de-
termined as function of the primed four-momenta, e.g. k′N = (EN ,p

′
N ),

which are related by energy momentum conservation Qµ+pµm = p′µπ +p′µN .
This implies a non-trivial computational problem, as for every single
value of the asymptotic momenta and for every single-particle orbital,
a six-dimensional integral has to be performed where. Moreover a com-
plicated transition operator has to be computed for every point of the
integral. We will discuss the approximations that are made to make the
computation of the hadron current feasible over the broad phase space
spanned by neutrino experiments.

We will in this work always treat the pion as a plane wave. A plane wave
function in momentum space gives simply a delta-function (2π)3/2δ(p′−
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p) such that one of the integrals can be performed immediately and we
get

Jν =

∫
dp′N ψ

sN (p′N ,kN)Oν (Q, p′m, kµπ , k′µN )ψmjκ (
p′m
)
. (4.14)

We can introduce the approximation in which the operator is evaluated
for the asymptotic four-momenta

Oµ
(
Q, p′m, p

′
N , p

′
π

)
→ Oµ (Q, pm, kN , pπ) (4.15)

instead of for every primed momentum in the integral. With this ad-
ditionally, the operator is independent of p′N and we can rewrite the
hadron current by writing the momentum space wavefunctions as the
Fourier transform of the coordinate space wavefunctions

Jµ =
1

(2π)3

∫
dp′N

∫
dr eip

′
N · rψsN (r,kN )Oµ(Q, pm, kπ, kN )

×
∫

dr′e−i(p
′
N+kπ−q) · r′ψmjκ (r′)

=

∫
drei(q−kπ) · rψsN (r,kN )Oµ (Q, pm, kπ, kN )ψ

mj
κ (r) . (4.16)

This reduction of the hadron current to a 3-dimensional integral in
coordinate space does not rely on the plane-wave approximation of the
pion, but only on the fact that the operator is evaluated for asymptotic
momenta. Starting from the full expression in Eq. (4.13), under the
assumption of Eq. 4.15, the 6 dimensional momentum space integral
can be written as a 3d integral in coordinate space. One obtains the
same result with substitution of the factor e−ikπ · r by the distorted pion
wave φ∗(r,kπ).

This expression is reminiscent of the one used in quasielastic scatter-
ing [125, 126], of course with a different operator and without the pion
plane wave kπ = 0. In the case of quasielastic scattering the operator
can be written as function of only Qµ by using energy momentum
conservation and the Gordon identity. For completeness, and as we will
use results for quasielastic scattering to motivate our choice of potential
the transition operator is

OµQE = F1(Q2)γµ +
F2(Q2)

2MN
σµνQν −GA(Q2)γµγ5 − GP (Q2)

2MN
Qµγ5.

(4.17)
Where the form factors are the same as in Eqs. (3.63-3.64). In the
case of SPP the operator is more complicated, and it is not possible
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to remove all explicit momentum dependence. Calculations of photo-
and electroproduction of single pions without assuming the asymptotic
approximation were performed in Ref. [127] in a non-relativistic mean
field model with distorted pion and nucleon waves obtained in optical
potentials. It is found that the cross section (obtained for fixed energy
and angle of both the pion and the nucleon) tends to be more smeared
out, but does not seem to differ much in total magnitude.

We will also consider the relativistic plane-wave impulse approximation
(RPWIA) where the final state nucleon is also described by a plane wave
and final-state interactions are thus neglected completely. In this case
p′N = kN , and the asymptotic evaluation of the operator, Eq. (4.15), is
imposed automatically. With the plane-wave u(kN , sN )e−ikN · r as final
state nucleon, the integral over r can be performed immediately and one
has

Jµ = (2π)3/2 u (kN , sN )Oµ(Q, pm, kπ, kN )ψ
mj
κ (pm = kπ + pN − q).

(4.18)
We point out that this is not the same as the PWIA, in which a off-shell
single-nucleon cross section is weighted with a momentum distribution.
The relativistic bound state contains negative energy components which
prevents such a factorization [128–130]. Comparisons of the RPWIA
with the factorized PWIA calculation using the same momentum dis-
tributions show however that the differences are small for flux-averaged
neutrino cross sections [125]. One sees that within the RPWIA the
initial state is probed at a fixed value pm, and that the nuclear degrees
of freedom separate to some extent. This contrasts with the RDWIA,
where the outgoing wavefunction is not a fixed momentum eigenstate,
and the initial state is probed in a broader region in momentum space.

4.3 Potentials for the final state nucleon

We describe the outgoing nucleon as a scattering state of the Dirac
equation with central scalar and vector potentials as described in Ap-
pendix B. There are several choices for the potential with which to
describe the final-state, the optimal choice of potential in our framework
will depend on which observables are described, in particular on whether
or not the outgoing nucleon is detected. We discuss the drawbacks and
applicability of several choices below.
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I. The RMF

An obvious choice is to use the same RMF potential that is used to
describe the initial state to also describe the outgoing nucleon wavefunc-
tions. This is an attractive choice especially because of its consistency.
In this case the initial and final state wavefunctions are orthogonal and
consistent, because they are solutions of the same Dirac equation. The
importance of orthogonality and consistency is discussed in the following
sections. It seems natural that, at least for small energies and momenta
comparable to those of the bound nucleons, the outgoing nucleon would
experience a similar effect from the nuclear system. RDWIA calculations
with an RMF potential are able to describe inclusive electron scattering
data at moderate momentum transfers, it is especially successful in the
quasielastic region for ω values before the quasielastic peak [131]. When
the nucleon energy becomes larger, comparisons to (e, e′) data show
that RMF potential is too strong, it predicts a large reduction of the
quasielastic peak, with a large cross section in the high-ω tail.

II. The Relativistic Optical Potential (ROP)

A real potential, such as the RMF, can only describe the elastic propaga-
tion of a nucleon in the medium, the phase shifts of scattering states are
all real. Inelastic interactions, in which the nucleon may exchange signif-
icant energy with the medium however are not included. The strength
of inelastic interactions increases with the energy of the nucleon as both
the phase space and number of interaction channels will increase. This is
a coupled-channels problem, as the flux of nucleons has to be distributed
over the different interaction channels. When the inelastic channels are
dense and smoothly distributed in the energy, in contrast to a process
dominated by a sharp peak at specific energy, the flux lost to them can
be described by adding an imaginary part to the potential. The resulting
complex, i.e. optical, potential describes elastic scattering observables
with all inelastic processes lumped together in the imaginary part which
removes flux from the elastic channel. Such relativistic optical potentials
(ROP) can be obtained for example by phenomenological fits of elastic
proton-nucleus (p − A) scattering cross sections [132–134]. The total
p−A cross section can be split up σtot = σel+σreac in elastic an inelastic
(reaction) cross sections. The ROP describes explicitly σel, such that
using the optical theorem the total cross section (and hence the total
reaction cross section) are obtained. With the increase in energy comes
a larger reaction cross section, and the real part of the potential should
decrease accordingly. These ideas are most clear in what is called the
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Dispersive Optical Model (DOM) [135–138]. The DOM aims to link
the description of scattering observables and nuclear structure with a
smoothly evolving energy-dependent optical potential which described
bound states and scattering states. The idea is to determine the real
part of the potential from its imaginary part, which is constrained by
scattering data, by a subtracted dispersion relation. By assuming a
static real mean field potential as the residual potential not given by the
dispersion relation, one links the description of bound and scattering
states. Such approaches are successful in their prediction of properties
of bound nucleons.

III. The Real ROP (rROP)

When one uses a ROP for the description of the final state nucleon in
Eq. (4.16) one only describes the cross section for nucleons that undergo
elastic FSI, as the imaginary part absorbs the flux that goes into inelastic
channels. As such the ROP approach has been applied to exclusive
(e, e′p) cross sections, where the probed missing energy is restricted to
a narrow region corresponding to a specific single-particle state [139–
142]. Because inelastic interactions would lead to the nucleon exchanging
significant energy with the medium, the strength lost to inelastic FSI will
not contribute to the exclusive cross section and should be removed. In
interactions where the final-state nucleon is not detected however, the
flux lost to inelastic channels should be kept. This is possible for example
in the Relativistic Green’s Function (RGF) approach, which consistently
redistributes the flux in all final-state channels, and conserves the total
flux in the sum over these channels [49, 143–147].

Another approach, which lacks the consistency of the RGF but is much
simpler, is to describe inclusive scattering by retaining only the real
part of the ROP obtained from p − A scattering, which we denote
as the rROP. In this way the total flux is conserved, and the energy-
dependent real part becomes weaker in a way which is empirically found
to describe the inclusive quasielastic cross section [148–150]. The ap-
proach has some drawbacks, the ROP parameters are only constrained
in the energy region in which it is fit, and it is not necessarily clear how
to extrapolate to energies beyond this region. As ROP are available
for kinetic energies up to 1 GeV, this does not pose a very significant
issue for describing neutrino interactions in the few-GeV region, as at
sufficiently high energies the RPWIA should give comparable results.
A different issue is the extrapolation to small nucleon energies, the
optical model is mostly applicably when the inelastic channels are dense
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and smoothly distributed in the energy. For small energies however
this assumption breaks down, as the excitation of narrow resonances in
the nucleus may provide a sharply peaked inelastic channel. Optical
potentials are generally fit to elastic n−A scattering down to incoming
kinetic energies of around 20 MeV.

IV. The Energy-Dependent RMF (ED-RMF)

At smaller nucleon energies, even within the range in which the ROP is
constrained, one still has to deal with the fact that the rROP potential
will produce wavefunctions which are inconsistent and not orthogonal
with respect to the initial state which in any case is described by the
RMF. In order to cure these ailments of the rROP, in Ref. [131] an
empirical energy-dependent potential for the description of inclusive
scattering was proposed. The simple approach consists of scaling the
static vector and scalar RMF potentials as function of the outgoing
nucleon energy. Instead of relying on the energy dependence of ROPs
fit to n−A scattering, the parametrization of the ED-RMF is inspired by
the SuSAv2 analysis of inclusive (e, e′) data [151–153]. In the SuSAv2
model for the quasielastic peak, use is made of the scaling functions
for inclusive nuclear responses obtained from the RDWIA with a RMF
potential and RPWIA models. These scaling functions are combined
with relative weights as function of momentum transfer q, where at small
q the RMF is mostly used, while at large q the resulting cross section
becomes closer to the RPWIA. This weights are used to determine the
scaling factor for the RMF potential as function of the nucleon energy
as described in Ref. [131].

The potential cures the inconsistency of potentials at low energy as it is
constructed to yield the same RMF potential used to describe the initial
state in that case. Hence while not fully consistent over the full energy-
range, it is consistent at small energies where the effect of orthogonality
matters most. Additionally the simple parametrization may be extended
to arbitrarily large nucleon energies. A comparison between several
rROP, ED-RMF, and the SuSAv2 model for QE scattering was presented
in Ref. [148], where it is found that all approaches tend to give similar
results from q = 300 MeV and larger.
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Figure 4.1: Comparison of the (e, e′) cross sections for scattering off
12C at small energy and momentum transfer obtained with
different models for the outgoing nucleon wavefunction.
Figure is from Ref. [131].

V. Orthogonality of initial and final state, the Pauli-Blocked
RPWIA (PB-RPWIA)

In order to isolate the effect of orthogonal wavefunctions we can orthog-
onalize the outgoing wave with respect to the bound-state wavefunctions
of the nucleus. An orthogonalized plane wave can be written as

|Ψ(pN , sN )〉 = |ψpw(pN )〉 −
∑
i

〈ψpw(pN )|ψi〉 |ψi〉 (4.19)

where the sum extends over a set of bound states ψi. When this set of
states are all mutually orthogonal it is easy to see that indeed 〈Ψ(pN , sN )|ψi〉 = 0
for all the included bound states. Explicit values for the projection
coefficients 〈ψpw(pN )|ψi〉 for relativistic bound states, and the proof
that the wavefunction defined by Eq. (4.19) is properly normalized can
be found in Ref. [131].

There are several lines of reasoning to determine the set of wavefunc-
tions which should enter in the orthogonalization. One could argue
for minimal-orthogonalization, including only the single-particle bound
state for which a transition matrix element is evaluated. There is a
caveat to this argument however, which is particularly important to
consider in the case of charged current interactions. The proton and
neutron bound states are not the same in the RMF model of the nucleus,
specifically the potential used to compute proton and neutron states
differs by the inclusion of the Coulomb potential in the former. For a
neutral-current interaction this poses no issue, but when a neutron is
transformed into a proton or vice versa this minimal approach gives no
clear recipe, nor argument, for what bound-state to orthogonalize to.
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Figure 4.2: Comparison of the (e, e′) cross sections for scattering
off 12C at intermediate energy and momentum transfer
obtained with different models for the outgoing nucleon
wavefunction. Figure is from Ref. [131].

This problem is solved when one orthogonalizes the outgoing wavefunc-
tion for protons or neutrons with respect to all occupied states of the
same particle type. One sees that this approach introduces the Pauli-
exclusion principle for the momentum states of the outgoing nucleon
explicitly. Consider a simple RFG model: both the initial and final
state are described as plane waves, with the initial state consisting of
plane waves with momenta up to a fixed Fermi momentum. One sees
that Eq. (4.19) implies that the outgoing wavefunction, and hence the
cross section, is zero when its momentum is below the Fermi momentum.

We can however take the orthogonalization one step further by orthog-
onalizing the outgoing wavefunction with all bound states of the same
particle type whether or not they are occupied. The rationale for this
procedure comes from the idea that both the scattering states and bound
states should be described by a single Hamiltonian, in which case all the
wavefunctions obtained from this Hamiltonian are orthogonal. It was
additionally found, that one obtains cross sections closer to the full RMF
result at low energies by including in the orthogonalization procedure
only those bound states which are accessible in the scattering, these
are bound states for which ω > Em. This last treatment was used in
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Refs. [131, 154], we further note that effect of orthogonality in nucleon
knockout reactions with electromagnetic probes has been studied in
Refs. [155–157].

To illustrate and summarize the discussion of different treatments of
the final-state wavefunctions we include a number of comparisons to
data for (e, e′) scattering off 12C, these were originally published1 in
Ref. [131]. In Fig. 4.1, we show the comparison of the RMF, RPWIA
and PB-RPWIA approaches at small values of energy and momentum
transfer. The RMF is indeed seen to give a good description of the cross
section, while the RPWIA overpredicts the cross section significantly. If
one implements Pauli-blocking in the RPWIA in a way that resembles a
RFG, i.e. by setting the cross section to zero for outgoing energies below
some cut-off, one sees that the correct strength of the cross section is
found, but the cross section is shifted to high ω compared to the RMF.
The PB-RPWIA on the other hand, with the orthogonalization only to
bound states for which ω > Em, yields a similar magnitude as the RMF
for small ω, although still overpredicting the higher-ω region slightly.

In the results of Fig. 4.2 we move to higher energy and momentum
transfer, for the top panels a clear quasielastic peak is visible and dom-
inates the cross section, while for the bottom panels the importance of
meson-exchange currents (MEC) and the Delta peak become compara-
ble to the QE peak. The MEC contribution is from Refs. [158, 159].
The resonance region is computed with the hybrid model introduced
in the previous chapter, these calculations include only the single-pion
production channel. The effect of orthogonality is negligible for these
kinematics and the PB-RPWIA and RPWIA give practically the same
result. For the kinematics of the top panels the ED-RMF and RMF give
similar results by construction. It is seen that compared to the RPWIA
the QE peak is shifted toward smaller ω in these approaches, which
gives an excellent reproduction of the data notably in the low-ω part of
the peak. For the higher energy cross sections in the lower panels the
ED-RMF and RMF give different results, in the RMF the peak strength
is shifted toward high-ω, which tends to overpredict the dip-region, the
ED-RMF cures this ailment to some extent and behaves more like the
RPWIA results.

In the following section we show the effect of orthogonal wavefunctions
on the relative cross section of muon- and electron-neutrino induced
interactions at the same incoming energy and scattering angle. This

1. The contribution of A. Nikolakopoulos as author to published manuscripts of which
results are included in this thesis can be found in Appendix D.

112



Scattering off nuclei

section was originally published2 in Ref. [154], and for completeness it
is included fully.

4.4 Orthogonality, Pauli-blocking and the ratio
between νe and νµ cross sections

In recent years, the quest to elucidate issues concerning neutrino os-
cillation parameters, the existence of sterile neutrinos, and CP viola-
tion has resulted in a worldwide boom in neutrino experiments and
collaborations [5, 6]. Accelerator-based oscillation experiments such as
MiniBooNE, T2K, MicroBooNE, and the upcoming DUNE and T2HK
facilities [8, 160–164] rely on neutrino scattering off atomic nuclei in
order to detect them in their near and far detectors. A reliable de-
termination of the neutrino-nucleus cross section is hence pivotal for
energy reconstruction and oscillation analyses. Theoretical analyses are
equally important for dedicated neutrino-nucleus experiments such as
e.g. MINERνA [165]. In view of the determination of oscillation param-
eters, and in particular the CP-violating phase, an accurate knowledge
of νe, νµ and νe, νµ cross sections over a large kinematic region is
indispensable. The differences between νe and νµ induced cross sections
have been puzzling the community for the last couple of years [166–169],
as it is crucial for the interpretation of the low-energy νe excess [160] and
for investigations of the neutrino mass hierarchy and the CP-violating
phase δCP [5, 161].

In Ref. [167] we have shown that the calculated ratio σνe/σνµ shows
important model dependencies. While models agree that electron neu-
trinos induce larger total cross sections than muon neutrinos [166, 168],
the picture can be radically different for specific kinematics. Evaluating
cross sections in a mean-field based Hartree-Fock continuum random
phase approximation (HF-CRPA) model, we found that for reactions
at forward lepton scattering angles, surprisingly charged current muon
neutrino-induced interactions show larger cross sections than their elec-
tron neutrino counterparts [167]. In Ref. [166] it was argued that a
νµ dominance could be an artifact of an incomplete treatment of the
phase space available to the interaction. This could e.g affect processes
studied with a Fermi gas model, as commonly done in experimental
analyses. Meanwhile, the question of which cross section is the larger
one at specific kinematics remained unanswered.

2. The contribution of A. Nikolakopoulos as author to published manuscripts included
in this thesis can be found in Appendix D.
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Figure 4.3: CRPA (full lines) and RMF (dashed) cross sections for
different incoming neutrino energies for a lepton scattering
angle of θl = 5◦ for muon (thick lines) and electron
neutrino (thin lines) induced interactions with 12C.

In this Letter, we examine the effect of final-state distortion in the
modeling of the cross section on this problem and show that a proper
treatment of the distortion of the outgoing nucleon’s wave function
resolves the issue. Using two different models and independent codes
we demonstrate that describing the reaction with a cross section model
that includes nucleon wave functions calculated in a nuclear potential
instead of unbound plane waves reveals that νµ induced cross sections
can indeed be larger than their νe counterparts at forward lepton kine-
matics. Approximating the outgoing nucleon’s wave function by a plane
wave description, which introduces inaccuracies related to Pauli blocking
and orthogonality issues, results in a considerable overestimation of the
responses at low energies and forward lepton scattering angles [170].
This kinematic region is especially relevant for the T2K experiment
where the oscillated νµ signal peaks around 300 MeV [161] and the low-
energy excess of electron-like events found predominantly for forward
scattering angles in the MiniBooNE experiment [160].

This Letter is organized as follows: first we show that in mean-field
approaches which include distortion of the final nucleon, the νµ induced
cross section is indeed larger than its νe counterpart in certain kinematic
regions. Then the influence of the kinematics of the process on these
cross sections is reviewed, and finally we show that a proper description
of Pauli blocking plays an essential role in this effect.

The first approach used in this work, the HF-CRPA model, is based
on a mean-field ansatz where the bound-state wave functions are ob-
tained through a Hartree-Fock calculation with a Skyrme interaction
[171, 172]. The final-state nucleon is described with a continuum wave
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function obtained using the same potential to describe the interaction
with the residual system. Long-range correlations are taken into ac-
count through a random-phase approximation approach using the same
Skyrme parametrization as residual interaction [172–174]. The width of
the nucleon states is taken into account in an effective way, folding re-
sponses with a Lorentzian [175]. In this formalism, the nuclear dynamics
are treated in a non-relativistic way, and relativized using the effective
procedure proposed in Ref. [176]. The HF-CRPA approach has been
successfully applied to the description of various electroweak scattering
processes [172, 173, 175, 177–179]. Short-range correlation effects are
very small at the kinematics of interest [166, 180].

The second model is the relativistic mean field (RMF) model for quasielas-
tic one-nucleon knock-out, where the initial and final state nucleon
single-particle wave functions are obtained as solutions of the Dirac
equation with a mean field potential. The potential is obtained by a
self-consistent calculation with a nucleon-nucleon interaction described
by a Lagrangian which includes meson fields to parameterize the cou-
pling [181, 182]. It has been shown that the RMF model describes well
inclusive electron scattering off nuclei [183–186].

In both approaches, the outgoing wave function is computed in the same
nuclear potential as the one used for the bound nucleon states, thereby
including the essential feature of orthogonality of initial and final state.
In this respect, our models contrast with other approaches that ignore
secondary interactions of the outgoing nucleon.

The RMF and HF-CRPA charged current quasi-elastic (CCQE) cross
sections for a selected set of kinematic conditions with small energy and
momentum transfers are shown in Fig. 4.3. Although giant resonances
cannot be reproduced with the RMF model, its basic features agree well
with the HF-CRPA results, in particular confirming the νµ/νe ratios
found in [167], with larger cross sections for the reactions producing the
heavier lepton in the final state.

The fact that cross sections producing a relatively heavy muon in the
final state can be larger than the ones with a light outgoing electron
at the same incoming energy, scattering angle and energy transfer, may
seem counter-intuitive, but should in fact not be so surprising. Looking
into the kinematics of the reaction, it becomes clear that for forward
lepton scattering angles, at a given energy transfer ω, the correspond-
ing momentum transfer q is larger for muon neutrinos than for elec-
tron neutrinos exactly because the former reaction generates a charged
lepton with a larger mass. Indeed, for forward scattering kinematics
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Figure 4.4: HF (full line) and HF-PWIA (dashed) cross section for
scattering off 40Ar for different lepton scattering angles
at a fixed neutrino energy of 200 MeV, for neutrinos in
panels (a)-(c) and antineutrinos in panels (d)-(f). The
momentum transferred to the nucleus as a function of the
energy transfer for both muon and electron neutrinos at
the same kinematics is shown in panels (g)-(i). To better
represent the cross section at the most forward angles the
HF-PWIA cross sections have been scaled down in some
panels.

(cos θl ≈ 1), the momentum transferred to the nucleus by a neutrino
with incoming energy Eν that in the charged-current process transforms
into a lepton with mass ml and momentum Pl, is for fixed energy transfer
ω given by

q =
√
E2
ν + P 2

l − 2 cos θlEνPl ≈ Eν −
√

(Eν − ω)2 −m2
l , (4.20)

and hence increases with growing lepton mass. The struck nucleon
receives a smaller momentum q from the electron neutrino than in a
muon neutrino-induced interaction. This brings along larger nuclear
responses R(q, ω) for muon neutrinos. The lepton kinematic factors that
are combined with the responses [175, 187, 188] to construct the cross
section generally tend to favor smaller lepton masses in the forward
scattering region, but this effect is not large enough to neutralize the
dominance of the νµ responses [186, 189]. This leads to higher cross
sections for reactions induced by muon neutrinos, the larger lepton mass
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in the final state notwithstanding. Due to their geometry, near detectors
tend to be sensitive mostly to forward lepton scattering events. The
effect observed here is therefore not marginal but could strongly influence
total rates if the angular dependence of the cross section ratio is not
fully taken into account. In this kinematic region the cross section is
extremely sensitive to subtle nuclear effects that require careful modeling
to be fully understood. The importance of a meticulous analysis, judging
the impact of the different mechanisms at play in the interaction and
the nuclear medium, is illustrated in the following paragraphs.

In Fig. 4.4, we demonstrate the link between momentum transfer and
cross section, showing the double differential cross section for both elec-
tron and muon (anti)neutrino scattering off argon for a fixed incoming
energy, and various scattering angles of the charged lepton together
with the momentum transfer in the interaction. For small momentum
transfers the ratio σνµ/σνe can be straightforwardly understood by the
difference of momentum transfers depicted in the panels (g) to (i) of
the figure. The cross sections are shown for a Hartree-Fock as well as
for a HF plane wave impulse approximation (HF-PWIA) calculation.
As described above, in the former one the outgoing nucleon wave is
distorted by the presence of the nuclear potential, in the latter one, the
wave function is replaced by a plane wave. Comparing the full HF results
to the HF-PWIA ones, it is obvious that modeling the distortion induced
by the nuclear medium is essential. For small momentum transfers, a
plane-wave treatment of the nucleon completely passes by the strong
influence of the nuclear potential on the slow final nucleon and yields
far too high responses.

In the following, we will compare RMF with relativistic plane wave
impulse approximation (RPWIA) results and look into the role of Pauli
blocking. In an RPWIA approach, the outgoing nucleon is modeled by a
relativistic plane wave with fixed momentum. On the other hand, in the
RMF approach presented above, the outgoing nucleon has a well-defined
energy, but its momentum is only asymptotically defined. Indeed, only
far enough from the nuclear potential, the wave function behaves as an
on-shell nucleon with well-defined momentum. The outgoing wave func-
tion in the RPWIA hence has a large component which is non-orthogonal
to the bound states of the nucleus. To illustrate the effect of this on
cross sections, we introduce the Pauli-blocked RPWIA (PB-RPWIA).
In this approach the outgoing nucleon wave function is described by a
relativistic plane wave which is orthogonalized with respect to the bound
states. This is done by projecting out the overlap with the bound states
[186, 190–192].
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angle is θl = 5◦.

In Fig. 4.5 the RPWIA approach is compared with the PB-RPWIA
results for both νµ and νe induced interactions. In the RPWIA results
the different shells are clearly visible, and the results greatly overesti-
mate the PB-RPWIA cross sections, which reproduce the magnitude of
the RMF and CRPA cross sections of Fig 4.3. It is worth noting that
the RPWIA results probe the same kinematic range as the PB-RPWIA,
RMF and HF-CRPA approaches. In the calculations, no cuts are made
in the phase space, the momentum distribution of the initial- and final-
state nucleons are completely determined by the wave functions. As
seen in the HF-PWIA results above, in the RPWIA the νe cross sections
always have a larger magnitude than the νµ ones. However, once the
spurious non-orthogonal contributions are removed from the plane wave
the situation is reversed for forward kinematics. In the RMF and HF-
CRPA approaches this effect is naturally implemented because the final-
state nucleon is constructed from continuum states, with well-defined
quantum numbers, in the same potential as the initial state. In this way
Pauli-blocking is implemented in a straightforward quantum mechanical
way. This consistency between initial and final states is also present in
the Pauli blocked relativistic Fermi gas model, however the treatment
of the nuclear initial and final state as plane waves is unrealistic in
this kinematic region. In the presented approaches nucleons with small
momenta can still be emitted from the nucleus, contrary to in a Fermi
gas, but the treatment of the final-state wave function naturally leads
to a strong reduction of the cross section for slow nucleons.

Figure 4.6 summarizes our findings. The left panel shows the ratio of νe
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Figure 4.6: Ratio of 12C cross sections as a function of incoming
energy and lepton scattering angle, combined with relative
strength of the cross section at the same kinematics (nor-
malized such that the maximum in this kinematic region
is 1). Results shown here were obtained within the CRPA
approach, RMF ratios are very similar [186].

to νµ CRPA cross sections to be smaller than 1 over a large part of the
forward scattering region for a broad range of incoming energies. The
right panel testifies that this region represents a considerable part of the
scattering strength.

In conclusion, using different models and independently developed codes,
we have shown that taking into account the distortion of the final-
state nucleon in the description of charged-current quasi-elastic neutrino
scattering off atomic nuclei, muon neutrino-induced CCQE cross sections
are larger than the equivalent reaction caused by an electron neutrino
for reactions at small energy and momentum transfer. Indeed, in this
kinematic regime the nuclear response is extremely sensitive to subtle
differences in energy and momentum transfer, resulting in sizable differ-
ences in cross sections. This result sheds light on existing uncertainties
in ratios that are essential in the analysis of neutrino oscillation and CP
violation searches.
As shown, the effect is robust and cannot be seen as an artifact of one
model. It is present for neutrinos as well as antineutrinos and manifests
itself throughout the nuclear mass table. It is related to the kinematic
peculiarities of the interaction in this regime. An incomplete treat-
ment of the distortion of the final nucleon’s wave function and of Pauli-
blocking effects might however obscure the dominance of muon neutrino
induced processes over electron neutrino induced ones. These findings
point to the importance of an appropriate description of nuclear effects
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current scattering at an incoming energy of 250 MeV and
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0. Figure

from Ref. [193]

on neutrino-induced cross sections, especially for forward scattering, and
the need for a careful evaluation of the relevance of various influences of
the nuclear medium on the interaction.

4.5 Consistent wavefunctions for initial and fi-
nal state and CVC

A common issue with applying a single-nucleon current derived for free
nucleons to nuclear matrix elements is that there is no prescription to
apply said operators to a general off-shell nucleon. Notably this often
leads to violation of current conservation, expressed as the relation

QµJ
µ = ωJ0 − qJ3 = 0, (4.21)

where q is along the z-axis and Jµ is some conserved current such as
the Dirac current associated with the operator γµ. When this relation
is not satisfied it may be explicitly imposed by defining J3 ≡ ω

q J
0. The

opposite approach, where J0 is defined in terms of J3, is also possible
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but usually not employed as the 0 component is related to the conserved
charge and is assumed to be more accurately described. In the RMF
approach, the initial and final nucleon states are solutions of the Dirac
equation with central potentials

i/∂µψ(r) =
[
M − S(r) + γ0V (r)

]
ψ(r). (4.22)

By making use of i∂µψ(r) = kµ(r)ψ(r) we can see that the Dirac current,
corresponding to the vector operator γµ, evaluated between initial and
final state spinors ψ and φ respectively with Qµ = kµf − k

µ
i

QµJ
µ =

∫
dreiq · r(kf (r)− ki(r))µψγµφ (4.23)

=

∫
dreiq · r(i∂µψ)γµφ+ ψγµ(i∂µφ) (4.24)

=

∫
dreiq · rψ

[
M − Sf + γ0Vf

]
φ− ψ

[
M − Si + γ0Vi

]
φ.

(4.25)

Hence, the vector current is conserved if the initial and final-state are
computed within the same potential. While this is not the case for
the energy-dependent potentials introduced earlier, we point out that
this is not a fundamental flaw of the energy-dependent potential but
rather comes from the limitation we imposed ourselves of using sta-
tionary solutions ψ(r, t) = ψ(r)e−iEt of fixed energy, meaning a trivial
integral over the time coordinate was already performed in arriving to
our expression of the current. In any case, some deviation from current
conservation should be expected in neutrino interactions, as e.g. in
charged-current interactions on a neutron the final state is a proton
an vice-versa. The Coulomb potential which we include for protons
should violate current conservation, as isospin is not a symmetry of the
electromagnetic interaction.

The previous discussion implies that the problem with violation of CVC
does not necessarily arise from the off-shellness of the initial state,
but instead from the fact that initial and final state are not treated
consistently. We show this explicitly in Fig. 4.7. We compare responses
for single nucleon knockout at low energies obtained within the RPWIA
and EDRMF. In both cases we compare the result obtained with the
full transition current, and when CVC is explicitly imposed by setting
J3 ≡ ω

q J
0. If both descriptions differ, the conservation of the current

is violated. We see that in the RMF approach indeed both approaches
give the same result, while in the RPWIA differences arise between both
approaches, where the results in which CVC is not explicitly imposed
are significantly smaller.
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4.6 Conclusions

We have provided the expressions for the cross section and nuclear
currents within the relativistic distorted wave impulse approximation
(RDWIA). We have discussed the applicability of different approaches
for the potential in which the outgoing nucleon wavefunction may be
treated. We pay special attention to the effects of consistency and
orthogonality of initial and final-state wavefunctions and show how these
lead to Pauli-blocking and current conservation. We put forward that
the Energy Dependent RMF (ED-RMF) approach retains the good low-
energy behavior of the RMF approach, while curing its problems at high
nucleon energies. We conclude that the ED-RMF should be a suitable
potential for the description of the outgoing nucleon wavefunction in
situations where the outgoing nucleon remains undetected.
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Chapter 5

RPWIA for single-pion
production off the nucleus

In this chapter the comparison of RPWIA results to π+ production data
on a water target reported by the T2K experiment is presented. The
contents of this chapter were published1 originally in Ref. [37].

5.1 Introduction

Neutrino energies from beams in accelerator-based experiments, such
as MiniBooNE [194, 195], T2K [196, 197], MINERvA [198, 199] and
NOvA [200], are spread over a broad range with contributions from
increasingly more energetic neutrinos (as is the case in e.g. DUNE [162]).
As the energy of the incoming neutrino in an interaction is not precisely
known, all measurements are averaged over the incoming neutrino flux.
This means that the interaction of the neutrino with nuclear targets
should be known and reliably described over a large energy range in
order to be able to extract neutrino mixing parameters [5]. Single pion
production (SPP) provides a significant contribution to the signal in
current and future oscillation experiments. In addition to this, neutrino-
induced pion production is important in unraveling the axial structure
of the nucleon.

In this paper we compare the predictions of the hybrid relativistic plane
wave impulse approximation (hybrid-RPWIA) model for SPP with the
charged-current single charged pion (CC1π+) cross section on water

1. The contribution of A. Nikolakopoulos as author to published manuscripts of which
results are included in this thesis can be found in Appendix D.

123



Introduction

reported by the T2K experiment [197]. The T2K νµ-flux has a peak
for neutrino energies of approximately 600 MeV. The CC1π+ signal in
this energy region mostly consists of elementary single-pion production
through the decay of the delta resonance. The delta region is the main
focus of most models describing SPP [10, 12, 13, 15–23, 201]. Most
models that aim at describing the low energy resonance region tend to
exhibit problematic behavior when they are extended to large values
of invariant mass (W & 1.4 GeV) because only first-order diagrams are
taken into account [31]. As an exception we mention the coupled channel
model of Nakamura et al. [22], which can be extended to larger values
of invariant mass (W . 2 GeV) through unitarization of the ampli-
tudes. The T2K data has a larger contribution from interactions with
W > 1.4 GeV compared to the MiniBooNE [194] and MINERvA [198]
data. It is in this respect an interesting dataset, the contributions of the
high-W and Delta dominated regions are combined in the cross section,
clearly showing the need of a model that can be extended over a broad
kinematic range.

The hybrid model for SPP on the nucleon is described in Ref. [31]. The
aim is to describe the elementary reaction over a large range of the
invariant mass. The hybrid model combines a low energy model (LEM),
with a high energy description based on a Regge formalism. The LEM
is based on the combination of the first order background diagrams ob-
tained from the Chiral Perturbation Theory (ChPT) Lagrangian density
for the πN -system [202], with the contributions of the delta and more
massive isospin-1/2 resonances [P11(1440), S11(1535), and D13(1520)]
[23, 201, 203]. For the resonances, the s- and u-channel diagrams are
included. The resonant amplitudes are regularized by a Gaussian-dipole
form factor [204, 205] in order to retain the correct amplitude when
s(u) ≈ M2

res, meanwhile eliminating the unphysical contributions far
away from the resonance peak. For high values of the invariant mass,
the non-resonant amplitudes present pathologies due to the fact that
only the lowest order diagrams are considered [31]. Taking into account
higher order diagrams quickly becomes unfeasible. Alternatively, the
high-energy region can be readily described by a Regge approach, which
provides the correct s-dependence of the amplitude at high W . Our
approach is based on the procedure for “reggeizing” the non-resonant
background as proposed in Refs. [206, 207] for the vector current contri-
butions, which was extended to the axial current in Ref. [31]. The low-
and high-energy models for the non-resonant contributions are combined
by a smooth W -dependent transition function centered at W = 1.7 GeV,
with a narrow width such that the models are combined in the region
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RPWIA for single-pion production off the nucleus

1.5 GeV .W . 1.9 GeV.

The hybrid model is embedded in the nucleus using the relativistic plane
wave impulse approximation (RPWIA). The hybrid-RPWIA model is
described in Ref. [36], and was compared to pion production data pre-
sented by MINERvA [198, 199] and MiniBooNE [194, 195]. The impulse
approximation (IA) is adopted in the sense that we treat the hadronic
current as the incoherent sum of single nucleon interactions. The bound
nucleons are modeled by relativistic mean field (RMF) [181, 182] wave-
functions occupying discrete shells with well-defined angular momentum
and binding energy. The hadronic current in the RPWIA is then ob-
tained by describing the final-state pion and nucleon by plane waves
with well-defined momentum.

The hybrid-RPWIA model is fully relativistic in both the operators
and the wavefunctions. However it does not contain any final state
interactions (FSI). The elastic distortion of the outgoing nucleon and
pion is ignored as they are described by plane waves. This can be
treated consistently in our relativistic quantum mechanical framework
by distortion of the outgoing wavefunctions, which will be the next step
in this project. Inelastic FSI, which should be taken into account to fully
describe π+ production on the nucleus include pion-absorption, charge-
exchange reactions, and secondary pion production. These processes are
usually treated in Monte Carlo generators using intra-nuclear cascade
models [43, 208, 209], or kinetic transport theory [47], to propagate the
particles originating from an elementary vertex through the nucleus. As
mentioned, the use of reliable microscopic models is essential to gauge
the understanding of the fundamental process. In this work, the effect of
FSI is judged by comparing the results to the predictions of the NuWro
Monte Carlo event generator, with and without FSI [209].

The structure of this paper is as follows. In Sec. 5.2, we compare the
results of the model to experimental data. In the first subsection 5.2.1
the effects of higher mass resonances, medium modification of the delta,
and the especially interesting high-W behavior of the LEM and hybrid-
RPWIA model are explored. In subsection 5.2.2 we compare our results
with those of the NuWro generator. The conclusions are presented in
Sec. 5.3.

5.2 Results

These data were obtained with the ND280 detector in the T2K experi-
ment. The phase space is restricted to Pµ > 200 MeV, Pπ > 200 MeV,

125



Results

cos θπ > 0.3, and cos θµ > 0.3 [197]. The signal is defined as a single
π+ and muon in the final state with no other mesons. We compute the
cross section on the water target by adding the contributions of two free
protons and the nucleons in 16O described within the RMF model.

5.2.1 The hybrid-RPWIA model

The hybrid-RPWIA model is confronted with the T2K CC1π+ data in
Fig. 5.1. Most information on the underlying pion-production mecha-
nism is obtained from the Pπ distribution, Fig. 5.1(a). The low momen-
tum region around the peak is dominated by delta-mediated pion pro-
duction, the higher mass resonances are seen to contribute up to around
1 GeV, and the Regge approach mainly affects the high momentum tail.

The dominance of the delta resonance in charged pion production is
clear from comparison with the calculation where only the delta, ChPT,
and Regge contributions are taken into account, omitting the higher
mass resonances. This is labeled as “Delta+BG” in Fig. 5.1, and is
computed without medium modification of the delta width. We see that
the higher mass resonances contribute up to 20% of the cross section for
Pπ between 0.5 GeV and 1 GeV. The other resonances have isospin 1/2;
therefore, they can only contribute in the u-channel to π+ production
on the proton. Indeed, the p(I3 = 1/2) + π+(I3 = 1) final state can
only couple to I3 = +3/2, allowing no I = 1/2 resonances in the direct
channel. For a full list of isospin coefficients for the different reaction
channels in the hybrid-RPWIA model see for instance table I in Ref. [31].
The influence of the isospin 1/2 resonances is thus mainly important for
interactions with the neutron, where they contribute in the s-channel.

Because of the importance of the delta resonance, the medium modifica-
tion of its decay width leads to a significant suppression of the cross sec-
tion. The width of the delta resonance is modified by the complex part
of the delta self-energy in the nuclear medium. We compute this effect
within the Oset and Salcedo medium modification (OSMM) formalism
[10, 23, 210]. The hybrid-RPWIA model with medium modification of
the delta is plotted with the solid red line in Fig. 5.1. The uncertain-
ties and inconsistencies pertaining to the use of this procedure for the
medium modification of the delta in the framework of our model were
discussed in [36]. In particular the ∆N → πNN process is included
in the modification of the width, a process that contributes to the
experimental signal. The contribution of this channel has previously
been modeled by multiplying the delta amplitude by a weighting factor,
which is then added incoherently to the cross section [23, 36]. We do not
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Figure 5.1: Single differential cross sections for the T2K CC1π+ data
sample [197]. We show the hybrid-RPWIA prediction
with and without OSMM of the delta width (dashed and
solid red lines respectively), compared to the low energy
model (LEM), which consists of the resonant and ChPT
background diagrams extended to arbitrarily large values
of invariant mass W (blue dotted lines). The LEM with
cutoff form factors for the resonances is depicted with the
blue dash-dotted line. To show the contribution of higher
mass resonances the hybrid model calculation including
only the background, delta resonance, and Regge-based
model is also shown (Delta+BG), it is computed without
medium modification of the delta width.
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include this reaction here, hence we consider the results with (without)
OSMM of the delta as a lower (upper) limit, so that the hybrid-RPWIA
model is illustrated by the red band. In principle, the decay width of
the other resonances is also modified in the nuclear medium. Including
this effect is in the best of cases not free of ambiguities, because the
other resonances are not as well known as the delta. Anyhow, their
contribution to the overall cross section is small, and approximately
limited to the region 0.5 GeV < Pπ < 1 GeV. Therefore, the medium
modification of the higher lying resonances is not taken into account, and
can be considered as a (relatively) small uncertainty in our predictions.

The LEM (with or without form factors) and the hybrid-RPWIA were
practically identical in there comparison to MiniBooNE and MINERvA
CC1π+ data as presented in Ref. [36]. In the MINERvA data, which
probes significantly more energetic neutrinos, a cut is made restricting
the phase space to W < 1.4 GeV, thereby ensuring that the dominant
reaction mechanism is delta-mediated pion production. For the kine-
matics presented here however, we see important deviations between the
different curves in Fig. 5.1, showing that regions of higher W contribute
significantly to the T2K signal. Indeed, due to the smooth transition
between the LEM and the Regge approach, the hybrid-RPWIA model
is identical to the LEM with form factors for W . 1.5 GeV. The point
at which these models start diverging can thus serve as a mark for the
onset of the region where interactions with higher W contribute.

The W > 1.5 GeV cross section is restricted to the high pion momen-
tum region, where comparison of the hybrid-RPWIA with the LEM is
most interesting. The cross section in the LEM for T2K kinematics
is illustrated with the dash-dotted blue line in Fig. 5.1(a). The LEM
with inclusion of Gaussian-dipole form factors for the resonances is also
shown, labeled as “LEM w/ FF”. Both results are computed without
OSMM. There are large deviations between these different model vari-
ations. Both the hybrid-RPWIA and the LEM with form factors seem
to compare favorably with the high Pπ datapoints. It should be clear
however that the LEM is unsuitable to describe the high W interactions,
it exhibits unphysical behavior because only the lowest order background
diagrams are taken into account [31, 201]. The cutoff form factors cure
some of the pathological behavior due to the resonant diagrams, but a
significant difference between the LEM with form factors and hybrid-
RPWIA model still exists, and is clearly exemplified by the results with
Pπ > 0.5 GeV.

In Figs. 5.1(b) and 5.1(c) where the cross section is presented in terms
of Pµ and cos θπ respectively, the hybrid-RPWIA approach predicts a
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Figure 5.2: Single differential cross sections in terms of pion momen-
tum (a) and scattering angle (b) compared to the CC1π+

data reported by the T2K experiment [197]. The hybrid-
RPWIA model is shown with a red band, where the lower
and upper limits correspond to calculations with and with-
out medium modification of the delta width respectively.
The NuWro cross section corresponding to the 1π1N final
state, and the full NuWro calculation before and after FSI,
both corresponding to the definition of the CC1π+ signal,
are shown. We also show separately the contribution of
coherent scattering in NuWro.

notably smaller cross section over the whole kinematic range compared
to the LEM. For these variables the delta contribution and higher W
components are not clearly separated. When comparing the models in
terms of cos θµ in Fig. 5.1(d), we see that the main differences are found
at forward muon scattering angles. This forward scattering region has
large contributions from neutrinos of higher energies, events with high
W and Pπ are mainly found here. Muons at larger angles mostly stem
from lower energy neutrinos, the kinematic region in which the delta
dominates. The differences seen in the forward lepton scattering cross
section are thus consistent with the variations of the models in the high
Pπ tail.

5.2.2 NuWro and Final State Interactions

The hybrid-RPWIA model compares favorably to the T2K CC1π+ data
sample. The total cross section reported by T2K is σtot = 4.25 ±
0.48(stat)±1.56(syst)×10−40cm2/nucleon [197], compatible with σtot =
4.82×10−40cm2/nucleon obtained with the hybrid-RPWIA model. This
result is the average of the predictions with and without OSMM, the
uncertainty (as illustrated by the red band in Fig. 5.2) due to medium
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modification of the delta width is around 9 %. However, these results
do not include any FSI, which are expected to reduce the cross section
due to absorption and charge-exchange of the produced pion. Indeed,
the NuWro Monte Carlo generator predicts a total cross section of
6.97×10−40cm2/nucleon before FSI, and 5.44×10−40cm2/nucleon after
taking into account FSI. In this section, we judge the impact of FSI on
the single differential cross sections in terms of muon and pion kinematics
by comparing our results to NuWro calculations. One should however
be careful in estimating the effect of FSI by directly comparing both
models because there are significant differences between them.

We use NuWro version 17.09, with default values for all parameters [211].
The elementary SPP mechanism in NuWro, i.e. before FSI, consists of
the delta resonance treated in the Adler-Rarita-Schwinger model [212],
parametrized by dipole form factors fitted to SPP data [74]. A phe-
nomenological non-resonant background is obtained from deep inelastic
scattering (DIS), it is added incoherently to the resonant cross section
[213]. For W > 1.6 GeV a model based on DIS [213, 214] and Pythia
hadronization routines is used [215]. A smooth transition from the
resonance region to DIS is implemented for W between 1.4 and 1.6 GeV
[216].

In NuWro, events originating from quasi-elastic scattering (QE), meson-
exchange currents (MEC), and coherent scattering are generated, in
addition to the elementary SPP process. The final-state particles from
these interactions, excluding those from coherent pion production, are
propagated through the nuclear medium where they can undergo sec-
ondary interactions [209].

We compare the hybrid-RPWIA model to three results corresponding to
different selection cuts in the NuWro simulation. First, we present the
result where only a π+ and a single nucleon are found in the hadronic fi-
nal state, before taking into account FSI. This result, labeled as “NuWro
w/o FSI 1π1N” and depicted with the dash-dotted blue lines in Fig. 5.2,
corresponds to the elementary SPP cross section described above, which
should be comparable to the hybrid-RPWIA model. The second result
is labeled as “NuWro w/o FSI” and corresponds to the full calculation
before FSI, where the hadronic final state is defined as a single π+ and
any number of nucleons (dashed blue lines in Fig. 5.2). In practice,
the main difference between the “NuWro w/o FSI”, and the “NuWro
w/o FSI 1π1N” cross sections stems from the contribution of coherent
scattering, which makes up around three percent of the former, and
does not contribute to the latter. We show the contribution of coherent
scattering in NuWro separately, it is depicted with the dotted line and
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Figure 5.3: Single differential cross sections in terms of Pµ (a), and
cos θµ (b), compared to T2K CC1π+ data [197]. The labels
are the same as in Fig. 5.2.

labeled as “NuWro COH”. Finally, the cross sections corresponding to
the experimental signal after FSI are also shown. The contributions of
QE and MEC to the cross section are negligible, and the most important
effect of FSI is a decrease of the cross section. This final NuWro result
corresponds to the solid blue line in Figs. 5.2 and 5.3.

The influence of FSI on the Pπ distribution mainly consists of a strong
reduction of the amount of pions with low momenta, this is shown in
Fig. 5.2(a). The characteristic shape of the Tπ cross section as shown
in Refs. [10, 23, 36], with a pronounced peak at low pion energies, is
largely missing in this dataset. This can be ascribed to the T2K phase
space being restricted to more forward pion scattering angles. The cuts
on muon variables only lead to an overall reduction of the Pπ cross
section leaving its shape unaffected. The restriction cos θπ > 0.3 however
results in a very strong reduction of pions with small momenta, thereby
quenching this peak. This can be seen in Fig. 5.4, where the NuWro
cross section with and without FSI is plotted for different kinematic cuts
as used in the T2K analysis.

The NuWro 1π1N cross section is basically the same as the full cross
section without FSI, the latter is slightly larger mainly due to the in-
clusion of coherent scattering. In any case, the NuWro 1π1N cross-
section is larger than the hybrid-RPWIA over the whole kinematic range.
This is consistent with our comparison to NuWro 1π+ calculations at
MiniBooNE and MINERvA kinematics [36]. The difference could be
attributed to the form factors used to describe the couplings. It was
shown in Ref. [31], where both models are compared to SPP neutrino-
deuterium data [217], that NuWro systematically obtains a larger total
cross section.
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Figure 5.4: Single differential cross sections in terms of Pπ without
any cuts, and for different kinematic cuts used in the T2K
data. The restriction to forward pion scattering angles,
necessary in this T2K analysis, masks the migration to
low pion momenta due to FSI.

The hybrid-RPWIA model tends to overestimate the number of pions
at the lowest momenta, leaving room for FSI. However, a reduction of
the low momentum peaks, as estimated by comparing to NuWro, would
lead to the hybrid-RPWIA underpredicting the lowest momentum bins
for both the Pπ, and Pµ cross sections shown in Figs. 5.2(a) and 5.3(a).
This is also found in the GiBUU prediction of Ref. [218], where it is
argued that coherent pion production could provide additional strength
in this region.

In the comparison of the hybrid-RPWIA model with MiniBooNE and
MINERvA 1π+ data, pion momenta up to approximately 500 MeV were
studied, but predictions for higher momentum were provided [36]. Here
the comparison is extended to larger pion momenta and we again see that
NuWro cross section in the high-Pπ region, which is dominated by DIS,
is larger than the Regge description in the hybrid-RPWIA model. The
small cross section in the higher Pπ regions, relative to the T2K data,
may point to a lack of higher mass resonances [219], or of high energy
mechanisms that may contribute to the signal after FSI. The problem
is tied to the description of the transition region. Adding additional
higher mass resonances would require unitarization of the amplitude
in the LEM, thereby extending the validity of the LEM such that the
transition region can be moved to larger values of W .

We show the comparison with the cos θπ distribution in Fig. 5.2(b). The
cross section in the hybrid-RPWIA model does not show the sharp rise
at forward scattering angles present in the NuWro calculations. It is in
this kinematic region that contributions from coherent scattering and
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DIS are most important. The effect of FSI is a constant reduction over
the whole range of cos θπ, except for the most forward angles where the
reduction is not as strong as for the rest of the angular range. This can
be partly attributed to the fact that the coherent scattering events are
not subject to FSI through the cascade in NuWro.

In Fig. 5.3 the comparison with the data in terms of muon kinematics
is shown. Again, a difference in the overall strength in the cross section
compared to NuWro is evident. The high-Pµ tail is described well by
the hybrid-RPWIA model, as is the low momentum peak. One could
expect a slight underestimation of the low-Pµ peak if FSI, as predicted by
NuWro, would be included. The same holds for the forward scattering
cross section, in agreement with the findings of Ref. [218]. We see
that these are exactly the kinematic regions where the NuWro coherent
scattering cross section provides additional strength. For cos θµ < 0.9
the model would be in agreement with the data even after a reduction
of the cross section from FSI as estimated from the NuWro result. The
coherent scattering cross section is negligible for larger muon angles,
therefore, the lower cos θµ cross section would remain unaffected.

It is interesting to compare the T2K-flux [220] with the neutrino fluxes in
MiniBooNE and MINERvA, and confront the datasets with each other
via comparison to the hybrid-RPWIA model predictions. The T2K flux
has a peak for neutrino energies around 600 MeV, comparable to the
energy regime spanned by MiniBooNE [221]. However, the T2K-flux
has a more significant high-energy tail. This, along with the restrictions
on lepton and pion kinematics in the T2K data, leads to the T2K
data having a larger contribution from high energy neutrinos than the
MiniBooNE data [194]. The MINERvA experiment spans a far larger
energy range, the flux peaks around 3 GeV, and extends to about 20 GeV
[222]. But, contrary to the MINERvA samples [198, 199], there is no re-
striction on (reconstructed) quantities such as W in the T2K data. Both
the hybrid-RPWIA, and NuWro calculations compare favorably to the
T2K and previously presented MINERvA [36] CC1π+ datasets. Both
models however underpredict the MiniBooNE data. The comparison
of the MiniBooNE and T2K data in the delta-dominated region is the
most direct as the neutrino energy range of both experiments is similar.
In that sense there seems to be no obvious reason that explains why
the hybrid-RPWIA model underestimates the MiniBooNE data for low
values of Tπ (see Fig. 5 in Ref. [36]), while overpredicting T2K data in the
same kinematic region, Fig. 5.2(a). Note that a large systematic error
of the measured cross sections originates from uncertainties in the flux,
this could play an important role in bridging the apparent disagreement
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between the data.

5.3 Conclusions

We compared the hybrid-RPWIA to the low energy model (LEM) and
the T2K CC1π+ data. It is shown that a high energy model is necessary
at T2K kinematics. The contributions from the high energy tail of the
flux are significant, and using the LEM leads to a sizeable overestimation
of the cross section. Introducing Gaussian-dipole form factors to regu-
larize the resonant amplitudes cures some of the pathological behavior
due to the resonant amplitudes far away from s(u) ≈ M2

res. Still, the
LEM with form factors overestimates the cross section for high pion
momenta when compared to the hybrid-RPWIA model. These pion
momenta were inaccessible in the MiniBooNE and MINERvA CC1π+

kinematics presented in Ref. [36], due to the cut on W in MINERvA,
and the smaller high energy contributions in MiniBooNE.

The shape of the single differential cross sections obtained within the
hybrid-RPWIA model presented here are similar to the NuWro results,
with the main exception being the forward pion scattering region. It is
in this region that the coherent and DIS contributions in NuWro predict
a sharp rise. The shape of the cross section in terms of pion momentum
after FSI is seen to be affected by the restriction on the pion scattering
angle.

When considering the size, we see that the hybrid-RPWIA model sys-
tematically predicts a lower cross section than the NuWro Monte Carlo
generator. These results are consistent with the previous comparisons
shown in Refs. [31, 36]. Both the MINERvA and T2K CC1π+ compare
consistently to the NuWro and hybrid-RPWIA models, the comparison
to these datasets and to the results reported by MiniBooNE seems to
suggest an unresolved disagreement between the former and latter data.

The general comparison of the hybrid-RPWIA model to the T2K data
is favorable, the model reproduces the shape and strength of the data
well, meanwhile leaving room for FSI at low pion and lepton momenta.
The coherent scattering cross section obtained in the NuWro calculation
provides additional strength in the kinematic regions where the hybrid-
RPWIA might underestimate the data after FSI, specifically along the
delta region, and for forward muon angles.
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Chapter 6

RDWIA for single-pion
production off the nucleus

We perform RDWIA calculations for electroweak single-pion produc-
tion (SPP) off nuclei and compare the results to experimental data.
In this chapter we present results for charged-current interactions off
12C, we compute cross sections integrated over the outgoing hadron
angles. As the neutrino flux for accelerator experiments is broad, it is
computationally non-trivial to do flux-folded calculations for SPP off
nuclei. Following the definitions described in Chapter 4, we can write
the semi-inclusive cross section as a sum of exclusive cross sections from
different single-particle levels in the nucleus. The flux-weighted cross
section for scattering off a single-particle level is

d8σ

dEνdE′d cos θldEπdΩπdΩN
= Φ(Eν)

G2
F cos2 θc

2

k′

E

MNkπkN

2 (2π)7 frec
LµνH

µν
κ

(6.1)
where a trivial integral over φl was performed yielding a factor 2π. The
experimental data are for the most part reported as single-differential
cross sections. This means that 7-dimensional integrals have to be
performed over the kinematic variables to compare the results to cross
sections reported by experiments.

To make calculations over the broad phase space covered by experiments
possible we make use of the Rosenbluth separation as detailed in Sec-
tion 2.3. The hadron tensor depends only on the hadronic degrees of
freedom. We compute it in the reference system where q = kν − kl is
along the z-axis as function of the variables ω,Q2, Tπ,Ωπ,ΩN such that
we don’t need to compute the hadron tensor separately for every Eν .
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The rotation of the whole hadronic system along the direction of q leaves
the difference of azimuth angles φπ − φN invariant while the average
azimuth angle φπ+φN

2 is rotated. Hence, we set φN = −φπ, fixing the
average angle to zero. The dependence on the average angle is then
described by the Rosenbluth decomposition of Eqs. (2.51-2.55), such
that after integration over the average angle we retain only the angle-
independent hadron tensor elements of Eq. (2.51). With this we may
define angle-integrated hadronic tensor elements as

H̃µν(ω,Q2, Tπ) = 2π

∫
dΩπ d cos θN

MNkπkN
2(2π)8frec

Hµν
(
ω,Q2, Tπ,Ωπ, cos θN , φN = −φπ

)
, (6.2)

such that the cross section integrated over hadron angles is given by

d4σ

dEνdE′d cos θldTπ
= Φ(Eν)G2

F cos2 θc
2πk′

E

×
[
L00H̃

00 + 2L03H̃
03 + L33H̃

33 +
L11 + L22

2

(
H̃11 + H̃22

)
+ 2iL12H̃

12

]
.

(6.3)

It are these angle-integrated hadron tensor elements which we compute
as function of ω,Q2, and Tπ, these are then stored in tables which
may be used to compute the cross section for any experimental flux
using Eq. (6.3). For the carbon nucleus we compute 2 such tables,
corresponding to the s1/2 and p3/2-shells, for every reaction channel.

The main advantage of precomputing these angle-integrated hadronic
tensor elements as function of ω,Q2 and Tπ is that we can make use
of efficient integration routines to perform the angular integrals in the
q along z-system. The downside is that we can only compare to data
which cover the whole angular phase space for the pion, as angular cuts
in neutrino experiments are expressed as function of angles with respect
to the beam direction, while we compute angles with respect to q.

In addition, in the RDWIA we perform the 3-dimensional r-integral
for the hadron current of Eq. (4.16) numerically. In order to asses
the numerical precision of this procedure, we have computed it also
numerically for RPWIA, by setting the potential for the final state to
zero. These results have been compared to RPWIA calculations in which
the hadron current is computed analytically using Eq. (4.18), and they
are found to agree to within less than half a percent.

In the neutrino-nucleus scattering data to which we will compare, the
experimental signal is defined by (at least) a single pion and associated
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µ±. No explicit restrictions are placed on the type of the other hadrons
that are present in the final-state.

Here, the pion state is treated as a plane wave, this is an approximation
as clearly the outgoing pion will experience FSI in the nuclear medium.
The treatment of the pion FSI is non-trivial as not all inelastic FSI
processes remove the pion from phase space which determines the ex-
perimental signal. For example a pion which rescatters without charge-
exchange and knocks out an additional nucleon would still count towards
the experimental signal, while an optical-potential model would remove
the strength associated with these interactions. In contrast, in an elec-
tron scattering experiment in which the incoming energy is known, this
would show up as an event with a larger missing energy/momentum
and can be rejected based on kinematics. The complications due to
microscopic modeling of pion FSI fall beyond the scope of the current
work, and we treat the pion as a plane wave in order to keep the full
strength of the interactions. In Chapter 5 we have directly compared to
the NuWro results with and without FSI to explicitly look at the effect
of pion FSI. Here we will contextualize the possible effect of pion FSI
on the data-model comparison by referring to cascade model predictions
which are presented together with the data releases when available.

We treat the outgoing nucleon wavefunction in the Energy-Dependent
Relativistic Mean Field (EDRMF) potential which was discussed in
Section 4.3. The reasoning is that, as the outgoing nucleon remains
undetected, the real potential makes sure that all strength is retained.
The outgoing nucleon may rescatter, be absorbed, knock out additional
nucleons, and undergo any type of FSI in general, but any of these
cases should still contribute to the cross section. From comparisons to
inclusive electron data, especially in the quasielastic regime, the EDRMF
is found to give a good description in exactly this case [131, 148].

6.1 Comparison of hadronic responses

Before comparing cross sections to neutrino scattering data which are
averaged over the experimental fluxes, we first take a look at the hadron
tensor elements which enter in the current in order to give an energy-
independent comparison of the RPWIA and RDWIA calculations. After
integration of Eq. (6.3) over Tπ, the cross section differential in lepton
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Comparison of hadronic responses
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Figure 6.1: Transverse response as defined in Eq. 6.4 as function of
ω for fixed values of Q2. The solid red lines and blue
dashed lines correspond to EDRMF and RPWIA results
for ν-induced SPP off the carbon nucleus, normalized
per target nucleon. The left column corresponds to π+

production off the protons, while the middle and right
columns are for positive and neutral pion production off
the neutrons respectively. These results are compared to
the corresponding cross section obtained for a free nucleon
target.
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kinematics at a fixed incoming energy is

d2σ

dE′d cos θl
= G2

F cos2 θc
2πk′

E

×
[
L00RCC + 2L03RCL + L33RLL +

L11 + L22

2
RT + 2iL12RT ′

]
,

(6.4)

where the responses R, which only depend on ω and Q2, are obtained by
integration of the corresponding terms in Eq. (6.3) over the pion energy.
In Fig. 6.1 we show the ω dependence of RT at different fixed values of
Q2. We compare results obtained in EDRMF and RPWIA for carbon
normalized per nucleon, and for free nucleons for the three charged-
current interaction channels. A clear smearing of the resonance peaks
is found for the cross section on carbon compared to the free nucleon
case, this smearing becomes more pronounced as Q2 increases. We see
that for Q2 & 1 GeV2, the different resonance peaks which are clearly
present in the free responses, become indistinguishable in the nuclear
response. Beyond the resonance region, we find that the high-ω tail in
all models are comparable in shape and magnitude.

The difference between the EDRMF and RPWIA responses are rather
modest, one finds that the EDRMF results are slightly shifted to higher
ω compared to the RPWIA, this becomes most obvious for large value of
Q2. For the smaller values in the reactions on neutron targets, it seems
that some of the strength that is shifted to higher ω from the delta peak
ends up filling up the second resonance region, this makes the EDRMF
and RPWIA results comparable in this region.

6.2 Minerνa experiment

The MINERνA (Main Injector Neutrino ExpeRiment to study ν-A in-
teractions) is located at FNAL and is specifically designed to measure
neutrino-nucleus cross sections for a variety of interaction mechanisms.
The experiment is exposed to the NuMI (Neutrinos at the Main Injector)
beam [222, 223]. The pion-production measurements in MINERνA were
performed with the NuMI beam in low-energy mode, which spans an
energy region between 1 and 20 GeV with a peak around 3 GeV. Several
measurements have been reported for neutrino and antineutrino-induced
charged and neutral pion production on a CH target [224–230].

Apart from the directly measurable kinematic variables, the angles and
energies of the detected particles, the MINERνA experiment has also
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reported a number of cross sections in terms of reconstructed variables,
most notably Q2 and W free. These are denoted reconstructed variables
because they depend on the neutrino energy Eν , which is not known on
an event-to-event basis

Q2 = 2Eν (Eµ − pµ cos θµ)−m2
µ, (6.5)

W free =
√
M2
N + 2MN (Eν − Eµ)−Q2. (6.6)

Here W free corresponds to the invariant mass when scattering off a free
nucleon that is at rest in the lab-frame resulting in the same lepton
kinematics. In all but one of the datasets the experiment makes use
of calorimetric reconstruction of the neutrino energy. The exception
is the recent measurement of antineutrino π− production of Ref. [230].
In this case the reconstructed energy is defined as the incoming energy
which would yield the same pion and lepton energies and scattering
angles in the case that the scattering occurred on a nucleon which is at
rest in the lab-frame, corrected for binding energy. In any case, these
energy estimators are used in the definition of Q2

rec and W free
rec , such

that these do not to true values. A comparison of a model to these
reconstructed variables, while their definition is clear and unambiguous,
is cumbersome. This is especially true for the reconstructed energy
defined from calorimetry as one in principle needs to model or estimate
all visible energy deposits in the detector. In the following we will
compare these reconstructed variables to true variables, computed with
the real incoming energy.

6.2.1 Charged pion production

Measurements of neutrino and antineutrino induced charged-pion pro-
duction on carbon where reported in Refs. [224, 226, 229, 230]. The
interactions are obtained on a predominantly hydrocarbon target which
we model as a carbon nucleus and a free proton (CH). In view of isospin
symmetry between the neutrino and anti-neutrino interaction we discuss
these measurements jointly. Charged pion production may occur due to
the interactions on the protons and neutrons in the carbon nucleus.
Isospin symmetry implies that for free nucleons the interactions

W+ + p→ p+ π+, (6.7)

and
W− + n→ n+ π−, (6.8)
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share the same amplitude, which is purely isospin 3/2 and is dominated
by the direct excitation of the delta. The interactions

W+ + n→ n+ π+, (6.9)

W− + p→ p+ π−, (6.10)

also have the same amplitude on the nucleon level, which gets a relatively
large contribution from the isospin 1/2 resonances and for which the
coupling to the direct delta is a factor 3 smaller than for the reaction
channels of Eqs. (6.7-6.8).

Under the assumption of perfect isospin symmetry for the carbon nu-
cleus, both the neutrino and antineutrino process can hence be described
by the same responses where only the vector-axial interference term
enters with an opposite sign in both reactions. In the nuclear medium
small isospin breaking effects are present even for an even-even nucleus
however. In our mean field framework, the wavefunctions for protons
and neutrons in shells with the same quantum numbers are practically
identical, but the binding energies for equivalent shells are around 3 MeV
smaller for the protons than for the neutrons in 12C due to the Coulomb
potential. Additionally, in the RDWIA, the outgoing protons are subject
to the Coulomb potential of the nucleus while the neutrons are not.
These effects have been studied e.g. in Ref. [231] for single-nucleon
knockout at kinematics relevant to T2K. For a light nucleus as carbon
these effects are small, especially compared to other uncertainties, and
can be neglected for describing SPP in MINERνA. We will hence use
the same responses to describe the neutrino and anti-neutrino reactions
with carbon, specifically the responses were computed for the neutrino-
induced interactions. We add also the interaction with the free proton
in CH when appropriate.

Cross sections for neutrino-induced single π+ production in MINERνA
were first reported in Ref. [224]. Two different kinematic cuts were

employed, one for W free
rec < 1.4 GeV to emphasize delta-mediated single

pion production, and one with W free
rec < 1.8 GeV where the signal is

defined as at-least one positive pion. A later publication supersedes these
original data [226]. We will not compare to the datasets in which the
signal allows explicitly for multiple charged pions, but will only consider
the data for which multiple pions are rejected. For the 1π+ production,
an updated dataset has been released which includes lepton kinematics
and reconstructed quantities [232]. Compared to the originally published
data [224] the cross section in these updated data seems to be only
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Figure 6.2: Cross sections differential in lepton kinematics for the
MINERνA CC1π+ signal (top panels) and the CC1π−

(bottom panels), normalized per nucleon.

slightly larger. While no specific publication describing the updated
data exists, we will compare to them assuming that the experimental
constraints are the same as in the original publication. Specifically this
means that the data are obtained for Eν,rec < 10 GeV and W free

rec <
1.4 GeV which we apply to the true values of Eν and W free. For the
anti-neutrino data W free

rec < 1.8 GeV, and additionally θµ < 25 deg. Due
to the different kinematic cuts in these datasets, one should be careful
when directly comparing cross sections between both signals.

We show the comparison to the cross section in terms of lepton kine-
matics in Fig. 6.2. In both cases we find a excellent description of the
cross section in terms of muon momentum, which indicates an overall
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Figure 6.3: Total cross section as function of energy for the MINERνA
CC1π+ signal, normalized per nucleon. The right panel
shows the cross section weighted with the normalized
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magnitude in line with the data. Unlike the scattering angle data, the
muon momentum data should cover the whole phase space in both cases.
For the anti-neutrino comparison a cut θµ < 25 deg is applied to the
data and the model, while for the neutrino data all lepton angles are
included. The cross section in terms of lepton angle is overpredicted
at small angles and in agreement for larger angles in the neutrino case,
while for the antineutrino data the cross section is underpredicted at the
largest angles, and in line with the data for the smaller angles.

The total cross section is shown in Fig. 6.3. From the plateau in the total
cross section the overall reduction observed in the RDWIA compared to
the RPWIA is approximately 10 percent. This contrasts with the total
cross sections obtained for the antineutrino induced interaction shown in
Fig. 6.4, where the relative difference between the RPWIA and EDRMF
result is smaller.

The reason for this seems to be that in the CC1π+ signal a cut W free <
1.4 GeV is imposed while in the anti-neutrino calculation W free values
up to 1.8 GeV are included. In Fig. 6.5 we compare the cross sections
in terms of W free and the energy transfer ω for both the π+ and π−

production channels. It is seen that the EDRMF implies a reduction
of the cross section for intermediate W free, while at large values the
RPWIA and EDRMF give more similar results. The effect of distortion
does not tend to vary much with ω. Apart from a minor shift, the shape
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shows the cross section weighted with the normalized
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of the cross sections in terms of ω are almost identical in RPWIA and
EDRMF for π+ production. In π− production a slight dependence of
the shape on ω is present, which follows the scaling with W free as larger
values only become accessible for large ω. Hence, the larger proportion
of small W free due to the cut at 1.4 GeV explains why the relative
reduction in EDRMF compared to RPWIA is larger for the neutrino-
induced interaction in this case.

The effect of the final-state potential is most appreciable in the cross
section as function of nucleon energy shown in Fig. 6.6. In this figure
we show the cross section for scattering off carbon only, the free proton
contribution is not included. One sees the main effect at low TN , the
nucleon energy in EDRMF is shifted towards lower values. This results
in a reduction along the peak, which is counteracted by an increase at
the smallest values of TN . In the data to which we compare, the outgoing
nucleon remains undetected. This final-state nucleon is also subject to
inelastic final-state interactions, which may result in the knockout of
additional nucleons or production of other particles. The energy TN in
this case can hence be interpreted as a proxy for the total energy which
is redistributed over the undetected hadronic system.

The cross section as function of pion kinetic energy is shown in Fig. 6.7.
The data in this case densely covers a rather limited region of phase
space. The comparison to the π+ data is satisfactory if one takes into
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Figure 6.7: Cross section as function of pion kinetic energy for the
MINERνA CC1π+ signal on the left and for CC1π− on
the right.

account the predictions of cascade models for pion FSI. These models
predict a reduction of the number of pions at energies above 150 MeV
with an increase at smaller energies due to pions losing energy in FSI.
A similar effect of FSI is predicted for the π− cross section, but in this
case the model leaves less room for a reduction due to FSI. It should be
remembered that the π− data extends up to W free = 1.8 GeV while the
π+ data only goes up to 1.4 GeV, meaning that the π− data receives
more sizable contributions from the higher-mass resonances through
interactions with the protons in the target. This interaction mechanism
has been found to be underpredicted in the comparison to data obtained
on free nucleons.

The cross section as a function of (reconstructed) Q2 is shown in Fig. 6.8.
As mentioned before, the calculations are performed for true values
of Q2 while the data correspond to reconstructed Q2. The results in
Ref. [233] show that MC simulations imply that, when integrated over
all other kinematic variables, there is an average symmetric spread of
about 0.02 GeV2 of the reconstructed Q2 around the true one. The
π− data is rather well reproduced by the model, although one would
expect a reduction due to pion FSI not included here, in which case the
data would be slightly underpredicted. The comparison to the π+ data
shows an overprediction at small values of Q2, the discrepancy might
be reduced with pion FSI, but would likely not disappear even in that
case. This trend of overpredicting the low-Q2 cross section is present
in almost all neutrino event generators that are compared to this data,
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Figure 6.8: Cross section as function of Q2 for the MINERνA CC1π+

signal on the left and the CC1π− on the right. Note that
the calculations correspond to true Q2.

and is moreover found also in the comparison to measurements of the
inclusive cross section in the NOνA experiment [234]. In Refs. [112, 234]
the reason for this reduction is speculated to be caused by a lack of
nuclear effects beyond the RFG model. In particular Pauli-blocking is
cited as a possible explanation in Ref. [233]. In the NOνA analysis
as well as in the analysis of MINERνA data of Ref. [112] use is made
of a phenomenological suppression factor as function of Q2 which is
inspired by the effect of RPA-like corrections to one-nucleon knockout
in a local Fermi gas as computed in Ref. [235]. Here, the EDRMF
calculation explicitly includes Pauli-blocking, while the RPWIA does
not. Moreover there is indication that such RPA-like corrections to a
non-interacting local Fermi gas tend to already be included at mean-
field level in consistent distorted-wave calculations [167]. We hence find
that such effects are unlikely to resolve this data-model discrepancy.
It is notable that a similar overprediction of the low-Q2 cross section is
already present in our comparison to the BEBC data off free nucleons, as
we showed in Fig. 3.29. It seems just as reasonable to speculate that the
axial couplings on the nucleon level are to blame for this overprediction,
rather than an unaccounted for nuclear effect.

To facilitate a more in-depth comparison, we show in Fig. 6.9 the cross
section separated by the type of target nucleon.
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Figure 6.9: Cross section as function of Q2 for the MINERνA CC1π+

signal on the left and the CC1π− on the right broken down
per target nucleon type.

6.2.2 Neutral pion production

MINERνA has done measurements for π0 production induced by neu-
trinos [228] and antineutrinos [229]. Both datasets include W free

rec up to
1.8 GeV where calorimetry is used for the reconstruction of the neutrino
energy. As we did for the charged pion case, we discuss the neutrino and
antineutrino data jointly as they are connected by isospin symmetry.
We use the same response tables, computed for the neutrino induced
process, for both processes. One should again be careful in directly
comparing the neutrino and antineutrino interactions. Firstly the free-
proton contribution enters in the antineutrino process while it does not
contribute to the neutrino-induced signal. And secondly, in the neutrino
data a cut θµ < 25 deg is included while there is no such restriction for
the anti-neutrino data. Because of this angular cut, the model predicts
a similar magnitude for the cross sections for neutrino and antineutrino-
induced interactions as can be seen in Figs. 6.10 and 6.11. Comparing
these figures, one sees that the magnitude of the antineutrino induced
process is reproduced well, especially in the region where the flux peaks.
On the contrary the neutrino-induced process is severely underpredicted.

The data in terms of lepton kinematics is compared to the models in
Fig. 6.12. As, apart from the slight differences in the shape of the
neutrino flux, the only difference in the kinematics covered in both
measurements lies in the restriction on scattering angle in the neutrino
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Figure 6.10: Total cross section as function of energy for the
MINERνA νCC1π0 signal, normalized per nucleon. The
right panel shows the cross section weighted with the
normalized neutrino flux.
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MINERνA νCC1π0 signal, normalized per nucleon. The
right panel shows the cross section weighted with the
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signal it is interesting to compare the cross section in terms of lepton
angles. We show the free proton contribution and the vector-axial
interference term on carbon separately in these figures in order to show
where the differences in both cross sections mainly come from. The
free proton contribution tends to be roughly similar in magnitude to the
vector-axial interference term in carbon for the anti-neutrino interactions
such that the cross sections in terms of scattering angles are similar
in both cases. This behavior is not at all reflected in the data, while
excellent agreement is found for the antineutrino case, the neutrino data
is far larger than the model predictions apart from the smallest angular
bins. This agreement with antineutrino, and severe underprediction
of the neutrino data is the main finding in the comparison to the π0

production data.

Before drawing any conclusions, it is important to consider how large
the effect of pion FSI might be for the neutral pion data. The cascade
model results of NuWro [36] and GENIE [228, 229] indicate that distri-
butions other that the cross section in terms of pion energies are almost
unaffected by pion FSI. In particular, GENIE predicts a practically
negligible decrease for the ν induced channel and a slight increase for the
ν channel, while NuWro produces a negligible increase of the integrated
cross sections post-FSI for both channels. The reason is that the loss
in neutral pions from FSI is compensated almost exactly by the feed-
in of neutral pions created through charge-exchange of charged pions.
The cross section in terms of pion energies changes shape from the
combination of these effects while other distributions are barely affected.
The feed-in of neutral pions through charge exchange comes mainly at
small pion energies, as the neutrino induced charged pion production
process couples more strongly to the delta. As such, the shape of the Tπ
distributions shown in Fig. 6.13 is reasonable, as an increase for small
Tπ might be expected.

The isospin symmetry of the nucleus means that any FSI process would
affect the neutrino and anti-neutrino interactions in a similar way. Given
the large difference in the description of the ν and ν data, it would
be difficult to find an explanation of the large underprediction of the
neutrino induced process only through FSI.

The cross sections as function of Q2 for both processes are shown in
Fig. 6.15. The comparison to the neutrino data is comparable to what
was found for θµ, a large underprediction of almost a factor two is found
at large Q2 while only at the smallest Q2 points we comply with the
data. The antineutrino process on the other hand is described rather
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Figure 6.12: Cross sections differential in lepton kinematics for the
MINERνA CC1π0 measurement, top(bottom) panels
correspond to (anti-)neutrino reactions, normalized per
nucleon.
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Figure 6.14: Cross section as function of Q2 for the MINERνA CC1π0

measurements. (anti-)Neutrino interactions are on the
left(right). Note that the calculations correspond to true
Q2.

well, although one again finds somewhat of an overprediction of the
low-Q2 cross section.

Additionally the Q2 data for the neutrino-induced process was separated
in terms of neutrino energy. We show the comparison to this data in
Fig. 6.15. The comparison to the small energy region is similar as for
the full phase space, as this energy region lies around the peak of the
flux-averaged cross section. For the higher energies, one finds that the
data is much below the model at small values of Q2. We see that while
the longitudinal contribution is around the same value of the data at
Q2 ≈ 0 for the low energy region, it is more than twice as large in the
high-energy region.

It is important to consider how the hybrid model compares to π0 pro-
duction on free neutrons. The total cross section for W < 1.4 GeV is
of the same magnitude as the reanalyzed ANL and BNL data, and is
only slightly larger than the BEBC data. When larger W are allowed,
the model tends to underpredict the cross section, indicating a possible
lack of strength coming from higher mass resonances. The reconstructed
W free distribution is compared to the model in Fig. 6.16. From a direct
comparison one finds that the datapoint on the delta peak is just barely
of the same magnitude as the calculation, while the large W free data
is much larger than the model. Additionally, a large cross section is
measured for small W free, while the model does not yield any strength
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Figure 6.15: Cross section as function of Q2 for the MINERνA CC1π0

measurements. (anti-)Neutrino interactions are on the
left(right). Note that the calculations correspond to true
Q2.

in this region. The data is presented in terms of reconstructed variables
however, while the calculation is done for true values. In Ref. [233] it
is reported that, according to MC simulations, the reconstructed values
are spread almost symmetrically around the true values with a width of
180 MeV. We therefore also show our result smeared by a Lorentzian of
width 180 MeV, the shape comparison is good but we need to multiply
by a factor 2 to get a similar magnitude as in the experimental data.

6.3 T2K

The T2K experiment has measured single π+ production on both carbon
and oxygen targets in the T2K near detector. We have compared the
RPWIA results to the oxygen data in the previous chapter, and we will
provide results for a carbon target in this section. The T2K data makes
use of both direct measurements of charged pions, and from an indirect
measurement of Michel electrons which come from the decay of the pions.
In the results reported in Ref. [236], use is made of direct measurements
of the pion for which the pion scattering angle with respect to the
neutrino beam is restricted to cos θπ > 0.2 for the single-differential
cross sections. We hence cannot directly compare to these data as we
obtain responses integrated over the pion angles. In Ref. [237], where
the original analysis of this data is presented, distributions are reported
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Figure 6.16: Cross section as function of W free for the MINERνA
CC1π0 measurements.

which make use of a combination of both the direct detection and Michel-
electron sets, and are free of restrictions on the pion kinematics. We will
hence compare our results to these data instead.

We first show the total cross section as function of neutrino energy in
Fig. 6.17. One can appreciate that the T2K data is sensitive to lower
energies than MINERνA, the flux-weighted cross section peaks around
800 MeV, but the high energy tail is quite significant. Contrary to the
MINERνA case, no restriction on the invariant mass is made in this
measurement.

In Fig. 6.18 we show the results for the momentum of the muon and the
pion. The agreement of the model to the muon data is good, although
as in the comparison to the NuWro result and the T2K data on oxygen,
one could expect a reduction of the cross section due to pion FSI. The
comparison for the pion momentum is also fairly good, but the model
result becomes too small in the high pπ tail. One sees that the low
pπ data correspond to a single datapoint which covers momenta up to
400 MeV, this is a result from the measurement with Michel electrons
for which the exact momentum cannot be determined, this becomes only
possible for larger momenta.

T2K have reported a first measurement of the (semi-)inclusive double-
differential cross section for π+ production. We show the comparison
in Fig. 6.19. Due to the broad binning one cannot compare the data to
a continuous distribution hence we provide model predictions with the
same binning. The model seems to be in line with the data in most cases

155



T2K

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

CH(νµ, µπ+)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

CH(νµ, µπ+)σ
(E

ν
)

(1
0
−
3
9

cm
2
)

Eν (GeV)
Φ

(E
ν
)σ

(E
ν
)

(1
0
−
3
9

cm
2
/
G

eV
)

Eν (GeV)

RPWIA
EDRMF

Figure 6.17: Total cross section as function of energy for the T2K
νCC1π+ kinematics, normalized per nucleon. The right
panel shows the cross section weighted with the normal-
ized neutrino flux.
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Figure 6.19: Double differential cross section in terms of lepton kine-
matics compared to the T2K νCC1π+ data, normalized
per nucleon.

although the large error bars allow for significant spread. Even then we
find that for some bins the model falls outside of the errorbars. RDWIA
and RPWIA results are practically the same, and no clear trend arises
in the comparison of the RDWIA and RPWIA in terms of the lepton
kinematics.

The cross section as function of Q2 is shown in Fig. 6.20. Kinematic
cuts cos θl > 0.2 and pµ > 200 MeV are applied to both the data and
the model. We find a reasonable description of the data at high Q2, and
a consistently large cross section at small Q2, although the model still
falls within experimental errorbars.

Again Q2 is a reconstructed variable, requiring knowledge of the incom-
ing energy which in this case has to be estimated. As the data includes
the Michel electron sample, this measurement will be at least somewhat
model-dependent, because the pion kinematics are not reconstructed in
the Michel electron sample, and one has to rely on simulations to recon-
struct the energy. We assume that this model dependence is reflected in
the size of the error bars.
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Figure 6.20: Differential cross section in terms of Q2 compared to the
T2K νCC1π+ data, normalized per nucleon.

Ref. [237] lists additional results, which are not included in the T2K
publication of Ref. [236]. We show in Fig. 6.21 the results for the
reconstructed W and q. Here the reasonable description found for
the previous cross sections disappears, we see that the model gives a
value in the delta region which is about twice as large as the data,
while the higher W and q regions are underestimated. Clearly, as we
obtain good results for the other variables, the total strength should be
reproduced well, but it lies in the wrong kinematic region. We might
entertain the possibility that this is due to an inherent smearing due
to the reconstruction procedure, while we are showing true values. To
illustrate this possibility we smear the cross section in terms of W with
a Lorentzian, we use the same width of 180 MeV as in the discussion of
the MINERνA data. With this smearing we indeed find that the height
and width of the delta peak as found in the data are reproduced, and
the high W cross section is slightly underestimated. This would be in
line with what one obtains in the scattering off free nucleons. However,
due to our symmetric smearing we introduce quite some strength in the
low W region, while the data starts from the πN threshold.

6.4 Conclusions

We have compared the model predictions in RPWIA and EDRMF to
a comprehensive dataset of neutrino-induced single pion production, in
all cases the pion was treated in the RPWIA. Based on the success of
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Figure 6.21: Cross section as function of Wfree (left) and q (right)
compared to the T2K CC1π+ data. The data and
calculations are for cos θµ > 0.2 and pµ > 0.2 GeV.

the RDWIA in describing inclusive electron and neutrino scattering for
single-nucleon knockout, we may assume that the EDRMF treatment
should be well suited for a description of the undetected outgoing nu-
cleon, even if it undergoes final-state interactions. The EDRMF treat-
ment in particular provides a consistent treatment of the nuclear degrees
of freedom, it includes Pauli blocking, and the necessary treatment of
FSI. One can assert that the RPA-like corrections that are applied
in Ref. [235, 238] in the context of a local Fermi gas description of
the nucleus are mostly included already at the mean-field level in the
RDWIA [167].

We find by comparison of the EDRMF to the RPWIA results that the
EDRMF yields a modest reduction of the cross section, which is smaller
than in the case of single-nucleon knockout. This is at least in part
because the energy and momentum transferred to the nuclear system
are shared between the pion and nucleon in this case. Although it would
be instructive to also treat the outgoing pion as a distorted wave, one
might expect that, given that a large part of inelastic pion FSI should
be retained to describe the neutrino interaction, the overall effect would
be of the same magnitude. As such we might, albeit cautiously, ascribe
data-model discrepancies to the electroweak SPP operator instead of to
nuclear physics uncertainties.

We may draw a number of conclusions from the comparison to the
experimental data. Firstly, the overall magnitude of the cross section
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and the distribution of lepton observables of the π+ production channels
are well described for both the T2K and MINERνA data, although for
T2K, in anticipation of a slight reduction of the cross section obtained in
cascade models due to pion FSI, the cross section should preferably be
larger. Both these datasets, in MINERνA due to the cut on invariant
mass, and in T2K due to the lower incoming energy are dominated
mostly by the delta resonance,however in T2K one does get some more
contributions from higher invariant mass as there is no explicit kinematic
cut imposed.

Overprediction of the low-Q2 region is clearly present in the comparison
to π+ production data of MINERνA, and to a lesser extent with the
T2K data. Given the assumptions on the EDRMF stated above, we may
assert that a Pauli-blocking correction or what is referred to as an ’RPA-
like’ effect in analogy to the one-nucleon knockout case, is likely not the
source of this discrepancy. The effect of consistent nuclear wavefunctions
and Pauli-blocking is overall found to be smaller as it is spread-out over
a larger kinematic region, and doesn’t necessarily reside in the region of
small Q2. It is therefore reasonable to look for a different explanation of
this discrepancy. In the comparison to the higher-energy BEBC data on
hydrogen and deuteron we find an overprediction of similar shape and
magnitude as found in the comparison to nuclear target data reported
by MINERνA as shown in Fig. 3.29.

The description of anti-neutrino induced neutral pion production is in
line with the data, and according to the model the neutrino-induced data
should be similar in magnitude. The neutrino data however is severely
underpredicted. It is in principle difficult to find a mechanism which
would increase the neutrino cross section, while leaving the agreement
with anti-neutrino data intact. It should be noted however that the
agreement in magnitude is at least partly accidental as both datasets
include different kinematic cuts and the anti-neutrino interaction gets
contributions from the free protons in the target. If a cancellation of the
free proton contribution with the VA interference is retained one could
in principle increase the strength of higher mass resonances to explain
the neutrino data, while leaving the agreement with the anti-neutrino
cross section data intact.
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Chapter 7

Summary and Conclusions

There is large theoretical and experimental interest in the physics of
neutrinos and neutrino oscillations in particular. In order to study
the parameters which describe these oscillations, large collaborations
are conducting experiments all over the globe. A major obstacle in
the analysis of these experiments is that neutrinos only interact weakly,
such that they are effectively ’invisible’ to traditional particle detectors.
To overcome this problem, some of the largest experiments have placed
detectors and metric tons of target material in neutrino beams created at
particle accelerators. The goal of such an experiment is to measure the
particles that are produced in interactions with the target and thereby
infer the properties of the incoming neutrino. These targets consist
mostly of atomic nuclei, and hence to accurately interpret the data
a precise knowledge of the neutrino-nucleus scattering cross section is
necessary. In addition, the accumulation of increasingly precise neutrino
scattering data can give a unique view on the axial structure of hadrons.

The production of pions is a significant contribution to either the signal
or the background in many neutrino experiments. Electroweak pion
production in the region of hadronic invariant mass W up to around
2 GeV is characterized by the excitation of baryon resonances. Due
to the non-perturbative nature of QCD, the description of these inter-
actions based on quarks and gluons is intractable. The most effective
models of strong and electroweak interactions in this kinematic region
are formulated in terms of effective hadronic degrees of freedom. As
such models are not fully based on fundamental principles, their success
is at least partly based on the availability of a large amount of experi-
mental data obtained in hadron-hadron scattering and electromagnetic
interactions with hadrons. For neutrino-induced interactions, due to
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the weak interactions and experimental complexity, data is scarce and
of poor quality compared to the strong and electromagnetic sectors.
While the knowledge of the resonance structure and electromagnetic
couplings obtained in e.g. electron scattering experiments are important
in determining the neutrino-induced pion production process, the axial
couplings are left practically unknown.

In this work, we describe and update the model for electroweak SPP of
nucleons presented in Ref. [31]. The model includes 4 resonances in the
s- and u-channels (P33(1232), P11(1440), S11(1520), and D13(1535)) in
addition to the lowest order background diagrams consistent with ChPT.
The resonance properties and their coupling to the πN final state are
quite well established and taken as the central values reported in Review
of Particle Physics. The proton form factors are determined from ex-
perimental data on the helicity amplitudes measured in electromagnetic
interactions. The determination of the isovector form factors requires
neutron target data which is more sparse, and we rely on different models
which are compared to the MAID07 results. As the lowest order ChPT
background does not give a natural description of the degrees of freedom
beyond tree-level at high invariant mass, we transition smoothly from
the low-energy ChPT model to a high-energy model for the background
based on Regge theory. In the Regge model we take into account
Regge trajectories, which can be interpreted as the exchange of a whole
family of meson states in the t-channel, which are described by the
same parameters as those used in the low-energy description. The axial
couplings for the P11(1440), S11(1520), and D13(1535) are determined by
assuming PCAC and pion-pole dominance for the pseudoscalar coupling.
This determines all axial couplings of the spin 1/2 resonances, but leaves
2 possible couplings undetermined for the D13. In this work we set them
to zero. The Q2 dependence of the axial couplings is taken as in Ref. [26],
close to a dipole with cut-off mass 1.05 GeV. For the P33(1232) we use
the fit of Ref. [30] which was performed with practically the same low-
energy model.

The model for pion production is implemented in the nucleus using the
relativistic distorted wave impulse approximation (RDWIA). The initial
nucleus is described in the relativistic mean field (RMF) approach. The
ground state nucleus then consists of single-particle orbitals with fixed
energy and angular momentum. In the IA, the interaction with the
nucleus is described by the incoherent sum of one-body interactions
with the single particle states. We use the same operator used to
describe the interaction on free nucleons in the nuclear medium. The
effect of modifications of the delta width according to the model of

162



Summary and Conclusions

Oset et al. [210] was also studied. The final-state nucleon wavefunction
is described with the phenomenological energy-dependent RMF (ED-
RMF) potential introduced in Refs. [131, 148]. At small nucleon energies
this real potential tends to the RMF potential used to describe the
initial state, and its strength is reduced for larger energies as required.
The matrix elements obtained in this way satisfy the principles of or-
thogonality and consistency of initial- and final-state wavefunctions,
and was shown to give good results for inclusive electron and neutrino
scattering [131]. The current model may be used to study the effect
of distorted pion waves, with a negligible increase in computational
complexity in the factorized approach. The pion state is treated as
a plane wave throughout this work however.

The results for pion production of nucleons are extensively benchmarked
against the MAID07 and ANL-Osaka Dynamic Coupled Channels (DCC)
models for electroproduction [34, 66]. We find that despite the model’s
relative simplicity it compares more than adequately for electropro-
duction observables. We extract also the isovector current from the
MAID07 and ANL-Osaka analyses. It is interesting to note that while
there exist quite large differences between the cross sections obtained
with the MAID07 and DCC models at large Q2 for electromagnetic
pion production channels, the agreement between both models tends
to be much better for the isovector current. The same is true in the
comparison of our results with MAID07 and DCC. In particular for
cross sections averaged over the experimental neutrino flux we find the
agreement between our approach and the DCC model to be excellent.

We also compute pion-nucleon elastic and total cross sections and com-
pare them to experimental data. This provides a further consistency
check of the different components of the model, in particular for the
interference between resonances and background due to the axial cur-
rent. In the comparison to the total cross section, we find that s-channel
resonance contributions alone yield a good description of the shape and
magnitude of the cross section, especially in the delta region. When
the background contributions are included there is a large cancellation
between the ChPT background and u-channel resonance contributions
which still results in a quite good description of the cross section, but
where the delta peak tends to be shifted slightly. The Regge background
includes only the ρ meson exchange in the axial current, which gives a
good reproduction of the size of the charge-exchange cross section at
high-W , but underpredicts the other interaction channels.

Finally we compare the model with data for neutrino-induced pion pro-
duction off nucleons. We find a reasonable description of the total
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cross section for π+ production off the proton and for neutral pion
production when W < 1.4. In contrast, the data for π+ production
off the neutron (also for W < 1.4GeV) is severely underpredicted.
Because of the good agreement of the vector current cross section at
these kinematics with the ANL-Osaka model and the fact that the
vector-axial interference contribution is negligible, this discrepancy is
likely caused by the description of the axial current. It seems not
possible however to explain the full discrepancy by the coupling to
the higher mass resonances as the cut on W eliminates most of their
contribution. We compare differential cross sections as function of Q2

to the high energy BEBC data. Apart for π+ on the neutron which
is underpredicted, the model tends to overshoot the data at low Q2

while giving better results at large Q2, agreement worsens notably for
higher invariant mass. This contrasts with the result for the ANL data,
to which the delta coupling was fit, and which is hence described well.
The difference in the description of both datasets might point to some
problems with the determination of the axial delta coupling to ANL data
alone. The shape-only comparison to W -distributions measured in ANL
and BNL also proves interesting. The pπ+ channel agrees in shape and
magnitude, while for the other interactions a more significant smearing
tends to be present in the data. It is unclear whether this is due to
experimental error on the quite scattered datapoints, or if this is an
inherent smearing. If one assumes only minimal smearing in the data,
and a proper characterization of the delta peak in the hybrid model,
the data-model comparison could point to a significant underestimation
of the large W region in the hybrid model, although the shape is well
described.

We compare results for scattering off nuclei and compare to experimental
data. Firstly results in the RPWIA (i.e. without distortion of the final
nucleon) are compared to the T2K dataset for oxygen. The effect of
medium modification of the delta is studied and the effect of FSI is es-
timated through comparison with the NuWro event generator [42]. The
general comparison of the RPWIA model to the T2K data is favorable,
the model reproduces the shape and strength of the data well, meanwhile
leaving room for FSI at low pion and lepton momenta. We find that the
contributions from the high energy tail of the T2K flux are significant,
and using low-energy ChPT leads to a sizable overestimation of the cross
section, while the high-energy Regge approach provides a better result.

We compare the EDRMF and RPWIA results to pion production data
on carbon obtained by the MINERνA and T2K experiments. We find
by comparison of the EDRMF to the RPWIA results that the EDRMF
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yields a modest reduction of the cross section, which is smaller than
in the case of single-nucleon knockout. Moreover no significant shape-
differences between the models are found for the current datasets. The
charged pion production channel is mostly well described both in neu-
trino and anti-neutrino interactions for both experiments. Overpre-
diction of the low-Q2 region is clearly present in the comparison to
π+ data of MINERνA, and to a lesser extent with the T2K data in
both the RPWIA and EDRMF. As Pauli-blocking, and the most impor-
tant nuclear structure effects are present in the EDRMF approach, it
is reasonable to assume that this disagreement finds its origin in the
couplings on the nucleon level. The disagreement is similar to the
one found in the comparison to the BEBC data obtained on protons
and deuterium. The description of antineutrino-induced neutral pion
production is in line with the data, and according to the model the
neutrino-induced data should be similar in magnitude when the relevant
kinematic cuts and differences in the fluxes are taken into account. The
neutrino data however is severely underpredicted. It is difficult to find
a mechanism which would increase the neutrino cross section, while
leaving the agreement with anti-neutrino data intact. It should be noted
however that the agreement in magnitude is at least partly accidental
as both datasets apply different kinematic cuts and the anti-neutrino
interaction gets contributions from the free protons the target.
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Chapter 8

Samenvatting

Het onderzoek naar neutrino’s is een snel groeiende tak in de experimen-
tele fysica, met een groot potentieel voor fundamentele ontdekkingen in
de nabije toekomst. Voor de ontdekking van neutrino-oscillaties werd
aan T. Kajita en A. B. McDdonald in 2015 de Nobelprijs in de fysica uit-
gereikt. Het verder karakteriseren van de neutrino mengingshoeken, het
ontrafelen van de neutrino massa hiërarchie, mogelijke confirmatie van
het bestaan van steriele neutrino’s, en metingen van de CP-schendende
fase zijn voorbeelden van de doelen van het hedendaagse onderzoek naar
neutrino’s.

Neutrino experimenten aan versnellers Neutrino’s worden ge-
creëerd in zwakke interacties en verschillende bronnen zorgen voor neu-
trino’s die op aarde waargenomen kunnen worden. Zo zijn er buiten-
aardse neutrino’s die onder meer gevormd worden in de kernreacties in
het centrum van de zon, in de botsing van hoogenergetische kosmische
straling met de atmosfeer, en in supernova explosies. Anderzijds zijn
er neutrino’s uit aardse bronnen zoals kernreactoren, het betaverval
van kernen, en in deeltjesversnellers. Intense stralen van neutrino’s uit
deeltjesversnellers bieden een grote opportuniteit voor onderzoek naar
oscillaties. Zulke stralen zijn intens genoeg om voldoende interacties in
een detector mogelijk te maken en zijn relatief goed gekarakteriseerd,
een detector kan zich dan op de ideale positie plaatsen om neutrino
oscillaties te meten.

De setup van een neutrino experiment gebaseerd op een versneller lijkt,
wanneer het niet triviale technische aspect buiten beschouwing blijft, be-
drieglijk eenvoudig. Hoogenergetische protonen uit de versneller worden
gericht naar een eerste target, en in interacties met het target worden
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een grote hoeveelheid geladen mesonen gevormd. Deze geladen mesonen
worden gefocust in een intense straal, en een deel van deze mesonen zal
zwak vervallen met een intense straal van neutrino’s tot gevolg. Deze
neutrino’s reizen over een bepaalde afstand tot bij een detector waar
dan geteld wordt hoeveel neutrino’s binnenkomen. Als we dus weten
hoeveel neutrino’s van een bepaalde smaak origineel gecreëerd werden,
en hoeveel er na het reizen over een bepaalde afstand overblijven, kunnen
we de neutrino oscillatie karakteriseren.

Dit näıef plaatje wordt echter sterk gecompliceerd omwille van twee
redenen. Ten eerste interageren neutrino’s enkel via de zwakke wis-
selwerking, dit maakt directe observatie van neutrino’s met traditionele
detectoren onmogelijk. In de plaats daarvan detecteert men de deeltjes
die ontstaan door de interactie van het neutrino met het detectorma-
teriaal. Gezien de zwakke interactie inderdaad zwak is, is het echter
heel onwaarschijnlijk dat een neutrino een interactie zal ondergaan met
een deeltje in de detector. Dit zorgt ervoor dat een neutrino detector
moet bestaan uit een enorme massa waarmee interactie mogelijk is, en
in de praktijk bestaan deze dan ook voornamelijk uit atoomkernen. Dit
betekent dat om het aantal neutrino’s dat in een detector binnenkomt
te karakteriseren we de werkzame doorsnede voor het produceren van
deeltjes in de neutrino-kern interactie moeten kennen.

Dit is een niet triviaal probleem dat verder gecompliceerd wordt door
het feit dat de stralen uit versnellers niet mono-energetisch zijn, maar
bestaan uit een breed continuüm van energieën. Dit contrasteert met
de klassieke elektron-atoomkern verstrooiingsexperimenten waaruit een
groot deel van onze huidige kennis van atoomkernen en het beschrijven
van interacties met kernen de voorbije decennia is opgebouwd. In zo’n
experiment is de inkomende elektronenergie nauwkeurig gekend, door
meting van het verstrooide elektron kan dan bepaald worden wat de
energie and momentum die getransfereerd worden naar de kern is. De
kennis van wat het kernsysteem binnenkomt, maakt het mogelijk om bij
het meten van hadronen gevormd in de reactie, de ontbrekende energie
en momentum te bepalen. Dit zorgt ervoor dat men kan focussen op
bepaalde kinematische opstellingen zodat men metingen kan doen van
specifieke interacties met kernen. Door de significante spreiding van
inkomende energie in een neutrino experiment wordt dit echter onmo-
gelijk, en moeten in principe alle mogelijke neutrino-kern interacties die
kunnen bijdragen tot het waargenomen signaal in de detector beschreven
worden.

De combinatie van de brede waaier aan inkomende energieën en de com-
plexiteit van de neutrino-kern interactie betekent dus dat wat op eerste
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zicht lijkt op een simpel telexperiment, een invers verstrooiingsprobleem
blijkt te zijn waarbij de interactiewaarschijnlijkheid moeilijk te bepalen
is. De metingen van neutrino-oscillatie parameters kunnen hierdoor
enkel op statistische wijze bepaald worden. In de praktijk wordt in
de analyse van een experiment gebruik gemaakt van simulaties van het
verwachte signaal in de detector op basis van de neutrinoflux voor oscil-
latie, de respons van de detector, de werkzame doorsnede, en de ansatz
voor de oscillatieparameters. Door het vergelijken van de simulaties
met de data kan op die manier de waarschijnlijkheid voor elke waarde
van de geoscilleerde flux bepaald worden. Met nieuwere generaties aan
experimenten worden statistische fluctuaties kleiner, detectoren beter,
en de kennis van de inkomende flux preciezer. Intussen komen we bij
het punt waar de kennis van de werkzame doorsnede de dominante bron
van onzekerheid in dit soort metingen zal worden.

Neutrino-gëınduceerde pion productie Pionproductie is een be-
langrijke reactie voor huidige en toekomstige experimenten. Het pion, als
het lichtste meson, is het meest voorkomende reactieproduct in inelasti-
sche interacties met het nucleon in de regio van hadronische invariante
massa W ≈ 1.1−1.4 GeV die bijdraagt in het energiegebied van typische
experimenten aan versnellers. In lage-energie experimenten zoals T2K
en MiniBooNE, waarbij de hadronische finale toestand niet, of amper,
gemeten wordt vormt de productie van het pion een bijdrage in het
experimenteel signaal die niet rechtstreeks ontrafeld kan worden, en dus
alsook gekend moet zijn. In experimenten waar de hadronische finale
toestand wel preciezer gemeten wordt zijn pionen een vaak voorkomend
reactieproduct die al dan niet tot het experimentele signaal behoren. In
elk geval is de kennis van de werkzame doorsnede voor pion productie
een belangrijke onzekerheid. Naast het belang voor neutrino-oscillaties,
bieden metingen van neutrino-gëınduceerde pion productie bovendien
ook een unieke kijk in de axiale structuur van het nucleon.

Onze beschrijving van pionproductie op kernen start met de beschrijving
van de interactie op een vrij nucleon. Enkelvoudige pion productie
in lepton-nucleon interacties bij intermediaire energieën wordt voorna-
melijk gedomineerd door het aanslaan van resonanties die vervolgens
vervallen tot een pion-nucleon paar. Door het niet-perturbatieve karak-
ter van de kwantumchromodynamica bij laag vier-momentum transfer
en lage hadronische invariante massa is een precieze beschrijving van
dit proces met quark en gluon vrijheidsgraden praktisch onmogelijk.
Daarom neemt men zijn toevlucht tot het beschrijven van het proces op
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het niveau van het proton en neutron, de zogenaamde kwantumhadro-
dynamica.

Bij lage invariante massa gebruiken we een model waarbij de laagste-
orde diagrammen van een effectieve Lagrangiaan in rekening worden
gebracht. De relevante diagrammen zijn een combinatie van zogenaamde
’achtergrond’-contributies die volgen uit een pion-nucleon Lagrangiaan,
en resonante contributies die de vorm hebben van de uitwisseling van
een onstabiel hadron met bepaalde massa en kwantumgetallen. De
parameters van de achtergrond zijn bepaald door laagste orde ChPT
bij Q2 = 0. Voor de extensie naar hogere Q2 worden de vormfactoren
van het nucleon toegevoegd, gekend uit elastische electron- en neutrino-
nucleon verstrooiing. Om de conservatie van de vectorstroom te behou-
den wordt de F1 nucleon vormfactor dan ook in de vectorstroom door
pion-uitwisseling gegeven. Onder deze aannames zijn is de achtergrond
praktisch vrij van onbekende parameters.

We voegen bij de achtergrond 4 resonanties, de delta (P33(1232)), P11(1440),
S11(1520), en D13(1535). De excitatie van een nucleonresonantie in de
tree-level benadering bestaat uit 3 delen: de elektrozwakke excitatie van
de aangeslagen toestand, de propagator, en de hadronische koppeling
aan de pion-nucleon finale toestand. Voor de hadronische koppeling
maken we gebruik van de massa, totale breedte, en partiële breedte voor
het verval naar pion-nucleon zoals gemeten in hadronische interacties
en opgelijst in Review of Partice Physics. De propagator leidt tot een
Breit-Wigner vorm met een W -afhankelijke breedte die afgeleid wordt
uit de hadronische vertex. Om onfysische sterkte van resonanties ver van
hun pool te onderdrukken wordt gebruik gemaakt van een product van
een Gaussische en dipool vormfactor. Voor de excitatie van resonanties
moeten we terugvallen op een meer fenomenologische beschrijving. Voor
interacties met een nucleon kan de excitatie van een resonantie op vrij
algemene manier beschreven worden met een beperkt aantal fenome-
nologische vormfactoren. We nemen aan dat deze vormfactoren enkel
afhankelijk zijn van Q2. De elektrozwakke respons van een hadron bij
de koppeling met een ijkboson krijgt contributies van een vector- en
axiale stroom. De vectorstroom in zwakke interacties kan gerelateerd
worden aan de vectorstroom in elektromagnetische interacties. Voor de
geladen-stroom interactie hebben we de isovector vormfactoren nodig,
die voor alle resonanties behalve de delta enkel bepaald kan worden door
elektromagnetische pion productie op zowel protonen als neutronen. We
maken gebruik van recente experimentele data voor heliciteitsamplitudes
verkregen door de elektromagnetische excitatie van resonanties op het
proton om de Q2 afhankelijkheid van de proton vormfactoren te motive-
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ren en te bepalen. In plaats van de neutron vormfactor rechtstreeks te
proberen bepalen, vergelijken we heliciteitsamplitudes en vormfactoren
verkregen uit verschillende modellen met de resultaten uit de MAID07
analyse.

Voor de axiale vormfactoren kunnen we niet terugvallen op een exten-
sieve dataset. Met uitzondering van de delta worden de axiale koppelin-
gen bij Q2 = 0 bepaald door gebruik te maken van het partieel behoud
van de axiale stroom, hetgeen impliceert dat de koppeling gerelateerd
is aan de hadronische koppeling. De Q2 afhankelijkheid van de pseu-
doscalaire vormfactor wordt gerelateerd aan andere vormfactoren onder
de assumptie van dominantie van de pion-pool voor de pseudoscalaire
koppeling. Voor de vormfactoren waarvan de koppeling kan bepaald
worden uit partieel behoud van axiale stroom parametrizeren we de
Q2 afhankelijkheid als een product van een dipool met cut-off MA =
1.05 GeV en een monopool met cut-off

√
3MA. Voor de vormfactoren

waarvan de koppeling niet op deze manier bepaald kan worden, wordt
aangenomen dat hun contributie verwaarloosbaar is bij gebrek aan een
betere beschrijving. Dit betekent in het bijzonder dat voor de D13

twee axiale termen niet gëıncludeerd zijn, die potentieel een significante
bijdrage tot de werkzame doorsnede kunnen leveren. Voor de axiale
koppelingen van de delta en hun Q2 afhankelijkheid wordt gebruik ge-
maakt van een fit aan data voor pion productie in neutrino-deuterium
interacties in de context van het model van Adler. De axiale koppeling
die zodoende verkregen wordt is consistent met wat men verkrijgt uit
het partieel behoud van axiale stroom.

Gezien interferentie tussen de achtergrond en de resonanties mogelijk is
is het belangrijk om de relatieve fase tussen de resonante en achtergrond
amplitudes te bepalen. In het simpele model tot hiertoe besproken is de
achtergrond reeël, en de complexe fase van de resonanties wordt volledig
bepaald door hun breedte. Voor invariante massa’s onder de twee-pion
productie barrière zijn de totale fase in multipoolamplitudes voor elek-
trozwakke pion productie gelinkt aan deze in de equivalente amplitudes
voor pion-nucleon verstrooiing door het theorema van Watson. We
maken gebruik van de parametrisatie van complexe fases die met de delta
contributie vermenigvuldigd dienen te worden om, gegeven dit model,
aan Watson’s theorema te voldoen in de dominante multipoolamplitudes
in het deltagebied.

Bij hoge invariante massa’s is de beschrijving van de achtergrondampli-
tude in termen van laagste orde diagrammen onnatuurlijk. Bij invariante
massa’s voorbij het resontiegebied anderzijds wordt de pionproductie
amplitude gedomineerd door een diffractieve voorwaartse piek die be-
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schreven kan worden door de uitwisseling van Regge trajectories. Een
Regge trajectory kan gëınterpreteerd worden als het uitwisselen van een
hele familie van mesonen in het t-kanaal met dezelfde kwantumgetallen
en oplopende spin en massa. We gebruiken een Regge model waarvan
de parameters gebaseerd zijn op die van de lage-energie koppelingen
voor mesonuitwisseling in het t-kanaal, om op deze manier slechts een
minimum aan additionele parameters in te voeren. Deze hoge-energie
beschrijving wordt geëxtrapoleerd naar lagere invariante massa en gaat
via een soepele transitie over in de lage-energie beschrijving. Op deze
manier creëeren we een achtergrondamplitude die over het hele energie-
gebied bruikbaar is.

Resultaten voor pion productie op het nucleon Om de validiteit
van het model voor pion productie op het nucleon te toetsen bekijken we
eerst de resultaten voor elektromagnetische interacties. Om te focussen
op observabelen die het meest relevant zijn voor neutrino-experimenten
vergelijken we de gëıntegreerde werkzame doorsnedes als functie van Q2

en W . We vergelijken ons model met de MAID07 fit en het dynamisch
gekoppelde kanalen model van de ANL-Osaka groep. Gezien de simpli-
citeit van het model, dat weinig vrije parameters bevat in vergelijking
met de meer geavanceerde modellen zijn de resultaten verrassend goed.
We isoleren we uit de MAID07 en ANL-Osaka modellen de isovector
amplitude die rechtstreeks bijdraagt in neutrino-gëınduceerde geladen-
stroom interacties. We vinden dat de drie modellen gelijkaardige resul-
taten geven voor de isovector contributie. In het bijzonder nemen we
waar dat voor werkzame doorsnedes die uitgemiddeld zijn over een brede
experimentele neutrinoflux de overeenkomst tussen de vector-vector con-
tributie in ons model en het state-of-the-art ANL-Osaka model meer dan
voldoende is voor het beschrijven van neutrino data.

Gezien de axiale koppeling in het model geconstrueerd is aan de hand
van de pion-nucleon koppelingen, kan de axiale stroom in het model ge-
bruikt worden om werkzame doorsnedes voor pion-nucleon verstrooiing
te berekenen. We vergelijken de resultaten van het model met werkzame
doorsnedes voor elastische en totale pion-nucleon verstrooiing, dit biedt
opnieuw een consistentiecheck voor de axiale stroom, in het bijzonder
voor de interferentie tussen achtergrond en resonante contributies. We
vinden dat, in het bijzonder voor elastische π−p verstrooiing, er grote
cancellaties tussen de achtergrond en de gekruiste resonante diagrammen
optreden die resulteren in een correcte magnitude voor de werkzame
doorsnede.
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We vergelijken de resultaten van het model met gemeten werkzame
doorsnedes voor neutrino-gëınduceerde pion productie op protonen en
deuterium. Het blijkt niet mogelijk om alle interactiekanalen gelijktijdig
te beschrijven. Terwijl de vergelijking met data voor de productie van π+

op het proton en π0 op het neutron adequaat is, wordt de data voor π+

productie op het neutron sterk onderschat. Het wordt onder meer ook
duidelijk dat zelfs in het deltagebied, de beschrijving van de data voor
π+ productie op het proton niet consistent blijkt tussen experimenten op
hoge en lage energie. Doordat het model quasi identieke resultaten geeft
voor de vector-vector stroom als het ANL-Osaka model, en de bijdrage
van de vector-axiale stroom verwaarloosbaar is bij hoge energie, lijkt
de conclusie dat de discrepanties tussen het model en de data moeten
gezocht worden in de beschrijving van de axiale vormfactoren. De grote
onzekerheden op de huidige data laten echter niet toe om te bepalen
waar de discrepanties exact moeten gezocht worden.

Pion productie op kernen We implementeren het model voor pion
productie op het nucleon in de atoomkern door gebruik te maken van
het onafhankelijk-deeltjes model. De grondtoestand van de kern wordt
beschreven door een set van orbitalen gekarakteriseerd door een bin-
dingsenergie en angulair momentum. Deze toestanden worden verkregen
in een relativistisch gemiddeld veld, dat een zelfconsistente oplossing is
van een niet-lineair sigma-omega model in de Hartree benadering. De
interactie met de kern wordt dan beschreven als de incoherente som van
de interacties met de verschillende nucleonen in de een-deeltjesorbitalen.
De golffunctie van het nucleon dat uit de kern wordt gestoten door
de interactie wordt beschreven met een relativistische vervormde golf.
Gezien dit nucleon in neutrino experimenten niet gedetecteerd wordt,
moet de totale flux behouden worden. Dit kan gedaan worden door
gebruik te maken van een effectieve reeële potentiaal voor het uitgaand
nucleon. We gebruiken de empirische energie afhankelijke relativistisch
gemiddeld veld potentiaal (ED-RMF). Deze potentiaal is geconstrueerd
om praktisch identiek te zijn aan de gemiddeld veld potentiaal wanneer
de energie van het uitgaand nucleon laag is, terwijl bij hogere energieën
de diepte van de potentiaal afneemt zoals vereist. Dit zorgt ervoor
dat bij uitgaande energieën die vergelijkbaar zijn met het momentum
van een gebonden nucleon, beide nucleon golffuncties consistent ver-
kregen worden uit dezelfde potentiaal. Hiermee worden spurieuze niet-
orthogonale contributies aan het matrixelement vermeden, zo is onder
meer aan het Pauli-exclusie principe voldaan en blijft de vectorstroom
behouden. Vergelijking met data voor elektron-kern verstrooiing toont
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dat deze methode leidt tot een goede beschrijving van de werkzame
doorsnede over een breed energiegebied wanneer het uitgaande nucleon
niet gedetecteerd wordt. Dit is in het bijzonder het geval voor de
kinematische regio gedomineerd door 1-nucleon uitstoot.

Resultaten voor pion productie op kernen We vergelijken de
werkzame doorsnedes voor enkelvoudige pion productie met experimen-
tele data voor neutrino interacties op koolstof. De interpretatie van de
vergelijking met data wordt ietwat bemoeilijkt door niet-triviale kine-
matische restricties in de data, en het feit dat de precieze opmaak van
de hadronische finale toestand niet volledig gekarakteriseerd kan wor-
den. We vergelijken enerzijds met data van het MINERνA experiment,
dewelke zowel geladen als neutrale pion productie door neutrino’s en
antineutrino’s beslaat, en anderzijds met de recente data van T2K voor
neutrino-gëınduceerde geladen pion productie. We vergelijken alsook
resultaten in de relativistische vervormde-golf benadering met de resul-
taten in de relativistische vlakke-golf benadering. Dit leert ons dat de
verschillen in werkzame doorsnede omwille van de uitgaande nucleon
potentiaal, hoewel ze tot 10% kunnen zijn, een stuk kleiner zijn dan in
het geval van 1-nucleon uitstoot. In het bijzonder zien we geen grote
verschillen in de vorm van de werkzame doorsnedes als functie van de
meeste kinematische variabelen.

De vergelijking met data voor geladen pion productie, voor zowel neu-
trino’s als antineutrino’s lijkt consistent. De beschrijving van de π+

productie data van T2K en MINERνA is alsook gelijkaardig van kwali-
teit. Hier merken we wel op dat een reductie van de werkzame doorsnede
vanwege pion finale-toestandsinteracties verwacht wordt. We vinden dat
de MINERνA π+ data, die slechts invariante massa in het deltagebied
toelaat, overschat wordt en plaats laat voor zo’n reductie. Anderzijds
laat de werkzame doorsnede voor T2K en π− productie in MINERνA,
dewelke beide hogere invariante massa’s toelaten, geen ruimte voor der-
gelijke reductie.

De beschrijving van neutrale pion productie door neutrino’s en antineu-
trino’s in MINERνA anderzijds is niet consistent. Met het in rekening
brengen van de kinematische restricties in de data voorspelt het model
dat de magnitude van de werkzame doorsnede voor de neutrino inter-
actie gelijkaardig is aan die voor de antineutrino interactie. Het model
beschrijft de data voor antineutrino’s over het algemeen goed, terwijl de
neutrino data significant onderschat wordt.
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Samenvatting

Onze bevinding voor geladen pion productie is consistent met de idee
dat de werkzame doorsnede bij invariante massa voorbij het deltagebied
onderschat wordt. De origine van de discrepanties in de beschrijving
voor neutrale pion productie is moeilijker aan iets toe te schrijven,
maar zou dezelfde oorzaak kunnen hebben. In de werkzame doorsnede
voor het antineutrino proces is er namelijk een cancellatie tussen de
contributie van de interactie op een vrij proton, en de vector-axiale
interferentieterm. Zolang deze beide contributies gelijkaardig blijven
is het in principe mogelijk om de werkzame doorsnede voor het neutrino
proces te vergoten zonder de overeenkomst met de antineutrino data te
verliezen.
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Appendix A

Notation and conventions

This appendix summarizes the notation and conventions used through-
out this work and provides some background for selected concepts. We
follow the normalization conventions for spinors of Ref. [48].

We use natural units throughout this work i.e. the reduced planck con-
stant, and the speed of light are

~ = 1, c = 1, (A.1)

and we do not explicitly write these constants unless neccesary. The fine
structure constant in natural units reads

α =
e2

4π
=

1

137.04
, (A.2)

with e the fundamental charge.

A.1 Four-vectors Lorentz transformations and
Tensors

Four vectors are four-component vectors which describe properties of
an event which is observed at a particular point in space-time. Lorentz
transformations are linear transformations which relate the components
of a four-vector observed in an inertial frame to the components observed
in a different inertial frame. The four-position x describes the position
and time of an event in a particular inertial frame is denoted

x = (x0, x1, x2, x3) = (x0,x) = (t,x) (A.3)
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Four-vectors Lorentz transformations and Tensors

where the zeroth component is the time-like coordinate and the other
components form a vector in 3-dimensional space. We write four vectors
in italics, or with an explicit index in superscript when this is more clear.
To distinguish them from ordinary three-component vectors we write the
latter in bold. A general linear transformation can be written in tensor
form

xν′ = Λνµx
µ, (A.4)

where summation over repeated indices should be understood.

The Lorentz transformations are now those that keep the norm of the
four-vector invariant, where the norm is defined as

x2 = x ·x = gµνx
µxν , (A.5)

with gµν the metric tensor. The metric tensor hence defines what lineair
transformations constitute Lorentz transformations, it is defined

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.6)

This means that the invariant under Lorentz transformations is t2−|x|2,
this follows from the speed of light being the same in all inertial frames.

We define the Levi-Civita symbol εαβγδ, a totally anti-symmetric tensor
with

ε0123 = 1, (A.7)

where if the indices (αβγδ) are an even permutation of (0, 1, 2, 3) the sign
is positive while for uneven permutations the sign is negative, the tensor
is zero if any indices are repeated. Here introduced for 4-dimension the
definition remains the same in n-dimensions.

Four vectors with an upper index are contravariant, it is convenient to
introduce the covariant four-vector, denoted with a lower index as

xµ = gµνx
ν , (A.8)

such that the scalar product can be written

x ·x = xµx
µ. (A.9)

Covariant four vectors transform under Lorentz transformations as

x′ν = Λ µ
ν xµ, (A.10)
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Notation and conventions

where

Λ ν
µ = gµαΛαβg

νβ = (Λ−1)µν (A.11)

is the inverse transformation.

Lorentz transformations, when expressed in matrix form have determi-
nant 1 or −1 the former are referred to as proper tranformations which
are comprised of boosts (Bµ

ν) and rotations (Rµν) and the latter are the
improper transformations time reversal Tµν and parity inversion (Pµν).
Any proper transformation can be written as a rotation and a subsequent
boost. A boost corresponds to a transformation to an inertial frame that
is moving with velocity β = (βx, βy, βz) relative to the current frame. A
boost can be written in matrix notation as

[B(β)]νµ x
µ =


γ −γβx −γβy −γβz
−γβx 1 + αβ2

x αβxβy αβxβz
−γβy αβyβx 1 + αβ2

y αβyβx
−γβz αβxβz αβyβz 1 + αβ2

z



x0

x1

x3

x4

 (A.12)

with the Lorentz factor γ = (1−β2)−1/2 and α = γ2/(γ+1) = (γ−1)/β2.
A general rotation does not affect the time like-components, hence for
all rotations R0

0 = 1 and R0
i = Ri0 = 0 for all i 6= 0. For the space-like

components the rotation matrix is the same as a classical rotation, for a
given rotation axis represented by the unit vector n̂, and an angle θ the
elements of the rotation matrix which rotates along this axis with given
angle are

Rij = cos θδij + sin θεijkn̂k + (1− cos θ)n̂in̂j . (A.13)

Finally, the improper Lorentz transformations parity inversion and time
reversal are their own inverses, parity flips the sign of all spatial compo-
nents while time reversal flips the sign of the time component.

Apart from the position in space-time of an event, other quantities
transform as four-vectors under Lorentz transformations when observed
from a different inertial system. The four-momentum of a particle is

Pµ = (E,p) , (A.14)

for which the conserved quantity is it’s invariant mass

P ·P = E2 − p2 = m2. (A.15)

As energy and momentum are separately conserved in interactions, the
four momentum is also a conserved quantity.
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The free Dirac equation

For use in the next section we mention the four-spin. The intrinsic angu-
lar momentum, i.e. the spin of a particle, is always measured with respect
to some spatial direction. If a particle is polarized along some specific
direction in a specific frame, due to the change of spatial coordinates, the
direction of the polarization will change under Lorentz transformations.
The four-spin is a four-vector which gives the direction along which its
spin is polarized in the particles rest frame and for which the time-like
component is zero.

A.2 The free Dirac equation

The Dirac equation for free particles can be introduced in quite general
terms

Êψ = (α · p̂ + α0m)ψ, (A.16)

where Ê and p̂ are energy and momentum operators. α = (α1, α2, α3) is
a tree-component vector. The quantities αi (including α0) should satisfy

α2
i = 1, αiαj + αjαi = 0 (j 6= i). (A.17)

With the anticommutation of the αi, upon squaring both sides of A.16
the cross terms dissapear and one obtains the Klein-Gordan equation

Ê2ψ = p̂2ψ +m2ψ, (A.18)

such that solutions of the Dirac equation satisfy Einstein’s energy-momentum
relation. Furthermore, if the Hamiltonian A.16 is to yield real eigen-
values this means that the α should be Hermitian αi = α†i . We use
the Dirac-Pauli representation, in which the α are traceless Hermitian
4 × 4 matrices with eigenvalues ±1. It is customary to write the Dirac
equation in a form which is suggestive of the covariance under Lorentz
transformations. If the energy and momentum operators are cast into a
four vector P̂µ = (Ê,−p̂) one can multiply Eq. (A.16) by α0 to obtain(

γµP̂µ −m
)
ψ = 0, (A.19)

where γµ = (α0, α0α1, α0α2, α0α3) is a conventient shorthand notation
for the different matrices, such that γµP̂µ can effectively be treated
as a product of four-vectors. From the anti-commutation relations of
the αi one then has that the gamma matrices should satisfy the anti-
commutation relation

{γµ, γν} = 2gµν14 (A.20)
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Notation and conventions

with γµν the metric tensor introduced earlier. And that (γ0)† = γ0 is
Hermitian while for k 6= 0, (γk)† = −γk they are anti-Hermitian .

The components of γµ in the Dirac-Pauli representation are the four-by-
four matrices

γ0 =

(
σ0 0
0 −σ0

)
, γi =

(
0 σi
−σi 0

)
(i 6= 0). (A.21)

Here the σi in the spatial components are the two-by-two Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.22)

and

σ0 = 12 =

(
1 0
0 1

)
. (A.23)

Solutions ψ of Eq. are four-component Dirac wavefunctions on which
the γµ can act. One can define linear combinations of products of gamma
matrices to span the space of four-by-four matrices which can act on the
Dirac wavefunctions. Of particular significance is

γ5 = γ5 = iγ0γ1γ2γ3γ4 =

(
0 σ0

σ0 0

)
. (A.24)

which is Hermitian and anticommutes
[
γµ, γ5

]
= 0 with the four gamma

matrices.

Another combination is defined by the commutator of the gamma ma-
trices

σµν =
i

2
[γµ, γν ] . (A.25)

As mentioned, the gamma matrices γµ may be effectively treated as a
four-vector. The covariant form is γµ = gµνγ

ν , and products with a
four-vector x = (x0, x1, x2, x3) are x · γ = xµγ

µ = x0γ0 − x1γ
1 − x2γ

2 −
x3γ

3. Due to the common occurence of such products the Feyman slash
notation is introduced where for a four vector x

/x = xµγ
µ. (A.26)

Free particle (plane-wave) solutions to the Dirac equation can easily be
found. Working in coordinate space the operator P̂µ = (Ê,−p̂) = i∂µ =
i( ∂∂t ,

∂
∂x ,

∂
∂z ,

∂
∂z ). For a plane-wave ansatz ψ(t,x) = u (E,p) ei(p ·x−Et)

we have upon substitution in eq. A.2 that(
/p−m

)
u (E,p) = 0. (A.27)
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The free Dirac equation

We refer to u(E,p) as the (free) Dirac spinor. There are four indepen-
dent solutions to this equation. If we write the Dirac spinor, dropping
energy and momentum dependence, as uT = (φ, χ), where φ and χ have
two components each, one observes that the Dirac equation decomposes
into two coupled equations

φ =
σ · p
E −mχ (A.28)

χ =
σ · p
E +m

φ. (A.29)

Eliminating either φ or χ from these equations yields two solutions

u+ =

(
φ

σ ·p
E+mφ

)
, u− =

( σ ·p
E−mχ
χ

)
. (A.30)

These are positive and negative energy solutions to the Dirac equation.
This is most easily seen if the particle is at rest, in which case the Dirac
equation (A.2) becomes

Eγ0u = mu, (A.31)

such that E = ±m for the u±. Instead of dealing with the negative
energy states it is customary to introduce antiparticle spinors v(E,p) by
looking for solutions of the Dirac equation where ψ(t,x) = v(E,p)e−i(p ·x−Et),
i.e. in which the sign in the exponent is reversed. One then finds that
the antiparticle spinors satisfy(

/p+m
)
v(E,p) = 0, (A.32)

and that hence the positive-energy antiparticle solutions are

v+ =

( σ ·p
E+mφ

φ

)
. (A.33)

These can of course be written as combinations of negative energy solu-
tions of the original Dirac equation, however the interpretation is more
natural as anti-particles with positive energies.

The choice of φ is arbitrary, and allows for two independent solutions
which correspond to the spin degrees of freedom of the Dirac spinor.
One can choose two orthogonal two-component vectors, the two simplest
choices are

φ+ = N

(
1
0

)
, φ− = N

(
0
1

)
(A.34)

where N determines the overall normalization of the wavefunctions.
With this choice the two spinors corresponding to φ+ and φ− are spin-up
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Notation and conventions

and down solutions where the spin quantization axis is along the z-axis
in the particle’s rest frame.

The operator acting on spinors which corresponds to a boost with ve-
locity β along the direction of the unit vector n̂

B̂(n̂, β) = cosh
ξ

2
+ n̂iγ

0γi sinh
ξ

2
, (A.35)

where summation over the three spacelike gamma matrices is understood

and the rapidity ξ is defined by cosh ξ =
(
1− β2

)−1/2
. A rotation wih an

angle θ around the direction of a unit vector n̂ is given by the operator

R̂(n̂, θ) = cos
θ

2
− in̂iγ5γ0γi sin θ2. (A.36)

Parity inversion is given by

P̂ = γ0. (A.37)

In many cases the spin is unobserved and summed over such that the
specific spin-axis is irrelevant. Following Ref. [48] we will label the two
spinor spin states by their four-spin ±sµ = ±Λµνsν0 , where s0 = (0, s0)
and s0 is the direction of polarization in the particles rest-frame.

We follow the normalization convention that

u†(p, s)u(p, s′) = E/Mδss′ , (A.38)

and

v†(p, s)v(p, s′) = −E/Mδss′ , (A.39)

such that N =
√

E+M
2M . For may applications it is convenient to intro-

duce adjoint spinors defined as

u = u†γ0, v = v†γ0. (A.40)

The inner product of an adjoint spinor with a spinor can be shown to
be a Lorentz invariant scalar and in particular we have

u(p, s)u(p, s′) = −v(p, s)v(p, s′) = δss′ , (A.41)

and a completeness relation∑
s

(u(p, s)u(p, s)− v(p, s)v(p, s)) = 14. (A.42)
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The free Dirac equation

One can introduce a projection operator for spin

Σ(sµ) =
1 + γ5/s

2
, (A.43)

and for positive and negative energy components

Λ(pµ)± =
±/p+m

2m
. (A.44)

The action of the spin projection operator on an arbitrary spinor is
to project out the component with spin along the axis defined by s.
The energy projection operators, for a given momentum p, project out
the positive and negative energy spinors. From the normalization and
completeness the spinors one then sees that

u(p, s)u(p, s) = Λ+(p)Σ(s) =
/p+m

2m

1 + γ5/s

2
, (A.45)

v(p, s)v(p, s) = −Λ−(p)Σ(s) = −m− /p
2m

1 + γ5/s

2
, (A.46)

and upon summation over positive and negative spin∑
±s

u(p, s)u(p, s) = Λ+(p) =
/p+m

2m
, (A.47)

∑
±s

v(p, s)v(p, s) = −Λ−(p) = −m− /p
2m

. (A.48)
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Appendix B

The Relativistic Mean Field

In this appendix an overview of the relativistic mean field formalism is
presented. We first deal with a general overview of the Dirac equation
with central potentials, and then provide a more in dept look at mean
field theory and at how bound and scattering states obtained with scalar
and vector potentials.

B.1 The Dirac equation

The Dirac equation describes particle states with spin 1/2 in terms of
Dirac spinors. We will deal with the stationary Dirac equation with
central finite-range nuclear scalar (S(r)) and vector potentials (V (r)),
a long-range coulomb potential may also be contained in V (r). The
stationary Dirac equation in this case is of the form:

[α̂ · p̂ + β (mN + S (r))− (E − V (r))]ψ = 0, (B.1)

where

V (r) = Vstrong(r) + VC(r), VC(r →∞) ∼ Zα

r
, (B.2)

contains a short range potential due to the strong interaction and the
long-range coulomb potential. Because of the spherical symmetry of
the potentials we write the angular dependence of the Dirac equation
in terms of the spin-spherical harmonics φmκ (Ωr). A solution with well
defined parity and angular momentum then is of the general form

Ψm
κ =

(
gκ(r)φmκ (Ωr)
ifκ(r)φm−κ (Ωr)

)
, (B.3)
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The Dirac equation

with the spin spherical harmonics given as

φmκ (Ωr) =
∑
mls

〈l ml 1/2 s| j mj 〉Y ml
l (Ωr)χ

s. (B.4)

The relativistic quantum number κ is related to the orbital angular
momentum l, and total angular momentum j by

l =

{
κ if κ > 0

−κ− 1 if κ < 0

}
, (B.5)

with j = |κ|−1/2. The upper and lower component radial wavefunctions
g (r) and f (r) are solutions of the well-known coupled radial Dirac
equation which in this case reads

dg

dr
= −κ

r
g + [E +mN + S − V ] f

df

dr
= +

κ

r
f − [E −mN − S − V ] g, (B.6)

where we dropped the explicit r dependence of the potentials. To
interpret the effect of the scalar and vector potentials in terms of a non-
relativistic theory, it is instructive to rewrite these coupled equations in
a second-order form that resembles the Shrodinger equation. Indeed,
equation (B.1) can be rewritten in terms of the upper component to
yield[

−~2∇2

2MN
+ Vc + Vso (σ ·L− ir ·p)

]
u (k, s) =

k2

2MN
u (k, s) , (B.7)

where then the central and spin-orbit potentials are given in terms of
the original scalar and vector potentials as

Vc = S +
E

MN
V +

S2 − V 2

2MN
,

Vso =
1

2MN (E +M + S − V )

1

r

d

dr
[V − S] . (B.8)

From this one sees that a non-energy dependent vector potential nat-
urally leads to an energy dependent central potential in a Shrodinger
picture. Large vector and scalar potentials lead to a spin orbit coupling
with a typical surface-peaked form, where the depth of the potential is
determined by the difference between the scalar and vector potentials.
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The Relativistic Mean Field

B.2 Relativistic mean field Lagrangian in the
Hartree approximation

The relativistic Lagrangian used in our calculations is an extension of
the linear σ−ω model originally introduced by Walecka, which contains
scalar σ and vector ω mesons. This model is extended by including the
ρ-meson, the maxwell field Aµ, the pion, and non-linear terms for the
σ [239]. This leads to a lagrangian of the form:

L = Ψ (iγµ∂
µ −M) Ψ (B.9)

+
1

2

(
∂µσ∂

µ −m2
σσ

2
)
− U(σ) (B.10)

− 1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ (B.11)

− 1

4
RµνR

µν +
1

2
m2
ρρµρ

µ (B.12)

− 1

4
FµνF

µν (B.13)

− gsΨσΨ− gωΨγµω
µΨ− gρΨγµτρµΨ− ge

1 + τ3

2
ΨγµA

µΨ, (B.14)

where we have dropped the pion terms and the coupling of the Maxwell
field to the charged meson as they do not enter the equations of motion in
the Hartree approximation [239]. The term U(σ) = 1

3g2σ
3 + 1

4g3σ
4 is the

non-linear term for the scalar meson. With these extensions the model
has 6 free parameters, the meson coupling constants gσ, g2, g3, gω, gρ, and
the mass of the σ meson. The tensor fields are

Ωµν = ∂µωµ − ∂νων , (B.15)

Rµν = ∂µρµ − ∂νρν − gρ(ρµ × ρν), (B.16)

Fµν = ∂µAµ − ∂νAν . (B.17)

With these definitions the mean field approach can be implemented,
where the meson fields are replaced by classical fields. This approach
was originally applied to infinite nuclear matter, then the meson fields
only have a time-like component and are constant, and the system can
be solved exactly [181, 240]. For finite nuclei the fields will neccesarily
have a spatial dependence and exact solutions are not possible. The self-
consistent Hartree equations for the fields can be written down directly
from the Lagrangian with certain approximations as we will do here.
These equations were also derived with a Greens function approach
in [241] which makes the adopted approximations more clear.
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Bound states

When we assume spherical symmetry and look for static solutions, the
vector fields are r dependent and again only enter with their time-like
components. Since the isovector current is converved (i.e. protons stay
protons and neutrons neutrons) only the third component of the isospin
operator τ is non-zero. Furthermore if the nucleus is a parity eigenstate
the pion fields (which we have not included in the lagrangian for clarity)
do not enter. The scalar and vector potentials that enter the radial
Dirac equation (B.6) are then given in terms of the fields as

S(r) = gσσ(r) (B.18)

V (r) = gωω
0(r) + gρτ3ρ

0
3(r) + e

1 + τ3

2
A0(r). (B.19)

Under the previous approximations and by conservation of the baryon
current the tensor fields of eq. (B.15) simplify such that the Lagrange
equations for the mesons all reduce to Klein-Gordon-like equations with
static source terms(

∇2 −m2
σ

)
σ(r) = gσρs(r) + g2σ

2(r) + g3σ
3(r), (B.20)(

∇2 −m2
ω

)
ω0(r) = gωρB(r), (B.21)(

∇2 −m2
ρ

)
ρ0

3(r) = gρρI(r), (B.22)

∇2σ(r) = −eρe(r), (B.23)

which are the scalar, baryon, isovector, and charged nuclear densities.
These are defined in in the Hartree aproach as their expectation values
in the single particle basis:

ρs(r) =
∑
i

Ψi(r)Ψi(r), (B.24)

ρB(r) =
∑
i

Ψ†i (r)Ψi(r), (B.25)

ρI(r) =
∑
i

Ψ†i (r)τ3Ψi(r), (B.26)

ρe(r) =
∑
i

Ψ†i (r)
1 + τ3

2
Ψi(r). (B.27)

These equations together with the radial Dirac equation are then solved
self-consistently until convergence is reached.

B.3 Bound states

A bound state in a central potential has fixed angular momentum quan-
tum numbers κ and mj , and negative kinetic energy. It is thus of the
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form of eq. (B.3) and is normalized as∫
rdr

∫
dΩ Ψ

mj†
κ Ψ

mj
κ =

∫
rdr g2

κ(r) + f2
κ(r) = 1, (B.28)

where the integral over the solid angles is trivial as the spin-spherical
harmonics are normalized to one.

It is possible to find a bound state using a shooting point method. The
radial Dirac equation is integrated outward from a small radius, and
inward from a large radius. These solutions are then matched at a
’shooting point’ in between and their distance is used to define the energy
error, and the next guess for the bound state energy. This method is
repeated until the solutions converge and a stable bound state solution
is found.

B.4 Scattering states

A scattering state in a central potential with a fixed energy and spin
can be obtained in a partial wave expansion

Ψs(r) = 4π

√
E +M

2M

∑
κ,mj ,ml

eiδκil 〈l ml 1/2 s| j mj 〉Y ∗l,ml (Ωk) Ψ
mj
κ (r),

(B.29)
where Ψ

mj
κ (r) is the solution to the radial Dirac equation for fixed κ and

mj defined in eq. (B.3). Note that the normalization has a relative factor
E/M compared to Refs. [126, 242], consistent with the normalization of
the free spinors in Appendix A. The boundary conditions for solving Eqs.
(B.6) for fixed κ are found from the asymptotic behaviour at r → 0 and
r → inf. The wavefunctions are normalized such that in the absence of
a potential they would be plane waves. This requires that the scattering
solutions are matched at large r to the expected behaviour in order to fix
the normalization. In absence of the Coulomb potential both the scalar
and vector potential are of finite range and tend to zero faster than 1/r
such that the solution for large r is a phase-shifted Dirac plane wave.
This means that for large enough r the upper and lower components
behave as

Ψm
κ →

(
jl(kr + δ′κ)φmκ (Ωr)

isgn(κ)jl(kr + δ′κ)φm−κ (Ωr)

)
(B.30)

with jl the spherical bessel functions, and l = l − sgn(κ) as deter-
mined from Eq. (B.5). For charged particles however we have to
take into account the long-range coulomb potential. In this case the
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asymptotic behaviour can be described by phase shifted Dirac-Coulomb
wavefunctions [243]. The asymptotic behavior in terms of sine and cosine
functions then is

Ψm
κ →

(
1
kr cos

(
(kr + δκ + δCκ

)
φmκ (Ωr)

1
kr sin

(
kr + δκ + δCκ

)
φm−κ (Ωr)

)
, (B.31)

with the Coulomb phaseshift:

δCκ = y log (2kr)− arg [Γ (γ + iy)]− πγ/2 + φ. (B.32)

Here we have y = E/kη, with η = Z/α the relativistic Sommerfeld
parameter, and γ = +

√
κ2 − η2. The phase φ is given by

e2iφ =
κ− iyM/E

γ + iy
. (B.33)

However it tends to be more convenient to directly match solutions at
large r to the Dirac-Coulomb wavefunctions instead of to their asymp-
totic behaviour.
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Appendix C

Multipole decomposition of
the electroweak SPP
amplitude

The results of the ANL-Osaka DCC model and the MAID07 isobar
model presented in this work are obtained from the multipole ampli-
tudes that are made available online [106, 107]. The description of
the electroweak vector current in terms of electromagnetic multipoles
follows the standard conventions which have been discussed in detail in
e.g. Refs [244, 245], we repeat the neccesary expressions to reproduce
the results for the electromagnetic and charge-changing vector current
presented in this work for completeness.

The cross section for electromagnetic SPP by virtual photons is written
as

dσ

dΩ∗π
= σT + εσL +

√
ε (1 + ε)σLT cosφ∗ (C.1)

+ εσTT cos 2φ∗ + h
√
ε (1 + ε)σLT ′ sinφ

∗. (C.2)

The cross section is defined in the πN center of mass system, where
the exchanged virtual photon defines the z-axis and the azimuthal angle
φ∗π is defined with respect to the lepton scattering plane. Following the
results of Section 2.3, and using vector current conservation, the different
terms in this expression can be identified in terms of the elements of the
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hadron tensor as

σT = σ0
H11 +H22

2
, (C.3)

σL = σ0
Q2

q∗2
H00, (C.4)

σLT = σ0

√
Q2

q∗2
Re(H10), (C.5)

σTT = σ0
H11 −H22

2
, (C.6)

σLT ′ = σ0

√
Q2

q∗2
Im(H10), (C.7)

where the coordinate system is such that the pion lies in the lepton
scattering plane i.e. defined by the unit vectors

k3 =
q

|q| , k2 =
q∗ × k∗π
|q∗ × k∗π|

, k3 = k2 × k3. (C.8)

The normalization is determined by σ0 = |k∗π |
k∗γ

, with k∗γ =
W 2−M2

N
2W the

equivalent photon energy in the CMS. One can compare this to the
normalization in Eqs. (3.148-3.152) which applies for the hadron tensor
determined by the currents in Chapter 3, and note that in particular the
electromagnetic coupling

√
α is absorbed in the definition of the hadron

current in this case.

The hadron tensor is given in terms of the hadron current as

Hµν(W,Q2, cos θ∗) =
∑(

Jµ(W,Q2, cos θ∗, si, sf )
)∗
Jν
(
W,Q2, cos θ∗si, sf

)
,

(C.9)
with the appropriate summing and averaging over initial and final nu-
cleon spin implied. One may decompose the hadron current in terms of
a complete set of matrices and associated amplitudes, e.g. in terms of
Dirac spinors

Jµ(W,Q2, cos θ∗, si, sf ) = uf (sf , kf )

n=6∑
n=1

(AnMµ
n)ui(si, ki), (C.10)

where, when taking into account vector current conservation to eliminate
2 degrees of freedom, one needs 6 independent amplitudes to describe
the current. Completely equivalently one can write the matrix element
εµJ

µ in terms of Pauli spinors that are eigenstates of the spin along the
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k3 direction, thus making the kinematic dependence of the Dirac spinors
explicit

εµJ
µ(W,Q2, cos θ∗) = χf εµFµ(W,Q2, cos θ∗)χi (C.11)

the CGLN amplitudes Fi are then defined as

− εµFµ(W,Q2, cos θ∗) = iσ · ε⊥F1 + σ · k̂πσ ·
(
k̂γ × ε⊥

)
F2 + iσ · k̂γk̂π · ε⊥F3

(C.12)

+ iσ · k̂πk̂π · ε⊥F4 + iσ · k̂γk̂γ · εF5 + iσ · k̂πk̂γ · εF6 − iσ · k̂πε0F7 − iσ · k̂γε0F8

(C.13)

where εµ = (ε0, ε) and the component perpendicular to the direction

of the virtual photon is ε⊥ = ε −
(
ε · k̂γ

)
k̂γ . One can identify the

components of the hadron current in the reference system defined by
Eq. (C.8) as

J1(si, sf ) = χf
[
iσ1

(
F1 − cos θ∗F2 + sin2 θ∗F4

)
(C.14)

+iσ3 sin θ∗ (F2 + F3 + cos θ∗F4)]χi, (C.15)

J2(si, sf ) = χf [iσ2 (F1 − cos θ∗F2)− σ0 sin θ∗F2]χi, (C.16)

J0(si, sf ) = χf [iσ3 (cos θ∗F7 + F8) + σ1 sin θ∗F7]χi. (C.17)

(C.18)

One may square the currents and perform the sums and averaging over
the spin to write the relevant hadron tensor elements in terms of the
amplitudes as

1

2

∑
si,sf

H11 +H22

2
= |F1|2 + |F2|2 +

1

2
sin2 θ∗

(
|F3|2 + |F4|2

)
−Re

[
F ∗1F2 − sin2 θ∗ (F ∗1F4 + F ∗2F3 + cos θ∗F ∗3F4)

]
, (C.19)

1

2

∑
si,sf

H00 = |F7|2 + |F8|2 + 2 cos θ∗Re [F ∗8F7] (C.20)

1

2

∑
si,sf

H11 −H22

2
=

1

2
sin2 θ∗

(
|F3|2 + |F4|2

)
+ Re [F ∗1F4 + F ∗2F3 + cos θ∗F ∗3F4] , (C.21)
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1

2

∑
si,sf

H03 = − sin θ∗ (F ∗2 + F ∗3 + cos θ∗F ∗4 )F8

− sin θ∗ (F ∗1 + F ∗4 + cos θ∗F ∗3 )F7. (C.22)

Finally, by projecting out the dependence on cos θ∗ [245], the relevant
CGLN amplitudes Fi are obtained in terms of a series of electromagnetic
multipoles El±(Q2,W ), Ml±(Q2,W ), and Sl±(Q2,W ) as

F1 =
∑
l

(
P ′l+1El+ + P ′l−1El− + lP ′l+1Ml+ + (l + 1)P ′l−1Ml−

)
, (C.23)

F2 =
∑
l

(
(l + 1)P ′lMl+ + lP ′lMl−

)
, (C.24)

F3 =
∑
l

(
P ′′l+1El+ + P ′′l−1El− − P ′′l+1Ml+ + P ′′l−1Ml−

)
, (C.25)

F4 =
∑
l

(
−P ′′l El+ − P ′′l El− + P ′′l Ml+ − P ′′l Ml−

)
, (C.26)

F7 =
∑
l

(
−(l + 1)P ′lSl+ + lP ′lSl−

)
, (C.27)

F8 =
∑
l

(
(l + 1)P ′l+1Sl+ − lP ′l−1Sl−

)
. (C.28)

Here Pl denotes the Legendre polynomial of degree l with argument
cos θ∗, and single and double primes denote their first and second deriva-
tive respectively. Finally we note that with this the angle integrated
longitudinal and transverse cross sections can be conveniently expressed
in terms of the electromagnetic multipoles using

∫
dΩ∗π

1

2

∑
si,sf

H11 +H22

2

= 2π
∑
l

(l + 1)2
(
(l + 2)

(
|El+|2 + |M(l+1)−|2

)
+ l
(
|Ml+|2 + |E(l+1)−|2

))
,

(C.29)

for the transverse cross section and∫
dΩ∗π

1

2

∑
si,sf

H00 = 4π (l + 1)3 (|Sl+|2 + |S(l+1)−|2
)

(C.30)

for the longitudinal.
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C.0.1 Charge-changing vector current

To obtain the charge-changing vector current which enters in the weak
process from the electromagnetic multipoles we divide out the electro-
magnetic coupling. Additionally, comparing the normalization σ0 in
the previous section with the one in Eqs. (3.148-3.152) we redefine the
amplitudes as

Ãl± =

√
W

MN4πα
Al±, (C.31)

such that the currents computed with these amplitudes are normalized
in the same way as those in Chapter 3. From the isospin relations in
section 3.1, one finds following relations between the charge changing
neutrino induced isovector current (JCC+,V ) and electromagnetic JEM
currents

〈π+p|JCC+,V |p〉 =
√

2〈π0n|JEM |n〉+ 〈π−p|JEM |n〉 (C.32)

〈π+n|JCC+,V |n〉 =
√

2〈π0p|JEM |p〉 − 〈π−p|JEM |n〉, (C.33)

and in terms of these two one may write the final physical weak ampli-
tude as

〈π0p|JCC+,V |n〉 = − 1√
2

(
〈π+p|JCC+,V |p〉 − 〈π+p|JCC+|p〉

)
. (C.34)

We apply these relations to the multipole amplitudes of the electromag-
netic pion production channels to obtain the isovector current needed in
the charged-current interactions, the calculation of the hadron current
then proceeds as before.

It is important to note that in some cases a different sign convention is
used in the isospin decomposition of the amplitudes, and that in general
any of the physical amplitudes could be multiplied by an arbitrary
phase without affecting the cross sections. In MAID07 for example the
electromagnetic amplitude involving a positive pion is defined with a
relative minus sign with respect to our convention. As the relations in
Eqs. (C.32-C.34) do not involve the π+ channel, this does not have to
be taken into account.
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Appendix D

Publications

The publications listed in chronological order below were published, or
submitted for publication, during the course of studies. The manuscripts
of which results were included in this work are marked with an asterisk,
and the contributions of A. Nikolakopoulos to these works is explicitly
mentioned.

Journal articles

• Nuclear medium effects in neutrino- and antineutrino-nucleus scat-
tering
N. Jachowicz, A. Nikolakopoulos
Eur. Phys. J. Spec. Top. (2021)

• Neutrino energy reconstruction from semi-inclusive samples
R. González-Jiménez, M. B. Barbaro, J. A. Caballero, T. W. Don-
nelly, N. Jachowicz, G. D. Megias, K. Niewczas, A. Nikolakopoulos,
J. W. Van Orden, J. M. Ud́ıas
arXiv:2104.01701

• Angular distributions in Monte Carlo event generation of weak
single-pion production
K. Niewczas, A. Nikolakopoulos, J. T. Sobczyk, N. Jachowicz, R.
González-Jiménez
Phys. Rev. D 103 (2021) 5, 053003

• Modeling quasielastic interactions of monoenergetic kaon decay-at-
rest neutrinos’
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A. Nikolakopoulos, V. Pandey, J. Spitz, N. Jachowicz
Phys. Rev. C 103 (2021) 6, 064603

• Lepton kinematics in low energy neutrino-Argon interactions
N. Van Dessel, N. Jachowicz, A. Nikolakopoulos
Phys. Rev. C 101 (2020) no. 4, 045502

• Constraints in modeling the quasielastic response in inclusive lepton-
nucleus scattering
R. González-Jiménez, M. B. Barbaro, J. A. Caballero, T. W Donnelly,
N. Jachowicz, G. D. Megias, K. Niewczas, A. Nikolakopoulos, J. M. Ud́ıas
Phys. Rev. C 101 (2020) 1, 015503

• Low energy neutrino scattering in experiments and astrophysics
N. Jachowicz, N. Van Dessel, A. Nikolakopoulos
J. Phys. G: Nucl. Part. Phys. 46 084003 (2019)

∗ Nuclear effects in electron- and neutrino-nucleus scattering within
a relativistic quantum mechanical framework
R. González-Jiménez, A. Nikolakopoulos, N. Jachowicz, J.M. Ud́ıas
Phys. Rev. C 100 (2019) no. 4, 045501

A. Nikolakopoulos: helped to develop parts of the codes, per-
formed part of the numerical calculations, wrote parts of the manuscript,
and helped revise the manuscript to its final form.

• Forbidden transitions in neutral and charged current interactions
between low-energy neutrinos and Argon
N. Van Dessel, N. Jachowicz, A. Nikolakopoulos
Phys. Rev. C 100 (2019) no. 5, 055503

∗ Electron versus muon neutrino induced cross sections in charged
current quasi-elastic processes
A. Nikolakopoulos, N. Jachowicz, N. Van Dessel, K. Niewczas, R.
González-Jiménez, J.M. Ud́ıas, V. Pandey
Phys. Rev. Lett. 123 (2019) no. 5, 052501

A. Nikolakopoulos: performed the calculations, made the fig-
ures, and wrote the first draft of the manuscript. A.N. helped
develop the Pauli-blocking approach.
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Publications

• Mean field approach to reconstructed neutrino energy distributions
in accelerator-based experiments
A. Nikolakopoulos, M. Martini, M. Ericson, N. Van Dessel, R.
González-Jiménez, N. Jachowicz
Phys. Rev. C98 (2018) no.5, 054603

∗ Modeling neutrino-induced charged pion production on water at
T2K kinematics
A. Nikolakopoulos, R. González-Jiménez, K. Niewczas, J. Sobczyk,
N. Jachowicz
Phys. Rev. D97 (2018) no.9, 093008

A. Nikolakopoulos helped develop parts of the code, performed
the calculations, made the figures, and wrote the first draft of the
manuscript.
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C. Giusti, and J. M. Ud́ıas, “Global relativistic folding optical

214

http://dx.doi.org/http://dx.doi.org/10.1016/0375-9474(94)90920-2
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9474(94)90920-2
http://arxiv.org/abs/2104.01701
http://arxiv.org/abs/2104.01701
http://dx.doi.org/10.1103/PhysRevC.73.024607
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2013.10.001
http://dx.doi.org/10.1103/PhysRevC.50.2822
http://dx.doi.org/10.1103/PhysRevC.100.045501
http://dx.doi.org/10.1103/PhysRevC.80.034605
http://dx.doi.org/10.1103/PhysRevC.47.297
http://dx.doi.org/10.1103/PhysRevC.47.297


BIBLIOGRAPHY

potential and the relativistic green’s function model,” Phys. Rev.
C 94, 014608 (2016).

[135] W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, “Novel
applications of the dispersive optical model,” Journal of Physics
G: Nuclear and Particle Physics 44, 033001 (2017).

[136] C. Mahaux and R. Sartor, “Dispersion relation approach to the
mean field and spectral functions of nucleons in 40ca,” Nuclear
Physics A 528, 253 (1991).

[137] C. Mahaux and R. Sartor, “Calculation of the shell-model poten-
tial from the optical-model potential,” Phys. Rev. Lett. 57, 3015
(1986).

[138] W. H. Dickhoff, D. Van Neck, S. J. Waldecker, R. J. Charity, and
L. G. Sobotka, “Nonlocal extension of the dispersive optical model
to describe data below the fermi energy,” Phys. Rev. C 82, 054306
(2010).

[139] J. M. Ud́ıas, P. Sarriguren, E. Moya de Guerra, E. Garrido, and
J. A. Caballero, “Spectroscopic factors in 40Ca and 208Pb from
(e,e’p): Fully relativistic analysis,” Phys. Rev. C 48, 2731 (1993).

[140] J. M. Ud́ıas, P. Sarriguren, E. Moya de Guerra, E. Garrido,
and J. A. Caballero, “Relativistic versus nonrelativistic optical
potentials in a(e,e’p)b reactions,” Phys. Rev. C 51, 3246 (1995).

[141] J. M. Ud́ıas, J. A. Caballero, E. M. de Guerra, J. R. Vignote,
and A. Escuderos, “Relativistic mean field approximation to the
analysis of 16O(e, e

′
p)15N data at |Q2| 0.4(GeV/c)2,” Phys. Rev.

C 64, 024614 (2001).

[142] J. M. Ud́ıas, P. Sarriguren, E. Moya de Guerra, E. Garrido, and
J. A. Caballero, “Spectroscopic factors in 40Ca and 208Pb from
(e,e’p): Fully relativistic analysis,” Phys. Rev. C 48, 2731 (1993).

[143] Y. Horikawa, F. Lenz, and N. C. Mukhopadhyay, “Final-state
interaction in inclusive electromagnetic nuclear processes,” Phys.
Rev. C 22, 1680 (1980).

[144] A. Meucci, F. Capuzzi, C. Giusti, and F. D. Pacati, “Inclusive
electron scattering in a relativistic green’s function approach,”
Phys. Rev. C 67, 054601 (2003).

215

http://dx.doi.org/10.1103/PhysRevC.94.014608
http://dx.doi.org/10.1103/PhysRevC.94.014608
http://dx.doi.org/10.1088/1361-6471/44/3/033001
http://dx.doi.org/10.1088/1361-6471/44/3/033001
http://dx.doi.org/ https://doi.org/10.1016/0375-9474(91)90090-S
http://dx.doi.org/ https://doi.org/10.1016/0375-9474(91)90090-S
http://dx.doi.org/ 10.1103/PhysRevLett.57.3015
http://dx.doi.org/ 10.1103/PhysRevLett.57.3015
http://dx.doi.org/ 10.1103/PhysRevC.82.054306
http://dx.doi.org/ 10.1103/PhysRevC.82.054306
http://dx.doi.org/10.1103/PhysRevC.48.2731
http://dx.doi.org/ 10.1103/PhysRevC.51.3246
http://dx.doi.org/ 10.1103/PhysRevC.64.024614
http://dx.doi.org/ 10.1103/PhysRevC.64.024614
http://dx.doi.org/10.1103/PhysRevC.48.2731
http://dx.doi.org/ 10.1103/PhysRevC.22.1680
http://dx.doi.org/ 10.1103/PhysRevC.22.1680
http://dx.doi.org/10.1103/PhysRevC.67.054601


BIBLIOGRAPHY

[145] A. Meucci, C. Giusti, and F. D. Pacati, “Relativistic green’s func-
tion approach to parity-violating quasielastic electron scattering,”
Nuclear Physics A 756, 359 (2005).

[146] A. Meucci, J. A. Caballero, C. Giusti, F. D. Pacati, and J. M.
Ud́ıas, “Relativistic descriptions of inclusive quasielastic electron
scattering: Application to scaling and superscaling ideas,” Phys.
Rev. C 80, 024605 (2009).

[147] A. Meucci and C. Giusti, “Relativistic descriptions of final-state
interactions in charged-current quasielastic antineutrino-nucleus
scattering at miniboone kinematics,” Phys. Rev. D 85, 093002
(2012).
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S. Mrenna, and E. Norrbin, “High-energy-physics event gener-
ation with pythia 6.1,” Computer Physics Communications 135,
238 (2001).

[216] J. T. Sobczyk, J. A. Nowak, and K. M. Graczyk, “Wrong –
wroc law neutrino generator of events for single pion production,”
Nuclear Physics B - Proceedings Supplements 139, 266 (2005),
proceedings of the Third International Workshop on Neutrino-
Nucleus Interactions in the Few-GeV Region.

[217] C. Wilkinson, P. Rodrigues, S. Cartwright, L. Thompson, and
K. McFarland, “Reanalysis of bubble chamber measurements of
muon-neutrino induced single pion production,” Phys. Rev. D 90,
112017 (2014).

[218] U. Mosel and K. Gallmeister, “Muon-neutrino-induced charged-
current pion production on nuclei,” Phys. Rev. C 96, 015503
(2017).

[219] T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, “Electron-
and neutrino-nucleus scattering from the quasielastic to the reso-
nance region,” Phys. Rev. C 79, 034601 (2009).

222

http://dx.doi.org/10.1103/PhysRevC.86.015505
http://dx.doi.org/10.1103/PhysRevC.86.015505
http://dx.doi.org/10.1016/0375-9474(87)90185-0
https://nuwro.github.io/user-guide/
http://dx.doi.org/10.1103/PhysRevD.12.2644
http://dx.doi.org/10.1103/PhysRevD.12.2644
http://arxiv.org/abs/hep-ph/0608108
http://dx.doi.org/ https://doi.org/10.1016/S0920-5632(02)01755-3
http://dx.doi.org/ https://doi.org/10.1016/S0920-5632(02)01755-3
http://dx.doi.org/ 10.1016/S0010-4655(00)00236-8
http://dx.doi.org/ 10.1016/S0010-4655(00)00236-8
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysbps.2004.11.218
http://dx.doi.org/10.1103/PhysRevD.90.112017
http://dx.doi.org/10.1103/PhysRevD.90.112017
http://dx.doi.org/ 10.1103/PhysRevC.96.015503
http://dx.doi.org/ 10.1103/PhysRevC.96.015503
http://dx.doi.org/ 10.1103/PhysRevC.79.034601


BIBLIOGRAPHY

[220] K. Abe, J. Adam, H. Aihara, T. Akiri, C. Andreopoulos, S. Aoki,
A. Ariga, S. Assylbekov, D. Autiero, et al., “Measurements of
neutrino oscillation in appearance and disappearance channels by
the t2k experiment with 6.6× 1020 protons on target,” Phys. Rev.
D 91, 072010 (2015).

[221] A. A. Aguilar-Arevalo, C. E. Anderson, A. O. Bazarko, S. J.
Brice, B. C. Brown, L. Bugel, et al. (MiniBooNE Collaboration),
“Neutrino flux prediction at miniboone,” Phys. Rev. D 79, 072002
(2009).

[222] L. Aliaga, M. Kordosky, T. Golan, O. Altinok, L. Bellantoni,
A. Bercellie, and M. Betancourt (MINERνA Collaboration),
“Neutrino flux predictions for the numi beam,” Phys. Rev. D 94,
092005 (2016).

[223] P. Adamson et al., “The numi neutrino beam,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 806, 279
(2016).

[224] B. Eberly et al. (MINERvA Collaboration), “Charged pion pro-
duction in νµ interactions on hydrocarbon at <Eν> = 4.0 GeV,”
Phys. Rev. D 92, 092008 (2015).

[225] T. Le et al., “Single neutral pion production by charged-current
νµ interactions on hydrocarbon at 〈Eν〉 = 3.6 GeV,” Phys. Lett.
B 749, 130 (2015).

[226] C. L. McGivern et al. (MINERvA Collaboration), “Cross sections
for νµ and νµ induced pion production on hydrocarbon in the few-
GeV region using MINERvA,” Phys. Rev. D 94, 052005 (2016).

[227] J. Wolcott et al., “Evidence for neutral-current diffractive neutral
pion production from hydrogen in neutrino interactions on hydro-
carbon,” arXiv:1604.01728 [hep-ex] (2016).

[228] O. Altinok et al., “Measurement of νµ charged-current single π0

production on hydrocarbon in the few-GeV region using MIN-
ERvA,” .

[229] C. L. McGivern et al. (MINERvA Collaboration), “Cross sections
for νµ and νµ induced pion production on hydrocarbon in the few-
GeV region using MINERvA,” Phys. Rev. D 94, 052005 (2016).

223

http://dx.doi.org/10.1103/PhysRevD.91.072010
http://dx.doi.org/10.1103/PhysRevD.91.072010
http://dx.doi.org/ 10.1103/PhysRevD.79.072002
http://dx.doi.org/ 10.1103/PhysRevD.79.072002
http://dx.doi.org/ 10.1103/PhysRevD.94.092005
http://dx.doi.org/ 10.1103/PhysRevD.94.092005
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/ 10.1103/PhysRevD.94.052005
http://dx.doi.org/ 10.1103/PhysRevD.94.052005


BIBLIOGRAPHY

[230] T. Le et al., “Measurement of νµ charged-current single π− pro-
duction on hydrocarbon in the few-GeV region using MINERvA,”
.

[231] N. Jachowicz and A. Nikolakopoulos, “Nuclear medium effects in
neutrino and antineutrino scattering,” Eur. Phys. J. Spec. Top.
(2021), 10.1140/epjs/s11734-021-00286-8.

[232] MINERva Collaboration, “Updated charged pion production re-
suls,” https://minerva.fnal.gov/wp-content/uploads/2017/

03/Updated_1pi_data.pdf.

[233] O. Altinok, Measurement of Muon Neutrino Charged Current Sin-
gle π0 Production on Hydrocarbon using MINERvA, Ph.D. thesis,
Tufts U. (2017).

[234] M. A. Acero et al. (The NOvA Collabortation), “Measurement
of the Double-Differential Muon-neutrino Charged-Current In-
clusive Cross Section in the NOvA Near Detector,” (2021),
arXiv:2109.12220 [hep-ex] .

[235] J. Nieves, I. R. Simo, and M. J. V. Vacas, “Inclusive charged-
current neutrino-nucleus reactions,” Phys. Rev. C 83, 045501
(2011).

[236] K. Abe et al. (The T2K Collaboration), “Measurement of the
muon neutrino charged-current single π+ production on hydro-
carbon using the T2K off-axis near detector ND280,” Phys. Rev.
D 101, 012007 (2020).

[237] R. Castillo Fernández, “Measurement of the Muon Neutrino
Charged Current interactions and the muon neutrino single pion
cross section on CH using the T2K near detector,” (2015).

[238] M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev.
C 81, 045502 (2010).

[239] M. Sharma, M. Nagarajan, and P. Ring, “Rho meson coupling in
the relativistic mean field theory and description of exotic nuclei,”
Physics Letters B 312, 377 (1993).

[240] B. D. Serot and J. D. Walecka, “Recent progress in quantum
hadrodynamics,” Int. J. Mod. Phys. E6, 515 (1997), arXiv:nucl-
th/9701058 [nucl-th] .

224

http://dx.doi.org/ 10.1140/epjs/s11734-021-00286-8
http://dx.doi.org/ 10.1140/epjs/s11734-021-00286-8
https://minerva.fnal.gov/wp-content/uploads/2017/03/Updated_1pi_data.pdf
https://minerva.fnal.gov/wp-content/uploads/2017/03/Updated_1pi_data.pdf
https://minerva.fnal.gov/wp-content/uploads/2017/03/Updated_1pi_data.pdf
https://minerva.fnal.gov/wp-content/uploads/2017/03/Updated_1pi_data.pdf
http://dx.doi.org/10.2172/1352001
http://arxiv.org/abs/2109.12220
http://dx.doi.org/10.1103/PhysRevC.83.045501
http://dx.doi.org/10.1103/PhysRevC.83.045501
http://dx.doi.org/ 10.1103/PhysRevD.101.012007
http://dx.doi.org/ 10.1103/PhysRevD.101.012007
http://dx.doi.org/10803/305239
http://dx.doi.org/10803/305239
http://dx.doi.org/10803/305239
http://dx.doi.org/ https://doi.org/10.1016/0370-2693(93)90970-S
http://dx.doi.org/10.1142/S0218301397000299
http://arxiv.org/abs/nucl-th/9701058
http://arxiv.org/abs/nucl-th/9701058


BIBLIOGRAPHY

[241] C. Horowitz and B. D. Serot, “Self-consistent hartree description of
finite nuclei in a relativistic quantum field theory,” Nuclear Physics
A 368, 503 (1981).

[242] J. M. Ud́ıas, Análisis Relativista del proceso (e, e′p) en Núcleos
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