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4USVDUVSBCMF BMHFCSBT

In 1978, Bruce Allison [All78] introduced a class of non-associative algebras called
structurable algebras, which includes the class of Jordan algebras. Any struc-
turable algebra A has an involution and hence a subspace S of skew elements
with respect to this involution. The Jordan algebras are precisely the struc-
turable algebras with trivial involution. Another example of structurable alge-
bras are associative algebras with involution. Structurable algebras have been
classified by Bruce Allison in [All78] if the characteristic equals 0, and by Oleg
Smirnov in [Smi92] if the characteristic is at least 7 (and he also discovered a
structurable algebra of dimension 35 which was missing in the original classifica-
tion, see [Smi90]).

In [All79], Bruce Allison describes how to construct a 5-graded Lie algebra
starting from a structurable algebra. The ends of this grading are isomorphic
to S. If S = 0, i.e., we are considering a Jordan algebra, we actually get a 3-
graded Lie algebra. This construction of a 3-graded Lie algebra starting from
a Jordan algebra is due to Jacques Tits, Max Koecher and Issai Kantor, see
[Tit62, Koe67, Kan64]. We call this construction of a graded Lie algebra out
of a structurable algebra the Tits–Kantor–Koecher-construction, or, in short,
the TKK-construction. It is shown in [All79] that all isotropic Lie algebras in
characteristic 0 are obtained by applying the TKK-construction to a structurable
algebra, in particular one obtains the exceptional Lie algebras. For example, the
TKK-construction applied to a Brown algebra, a 56-dimensional structurable
algebra of skew-dimension one, yields a Lie algebra of type E8.

Each linear algebraic group has an associated Lie algebra. If the algebraic

ix
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group is isotropic and the underlying field has characteristic not 2 or 3, then
the Lie algebra (or, more precisely, its derived algebra) also arises via the TKK-
construction starting from a structurable algebra, often in more than one way
[Sta20, Theorem 5.9].

*OOFS JEFBMT

An important concept in this thesis is that of an inner ideal of a Lie algebra. A
subspace I of a Lie algebra L is called an inner ideal if [I, [I, L]] ≤ I. Inner ideals
in Lie algebras have been introduced by John Faulkner in [Fau73] and further
investigated by Georgia Benkart in her PhD thesis [Ben74]; see also [Ben77,
Ben76]. If the Lie algebra is simple and defined over an algebraically closed field of
characteristic 0, then its inner ideals have been studied in detail in [DFLGGL12].
Moreover, under the same assumptions, John Faulkner has connected these inner
ideals to geometries; see [Fau73]. In the recent book [FL19] inner ideals in Lie
algebras also play a crucial role.

In [CI06], Arjeh Cohen and Gabor Ivanyos have introduced extremal geome-
tries associated to Lie algebras. An element of a Lie algebra is called extremal if
it spans a one-dimensional inner ideal (if the characteristic equals 2, some addi-
tional conditions have to be satisfied), and the corresponding extremal geometry
has as point set the set of all those one-dimensional inner ideals. Under some
conditions, these extremal geometries have the structure of so-called root shadow
spaces of spherical buildings, see [CI06, CI07]. More recently, Hans Cuypers,
Yael Fleischmann, Kieran Roberts and Sergey Shpectorov [CRS15, CF17, CF18]
investigated how simple Lie algebras generated by extremal elements are charac-
terized by their extremal geometry.

The concept of an inner ideal also exists in Jordan theory. (In fact, it was
introduced in Jordan algebras before it was introduced in Lie algebras.) The
inner ideals of Jordan algebras have been studied (and in many cases classified)
in [McC71] and they can also be used to describe (exceptional) geometries, see
[Fau70]. In [Gar01], Skip Garibaldi shows that some of the inner ideals of a (split)
Brown algebra are related to a building of type E7.

4QIFSJDBM CVJMEJOHT

Spherical buildings have been introduced by Jacques Tits [Tit74] as a tool to
study isotropic simple linear algebraic groups over arbitrary fields. The spher-
ical buildings associated with such algebraic groups always satisfy the so-called
Moufang property, which says that the automorphism group of such a building
is highly transitive (in a very precise way). If the rank of the building (which
coincides with the relative rank of the algebraic group) is 1, then the building
is called a Moufang set; if it is 2, then the building is called a Moufang poly-
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gon. Depending on the relative type, the Moufang polygon will be a Moufang
triangle (relative type A2), Moufang quadrangle (relative type B2 or BC2) or a
Moufang hexagon (relative type G2). The Moufang polygons have been classified
and investigated in detail in [TW02].

All known examples of so-called proper Moufang sets with abelian root groups
arise from (quadratic) Jordan division algebras, see [DMW06, DMS08, Grü15].
More generally, all known examples of proper Moufang sets with (abelian or non-
abelian) root groups without elements of order 2 or 3 arise from structurable
division algebras, see [BDMS19].

The algebraic structures coordinatizing Moufang triangles (i.e., Moufang pla-
nes), are the alternative division algebras. The algebraic structures coordinatizing
Moufang hexagons are the anisotropic cubic norm structures (i.e., cubic Jordan
division algebras).

The classification of the Moufang quadrangles in [TW02] separates them into
several different classes, and each class has its own corresponding algebraic struc-
ture. In order to handle most of these quadrangles in a uniform manner, and in
particular the exceptional ones, the notion of a quadrangular algebra was intro-
duced in [Wei06]. Recently, in [MW19], the notion of a quadrangular algebra
was extended to allow for isotropic quadrangular algebras. In [BDM13, BDM15],
Lien Boelaert and Tom De Medts made two different connections between struc-
turable algebras and quadrangular algebras (of exceptional type). In the former
paper, the associated structurable algebras have skew-dimension one, whereas in
the latter paper, the associated structurable algebras are tensor products of com-
position algebras. At that time it was unclear how to connect these two different
constructions.

0VUMJOF

In Chapter 1 we introduce the algebraic structures needed in this thesis and dis-
cuss corresponding geometric structures, namely Moufang polygons and Moufang
sets.

We start Chapter 2 by introducing a very specific type of geometries, namely
the root filtration spaces, which were classified in [CI07]. In Section 2.2 we consider
subgeometries of these root filtration spaces which are fixed by an involution and
show, under some additional conditions, that these subgeometries form a polar
space. In the next section we explain the construction of a root filtration space
in certain Lie algebras L generated by so-called pure extremal elements. More
precisely we construct an extremal geometry Γ = Γ(L), whose point and line
set we denote by E = E(L) and F = F(L), respectively. The set E coincides
with the set of 1-dimensional spaces spanned by the pure extremal elements of L,
and the line set F consists of certain 2-dimensional subspaces of L, incidence is
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defined by containment. If F "= ∅, then the extremal geometry has the structure
of a root filtration space. This construction was first introduced by Arjeh Cohen
and Gabor Ivanyos [CI06]. In Section 2.4, we consider the case F = ∅. If we
assume that there exist so-called symplectic pairs of extremal elements and the
Lie algebra is not symplectic, then we can link the extremal points of L to the
points of this polar space fixed by an involution from Section 2.2. In the final
Section 2.5 we extend the notion of an extremal geometry to that of an inner
ideal geometry and show that this geometry is either a root filtration space (and
it coincides with the extremal geometry), or it is a polar space, or it is just a set
without lines.

In Chapter 3 we construct Moufang sets, Moufang triangles and Moufang
hexagons using inner ideals of Lie algebras obtained from structurable algebras
via the Tits–Kantor–Koecher construction. The three different types of struc-
turable algebras we use are, respectively:

• structurable division algebras; see Sections 3.2 and 3.3;
• algebras D ⊕ Dop for some alternative division algebra D, equipped with

the exchange involution; see Section 3.4;
• matrix structurable algebras M(J, 1) for some cubic Jordan division algebra

J , see Section 3.5.
In each case, we also determine the root groups directly in terms of the struc-
turable algebra.

In Chapter 4 we recover certain algebraic structures, namely structurable al-
gebras, cubic norm structures and quadrangular algebras, if we make suitable
assumptions on the extremal geometry. The first section of this chapter col-
lects some properties of the 5-gradings associated with certain pairs of extremal
elements. The ends of these 5-gradings, i.e. the (−2)- and 2-part, are one-
dimensional. Using this 5-grading, we show in Section 4.2 that if the characteris-
tic does not equal 2 or 3 then any non-symplectic simple Lie algebra generated by
its extremal elements is obtained by applying the TKK-construction to a skew-
dimension one structurable algebra. In particular, if the extremal geometry con-
tains lines, this structurable algebra is isotopic to a so-called matrix structurable
algebra. (Such a structurable algebra is often related to a cubic norm structure.)
We end this section by showing that if the inner ideal geometry mentioned be-
fore contains no lines, then the extremal points, together with appropriate root
groups, form a Moufang set.

In Sections 4.3, 4.4 and 4.6 we extend some of the results of Section 4.2 to
fields of characteristic 2 and 3. More precisely, we show in Section 4.3 that if L is a
simple Lie algebra generated by its pure extremal elements such that F(L) "= ∅,
then the 1-part of the earlier mentioned 5-grading is linearly spanned by its
extremal elements. We can then use this to show the existence of automorphisms
related to this grading. Using a descent argument, we obtain some statements in
larger generality. In Section 4.4 we use these automorphisms and two different 5-
gradings on L to recover a cubic norm structure, if the extremal geometry contains
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lines and is not of so-called type An,{1,n}. We also show that the extremal
geometry is a Moufang hexagon if and only if J is an anisotropic cubic norm
structure, and we determine the root groups explicitly. We can use this to show
that a finite-dimensional simple Lie algebra L generated by its pure extremal
elements with F(L) "= ∅ is determined by its extremal geometry. In the final
subsection of Section 4.4 we focus on the case when the extremal geometry is of
type An,{1,n}.

In Section 4.5 we consider a simple Lie algebra L over the field k generated by
its pure extremal elements which contains symplectic pairs and such that there
exists a Galois extension k′/k of degree at most 2 such that the extremal geometry
of L ⊗k k′ contains lines. We do not necessarily assume that F(L) = ∅. Again
using two different 5-gradings and automorphisms obtained from Section 4.3, we
can recover a quadrangular algebra if the characteristic of the field is not 2. If
F(L) = ∅, then it follows by Chapter 2 that the inner ideal geometry forms a
polar space. We show that if the inner ideal geometry is a polar space of rank
2, i.e. a generalized quadrangle, that the corresponding quadrangular algebra
is anisotropic. Then we proceed to show that this quadrangle is precisely the
Moufang quadrangle associated with this anisotropic quadrangular algebra.

In the final section of Chapter 4 we consider the case that L is a simple Lie
algebra generated by pure extremal elements with F(L) = ∅ and there are no
symplectic pairs. Then, under some mild additional assumptions, the set E(L)
together with appropriate root groups, which we obtain by Section 4.3, forms a
Moufang set.

Chapter 2 is based on the first 7 sections of [CM21]. Chapter 3 is based on
[DMM20]. Section 4.2 is based on the last section of [CM21]. The other sections
of Chapter 4 are not published (yet).
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In this chapter we introduce most of the algebraic structures which we will use in
the other chapters. More precisely, we introduce composition algebras, Jordan al-
gebras, cubic norm structures, quadrangular algebras, Lie algebras, structurable
algebras and Kantor pairs. We also introduce the Tits–Kantor–Koecher construc-
tion, which associates a Lie algebra to a structrable algebra and we discuss the
notion of an inner ideal in a Lie algebra.

In the second part of this chapter we relate some of these algebraic structures
to geometric structures, more precisely to Moufang polygons. We end this chapter
by introducing the notion of a Moufang set.

In this thesis k always denotes a field. Unless mentioned otherwise, an algebra
or vector space is assumed to be defined over k.

4&$5*0/ ���

"MHFCSBJD TUSVDUVSFT

����� 2VBESBUJD GPSNT

Definition 1.1.1. Let M be a vector space over the field k. A quadratic form
Q on M is a map Q : M → k such that

• Q(λm) = λ2Q(m) for all λ ∈ k and m ∈ M ;

1
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• the map T : M ×M → k defined by

T (m,n) = Q(m+ n)−Q(m)−Q(n)

for all m,n ∈ M is bilinear.
We call Q
• anisotropic if Q(m) = 0 implies m = 0;
• non-degenerate if M⊥ := {m ∈ M | T (m,M) = 0} = 0;
• non-singular if it is either non-degenerate or dim(M⊥) = 1 and Q(M⊥) "= 0;
• regular if {m ∈ M | Q(m) = 0 = T (m,M)} = 0.
A basepoint of Q is an element 1 ∈ M such that Q(1) = 1.
Using this basepoint we can define an involution σ : M → M by

mσ = T (m, 1)1−m, (1.1)

for all m ∈ M . Note that

T (m,n) = T (mσ, nσ), (1.2)

for all m,n ∈ M .

����� $PNQPTJUJPO BMHFCSBT

The octonions are a well-known class of non-associative1 algebras. They are
contained in a larger class of algebras, namely the compositions algebras.

Definition 1.1.2. A composition algebra is a unital k-algebra C such that there
exists a non-singular quadratic form Q which is multiplicative, i.e. Q(xy) =
Q(x)Q(y) for all x, y ∈ C. We also call Q the norm of C.

Let σ be the involution associated with Q, then ccσ = Q(c)1, for all c ∈ C.
By the Generalized Hurwitz Theorem, see for example [Jac58] (for char(k) "=

2) and [vdBS59], a composition algebra has dimension 1, 2, 4 or 8 over k. The
algebras of dimension 4 and 8 are called quaternions (or quaternion algebras)
and octonions (or octonion algebras), respectively. These two types of algebras
can be obtained from a smaller composition algebra and a scalar by a doubling
procedure, the so-called Cayley-Dickson doubling process.

Construction 1.1.3. Let A be an associative composition algebra with corre-
sponding quadratic form QA. Denote the involution associated with QA by σA.
Consider λ ∈ k arbitrary. Then C := A⊕Ak, with multiplication given by

(a1 + a2k)(b1 + b2k) = (a1b1 + λbσA
2 a2) + (b2a1 + a2b

σA
1 )k

1In general, we take non-associative to mean not necessarily associative. In this case however,
the octonions are actually not associative.
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and quadratic form given by Q(a1 + a2k) = QA(a1) − λQA(a2), for a1, a2, b1,
b2 ∈ A arbitrary, is a composition algebra. The associated involution σC sends
a1 + a2k to aσA

1 − a2k. We denote this composition algebra by CD(A,λ).

Let C be a composition algebra over k, by the Generalized Hurwitz Theorem
• if dim(C) = 1, then C = k and Q(x) = x2.
• if dim(C) = 2, then C = k1 ⊕ ki with i2 = i + µ1 for certain µ ∈ k with

4µ+ 1 "= 0. The norm is given by Q(λ11 + λ2i) = λ21 − µλ22 + 2λ1λ2 for all
λ1,λ2 ∈ k. In particular, every separable quadratic field extension, together
with the usual norm as quadratic form, is an example of a 2-dimensional
composition algebra.

• if dim(C) = 4, then there exist a non-zero scalar λ ∈ k and a 2-dimensional
composition algebra A such that C ∼= CD(A,λ).

• if dim(C) = 8, then there exist a non-zero scalar λ ∈ k and a 4-dimensional
composition algebra A such that C ∼= CD(A,λ).

Remark 1.1.4. The classical Hamiltonians H are isomorphic with CD(C,−1),
and the classical octonions O with CD(H,−1).

Quaternion algebras are not commutative but are still associative. Octonion
algebras are not commutative nor associative. All composition algebras are ex-
amples of alternative algebras.

Definition 1.1.5. We call an algebra F alternative if (yx)x = y(xx) and (xx)y =
x(xy) for all x, y ∈ F . We call an alternative algebra F division if for every non-
zero x ∈ F there exists a (unique) x−1 ∈ F such that x−1(xy) = y = (yx)x−1 for
all y ∈ F .

In particular we defined division composition algebras. Alternatively, a com-
position algebra C is division if, and only if, its associated quadratic form Q is
anisotropic. Also note that the only division composition algebras of dimension
2 are separable quadratic field extensions.

The Bruck-Kleinfeld theorem states that any simple alternative division alge-
bra is either a field, a skew-field or an octonion division algebra (over its center),
see [BK51, Kle51].

����� +PSEBO BMHFCSBT

Definition 1.1.6. Let k be a field of characteristic not 2. A Jordan algebra over
k is a commutative unital k-algebra J such that (a2b)a = a2(ba) for all a, b ∈ J .

We can define a so-called U -operator on J for every element x ∈ J by setting

Ux(y) = 2x(xy)− x2y
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for all y ∈ J .
Assume in the following examples char(k) "= 2.

Example 1.1.7. Consider a unital associative k-algebra A. Then A+ = (A, ◦),
where a ◦ b = 1

2 (ab + ba) for all a, b ∈ A, is a Jordan algebra over k. Note that
Ua(b) = aba for a, b ∈ A.

Example 1.1.8. Let Q : J → k be quadratic form with basepoint c. Let T be
the bilinear form associated with Q. Then (J, ·), where

j · l = 1

2
(T (j, c)l + T (l, c)j − T (j, l)c),

for all j, l ∈ J , is a Jordan algebra. In this case we have Uj(k) = T (j, lσ)j−Q(j)lσ

for all j, l ∈ J , and where σ is the standard involution associated with Q. We call
this Jordan algebra a Jordan algebra of quadratic type and denote it by J(Q, c).

After some time, Kevin McCrimmon proposed a definition for Jordan alge-
bras in all characteristics. As is clear from the preceding examples defining the
multiplication involves dividing by 2, while defining the U -operator does not. So
the uniform definition basically forgets the multiplication and only detects the
U -operators, more precisely:

Definition 1.1.9. A (quadratic) Jordan algebra over k is a k-vector space J
together with linear maps Ux : J → J for every x ∈ J satisfying the following
identities strictly, i.e. under any field extension,

• Uλx = λ2Ux for all λ ∈ k and x ∈ J ;
• there exists 1 ∈ J such that U1 = id;
• UUx(y) = UxUyUx for all x, y ∈ J ;
• UxVy,x = Vx,yUx for all x, y ∈ J , where Vx,y : J → J is defined by Vx,y(z) =

(Ux+z − Ux − Uz)(y) for all z ∈ J .
We call a Jordan algebra non-degenerate if it has no non-zero zero divisors, i.e.
x ∈ J such that Ux = 0.

In characteristic not 2, the two definitions are equivalent.
Also note that any associative algebra A can be given the structure of a

(quadratic) Jordan algebra, by defining the U -operator as in Example 1.1.7. We
denote this algebra by A+ as well. Similarly for Example 1.1.8.

Definition 1.1.10. An inner ideal of a Jordan algebra J , with maps Ux for
x ∈ J , is a a subspace I of J such that Ui(J) ≤ I for all i ∈ I.

Example 1.1.11. If I ≤ A such that IAI ≤ I, then I is an an inner ideal of
A+.

Example 1.1.12. The proper inner ideals of J(Q, c) are precisely the isotropic
subspaces of J , i.e. the subspaces I of J such that Q(I) = 0.
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Remark 1.1.13. Inner ideals of a Jordan algebra often yield a geometric struc-
ture. For example, the 1- and 2-dimensional isotropic subspaces of the quadratic
form Q, so the 1- and 2-dimensional inner ideals of J(Q, c), together with inclu-
sion as incidence, are an example of a so-called polar space. See Definition 1.2.17
for the definition of a polar space.
Definition 1.1.14. A Jordan algebra is called special if it is a subalgebra of A+,
for a certain associative algebra A, and it is called exceptional otherwise.

All finite-dimensional exceptional simple Jordan algebras are so-called cubic
Jordan algebras of dimension 27. We also call these exceptional Jordan algebras
Albert algebras.

We now discuss (non-degenerate) cubic Jordan algebras, although for our
purposes later on we do this in the disguise of cubic norm structures, see for
example [McC69]. (The definition in loc. cit. is slightly different since identities
have to hold strictly.) See [McC70, Theorem 1] for the connection with Jordan
algebras.

In this part on cubic norm structures, we extract the relevant definitions and
statements from [TW02, Chapter 15].
Definition 1.1.15. A cubic norm structure is a set

(J, k,N, #, T,×, 1),

where k is a field, J is a vector space over k, N : J → k is a map called the norm,
# : J → J is a map called the adjoint, T : J ×J → k is a symmetric bilinear form
called the trace, × : J × J → J is a symmetric bilinear map, and 1 is a non-zero
element of J called the identity such that for all λ ∈ k, and all a, b, c ∈ J we have:

(i) (λa)# = λ2a#;
(ii) N(λa) = λ3N(a);
(iii) T (a, b× c) = T (a× b, c);
(iv) (a+ b)# = a# + a× b+ b#;
(v) N(a+ b) = N(a) + T (a#, b) + T (a, b#) +N(b);
(vi) T (a, a#) = 3N(a);
(vii) (a#)# = N(a)a;
(viii) a# × (a× b) = N(a)b+ T (a#, b)a;
(ix) a# × b# + (a× b)# = T (a#, b)b+ T (a, b#)a;
(x) 1# = 1;
(xi) a = T (a, 1)1− 1× a.

We call this cubic norm structure non-degenerate if 0 = {a ∈ J | N(a) = 0 =
T (a, J) = T (a#, J)}.
Definition 1.1.16. We call a ∈ J invertible if N(a) "= 0. We denote the set of
all invertible elements of J by J×. If all non-zero elements of J are invertible,
we call J anisotropic. If there does exist a non-zero non-invertible element in J ,
we call J isotropic.
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Lemma 1.1.17 ([TW02, (15.16)]). Let (J, k,N, #, T,×, 1) be an anisotropic cubic
norm structure. Then the functions T , N , × and the identity element 1 are
uniquely determined by the function #.

Hence we will often denote an anisotropic cubic norm structure (J, k,N, #, T,×,
1) by (J, k, #) or even (J, #) if it is clear over which field J is defined.

Definition 1.1.18. Let (J, k,N, #, T,×, 1) and (J ′, k,N ′, #′, T ′,×′, 1′) be two cu-
bic norm structures. A vector space isomorphism ϕ : J → J ′ is an isomorphism
from (J, k,N, #, T,×, 1) to (J ′, k,N ′, #′, T ′,×′, 1′) if ϕ ◦ # = #′ ◦ ϕ and ϕ(1) = 1′.
By Lemma 1.1.17 the last condition is automatic if the cubic norm structures are
anisotropic.

Lemma 1.1.19 ([TW02, (15.18)]). In Definition 1.1.15, condition (iii) is a
consequence of (iv) and (v). If |k| > 3, then conditions (vi), (viii) and (ix) are a
consequence of (i), (ii), (iv), (v) and (vii).

The U -operator of the Jordan algebra corresponding to the cubic norm struc-
ture is given by

Ux(y) = T (y, x)x− y × x#,

with x, y ∈ J .

Definition 1.1.20. Let (J, k,N, #, T,×, 1) be an anisotropic cubic norm struc-
ture. Consider d ∈ J× and let #d be given by

j#d = N(d)−1(T (d, j#)d− j# × d#), (1.3)

for all j ∈ J . Then (J, k, #d) is a cubic norm structure, see [TW02, (29.36)]. Note
j#d = N(d)−1Ud(j#).

We call two anisotropic cubic norm structures (J, k, #) and (J ′, k, #′) isotopic
if there exists an isomorphism from (J ′, k, #′) to (J, k, #d) for a certain d ∈ J×.

We now give some examples of both isotropic and anisotropic cubic norm
structures.

Example 1.1.21. Let l/k be a field extension such that l3 ⊆ k. So either l = k or
char(k) = 3 and l/k is a purely inseparable extension. Then, by setting a# = a2,
N(a) = a3, a× b = 2ab, and T (a, b) = 3ab, for all a, b ∈ l, it is straightforward to
check that all conditions of a cubic norm structure are satisfied.

Example 1.1.22 ([TW02, (15.5),(15.7),(15.26)-(15.28)]). Let l/k be a cubic Ga-
lois extension. Consider id "= σ ∈ Gal(l/k) and λ ∈ k×. Let D be the subring of
Mat3(l) consisting of matrices of the form




a b c
λcσ aσ bσ

λbσ
2

λcσ
2

aσ
2



 ,
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with a, b, c ∈ l. Note that l can be identified with the diagonal matrices in D.
By considering the subfield k of l, D is an algebra over k of dimension 9. We call
such an algebra D a cyclic algebra of degree three.

Let N : D → k, # : D → D and T ′ : D → k be the restriction to D of the
determinant, adjoint map and trace of a matrix in Mat3(l). Define the bilinear
form T : D ×D → k by T (d, e) = T ′(de) for all d, e ∈ D.

If λ "∈ N(l), then (D, k,N, #, T,×, 1) is an anisotropic cubic norm structure.
(The function × can be obtained from the other maps by property (iv).)

If λ ∈ N(l), then there is a k-linear isomorphism from D to Mat3(k) with
respect to which T and N correspond to the trace and determinant of Mat3(k).
This is an example of an isotropic cubic norm structure.

Now we discuss a class of isotropic cubic norm structures, which are obtained
from composition algebras.

Example 1.1.23 ([PR86, Example 2.3]). Let C be a composition algebra. De-
note its standard involution by . Let H3(C) be the vector space consisting of
the matrices of the form

x =




λ1 c1 c2
c1 λ2 c3
c2 c3 λ3



 ,

with λ1,λ2,λ3 ∈ k and c1, c2, c3 ∈ C. These are precisely the 3× 3-matrices over
C which are fixed by the involution X -→ X

T . Let Eij be the 3× 3-matrix with
all entries equal to 0, except for the (i, j)-entry, which equals 1. Denote the norm
of the composition algebra by n and set let t be its trace, i.e. t(c) = T (c, 1),
where T is the bilinear form associated with n. We can give this vector space the
structure of a cubic norm structure by setting

N(x) = λ1λ2λ3 + t(c1c2c3)−
3∑

i=1

λin(ci);

x# =
3∑

k=1

(λiλj − n(ck))Ekk + (cicj − λkck)Eij + (cicj − λkck)Eji;

1 = E11 + E22 + E33;

T (x, y) =
3∑

i=1

λiµi + t(cidi),

with (i j k) a cyclic permuatation of (1 2 3) and x and y are arbitrary elements
of H3(C). (For y we use scalars µi and elements di of C.) The cross product can
be deduced from # by using property (iv) of a cubic norm structure. Note that
this cubic norm structure is isotropic, since N(Eij) = 0 for i, j ∈ {1, 2, 3} with
i "= j.
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Remark 1.1.24. As is shown in [TW02, Chapter 30], any anisotropic cubic
norm structure (J, k, #) is either coming from a purely inseparable field extension
as in Example 1.1.21 or dimk(J) ∈ {1, 3, 9, 27}.

An easier example of an isotropic cubic norm structure is the following.

Example 1.1.25 ([PR86, Example 2.2]). Let Q : M → k be a quadratic form
with basepoint 1. Consider the vector space J = k⊕M . We can give this vector
space the structure of a cubic norm structure by setting N((λ,m)) = λQ(m),
(λ,m)# = (Q(m),λmσ), 1 = (1, 1) and T ((λ,m), (µ, n)) = λµ + TQ(m,nσ) for
all λ, µ ∈ k and m,n ∈ M , and with σ the standard involution on M associated
with Q, and TQ the bilinear form associated with Q. This cubic norm structure
is isotropic since N((1, 0)) = 0.

Remark 1.1.26. By [Rac72, Theorem 1] the only non-degenerate isotropic cubic
norm structures are as in Example 1.1.25, with Q regular, or are as in Exam-
ple 1.1.23, where we allow C = 0, or a generalization thereof, see [PR86, Example
2.3].

����� 2VBESBOHVMBS BMHFCSBT

In this section we introduce quadrangular algebras. These algebras were intro-
duced by Richard Weiss in [Wei06]. We start by giving its definition, and then
show that if the characteristic is not 2, some conditions are automatically satis-
fied. Then we discuss some examples of quadrangular algebras.

Definition 1.1.27. A quadrangular algebra is a set

(k,M,Q, 1, X, ·, h, θ),

where
• k is a field;
• M is a vector space over k;
• Q : M → k is a regular quadratic form (with associated bilinear form T , as

in Definition 1.1.1);
• 1 is a basepoint for Q, i.e. Q(1) = 1 (with associated involution σ, as in

Definition 1.1.1);
• X is a vector space over k;
• · : X ×M → X : (x, v) -→ x · v is a bilinear map;
• h : X ×X → M is a bilinear map;
• θ : X ×M → M is a map;

such that
(i) x · 1 = x for all x ∈ X;
(ii) (x ·m) ·mσ = Q(m)x for all x ∈ X and m ∈ M ;
(iii) h(x, y ·m) = h(y, x ·m) + T (h(x, y), 1)m for all x, y ∈ X and m ∈ M ;
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(iv) T (h(x ·m, y), 1) = T (h(x, y),m) for all x, y ∈ X and m ∈ M ;
(v) For each x ∈ X, the map m -→ θ(x,m) is linear;
(vi) θ(λx,m) = λ2θ(x,m) for all x ∈ X, m ∈ M and λ ∈ k;
(vii) There exists a function g : X ×X → k such that

θ(x+ y,m) = θ(x,m) + θ(y,m) + h(x, y ·m)− g(x, y)m,

for all x, y ∈ X and m ∈ M ;
(viii) There exists a function φ : X ×M → k such that

θ(x ·m,n) = θ(x, nσ)σQ(m)− T (n,mσ)θ(x,m)σ

+ T (θ(x,m), nσ)mσ + φ(x,m)n,

for all x ∈ X and m,n ∈ M ;
(ix) x · θ(x,m) = (x · θ(x, 1)) ·m for all x ∈ X and m ∈ M .

Notation 1.1.28. We set π(x) = θ(x, 1) for all x ∈ X.

Definition 1.1.29. We call a quadrangular algebra anisotropic if Q is anisotropic
and π(x) is a multiple of 1 if and only if x = 0.

Remark 1.1.30. The existence of 1 implies M "= 0. Note however, contrary to
the common convention, that we allow X = 0. In other words, we view quadratic
forms as special (degenerate) cases of the class of quadrangular algebras.

Now we proceed to show that if char(k) "= 2 one still obtains a quadrangular
algebra if one does not assume certain properties.

Lemma 1.1.31 ([Wei06, Remark 4.8]). Let (k,M,Q, 1, X, ·, h) be a set with the
same assumptions on its elements as in the first part of Definition 1.1.27. Assume
moreover char(k) "= 2. Set

θ(x,m) =
1

2
h(x, x ·m),

for all x ∈ X and m ∈ M . Then (k,M,Q, 1, X, ·, h, θ) is a quadrangular algebra
if (i) to (iv) and (ix) of Definition 1.1.27 are satisfied.

Proof. Properties (v) and (vi) are satisfied since h and · are both bilinear.
Set g(x, y) = 1

2T (h(x, y), 1) for all x, y ∈ X. Then using (iii)

θ(x+ y,m) =
1

2
h(x, x ·m) +

1

2
h(y, y ·m) +

1

2
h(x, y ·m) +

1

2
h(y, x ·m)

= θ(x,m) + θ(y,m) + h(x, y ·m)− 1

2
T (h(x, y), 1)m

for all x, y ∈ X and m ∈ M , which shows (vii).



$IBQUFS �� 1SFMJNJOBSJFT 10

Consider x ∈ X and m,n ∈ M arbitrary. By property (ii) and the definition
of σ,

Q(m+ n)x = (x · (m+ n)) · (mσ + nσ)

= Q(m)x+Q(n)x− (x · n) ·m− (x ·m) · n
+ T (m, 1)x · n+ T (n, 1)x ·m,

and hence

(x ·m) · n = −(x · nσ) ·mσ + T (n,mσ)x. (1.4)

Also note that property (iii) for m = 1 together with property (i) yields

h(y, x) = −h(x, y)σ (1.5)

for all x, y ∈ X. Property (iii) for m = 1 and y = x yields T (h(x, x), 1) = 0.
We are now ready to show property (viii). For ease of notation in the following

equations, we will write xm instead of x · m. Consider x ∈ X and m,n ∈ M
arbitrary. By twice applying property (1.4) and (1.5)

2θ(xm, n) = h(xm, (xm)n) = −h(xm, (xnσ)mσ) + T (n,mσ)h(xm, x)

= h((xnσ)mσ, xm)σ − T (n,mσ)h(x, xm)σ. (1.6)

Now, property (ii) to (iv) yield

h((xnσ)mσ, xm) = h(x, ((xnσ)mσ)m) + T (h((xnσ)mσ, x), 1)m

= Q(m)h(x, xnσ) + T (h((xnσ)mσ, x), 1)m. (1.7)

Combining (1.6) and (1.7) gives

2θ(xm, n) = h(x, xnσ)σQ(m)− T (n,mσ)h(x, xm)σ + T (h((xnσ)mσ, x), 1)mσ

= 2θ(x, nσ)σQ(m)− 2T (n,mσ)θ(x,m)σ + T (h((xnσ)mσ, x), 1)mσ

By T (h(x, x), 1) = 0, (1.2), (1.4) and (1.5) and property (iv), we get

T (h((xnσ)mσ, x), 1) = −T (h((xm)n), x), 1) = −T (h(xm, x), n)

= T (2θ(x,m)σ, n) = 2T (θ(x,m), nσ).

If we let φ : X ×M → k be the 0-map, then property (viii) is satisfied.

We now discuss some classes of quadrangular algebras. We start with a more
classical class, and then mention a more exceptional class.

Definition 1.1.32. A standard pseudo-quadratic space is a set

(M,σ, X, h,π),

where
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(i) M is a skew field;
(ii) σ is an involution of M , i.e. an anti-automorphism of M of order 2;
(iii) X is right vector space over M ;
(iv) h : X ×X → M is a skew-hermitian form on X, i.e.

• h(x, ym) = h(x, y)m;
• h(x, y)σ = −h(x, y),

for all x, y ∈ X and m ∈ M ;
(v) π : X → M satisfies

• π(x+ y) ≡ π(x) + π(y) + h(x, y) (mod Mσ);
• π(xm) = mσπ(x)m,

for all x, y ∈ X and m ∈ M , where Mσ = {m+mσ | m ∈ M}.
We call a standard pseudo-quadratic space anisotropic if π(x) is contained in Mσ

if and only if x = 0.
Lemma 1.1.33 ([Wei06, Proposition 1.18],[MW19, Notation 4.16]). Let C be
an associative composition algebra over k with associated quadratic form Q and
standard involution σ, which we assume to be non-trivial. Consider any standard
pseudo-quadratic space (C,σ, X, h,π) and set θ(x, c) = π(x)c for all x ∈ X and
c ∈ C. Then (k, C,Q, 1, X, scalar multiplication, h, θ) is a quadrangular algebra.
Remark 1.1.34. Note that the quadrangular algebra obtained in Lemma 1.1.33
is anisotropic if, and only if, the associated standard pseudo-quadratic space is
anisotropic and C is division.

We now briefly discuss the quadrangular algebras of type E6, E7 and E8.
Definition 1.1.35. Let M be a k-vector space. We call an anisotropic quadratic
form Q : M → k with basepoint of type E6, E7 or E8 if there exists a separable
quadratic field extension l/k with norm N such that, respectively,

• M ∼= l3, there exists a basis {v1, v2, v3} of M over l and scalars s1, s2 and
s3 such that

Q(λ1v1 + λ2v2 + λ3v3) = s1N(λ1) + s2N(λ2) + s3N(λ3),

for all λ1,λ2,λ3 ∈ l.
• M ∼= l4, there exists a basis {v1, v2, v3, v4} of M over l and scalars s1, s2, s3

and s4 such that

Q(
4∑

i=1

λivi) =
4∑

i=1

siN(λi)

for all λ1,λ2,λ3,λ4 ∈ l and s1s2s3s4 "∈ N(l).
• M ∼= l6, there exists a basis {v1, v2, v3, v4, v5, v6} of M over l and scalars

s1, s2, s3, s4, s5 and s6 such that

Q(
6∑

i=1

λivi) =
6∑

i=1

siN(λi)

for all λ1,λ2,λ3,λ4,λ5,λ6 ∈ l and −s1s2s3s4s5s6 ∈ N(l).
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Example 1.1.36. Consider an octonion division algebra C over k, with norm
Q. Then there exists a separable quadratic field extension l/k with norm N
and scalars λ and µ such that C ∼= CD(CD(l,λ), µ). Then, by construction,
C ∼= lv1 ⊕ lv2 ⊕ lv3 ⊕ lv4 with

Q(λ1v1 + λ2v2 + λ3v3 + λ4v4) = N(λ1)− λN(λ2)− µN(λ3) + λµN(λ4),

for any λ1,λ2,λ3,λ4 ∈ l. Now since C is division, Q is anisotropic, and, in
particular, Q restricted to lv1 ⊕ lv2 ⊕ lv3 is anisotropic. If we set s1 = 1,
s2 = −λ, s3 = −µ, we see that this restriction is a quadratic form of type E6.

We only defined a quadratic form and not the corresponding vector space X
or any of the other maps in the definition of a quadrangular algebra. Since these
constructions are quite involved we only mention that for every quadratic form
Q : M → k with basepoint 1 of type E6, E7 or E8 it is possible to construct a
vector space X and maps ·, h, θ such that (k,M,Q, 1, X, ·, h, θ) is an anisotropic
quadrangular algebra. We call this quadrangular algebra of type E6, E7 or E8,
respectively. The construction can be found in [TW02, Chapter 13]. For another
approach to define quadrangular algebras of type E6, E7 or E8, using structurable
algebras, see [BDM15]. The vector space X has dimension 8, 16 or 32 over k, if
Q is of type E6, E7 or E8, respectively. If k = R, there exists a quadrangular
algebra of type E6 by Example 1.1.36, but as is shown in [TW02, (12.38)] there
do not exist quadrangular algebras of type E7 or E8 over R.

The examples of anisotropic quadrangular algebras discussed before are actu-
ally all anisotropic quadrangular algebras if the characteristic does not equal 2.
If the characteristic is equal to 2, there are three other classes of quadrangular
algebras, and one of these classes corresponds to Moufang quadrangles of type
F4, see [Wei06].

Theorem 1.1.37 ([Wei06, 2.3, 2.4, 3.2 and 3.14]). Let k be a field of character-
istic not 2 and let (k,M,Q, 1, X, ·, h, θ) be an anisotropic quadrangular algebra.
Then either this quadrangular algebra is coming from an anisotropic standard
pseudo-quadratic space as in Lemma 1.1.33, where moreover the composition
algebra is division, or it is a quadrangular algebra of type E6, E7 or E8.

����� -JF BMHFCSBT

Definition 1.1.38. A k-vector space L together with a bilinear operation L ×
L → L : (l,m) -→ [l,m] (called the Lie bracket) is a Lie algebra (over k) if

• [x, x] = 0,
• [z, [x, y]] + [x, [y, z]] + [y, [z, x]] = 0,

for all x, y, z ∈ L. The second identity is called the Jacobi identity.

Definition 1.1.39. Let L and L′ be two Lie algebras defined over the same field
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k. We call a linear map ϕ : L → L′ a morphism if ϕ([l,m]) = [ϕ(l),ϕ(m)] for all
l,m ∈ L. If L = L′, and ϕ is an isomorphism, we call it an automorphism of L.

A derivation of a Lie algebra L is a linear map D from L to itself such that
D([l,m]) = [D(l),m] + [l, D(m)] for all l,m ∈ L. For each l ∈ L, the map
ad(l) : L → L : m -→ [l,m] is a derivation of L by the Jacobi identity. We call
such a derivation an inner derivation.
Definition 1.1.40. A subspace I of a Lie algebra L is an ideal if [L, I] ≤ I. We
call a Lie algebra simple if it does not have proper non-trivial ideals.
Definition 1.1.41. A Z-grading of a Lie algebra L is a vector space decompo-
sition L =

⊕
i∈Z Li such that [Li, Lj ] ≤ Li+j for all i, j ∈ Z. If n is a natural

number such that Li = 0 for all i ∈ Z such that |i| > n while L−n ⊕ Ln "= 0,
then we call this grading a (2n + 1)-grading. We call L−n and Ln the ends of
this grading. The i-component of x ∈ L is the image of the projection of x onto
Li. We also set L≤i =

⊕
j≤i Lj and L≥i =

⊕
j≥i Lj .

Definition 1.1.42. If L = L−n ⊕L−n+1 ⊕ . . .⊕Ln−1 ⊕Ln is a (2n+1)-grading
of a Lie algebra L, the grading derivation is the derivation ζ of L given by

ζ(x) = i · x,

for all x ∈ Li, with i between −n and n. If L contains an element ζ such that
adζ is the grading derivation we call ζ the grading derivation of L by abuse of
language.

If A is an associative algebra, then A together with the Lie bracket [a, b] =
ab− ba for all a, b ∈ A, is a Lie algebra.

Later on, we will encounter a lot of of 5-graded Lie algebras, namely the
ones obtained by the Tits–Kantor–Koecher–construction applied to a structurable
algebra.

����� 4USVDUVSBCMF BMHFCSBT

Structurable algebras have been introduced by Bruce Allison in [All78] as a gen-
eralization of Jordan algebras. It is precisely in this context that we will study
them. Each Jordan algebra gives rise, via the Tits–Kantor–Koecher (TKK) con-
struction, to a Lie algebra equipped with a 3-grading. This construction has been
generalized to structurable algebras, giving rise to Lie algebras equipped with a
5-grading; see Definition 1.1.64 below.

In this subsection, and, more generally, when we consider structurable alge-
bras, we always assume algebras to be finite-dimensional and defined over a field
of characteristic not 2 or 3.

The material in this subsection is based on [BDMS19, Chapter 2] and we refer
to that paper for a more detailed exposition.
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Definition 1.1.43. Let A be a unital k-algebra equipped with an involution
σ : x -→ x, i.e., a k-linear map of order at most 2 satisfying x.y = y.x for all
x, y ∈ A. Let

Vx,y(z) := (xy)z + (zy)x− (zx)y

for all x, y, z ∈ A. If

[Vx,y, Vz,w] = VVx,y(z),w − Vz,Vy,x(w)

for all x, y, z, w ∈ A (where the left hand side denotes the Lie bracket of the two
operators) then we call A a structurable algebra.

For all x, y, z ∈ A, we write Ux,yz := Vx,zy and Uxy := Ux,xy.

Definition 1.1.44. Let A be a structurable algebra; then A = H⊕ S, with

H = {h ∈ A | h = h} and S = {s ∈ A | s = −s}.

The elements of H are called hermitian elements, the elements of S are called
skew elements. The dimension of S is called the skew-dimension of A.

Definition 1.1.45. Let A be a structurable algebra. An element u ∈ A is called
conjugate invertible (or simply invertible) if there exists an element û ∈ A such
that

Vu,û = id, or equivalently, Vû,u = id .

If u is conjugate invertible, then the element û is uniquely determined, and is
called the conjugate inverse of u. Moreover, if u is conjugate invertible, the
operator Uu is invertible; see [AH81, Section 6].

Definition 1.1.46. An ideal of A is a two-sided ideal stabilized by the involution,
and A is simple if its only ideals are {0} and A. The center of A is defined by

Z(A) = {z ∈ H | [z,A] = [z,A,A] = [A, z,A] = [A,A, z] = 0},

and A is central if its center equals k1.

Definition 1.1.47. The following map, called the skewer map, plays an impor-
tant role in the theory of structurable algebras:

ψ : A×A → S : (x, y) -→ xy − yx.

Definition 1.1.48. For each x ∈ A, we let Lx and Rx denote the left and right
multiplication by x, respectively. For each A ∈ Endk(A), we define two new
k-linear operators

Aε := A− LA(1)+A(1) ,

Aδ := A+RA(1) .
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One can verify, see [All79, Equations (4) and (8)], that

V ε
x,y = −Vy,x and (1.8)

V δ
x,y(s) = −ψ(x, sy) (1.9)

for all x, y ∈ A and s ∈ S and that

(LrLt)
ε = −LtLr and (1.10)

(LrLt)
δ(s) = s(tr) + r(ts) (1.11)

for all r, s, t ∈ S.

Definition 1.1.49. By the definition of a structurable algebra, the subspace

Instrl(A) := span{Vx,y | x, y ∈ A}

is a Lie subalgebra of Endk(A), which is called the inner structure Lie algebra.

We recall the notion of derivations in structurable algebras.

Definition 1.1.50. A derivation of A is a k-linear map D : A → A such that
D(ab) = D(a)b+aD(b) and D(a) = D(a), for all a, b ∈ A. In particular, we have
D(S) ⊆ S and D(H) ⊆ H.

The Lie algebra of all derivations of A is denoted by Der(A).

In the following lemma we use the notation Tx := Vx,1.

Lemma 1.1.51 ([All79, page 1840]). We have

Instrl(A) = {Tx | x ∈ A}⊕ Inder(A),

with Inder(A) a certain Lie subalgebra of Der(A) (namely the Lie subalgebra of
inner derivations, but we will not need this explicitly).

We will now prove some elementary lemmas on structurable algebras.

Lemma 1.1.52. We have Va,b(c) = Vc,b(a)+ψ(a, c)b for all a, b, c ∈ A. Moreover,
we have Va,a = Laa = Taa for all a ∈ A.

Proof. This is immediate from the definitions.

Lemma 1.1.53. The skewer map ψ is non-degenerate.

Proof. This is precisely [AF84, Lemma 2.2]. Although it is only stated for skew-
dimension one structurable algebras, it continues to hold for arbitrary central
simple structurable algebras; this follows from the remarks regarding the multi-
plication algebra on page 189 of loc. cit.
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Lemma 1.1.54. Let A be a central simple structurable algebra with S "= 0. Then
S A = A.

Proof. By the proof of [AF84, Lemma 2.1(a)]. (Although it is stated for dim(S) =
1, it holds more generally.)

Lemma 1.1.55. Let a, b ∈ A such that a is conjugate invertible and let V ∈
Instrl(A). Then

Va,b = 0 ⇐⇒ b = 0 ⇐⇒ Vb,a = 0

and
V (a) = 0 ⇐⇒ V ε(â) = 0.

Proof. The first claim follows from Ua(b) = Va,b(a) = 0 and the fact that Ua is
invertible. The second claim follows immediately by V ε

a,b = −Vb,a. The last claim
follows from

0 = [V, id] = [V, Va,â] = VV (a),â + Va,V ε(â)

and the previous claims.

Lemma 1.1.56. If V,W ∈ Instrl(A) satisfy V δ(s) = 0 = W δ(s) for some
conjugate invertible s ∈ S, then

WV = 0 ⇐⇒ W εV ε = 0.

Proof. By [AF84, (1.10)] we have V (sx) = V δ(s)x+ sV ε(x) = sV ε(x) and hence
(WV )(sx) = s(W εV ε)(x), for any x ∈ A. Since s is conjugate invertible we get
the desired equivalence.

Lemma 1.1.57. If a ∈ A and s ∈ S are conjugate invertible, then Va,sa "= 0.

Proof. If Va,sa = 0, then 0 = Va,sa(a) = UaLs(a). Since a and s are conjugate
invertible, the operators Ua and Ls are invertible; hence a = 0, a contradiction.

Later on, in Chapter 4, we need the notion of isotopic structurable algebras.

Definition 1.1.58. Two structurable algebras A and A′ over k are isotopic
if there exists a vector space isomorphism ψ : A → A′ such that there exists
χ ∈ Homk(A,A′) such that

ψ(Vx,yz) = Vψ(x),χ(y)ψ(z), ∀x, y, z ∈ A .

We now turn to examples of structurable algebras.

Example 1.1.59. The central simple structurable algebras have been classified
and are usually listed in 6 (non-disjoint) classes. We will need the following three
classes:
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(i) The Jordan algebras are precisely the structurable algebras with trivial
involution. They have skew-dimension 0.

(ii) The structurable algebras of skew-dimension 1 form a separate class and
have peculiar features. They all arise as forms of structurable matrix alge-
bras (see Definition 1.1.60 and Corollary 1.1.62 below); see [DMM20] for
an explicit construction of these algebras and for a recent overview of the
theory.

(iii) If Ci is a composition algebra over k with standard involution σi, for i =
1, 2, then the k-algebra C1 ⊗k C2, equipped with the involution

· = σ := σ1 ⊗ σ2,

is a structurable algebra. It has skew-dimension dimk C1 + dimk C2 − 2.

The 3 other classes are the central simple associative algebras with involu-
tion, structurable algebras constructed from a non-degenerate hermitian form
over a central simple associative algebra with involution and an exceptional 35-
dimensional algebra (the Smirnov algebra, which always gives rise to a split Lie
algebra of type E7 via the TKK-construction). See [BDMS19, Section 2.3] for a
more detailed overview.

Definition 1.1.60. Let J be a Jordan algebra over a field k, let T : J × J → k
be a symmetric bilinear form, let × : J × J → J be a symmetric bilinear map,
and let N : J → k be a cubic form such that one of the following holds:

• J is a cubic Jordan algebra with a non-degenerate form N , with basepoint
1, trace form T , and (Freudenthal) cross product ×; see Definition 1.1.15.

• J is a Jordan algebra of a non-degenerate quadratic form q with basepoint
1, and T is the linearization of q. In this case, N and × are the zero maps.
See Example 1.1.8.

• J = 0, and the maps N , T and × are the zero maps. (In this case, J is not
unital.)

Fix a constant η ∈ k×. We now define the structurable matrix algebra M(J, η) as
follows. Let

A =

{(
k1 j1
j2 k2

)
| k1, k2 ∈ k, j1, j2 ∈ J

}
,

and define the multiplication and the involution by the formulae
(
k1 j1
j2 k2

)(
k′1 j′1
j′2 k′2

)
=

(
k1k′1 + ηT (j1, j′2) k1j′1 + k′2j1 + η(j2 × j′2)

k′1j2 + k2j′2 + j1 × j′1 k2k′2 + ηT (j2, j′1)

)
,

(
k1 j1
j2 k2

)
=

(
k2 j1
j2 k1

)
,

for all k1, k2, k′1, k′2 ∈ k and j1, j2, j′1, j
′
2 ∈ J . It is shown in [All78, Section 8.v]

and [AF84, Section 4] that M(J, η) is a central simple structurable algebra.
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The following proposition relates all structurable algebras of skew-dimension
one to these structurable matrix algebras.
Proposition 1.1.61 ([AF84, Proposition 4.5]). Let A be a structurable algebra
of skew-dimension one. Consider an arbitrary non-zero element s0 ∈ S. Then
s20 = µ1, with µ ∈ k×, and A is isomorphic to a structurable matrix algebra
M(J, η) if and only if µ is a square in k.
Corollary 1.1.62. Let A be a structurable algebra of skew-dimension one. Then
there exists a field extension ,/k of degree at most 2 such that A⊗k , is isomorphic
to a structurable matrix algebra over ,.
Remark 1.1.63. In [DM19], the structurable algebras of skew-dimension one
are constructed explicitly, either in terms of hermitian cubic norm structures,
or equivalently, in terms of (ordinary) cubic norm structures equipped with a
semilinear self-adjoint autotopy.

Examples of structurable algebras of skew-dimension one that are not isomor-
phic to structurable matrix algebras can be obtained by applying a generalized
Cayley–Dickson process to a certain class of Jordan algebras, see [AF84].

����� 5JUT�,BOUPS�,PFDIFS DPOTUSVDUJPO

We are now ready to introduce the TKK construction for structurable algebras.
We again assume char(k) "= 2, 3, and all algebras are finite-dimensional in this
subsection.
Definition 1.1.64. Consider two copies A+ and A− of A with corresponding
isomorphisms A → A+ : a -→ a+ and A → A− : a -→ a−, and let S+ ⊂ A+ and
S− ⊂ A− be the corresponding subspaces of skew elements. Define the vector
space

K(A) = S− ⊕A− ⊕ Instrl(A)⊕A+ ⊕S+ .

As in [All79, §3], we define a Lie algebra on K(A) as the unique extension of the
Lie algebra on Instrl(A) satisfying

[V, a+] := (V a)+ ∈ A+ [V, a−] := (V εa)− ∈ A−

[V, s+] := (V δs)+ ∈ S+ [V, s−] := (V εδs)− ∈ S−

[s+, a+] := 0 [s−, a−] := 0

[s+, a−] := (sa)+ ∈ A+ [s−, a+] := (sa)− ∈ A−

[a+, b−] := Va,b ∈ Instrl(A)

[a+, b+] := ψ(a, b)+ ∈ S+ [a−, b−] := ψ(a, b)− ∈ S−

[s+, t+] := 0 [s−, t−] := 0

[s+, t−] := LsLt ∈ Instrl(A)
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for all a, b ∈ A, s, t ∈ S and V ∈ Instrl(A).

From the definition of the Lie bracket we clearly see that the Lie algebra K(A)
has a 5-grading given by K(A)j = 0 for all |j| > 2 and

K(A)−2 = S−, K(A)−1 = A−, K(A)0 = Instrl(A),

K(A)1 = A+, K(A)2 = S+ .

If A is a Jordan algebra, then S = 0. So in this case K(A) = A− ⊕ Instrl(A)⊕
A+ is a 3-graded Lie algebra.

����� ,BOUPS QBJST

We again assume char(k) "= 2, 3, and all algebras are finite-dimensional in this
subsection.

Definition 1.1.65. A Kantor pair is a pair of k-vector spaces P = (P−, P+)
together with two trilinear maps

{·, ·, ·}σ : Pσ × P−σ × Pσ → Pσ, σ ∈ {+,−},

such that
[Vx,y, Va,b] = VVx,ya,b − Va,Vy,xb,

Kx,aVy,z + Vz,yKx,a = KKx,ay,z,

with x, a, z ∈ Pσ and y, b ∈ P−σ. The involved operators are defined as follows:
Vx,yz = {x, y, z}σ and Ka,bc = {a, c, b}σ − {b, c, a}σ for all x, z, a, b ∈ Pσ and
y, c ∈ P−σ.

Kantor pairs are a generalization of structurable algebras: if A+ and A− are
two isomorphic copies of a structurable algebra A, then (A−,A+) is a Kantor
pair, with {x, y, z}σ = 2Vx,yzσ, for x, z ∈ Aσ and y ∈ A−σ.

Kantor pairs are also a generalization of so-called Jordan pairs; Jordan pairs
precisely correspond to the case that Kx,y = 0 for all x, y ∈ Pσ.

����� *OOFS JEFBMT

We now turn to inner ideals of Lie algebras and in particular of the Lie algebras
K(A) arising from structurable algebras through the TKK construction.

Definition 1.1.66. Let L be a Lie algebra. An inner ideal of L is a subspace I
of L satisfying [I, [I, L]] ≤ I.
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If the characteristic is not 2 and I is 1-dimensional, we call any non-zero
element of I an extremal element. See Definition 2.3.1 for the definition of an
extremal element in characteristic 2.

We call an inner ideal singular if all its non-zero elements are extremal ele-
ments. Singular inner ideals are also called point spaces. We call an inner ideal
trivial if is equal to 0, and we call it proper if it is not equal to L. We call an
inner ideal I abelian if [I, I] = 0.

Definition 1.1.67. Let L be a Lie algebra of characteristic not 2. An element
x of L is called an absolute zero divisor2 if [x, [x, L]] = 0. A Lie algebra is
non-degenerate if it has no non-trivial absolute zero divisors.

Assume for the rest of this section char(k) "= 2, 3 and all algebras are finite-
dimensional in this subsection.

If D is a map from a Lie algebra L to itself such that Dn = 0 for certain
n ∈ N and (n− 1)! ∈ k×, then exp(D) =

∑n−1
i=0

1
i!D

i.

Definition 1.1.68. Let L be a 5-graded Lie algebra over k. We say that L is
algebraic if for any (x, s) ∈ Lσ1 ⊕ Lσ2 (with σ ∈ {+,−}), the endomorphism
exp(ad(x + s)) of L is a Lie algebra automorphism. We say that a structurable
algebra A over k is algebraic if K(A) is algebraic in the above sense.

If the characteristic is not 5 this property follows easily, as we will see in the
following lemma. If the characteristic equals 5, this is quite tricky, see [BDMS19,
Sta20] and Chapter 4.

Lemma 1.1.69 ([BDMS19, Lemma 3.1.7]). If char(k) "= 2, 3, 5, then any 5-
graded Lie algebra is algebraic.

Proof. A straightforward calculation shows

exp(ad(x+ s)) = exp(ad(x)) exp(ad(s)),

for all (x, s) ∈ Lσ ⊕ L2σ. Hence it suffices to show that exp(ad(x)) ∈ Aut(L)
for all 0 "= x ∈ Lj , j "= 0. Let D be any derivation of L. For any l,m ∈ L and
6 ≥ i ≥ 0, we have, by induction on i, that

1

i!
Di([l,m]) =

∑

p+q=i

[
1

p!
Dp(l),

1

q!
Dq(m)

]
. (1.12)

Consider x ∈ Lj , l ∈ Lr and m ∈ Lt, with 0 "= j. For any i ∈ N, the (ij + r + t)-
component of [exp(ad(x))(l), exp(ad(x))(m)] equals

∑

p+q=i,p,q≤4

[
1

p!
ad(x)p(l), 1

q!
ad(x)q(m)

]
, (1.13)

2In some papers, e.g. [CI06], these elements are called sandwich elements.
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where we used ad5(x)(La) ≤ L5j+a = 0 for any a ∈ Z. If i ≤ 6, then (1.12)
for D = ad(x) shows that (1.13) is equal to the (ij + r + t)-component of
exp(ad(x))([l,m]). If i > 6, then |ij| > 6 while |r + t| ≤ 4, which implies
Lij+r+t = 0.

The next lemma is mentioned in (the proof of) [GGLN11, Theorem 3.1(1)].

Lemma 1.1.70. Let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be a 5-graded Lie algebra
with L0 = [L1, L−1]. Suppose that I is a subspace closed under all Lie algebra
endomorphisms exp(ad(l)), with l ∈ Li, i "= 0. Then I is an ideal of L.

Proof. Let l ∈ Li, i "= 0, be arbitrary. Consider x ∈ I. By assumption, I contains

exp(ad(l))(x)− exp(ad(−l))(x) = 2[l, x] +
1

3
[l, [l, [l, x]]].

If we replace l by 2l in this expression, we get that I contains 4[l, x]+ 8
3 [l, [l, [l, x]]]

as well. Therefore, I contains 12[l, x] and hence also [l, x]. In particular, [Li, x] ≤
I for each i "= 0.

Next, let l ∈ L1 and l′ ∈ L−1. Then

[[l, l′], x] = −[[l′, x], l]− [[x, l], l′] ∈ I.

Since L0 = [L1, L−1], this implies [L, x] ≤ I. Hence I is an ideal of L.

Theorem 1.1.71 ([Sta20, Theorem 2.13, Theorem 3.4]). Any central simple
structurable algebra over k is algebraic.

The next corollary is similar to [GGLN11, Theorem 3.1.(1)]. (Notice, however,
that the characteristic 5 case is excluded in that paper).

Corollary 1.1.72. Let A be a central simple structurable algebra over k. Then
K(A) is a non-degenerate Lie algebra.

Proof. L := K(A) is a central simple 5-graded Lie algebra such that L0 =
[L1, L−1] (see [All79, §5]). Moreover, by definition of algebraicity of A and The-
orem 1.1.71, all endomorphisms exp(ad(l)) of L, with l ∈ Li, i "= 0, are actually
automorphisms of L. Let I be the subspace spanned by all absolute zero divisors.
It is clear that I is closed under any Lie algebra automorphism. By Lemma 1.1.70,
I is an ideal. Since L is simple, I = L or I = 0. If I = L, then L is generated by
(a finite set of) absolute zero divisors, and it is thus nilpotent by [Zel80], which
is impossible since L is non-abelian and simple.

Corollary 1.1.73. Let A be a central simple structurable algebra over k. Then
any proper inner ideal of K(A) is abelian.

Proof. Since K(A) is a finite-dimensional non-degenerate simple Lie algebra, this
follows from [Ben77, Lemma 1.13].
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The following result from [Ben77] will be useful in the proof of Lemma 3.1.8.

Lemma 1.1.74 ([Ben77, Lemma 1.8],[DFLGGL08, Lemma 1.11]). If I is an
inner ideal of a Lie algebra L and x ∈ L an element element such that ad3

x = 0,
then [x, [x, I]] is an inner ideal.

We will now define some subgroups of GLk(L).

Definition 1.1.75 ([BDMS19, Lemma 3.2.7]). Consider L := K(A), with A a
central simple structurable algebra. Let Eσ(A) denote the subgroup of Aut(L)
consisting of the automorphisms3

eσ(a, s) := exp(ad(aσ + sσ)),

and

eσ(a, s)eσ(b, t) = eσ
(
a+ b, s+ t+ 1

2ψ(a, b)
)
= eσ(a, t) ◦ eσ(b, s) (1.14)

as multiplication, with a, b ∈ A, s, t ∈ S, σ ∈ {+,−} arbitrary. Let E(A) be the
subgroup of Aut(L) generated by E+(A) and E−(A).

The explicit computations in Lemmas 1.1.55 to 1.1.57 and 1.1.76 will be
needed later.

Lemma 1.1.76. Let a ∈ A, s, t ∈ S. Then

e+(a, s)(t−) = t− + (−ta)− + (LsLt − 1
2Va,ta) + (−s(ta) + 1

6Ua(ta))+

+ (−s(ts)− 1
2ψ(a, s(ta)) +

1
24ψ(a, Ua(ta)))+ ,

e−(a, s)(t+) = t+ + (−ta)+ + (−LtLs +
1
2Vta,a) + (−s(ta) + 1

6Ua(ta))−

+ (−s(ts)− 1
2ψ(a, s(ta)) +

1
24ψ(a, Ua(ta)))− .

Proof. Using (1.9) and (1.11), we compute that

ad(a+ + s+)(t−) = (−ta)− + LsLt

ad(a+ + s+)
2(t−) = [a+ + s+, ad(a+ + s+)(t−)]

= −Va,ta + (−2s(ta))+ + (−(LsLt)
δ(s))+

= −Va,ta + (−2s(ta))+ + (−2s(ts))+

ad(a+ + s+)
3(t−) = (Va,ta(a)+ − 2ψ(a, s(ta))+)− ψ(a, s(ta))+

= Ua(ta)+ − 3ψ(a, s(ta))+

ad(a+ + s+)
4(t−) = ψ(a, Ua(ta))+.

These identities together with the definition of e+(a, s) yield the result. The
computations for e−(a, s)(t+) are similar, using (1.10).

3By Theorem 1.1.71, these are indeed automorphisms.
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In this subsection we state the necessary preliminaries regarding generalized poly-
gons and Moufang polygons.

We first recall some definitions from incidence geometry.

Definition 1.2.1. A point-line geometry is a triple Γ = (P,L, I), with
• P a nonempty set whose elements are called points,
• L a possibly empty set, disjoint from P, whose elements are called lines,
• I a subset of P × L, called the incidence relation,

such that for every l ∈ L there are at least two p ∈ P for which (p, l) ∈ I. If
(p, l) ∈ I, we will say that p is contained in l, that p lies on l, that l contains p,
or that l goes through p. We also denote this by p ∈ l. Two points p and p′ are
called collinear if there is some line incident with both p and p′. For every point
p, p⊥ denotes the set of all points collinear with or equal to p.

An isomorphism from a point-line geometry Γ = (P,L, I) to a point-line
geometry Γ′ = (P′,L′, I ′) is a pair (α,β), where α : P → P′ and β : L → L′ are
bijections such that (p, l) ∈ I if, and only if, (α(p),β(l)) ∈ I ′, for all p ∈ P and
l ∈ L.

Definition 1.2.2. Let Γ = (P,L, I) be a point-line geometry. We call it a partial
linear space if two distinct points lie on at most one line. Assume now that Γ
is a partial linear space. We call X ⊆ P a subspace if for all x, y ∈ X with x
and y on a (necessarily unique) line l, all points of l are contained in X. As the
intersection of subspaces is again a subspace, we can define the subspace generated
by a subset X of the point set to be the intersection of all subspaces containing
X. We call a subspace singular if any two distinct points of this subspace are
collinear. Subspaces are often identified with the partial linear space induced on
them by the lines they contain. If every line has at least 3 points we call a point-
line geometry thick. A point-line geometry Γ′ = (P′,L, I ′) is a subgeometry of Γ
if P′ ⊆ P, L′ ⊆ L and (p′, l′) ∈ I ′ if and only if (p′, l′) ∈ I, for any p′ ∈ P′ and
l′ ∈ L′.

Remark 1.2.3. Let Γ = (P,L, I) be a partial linear space and set S(l) = {p ∈
P | (p, l) ∈ I}. Since S(l) "= S(l′) for two distinct l, l′ ∈ L, Γ is isomorphic to
(P, {S(l) | l ∈ L}, I ′), where (p, S(l)) ∈ I ′ if p ∈ S(l). In other words, if we are
looking at a partial linear space, then we can identify the lines with subsets of
the point set and containment as incidence. So, for ease of notation, we can and



$IBQUFS �� 1SFMJNJOBSJFT 24

sometimes will suppress I.

Definition 1.2.4. The rank of a singular subspace is the length of a maximal
chain of non-trivial subspaces. The rank of a partial linear space is the supremum
of all ranks of maximal singular subspaces.

Definition 1.2.5. A geometric hyperplane, or just hyperplane, is a subspace
meeting each line non-trivially.

We now introduce generalized polygons.

Definition 1.2.6. Consider n ∈ N\{0, 1, 2}. A generalized n-gon is a partial
linear space T = (P,L, I) such that:

• T does not contain ordinary m-gons as subgeometries, for m < n;
• For any x, y ∈ P ∪ L, there exists a subgeometry containing both x and y

isomorphic to an ordinary n-gon.
We call a point-line geometry a generalized polygon if it is a generalized n-gon for
some n ≥ 3. Generalized 3-, 4- and 6-gons are also called generalized triangles,
quadrangles and hexagons, respectively.

We will often encounter generalized hexagons which have the property that
any point lies on precisely two lines, and we will call such a generalized hexagon
a thin generalized hexagon.

Definition 1.2.7. If T = (P,L, I) is a generalized n-gon, then we denote its
incidence graph by T̃ . This is the bipartite graph with P ∪ L as vertices and
{p, l} as edges, where p ∈ P and l ∈ L with p ∈ l. Note that T̃ has diameter
n and girth 2n. If (x0, . . . , xn) is a path of length n in T̃ , then we define the
subgroup

U(x0, . . . , xn)

of Aut(T̃ ) to be the pointwise stabilizer in T̃ of all vertices at distance ≤ 1 from
x1, x2, . . . , or xn−1 and we call this a root group. We call a graph thick if every
vertex is contained in at least 3 edges.

Remark 1.2.8. If G is a group, then we define the gh := hgh−1 for all g, h ∈ G.

Notation 1.2.9. If we fix a cycle (x0, . . . , x2n−1, x2n) of length 2n in T̃ , then
we set

Ui = U(xi, . . . , xn+i),

with 1 ≤ i ≤ n.

Definition 1.2.10. We call a generalized n-gon T = (P,L, I) Moufang if T̃ is
thick and for any path (x0, . . . , xn) of length n in T̃ , the root group U(x0, . . . , xn)
acts transitively on the set of all neighbors of x0 distinct from x1.

Moufang n-gons only exist for n = 3, 4, 6 or 8, by a famous result by Jacques
Tits, see [Tit76, Tit79] (and also [Wei79]).
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Lemma 1.2.11 ([TW02, (3.7)]). Let Γ be a generalized n-gon, G its automor-
phism group and (x0, . . . , xn) an n-path. Consider neighbors x, y of x0, distinct
from x1. Then there is at most one element of U := U(x0, . . . , xn) mapping x
on to y. In particular, Γ is Moufang if and only if Γ is thick and U acts sharply
transitively on the set of neighbors of x0 distinct from x1 (for all n-paths).

Lemma 1.2.12. Consider a Moufang n-gon Γ with root groups Ui as in Nota-
tion 1.2.9. The root group Ui acts sharply transitively on all neighbors of xn+i

distinct from xn+i−1.

Proof. Clearly (xn+i, xn+i−1, . . . , xi) is also a path of length n. Since Γ is Mou-
fang, Lemma 1.2.11 implies that

U(xn+i, . . . , xi) = U(xi, . . . , xn+i) = Ui

acts sharply transitively on all neighbors of xn+i distinct from xn+i−1.

Theorem 1.2.13 ([TW02, (5.5), (5.6)]). Consider ui ∈ Ui and uj ∈ Uj arbi-
trary, where i, j ∈ {1, . . . , n} with i + 1 < j, Then there exist elements ui+1 ∈
Ui+1, . . . , uj−1 ∈ Uj−1 such that [ui, uj ] = ui+1 . . . uj−1. Moreover, [Ui, Ui+1] = 1
holds.

Theorem 1.2.14 ([TW02, Chapter 7]). A Moufang n-gon Γ is completely de-
termined by its root groups U1, . . . , Un together with the commutator relations,
i.e. the description of the commutators of elements in two root groups.

So in the next few subsections we will describe the root groups of various
Moufang polygons. Later on, we will describe more concrete models for these
Moufang polygons, and then we need these commutator relations. In some of the
cases we describe, we indicate to which algebraic groups these correspond. We
will now briefly indicate this correspondence.

Linear algebraic groups are matrix groups defined by polynomials; a typical
example is the group SLn of (n × n)-matrices of determinant 1. Semisimple
connected linear algebraic groups over an algebraically closed field are classified
by their Dynkin diagram, which is either of type An, Bn, Cn, Dn or of type G2,
F4, E6, E7, E8. The former list of Dynkin diagrams are called classical and the
latter list of diagrams are called exceptional. (Sometimes, D4 is also considered
exceptional.)

If the field is not algebraically closed, the situation is more complex. Then the
groups can be classified according to their Tits index, which is a Dynkin diagram
together with some circled vertices representing distinguished orbits. The number
of distinguished orbits equals the relative rank of the group, and the number of
vertices of the Dynkin diagram equals the absolute rank. We list in Table 1.1
the Tits indices of the semisimple connected linear algebraic groups of relative
rank 2 whose Dynkin diagram is exceptional. See part 2.3, Table I and Table II
of [Tit66].
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Using the parabolic subgroups of a linear algebraic group it is possible to define
a geometric structure out of this algebraic group, more precisely one can construct
a spherical building. (See chapter 39 and page 480 of [TW02] for more information
on buildings and the aforementioned construction.) This building has the same
rank as the algebraic group. Not all spherical buildings are obtained by this
construction, but a lot of them are, see Chapter 41 of [TW02]. Spherical buildings
of rank 2 are equivalent with generalized polygons, see (39.39) and (39.40) of
loc. cit. If a building is coming from a linear algebraic group as above, then we call
this algebraic group the algebraic group corresponding to this building. In order
to refer to the Tits indices in Table 1.1, we use the notation gXt

n,r for this algebraic
group, where n is its absolute rank, r its relative rank, X ∈ {A,B,C,D,E, F,G},
and g and t are as in [Tit66, pp. 54]. (We omit g if g = 1.)

����� .PVGBOH USJBOHMFT

First note that since any generalized triangle is equivalent with a projective plane,
a Moufang triangle is equivalent with a Moufang plane. A Moufang triangle is
coordinatized by an alternative division algebra. More precisely the following
holds.

Theorem 1.2.15 ([TW02, (17.2) and (16.1)]). Let Γ be a Moufang triangle,
with root groups U1, U2 and U3. Then there exists an alternative division algebra
F and isomorphisms (F,+) → Ui : f -→ xi(f), for all i = 1, 2, 3, such that
[U1, U2] = 1 = [U2, U3] and

[x1(f), x3(g)] = x2(fg),

for all f, g ∈ F .

The most exceptional Moufang triangle is the one corresponding to an octo-
nion division algebra. Its associated linear algebraic group is of type E28

6,2 and
has index as described in Table 1.1.
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The following definition of a generalized quadrangle is equivalent with the one
given in Definition 1.2.6.

Definition 1.2.16. A generalized quadrangle is a partial linear space (P,L, I)
such that

• there exist two disjoint lines,
• for every line l and any point p not on l, there exists a unique point on l

collinear with p.
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index diagram corresponding polygon

E28
6,2 Moufang triangle

2E16′
6,2 Moufang quadrangle

E31
7,2 Moufang quadrangle

E66
8,2 Moufang quadrangle

G0
2,2 Moufang hexagon

3,6D2
4,2 Moufang hexagon

E16
6,2 Moufang hexagon

2E16′′
6,2 Moufang hexagon

E78
8,2 Moufang hexagon

Table 1.1: Exceptional Tits indices of relative rank two

With this definition it is obvious that generalized quadrangles belong to the
larger class of so-called polar spaces.
Definition 1.2.17. A polar space is a partial linear space satisfying the one-or-
all axiom:

a point is collinear with one or all points of a line.

Note that a point p is collinear with itself, if there is a line containing p.
A polar space is called degenerate if it contains a point p collinear with all

other points, and non-degenerate otherwise.
In a non-degenerate polar space, singular subspaces are projective spaces.

Example 1.2.18. Examples of polar spaces are obtained from polarities. Let
⊥ be a polarity of a projective space P, then let E be the set of absolute points,
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i.e. the points p with p ∈ p⊥ and as lines the absolute lines, i.e, the lines l where
for each point p ∈ l we have l ⊆ p⊥. This polar space is non-degenerate if p⊥ is
never the full projective space.

We now discuss a specific example of such a polarity. Consider a non-
degenerate quadratic form Q : M → k, char(k) "= 2, and let T be the associated
bilinear form. Let P be the projective space of M . Then ⊥ which sends the
projective point 〈m〉 onto the hyperplane {〈n〉 ∈ P | T (n,m) = 0} is a polar-
ity. Then E = {〈m〉 | Q(m) = 0}, and the set of absolute lines coincides with
{〈m,n〉 | Q(〈m,n〉) = 0 and 〈m〉 "= 〈n〉}.

We now return to Moufang quadrangles. In order to describe the Moufang
quadrangle associated with an anisotropic quadrangular algebra, we need the
following definition.

Definition 1.2.19. Consider an anisotropic quadrangular algebra (k,M,Q, 1,
X, ·, h, θ). We define the operation ◦ on X ⊕ k as follows

(x,λ) ◦ (y, µ) = (x+ y,λ+ µ+ g(y, x)),

for all x, y ∈ X and λ, µ ∈ k, with g as in Definition 1.1.27(vii). This defines a
group structure on X ⊕ k, see [Wei06, Proposition 11.10].

Theorem 1.2.20. Consider an anisotropic quadrangular algebra (k,M,Q, 1,
X, ·, h, θ). Then there exists a Moufang quadrangle Γ, with root groups U1, U2, U3

and U4, for which there exist isomorphisms (X ⊕ k, ◦) → Ui : (x,λ) -→ xi(x,λ)
for i = 1, 3 and isomorphisms (M,+) → Ui : m -→ xi(m) for i = 2, 4 such that
[U1, U2] = [U2, U3] = [U3, U4] = 1 and

[x1(x,λ), x3(y, µ)
−1] = x2(h(x, y)),

[x2(m), x4(n)
−1] = x3(0, T (m,n)),

[x1(x,λ), x4(m)−1] = x2(θ(x,m) + λm)x3(x ·m,λQ(m) + φ(x,m)),

for all x, y ∈ X, m,n ∈ M and λ, µ ∈ k, where T is the bilinear form associated
with Q, and φ as in Definition 1.1.27(viii).

Proof. If X "= 0 this is precisely [Wei06, Theorem 11.11(ii)]. If X = 0 this is
precisely [TW02, (16.3)].

If char(k) "= 2, then by Theorem 1.1.37 an anisotropic quadrangular algebra
is either coming from an anisotropic standard pseudo-quadratic space over a
division associative composition algebra or it is of type E6, E7 or E8. In the
former case the corresponding algebraic group is of classical type. In the latter
case, the corresponding algebraic group is of type 2E16′

6,2 , E31
7,2 or E66

8,2, respectively.
See Table 1.1 for the corresponding Tits indices. If char(k) = 2 there are more
classes of quadrangular algebras.
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A Moufang hexagon is coordinatized by an anisotropic cubic norm structure.
More precisely the following holds.

Theorem 1.2.21 ([Wei06, (17.5) and (16.8)]). Let Γ be a Moufang hexagon,
with root groups U1, U2, U3, U4, U5 and U6. After potentially re-labeling the path in
Notation 1.2.9, there exists a field k, an anisotropic cubic norm structure (J, k, #)4,
isomorphisms (k,+) → Ui : λ -→ xi(λ) for all i = 2, 4, 6 and isomorphisms
(J,+) → Ui : j -→ xi(j) for all i = 1, 3, 5 such that [U1, U2] = [U1, U4] =
[U2, U3] = [U2, U4] = [U2, U5] = [U3, U4] = [U3, U6] = [U4, U5] = [U4, U6] =
[U5, U6] = 1 and

[x1(a), x3(b)] = x2(T (a, b)),

[x3(a), x5(b)] = x4(T (a, b)),

[x1(a), x5(b)] = x2(−T (a#, b))x3(a× b)x4(T (a, b
#)),

[x2(λ), x6(µ)] = x4(λµ),

[x1(a), x6(λ)] = x2(−λN(a))x3(λa
#)x4(λ

2N(a))x5(−λa),

for all a, b ∈ J and λ, µ ∈ k.

As noted in Remark 1.1.24 the cubic norm structure is either coming from a
purely inseparable field extension as in Example 1.1.21 or dimk(J) ∈ {1, 3, 9, 27}.
If dimk(J) = 1, then the hexagon is the split Cayley hexagon and the correspond-
ing algebraic group is the split group G0

2,2. If dimk(J) = 3, then the corresponding
algebraic group is either of type 3D2

4,2 or 6D2
4,2, depending on the precise construc-

tion of J . If dimk(J) = 9, and J is constructed as in Example 1.1.22, then the
corresponding algebraic group is of type E16

6,2. There also exists 9-dimensional
twisted forms of such an algebra which also form an anisotropic cubic norm struc-
ture, corresponding to the algebraic group 2E16′′

6,2 . If dimk(J) = 27, i.e. J is an
Albert division algebra, then the corresponding algebraic group is of type E78

8,2.
The Tits indices of all these groups are described in Table 1.1.

Notation 1.2.22. We denote the Moufang hexagon with root groups as in The-
orem 1.2.21 by Γ(J, k, #), for any anisotropic cubic norm structure (J, k, #).

Theorem 1.2.23. Let (J, k, #) and (J ′, k, #′) be two arbitrary anisotropic cubic
norm structures. Then Γ(J, k, #) is isomorphic with Γ(J ′, k, #′) if, and only if,
(J, k, #) and (J ′, k, #′) are isotopic.

Proof. By (7.5), (8.9), (8.10) and (35.13) of [TW02].
4Recall Lemma 1.1.17.
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We briefly recall the definition of a Moufang set. We refer to [DMS09] for a
detailed introduction to the subject.

Definition 1.2.24. Let X be a set (with |X| ≥ 3) and let {Ux | x ∈ X} be a
collection of subgroups of Sym(X). The data (X, {Ux}x∈X) is a Moufang set if
the following two properties are satisfied:

• For each x ∈ X, Ux fixes x and acts sharply transitively on X\{x}.
• For each g ∈ G+ := 〈Ux | x ∈ X〉 ≤ Sym(X) and each y ∈ X we have

Ug
y = Ug(y).5

The group G+ is called the little projective group of the Moufang set, and the
groups Ux are called the root groups.

Each group G acting sharply doubly transitively on a set X gives rise to a
Moufang set (with Ux = StabG(x) and G+ = G). A Moufang set is called proper
if the action of G+ on X is not sharply doubly transitive.

All known examples of proper Moufang sets with abelian root groups arise
from (quadratic) Jordan division algebras [DMW06, DMS08, Grü15]. More gen-
erally, all known examples of proper Moufang sets with (abelian or non-abelian)
root groups without elements of order 2 or 3 arise from structurable division al-
gebras [BDMS19]. (There are infinite families of counterexamples over fields of
characteristic 2 and 3, but also those examples are still of algebraic nature.) See
also [BDMS19, DM20] for a detailed overview of examples of Moufang sets.

5In the theory of Moufang sets, one usually denotes group actions on the right. Since we
always denote Lie algebra automorphisms on the left, we chose to denote group actions for
Moufang sets on the left in order to avoid confusion notation later on.
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This chapter is organised as follows. In Section 2.1 we discuss root filtration
spaces. Most of the results presented there are based on the work of Arjeh Cohen
and Gabor Ivanyos [CI07], we also provide some examples. Section 2.2 is devoted
to subgeometries of root filtration spaces fixed by some involutive automorphism.
In particular we show that such subgeometries carry the structure of a polar space.
Lie algebras generated by extremal elements will be considered in Sections 2.3,
2.4 and 2.5. In these sections we study the extremal geometry of a Lie algebra
generated by extremal elements. Building upon the work of Arjeh Cohen et
al. [CI06] we obtain a proof that the inner ideal geometry, which we define
in Section 2.5, of such a Lie algebra containing two linearly independent but
commuting elements is a root shadow space of a spherical building of rank at
least 2. More precisely, we obtain that if L is a simple Lie algebra generated by
its pure extremal elements, then its inner ideal geometry is either a root filtration
space, a polar space or just a set (then there are no lines in the geometry).

4&$5*0/ ���
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In this section we consider root filtration spaces.
Definition 2.1.1. A thick partial linear space Γ = (E ,F) is a root filtration space
with filtration E i, −2 ≤ i ≤ 2, if the sets E i, with −2 ≤ i ≤ 2, provide a partition
of E × E into five symmetric relations satisfying the following for all x, y, z ∈ E :

31
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(A) The relation E−2 is equality.
(B) The relation E−1 is collinearity of distinct points.
(C) For each (x, y) ∈ E1, there is a unique point, denoted by [x, y], such that if

z ∈ E i(x) ∩ Ej(y), then [x, y] ∈ E≤i+j(z).
(D) If (x, y) ∈ E2, then E≤0(x) ∩ E≤−1(y) = ∅.
(E) The subsets E≤i(x) are subspaces of Γ.
(F) The subset E≤1(x) is a geometric hyperplane.
(G) E2(x) is non-empty.
(H) Γ is connected.

Here E≤i is the union of all Ej with −2 ≤ j ≤ i. Moreover, for x ∈ E the set
E i(x) is the set of all y ∈ E with (x, y) ∈ E i, and, similarly, E≤i(x) is the set of
all y ∈ E with (x, y) ∈ E≤i.

A point pair x, y is called collinear if (x, y) ∈ E−1, polar if (x, y) ∈ E0, special
if (x, y) ∈ E1, and hyperbolic if (x, y) ∈ E2.

Remark 2.1.2. Note that by conditions (G) and (H) the set E−1(x) is non-empty
for each point x ∈ E , and, moreover, by (D) and (F) even E1(x) is non-empty. The
fact that these sets are non-empty is sometimes referred to as the root filtration
space Γ being non-degenerate.

Root filtration spaces have been studied by Arjeh Cohen and Gabor Ivanyos
[CI07]. The main result is that a root filtration space Γ = (E ,F) in which singular
subspaces have finite rank are so-called root shadow spaces of spherical buildings.
Consider a building of type Xn with corresponding Dynkin diagram Yn. (If the
building is of type BCn, choose Bn.1) Let J be the set of nodes adjacent to the
node extending the Dynkin diagram Yn to an affine diagram. Then the shadow
space Xn,J with as the points the flags whose types are the nodes from the set J
is called a root shadow space. If J = {j} we denote Xn,J by Xn,j . For a detailed
discussion of root shadow spaces, the reader is referred to [BC13, Section 11.6]
or [Shu11, Chapter 17]. Below we discuss some examples of root shadow spaces.
See also [Fle15, 4.2.3] for a more precise connection with spherical buildings.

Example 2.1.3. Let V be a vector space over a skew field of dimension n +
1 at least 3 and P(V ) be the corresponding projective geometry. Take for E
the set of incident point-hyperplane pairs of P(V ). Lines in F consist of all
point-hyperplane pairs (p,H), where either H is running through the set of all
hyperplanes containing a codimension 2 subspace K on p, or p is running through
a 2-dimensional subspace L inside H. Then Γ is a root shadow space of type
An,{1,n}, where n+ 1 is the dimension of V .

The space Γ admits the following filtration. Let x = (p,H) and y = (q,K) be
incident point-hyperplane pairs in E . Then

1The type of a building is a Coxeter diagram, and we denote the Coxeter diagram corre-
sponding to the Dynkin diagrams Bn and Cn by BCn to avoid confusion.
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• (x, y) ∈ E−2 ⇔ x = y;
• (x, y) ∈ E−1 ⇔ x "= y and p = q or H = K;
• (x, y) ∈ E0 ⇔ p "= q, H "= K, p ∈ K and q ∈ H;
• (x, y) ∈ E1 ⇔ p ∈ K but q "∈ H, or p "∈ K but q ∈ H;
• (x, y) ∈ E2 ⇔ p "∈ K and q "∈ H.
Suppose W ∗ is a subspace of V ∗ with the property that for any two linearly

independent v, v′ ∈ V there is a φ ∈ W ∗ with φ(v) "= 0 but φ(v′) = 0. We say
W ∗ separates points of the projective space of V . If we allow the dimension of V
to be infinite, then we can construct more examples by choosing our hyperplanes
as kernels of elements inside a subspace W ∗ of V ∗ separating the points of the
projective space of V . This geometry is then denoted by Γ(V,W ∗).
Example 2.1.4. Let E be the set of lines of a non-degenerate polar space of rank
at least 3. Take for F the sets of the form {, ∈ E | p ∈ ,, , ⊂ π}, where (p,π)
runs over the set of point-singular plane pairs with p ∈ π. Then (E ,F) is a root
shadow space of type BCn,2 (or Dn,2, depending on the polar space). It is a root
filtration space with filtration defined as follows:

• (l,m) ∈ E−2 ⇔ l = m;
• (l,m) ∈ E−1 ⇔ l,m are contained in a singular plane;
• (l,m) ∈ E0 ⇔ l,m do intersect but are not contained in some singular

subspace, or l,m do not intersect but are contained in singular subspace;
• (l,m) ∈ E1 ⇔ l contains a unique point collinear with all points of m;
• (l,m) ∈ E2 ⇔ each point on l is collinear with a unique point of m.

If (l,m) ∈ E2, we also call the lines l and m opposite.

The main result of Arjeh Cohen and Gabor Ivanyos [CI07] reads as follows.
Theorem 2.1.5 ([CI07, Theorem 1]). Suppose that Γ is a root filtration space of
finite rank. Then Γ is isomorphic to a root shadow space of type An,{1,n} (n ≥ 2),
BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8, F4,1 or G2,2.

The key to this result is the construction of so-called symplecta. Arjeh Cohen
and Gabor Ivanyos showed:
Proposition 2.1.6 ([CI07]). Let Γ be a root filtration space. Suppose the relation
E0 is non-empty. Then Γ contains a collection S of subspaces such that every
pair of points x, y with (x, y) ∈ E0 is contained in a unique element S ∈ S.

Moreover, for each S ∈ S we have:
(a) S is a non-degenerate polar space of rank at least 2.
(b) If x is collinear to two non-collinear points of S, then it is contained in S.
(c) For all points x, y ∈ S we have (x, y) ∈ E≤0.
(d) For each point x the set of points in E≤−1(x)∩S is either empty or contains

a line.

Proof. By Theorem 13 of [CI07] we find that Γ contains a collection of sym-
plecta satisfying (a)–(d), or every line is contained in a unique maximal singular
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subspace.
In the latter case, Theorem 29, Corollary 18, Proposition 23 and Theorem 35

of [CI07] imply that Γ is either isomorphic to Γ(V,W ∗) for some vector space V
and subspace W ∗ of its dual, see Example 2.1.3, or to the root filtration space
of lines in a polar space of rank 3 as described in Example 2.1.4. Also in these
cases we find a collection of symplecta if the dimension of V is at least 4, see
Example 2.1.7 and Example 2.1.8 below. One easily checks properties (a)–(d).

The elements of S are called symplecta.
Example 2.1.7. In the root filtration space Γ = (E ,F) of Example 2.1.3, two
point-hyperplane pairs (p,H) and (q,K) of E are in relation E0 if and only if
p "= q and H "= K, but p, q ∈ H ∩ K. The unique symplecton containing
(p,H) and (q,K) is the set of point-hyperplane pairs (r, L) where r is on the line
through p and q and L contains H ∩K. This symplecton carries the structure of
a generalized quadrangle, i.e. a rank 2 polar space.
Example 2.1.8. The symplecta of the root filtration space (E ,F) of lines in a
polar space (P,L) as in Example 2.1.4 come in two types.

The first are the symplecta determined by two intersecting lines of L which
are not in a singular subspace. It consists of all the lines on the intersection point.
Suppose S is a symplecton of this type and consists of all lines in L on a fixed
point p ∈ P . Then any line , ∈ L \ S is in relation E−1 with none of the lines of
S, or the line is in a singular plane with p and , is in relation E−1 with all lines
on S which are inside this plane. These lines form an element of F , showing (d)
of Proposition 2.1.6 holds true in this case.

A symplecton of the second type is the set of all lines in a singular subspace
which is a projective 3-space. (Note that this is a polar space.) In case the polar
space has rank ≤ 3, this class of symplecta is empty.

We provide some extra information on root filtration spaces that will be used
in the next sections and Chapter 4.

The following two lemmas can also be found in [CI06] and [CI07] and are
concerned with a root filtration space Γ = (E ,F).
Lemma 2.1.9. Let x, y ∈ E.
(a) If (x, y) ∈ E1, then there is a unique point z in E−1(x) ∩ E−1(y).
(b) If (x, y) ∈ E1, then there is a point z in E2(x) ∩ E−1(y).
(c) If (x, y) ∈ E0, then there is a point z in E0(x) ∩ E2(y).
(d) If (x, y) ∈ E0, then there is a point z in E−1(x) ∩ E1(y).
(e) If (x, y) ∈ E2, then there is a point z in E−1(x) ∩ E1(y).
(f) If (x, y) ∈ E−1, then there is a point z in E−1(x) ∩ E1(y).

Proof. Statement (a) is [CI06, Lemma 1(ii)]. Statement (b) follows from [CI06,
Lemma 1(v), Lemma 4] and (c) is [CI07, Lemma 8(ii)]. Statement (d) follows
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from (c). Indeed, let v be a point in E0(x) ∩ E2(y), then a common neighbor of
z of x and v is, by property (D), in E1(y). Statement (e) follows from Condition
(F) and (D) of Definition 2.1.1. The final statement follows by [CI06, Lemma
4].

Lemma 2.1.10 ([CI06, Lemma 1(vi)], Pentagon Property). Let x1, . . . , x5 be five
points forming a pentagon, i.e., xi and xj are collinear if and only if i − j ≡ 1
(mod 5). Then (xi, xi+2) ∈ E0 for i ∈ {1, 2, 3}.

We analyze the relation between a point and a symplecton.

Lemma 2.1.11. Consider a point x and a symplecton S of Γ with E!−1(x)∩S =
∅. Then either S ⊆ E!0(x) or A := E!0(x)∩S is a non-empty singular subspace
of S. In the latter case, any point of S not in A but collinear with a point of A
is in E1(x) and all other points of S not in A are in E2(x).

Proof. Fix a point x and symplecton S such that x is not collinear to any point
of S. Either S is contained in E!0(x) or we can find y ∈ S which is contained in
E1(x) ∪ E2(x). Suppose we are in the latter case. If y ∈ E2(x), then, as S is of
rank at least 2, we can find a line on y inside S. This line meets the geometric
hyperplane E≤1(x) in a point which, by condition (D), is in E1(x). So we may
assume y ∈ S to be inside E1(x). Let z = [x, y] be the unique common neighbor
of x and y. By Proposition 2.1.6(d), the subspace E−1(z)∩S of S is singular and
contains a line L.

Now by Lemma 2.1.9 there is a point v collinear with x and in E2(y). The line
L meets the geometric hyperplane E≤1(v) in a point u. If the points v, x, z, u, [v, u]
form a pentagon, Lemma 2.1.10 implies that (x, u) ∈ E0. Assume they do not
form a pentagon. Note that v ∈ E1(z) since v ∈ E2(y) and hence z cannot be
collinear to v or [v, u], otherwise (v, z) ∈ E0 in the latter case. So x and [v, u] are
collinear, which also implies that (x, u) ∈ E0.

This shows that each point of S ∩ E1(x) is on a line of S meeting E0(x) ∩ S
in a point. In particular A := E!0(x) ∩ S is a non-empty subspace of S.

Now let d ∈ A be arbitrary and let e ∈ S\A be any point collinear with d. If
T is the unique symplecton containing x and d, then e is collinear with a point,
and hence with a line of T . As T is a polar space, we can find a point p on this
line collinear with x, and x and e are at distance 2. As e "∈ A, we have (x, e) ∈ E1.
Moreover, p = [x, e] is collinear with both d and e and hence with all the points
of the line through d and e.

It remains to show that A is singular. Assume there are two non-collinear
points i, j in A. Then let k be a point collinear with both i and j. Assume
k "∈ A. In the previous paragraph we showed that there exists a neighbor p of x
collinear with the line ik, and similarly a neighbor q collinear to all points of the
line jk. Since these two neighbors of x can not coincide (using that E−1(h)∩S is
always a singular subspace for any point h not in S), we get (x, k) ∈ E0. Hence
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k ∈ A, a contradiction with the assumption k "∈ A. So, all common neighbors
in S of i and j are contained in A. This shows that A is a convex non-singular
subspace of S. Hence A = S, which contradicts our initial assumption.

We analyze this somewhat further.

Lemma 2.1.12. Suppose S is a symplecton and x is a point such that E2(x)∩S
is non-empty. Then there is a unique point y ∈ S ∩ E0(x) and on every line on
y inside S there is a singular plane containing a unique point collinear with x.

Proof. By Lemma 2.1.11, S ∩E0(x) is a non-empty singular subspace. If y is any
element of this intersection, all lines on this point are contained in E≤1(x) by this
lemma. But then the fact that S is a non-degenerate polar space implies that
E0(x) ∩ S consists of precisely one point, which we call y.

Now assume T is the symplecton on x and y. Then every point z ∈ S collinear
with y is collinear to all the points of a line , on y in T . The line ,, and hence
the plane on z and , contains a unique point collinear to x.

We also obtain the following consequence of Lemma 2.1.11.

Corollary 2.1.13. Consider a symplecton S and a point x not contained in S
such that A := E−1(x) ∩ S and E1(x) ∩ S are non-empty. Then A is a line, all
points of S collinear with A are contained in E0(x) and all other points of S not
on A are contained in E1(x).

Proof. By part (b) and (d) of Proposition 2.1.6, A is a singular subspace which
contains a line L.

If L "= A, then A contains a plane and hence every point of the symplecton
S is collinear to a line of A and hence any point of S has at least 2 common
neighbors x, so the points of S not in A are contained in E0(x), contradicting
E1(x) "= ∅. We obtain L = A.

If a point of S is collinear with all points of the line L, then this point is
contained in E0(x) since all points on L are common neighbors with x.

Let z be a point in E1(x) ∩ S. Let q be the unique neighbor of z and x.
Note q ∈ L. By Lemma 2.1.9(b) there is a point y collinear with x and such
that (z, y) ∈ E2. By Lemma 2.1.12 there is a unique point p contained in S and
symplectic with y. By Lemma 2.1.11 and (q, y) ∈ E1, q is collinear with p. Again
by Lemma 2.1.12 there exist a plane through pq containing the unique common
neighbor of q and y, i.e. x. In particular x is collinear with pq, and thus L = pq.

Suppose s ∈ S is not collinear with p. Then s ∈ E2(y). Suppose s ∈ E≤0(x).
Together with (x, y) ∈ E−1 this contradicts Property (D) of a root filtration space.
Since s is collinear with a point of L (S is a polar space), we get s ∈ E1(x).

Now assume that s ∈ S is collinear with p but not with all points of the line
L. We want to show s ∈ E1(x). Suppose this is not the case, by definition of
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A = L, we get s ∈ E0(x). Let s′ be any common neighbor of x and s not equal to
p. Since the only point of L with which s is collinear is p, s′ is not contained in S.
Since S forms a polar space, we can find a line M through s containing a point
t not collinear with p. By the previous paragraph t ∈ E1(x) and the common
neighbor l of x and t lies on L. We now show that x, s′, s, t, l, x forms an ordinary
pentagon. By t ∈ E1(x) and s ∈ E0(x), s and t are not collinear with x. Since s
is collinear to p but no other point of L and t is not collinear to p, s and l are not
collinear. If s′ is collinear to l then s′ would be contained in S since s and l are
not collinear. If s′ is collinear with t, then t and x have two common neighbors,
so t ∈ E0(x), a contradiction. So we can apply Lemma 2.1.10 to the ordinary
pentagon x, s′, s, t, l, x and obtain in particular t ∈ E0(x), a contradiction. Hence
every point of S collinear with p but not with all points of L is contained in
E1(x).

Corollary 2.1.14. If E0 "= ∅, then every line is contained in a symplecton.

Proof. We first show that every point is contained in a symplecton. By assump-
tion, E0 "= ∅, and hence Proposition 2.1.6 implies that there exists a symplecton
S. Consider any point x ∈ E . If x ∈ S there is nothing to show. If x "∈ S is
collinear to a point of S or S contains a point opposite to x, then Corollary 2.1.13
and Lemma 2.1.11 imply, respectively, that there exists a symplecton containing
x. Now assume that x is at distance 2 with a point s ∈ S. Let y be a common
neighbor of x and s. Then by the previous arguments, there exists a symplecton
T containing y. Now x is collinear to a point of the symplecton T , and, as before,
this implies that x itself is contained in a symplecton.

Consider any line L of the root filtration space. Let x be a point of L and S a
symplecton containing this point. If L is contained in S, there is nothing to show.
So we may assume that there exists a point y of L not contained in S. Since it
is collinear with a point of S, it is collinear with a line M of S containing x, by
Proposition 2.1.6(d). Since y⊥∩S is a singular subspace by Proposition 2.1.6(b),
we can find s ∈ S collinear with M but not with y. Hence y and s are contained
in a symplecton T , and x is a common neighbor of s and y. We can conclude
that T contains L = xy.

If X is a subset of E , then we call X connected, if the graph on X induced
by collinearity (i.e., the relation E−1) is connected.

We conclude this section with two lemmas on the connectedness of some
complements of subspaces. The following lemma is well known.

Lemma 2.1.15. Let S be a thick non-degenerate polar space of rank at least 2.
If H is a proper geometric hyperplane of S, then S \H is connected.

Proof. Let x, y be non-collinear points of S not in H. We will show that there is
a path of collinear points from x to y outside H.



$IBQUFS �� &YUSFNBM HFPNFUSJFT BOE QPMBS TQBDFT 38

If , is a line on x, then , contains a unique point z collinear to y. Clearly
we can assume that z is in H. Now pick a point x′ on , distinct from x and z.
Moreover let y′ be a point on the line through y and z different from y and z. Let
m be a line on x′ different from , and not in a singular subspace with ,. Then
both y and y′ are collinear with points u, v ∈ m different from x′. If u = v, then
u = v is also collinear to z. Since u = v is collinear to x′, this contradicts , and
m not to be in a singular subspace. As at least one of u or v is not in H, we find
that at least one of x, x′, u, y or x, x′, v, y′, y is a path from x to y outside H.

Lemma 2.1.16. Suppose E0 is non-empty. Let x ∈ E. The complement of the
geometric hyperplane E!1(x) in E is connected.

Proof. Let S be as in Proposition 2.1.6. Let x ∈ E and set H = E≤1(x). Suppose
y, z ∈ E \H. We will show that y and z are connected by a path in the collinearity
graph, which does not contain points from H. Clearly we can assume that y and
z are non-collinear. If z ∈ E0(y), then y and z are contained in a symplecton
S and we can apply Lemma 2.1.15 to see that y and z are connected by a path
outside H.

Assume now that z is a point not contained in H but inside E1(y). Clearly,
we can assume that the unique neighbor c of y and z is contained in H. Consider
a symplecton S containing the line cz, which exists by Corollary 2.1.14. Then
there exists a line , in S such that , ⊆ E≤−1(y). If , meets H in a single point,
then, again using Lemma 2.1.15, we find a path from y via a point of , to z
without using points from H.

Thus we can assume that , is in H. Now A := E0(x) ∩ S is a non-empty
singular subspace contained in H. By Lemma 2.1.12, we find that A consists of
a single point, call it a. Note a "∈ E−1(y) and hence a "∈ l. Since , ≤ H ∩ S,
Lemma 2.1.11 implies that a and , are contained in a singular plane π of S. In
particular, S has rank at least 3 and we can find a point d ∈ S which is collinear
to all points of , but not to a. But then d ∈ E≤0(y) and d "∈ H. By the above,
we can find paths from y to d and from d to z not containing any point from H.

Finally assume now that y is at distance 3 with z. Let (z, a, b, y) be any path
of length 3 in Γ from z to y. If a or b are not in H, we can apply the above to the
pairs a, y or b, z, respectively and find a path from y to z. So assume a, b ∈ H.

By Lemma 2.1.9, we can find a neighbor c of z at distance 3 with b. Since H
is a geometric hyperplane the line cz intersects H in a unique point. Since E!1(b)
is a geometric hyperplane as well and b and z are at distance 2, we may assume
c "∈ H. Since E!1(c) is a geometric hyperplane, the line by contains a point d at
distance (at most) 2 from c. If d = b, then c and b are at distance (at most) 2, a
contradiction. Since b ∈ H and y "∈ H, d "∈ H. Note that d is at distance 2 from
c. By the above we find a path outside H from y to z via d and c.

Corollary 2.1.17. Suppose E0 is non-empty. Let x ∈ E. Then Γ is generated
by E≤1(x) ∪ {z}, for each point z ∈ E2(x).
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We proceed with the notation of the previous section. So, suppose Γ = (E ,F) is
a (non-degenerate) root filtration space with filtration Ei,−2 ≤ i ≤ 2.

Definition 2.2.1. Let σ be an involution in the automorphism group of Γ. We
define the geometry Γσ = (Eσ,Sσ) to be the point-line geometry with as point
set the set Eσ of points of Γ fixed by σ, and as line set Sσ, the set of symplecta of
Γ fixed (as a set of points) by σ and containing at least two non-collinear points
of Eσ. Incidence is defined by inclusion.

Notice that a line S ∈ Sσ can be identified with the subsets Eσ ∩ S, as any
two of its non-collinear points determine the symplecton S uniquely. This also
implies that we can consider Γσ to be a partial linear space.

Example 2.2.2. Let V be a vector space over a skew field of dimension n +
1 at least 3. Let Γ be the root filtration space of type An,{1,n} described in
Example 2.1.3. Let σ be a non-degenerate polarity on P(V ). Then σ induces an
automorphism of order 2 on Γ, which we also denote by σ.

The points fixed by σ are the point-hyperplane pairs (p, pσ) with p ∈ pσ. So,
the points in Eσ can be identified with the points of P(V ) that are absolute with
respect to σ, i.e. points p with p ∈ pσ.

As σ maps a line of Γ consisting of point-hyperplane pairs with a fixed point
to a line consisting of point-hyperplane pairs in which the hyperplane is fixed, we
find that σ does not fix any line of Γ.

A symplecton S of Γ fixed set-wise by σ meets Eσ in the point-hyperplane
pairs (p, pσ) where p is absolute and running over an absolute line of P(V ), which
is a line which is contained in pσ for any point p on it.

The geometry Γσ is isomorphic to the polar space defined by σ on P(V ), i.e.
the point-line geometry of absolute points and lines with respect to σ.

This example generalizes to the following:

Proposition 2.2.3. Let σ be an involution in the automorphism group of Γ.
Suppose that σ does not fix any line of Γ. Then Γσ satisfies the one-or-all-axiom:
if x ∈ Eσ and S ∈ Sσ, then x is collinear in Γσ with one or all points y ∈ Eσ that
are contained in S.

Proof. Suppose that σ fixes a singular subspace V of Γ. For any x ∈ V , we have
xσ ∈ V . Hence, if xσ "= x, then the line xxσ is fixed by σ. On the other hand, if
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xσ = x for all x ∈ V , then any line in V is (point-wise) fixed by σ. So we obtain
that the only singular subspaces of Γ fixed by σ are points. I.e., the points of Γσ.

Consider an arbitrary point x of Γσ and an arbitrary symplecton S of Γσ not
containing x.

Suppose first that x is collinear with a point of S. Then, by Proposition 2.1.6,
E−1(x)∩S is a singular subspace V of S containing a line. Now (E−1(x)∩S)σ =
E−1(xσ)∩Sσ = E−1(x)∩S. Hence E−1(x)∩S should be a point by the previous
paragraph, a contradiction.

This implies that any point of S has distance at least 2 with x. Then ei-
ther all points of S are in E0(x) or A := E!0(x) ∩ S is a singular subspace, by
Lemma 2.1.11. Assume the former. Then any point y of S fixed by σ is contained
in a unique symplecton with x. Since x and y are fixed by σ this symplecton is
also fixed. I.e., x and y lie on a line in Γσ. Since the points in S fixed by σ are
precisely the points of the line S in Γσ, we find x to be collinear with all points
of the line S in Γσ.

Assume now that A is a singular subspace. Since x and S are fixed by σ, the
subspace A is fixed by σ as well. Hence, as follows from the first part of this
proof, A consists of a unique point y. Moreover, y is fixed by σ. In particular, in
Γσ the point x is collinear with the unique point y of S.

The above proposition indeed implies that the fixed point geometry Γσ is a
polar space. However, in general this polar space may be thin (with just two
points on a line) or degenerate (i.e., there is a point collinear to all other points).
Moreover, it can also happen that Γσ contains no lines, or even no points.

4&$5*0/ ���
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Now we turn our attention to Lie algebras. In particular, Lie algebras generated
by extremal elements.

In this section we provide some definitions and collect some results on extremal
elements, mainly from [CI06].

Definition 2.3.1. Let L be a Lie algebra over the field k. A non-zero element
x ∈ L is called extremal if there is a map gx : L → k, called the extremal form on
x, such that

[
x, [x, y]

]
= 2gx(y)x, (2.1)
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and moreover

[
[x, y], [x, z]

]
= gx

(
[y, z]

)
x+ gx(z)[x, y]− gx(y)[x, z], (2.2)

and

[
x, [y, [x, z]]

]
= gx

(
[y, z]

)
x− gx(z)[x, y]− gx(y)[x, z], (2.3)

for every y, z ∈ L.
The last two identities are called the Premet identities. If the characteristic

of k is not 2, then the Premet identities follow from equation (2.1), see [CI06,
Definition 14]. Also, using the Jacobi identity, (2.2) and (2.3) are equivalent if
(2.1) holds.

As a consequence,
[
x, [x, L]

]
⊆ kx for any extremal element x ∈ L. We call

x ∈ L a sandwich or absolute zero divisor if [x, [x, y]] = 0 and [x, [y, [x, z]]] = 0
for every y, z ∈ L. So, a sandwich is an element x for which the extremal form
gx can be chosen to be identically zero. We introduce the convention that gx is
identically zero whenever x is a sandwich in L. An extremal element is called
pure if it is not a sandwich.

We denote the set of extremal elements of a Lie algebra L by E(L) or, if L is
clear from the context, by E. Accordingly, we denote the set {kx|x ∈ E(L)} of
extremal points in the projective space on L by E(L) or E .

We continue with some examples.
Example 2.3.2. Let V be a vector space over a field k with dual space V ∗.
Suppose W ∗ is a subspace of V ∗ separating the points of the projective space of
V .

On V ⊗W ∗ we can define a Lie bracket by linear extension of the following
product for pure tensors v ⊗ φ and w ⊗ ψ:

[v ⊗ φ, w ⊗ ψ] =(v ⊗ ψ)φ(w)− (w ⊗ φ)ψ(v).

The Lie algebra thus obtained will be denoted by g(V ⊗W ∗).
A pure tensor v⊗φ is called singular if φ(v) = 0. Let g be the k-bilinear form

on V ⊗W ∗ defined by
g(v ⊗ φ, w ⊗ ψ) = −ψ(v)φ(w)

for v ⊗ φ, w ⊗ ψ ∈ V ⊗W ∗. Then for all singular pure tensors v ⊗ φ and tensors
w ⊗ ψ we have

[
v ⊗ φ, [v ⊗ φ, w ⊗ ψ]

]
=
[
v ⊗ φ,φ(w)v ⊗ ψ − ψ(v)w ⊗ φ

]

=− ψ(v)φ(w)v ⊗ φ− ψ(v)φ(w)v ⊗ φ

=− 2ψ(v)φ(w)v ⊗ φ

=2g(v ⊗ φ, w ⊗ ψ)v ⊗ φ.
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In characteristic "= 2 this implies that the singular pure tensors are extremal
elements in g(V ⊗W ∗) with extremal form at the singular tensor v ⊗ φ given by
g(v ⊗ φ, ·). This also holds true in characteristic 2. (It is straightforward, but
somewhat tedious, to check that the Premet identities also hold.) The subalgebra
of g(V ⊗W ∗) generated by the singular tensors is denoted by s(V ⊗W ∗).

An element v ⊗ φ ∈ V ⊗ V ∗ acts linearly on V by

(v ⊗ φ)(w) = φ(w)v

for all w ∈ V . This provides an isomorphism between g(V ⊗V ∗) and the finitary
general linear Lie algebra fgl(V ). (A linear map is finitary if its kernel has finite
codimension.) Under this isomorphism the subalgebra s(V ⊗ V ∗) is mapped
isomorphically to fsl(V ), the finitary special Lie algebra, or sl(V ) in case V is
finite-dimensional.

In the rest of this chapter we often identify the Lie algebra g(V ⊗ V ∗) as
well as its subalgebras with the finitary general linear Lie algebra fgl(V ), or the
corresponding subalgebras.

Note that V ⊗W ∗ carries the structure of an associative algebra whose product
is defined as the linear expansion of the product

(v ⊗ φ)(w ⊗ ψ) = (v ⊗ ψ)φ(w).

The associated Lie algebra is then g(V ⊗W ∗). A pure tensor v⊗φ being singular
is equivalent to its square being zero in the associative algebra. So, if a is such a
singular pure tensor, then [a, [a, b]] = −2aba which is a scalar multiple of a, for
all b ∈ g(V ⊗W ∗).

Example 2.3.3. Let σ be a field automorphism of order ≤ 2 of the field k, and
V be a vector space over k. Assume that the characteristic of k is different from
2. Moreover, suppose f is an antisymmetric σ-sesquilinear form on V , linear in
the second coordinate. So, for all u, v, w ∈ V and λ, µ ∈ k we have:

f(v, w) = −f(w, v)σ,

f(v,λw + µu) = f(v, w)λ+ f(v, u)µ.

Then for each vector v ∈ V the map fv : V → k, with fv(w) = f(v, w) for all
w ∈ V is an element of V ∗. By Sf (V ⊗ V ∗) or just Sf we denote the subspace of
V ⊗ V ∗ spanned by the pure tensors v ⊗ fv, with v ∈ V . (We say it is spanned
by the f -symmetric elements.)

The space Sf (V ⊗ V ∗) is closed under the Lie bracket:

[v ⊗ fv, w ⊗ fw] = (v ⊗ fw)f(v, w)− (w ⊗ fv)f(w, v)

= f(v, w)v ⊗ fw + w ⊗ ff(v,w)v

= (f(v, w)v + w)⊗ ff(v,w)v+w − f(v, w)v ⊗ ff(v,w)v − w ⊗ fw.
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The corresponding Lie subalgebra of g(V ⊗ V ∗) will be denoted by sf (V ⊗ V ∗)
or, for short, sf .

If f is a non-degenerate symplectic form, then sf is simple and can be iden-
tified with the finitary Lie algebra fsp(V, f), i.e., the Lie subalgebra of fgl(V ) of
finitary linear transformations t : V → V satisfying f(t(v), w) = −f(v, t(w)) for
all v, w ∈ V . Moreover, its set of extremal elements is the set of all elements
v ⊗ fv, where 0 "= v ∈ V . See [CF17, Theorem 3.1, Propositions 3.5 and 3.6].

If σ is non-trivial and f a non-degenerate skew-Hermitian form with positive
Witt index, then the elements v⊗fv, where 0 "= v ∈ V with f(v, v) = 0 generate a
subalgebra of s(V ⊗V ∗), which can be identified with the finitary special unitary
Lie algebra fsu(V, f). The extremal elements in this subalgebra are the elements
v ⊗ fv, where 0 "= v ∈ V and f(v, v) = 0. See for example [CO19].

In view of the last remark in the previous example, we can also view sf (V⊗V ∗)
as the Lie algebra of skew elements in g(V ⊗ V ∗) with respect to the involution
on the associative algebra V ⊗ V ∗ induced by v ⊗ fw -→ −w ⊗ fv.
Remark 2.3.4. The long roots elements of a so-called Chevalley Lie algebra
are extremal elements, see Proposition 3.4.2 of [Fle15]. (See Definition 3.3.2 of
loc. cit. for the definition of a long root element.) Since we will not need it, we
do not include a precise description of Chevalley Lie algebras (or root systems),
and instead refer to Chapter 3 of loc. cit.

We will now revise some general theory on extremal elements. For x ∈ E and
λ ∈ k we define the map exp(x,λ) : L → L by

exp(x,λ)(y) = y + λ[x, y] + λ2gx(y)x,

for all y ∈ L.
Since the automorphisms obtained from the following proposition are quite

essential, especially in Chapter 4, we include a proof.
Proposition 2.3.5 ([CI06, Lemma 15]). Let x ∈ E be pure and λ ∈ k. Then
exp(x,λ) is an automorphism of L.

Proof. Note that the map exp(x,λ) coincides with exp(λx, 1). We can thus as-
sume λ = 1. Consider y, z ∈ L arbitrary. By the Jacobi identity and the defining
properties of an extremal element, (2.1) and (2.2), we get

[exp(x, 1)(y), exp(x, 1)(z)] = [y + [x, y] + gx(y)x, z + [x, z] + gx(z)x]

= [y, z] + ([[x, y], z] + [y, [x, z]]) + gx(y)gx(z)[x, x]

+ ([[x, y], [x, z]] + gx(y)[x, z]− gx(z)[x, y])

+ (gx(y)[x, [x, z]]− gx(z)[x, [x, y]])

= [y, z] + [x, [y, z]] + gx([y, z])x

+ (2gx(y)gx(z)− 2gx(z)gx(y))x

= exp(x, 1)([y, z]).
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This shows that exp(x, 1) is Lie algebra endomorphism.
Since, by (2.1), exp(x, µ) exp(x, ν) = exp(x, µ + ν) for all µ, ν ∈ k, we get in

particular exp(x,−1) exp(x, 1) = id. Hence exp(x, 1) is an automorphism.

Let x ∈ E be pure. By Exp(x) we denote the set {exp(x,λ) | λ ∈ k}. Since,
for λ, µ ∈ k, we have exp(x,λ)exp(x, µ) = exp(x,λ + µ), we find that Exp(x) is
a subgroup of Aut(L) isomorphic to the additive group of k.

Clearly, Exp(x) = Exp(λx) for λ ∈ k×. Therefore we can define Exp(〈x〉) to
be equal to Exp(x). We also set exp(x) = exp(x, 1).

Proposition 2.3.6 ([CI06, Proposition 20]). Suppose that L is generated by its
extremal elements (as a Lie algebra). The extremal elements span the vector space
L. Moreover, there is a bilinear form g : L × L → k, such that for all x, y ∈ E
we have g(x, y) = gx(y). The form g is symmetric and associates with the Lie
product [·, ·] on L.

The form g is called the extremal form on L. As the form g is associative, its
radical Rad(g) := {u ∈ L|gu(z) = 0, ∀ z ∈ L} is an ideal in L. Notice that the
extremal form f from [CSUW01] satisfies f = 2g.

Proposition 2.3.7 ([CI06, Lemma 21, 24, 25 and 27]). Suppose that L is gen-
erated by its extremal elements and x, y ∈ E are pure. Then we have one of the
following:
(a) kx = ky;
(b) [x, y] = 0 and λx+ µy ∈ E ∪ {0} for all λ, µ ∈ k;
(c) [x, y] = 0 and λx+ µy ∈ E only if λ = 0 or µ = 0;
(d) z := [x, y] ∈ E, and x, z and y, z are as in case (b);
(e) the subalgebra generated by x and y is isomorphic to sl2(k).

Moreover, g(x, y) "= 0 if and only if the subalgebra generated by x and y is
isomorphic to sl2(k).

Based on the previous proposition, we define the following relations on E×E.

Definition 2.3.8. For x, y ∈ E extremal elements we define

(x, y) ∈






E−2, ⇐⇒ kx = ky,
E−1, ⇐⇒ [x, y] = 0, (x, y) /∈ E−2 and kx+ ky ⊆ E ∪ {0} ,
E0, ⇐⇒ [x, y] = 0 and (x, y) /∈ E−2 ∪ E−1,
E1, ⇐⇒ [x, y] "= 0 and g(x, y) = 0,
E2, ⇐⇒ g(x, y) "= 0.

In light of Theorem 2.3.14 we call two extremal elements (x, y) collinear, symplec-
tic, special or hyperbolic if (x, y) is contained in E−1, E0, E1 or E2, respectively.
For the corresponding extremal points 〈x〉, 〈y〉, we define

(〈x〉, 〈y〉) ∈ Ei ⇐⇒ (x, y) ∈ Ei.
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Let x ∈ E. Then y ∈ Ei(x) denotes that (x, y) ∈ Ei. By E≤i(x) we denote the set⋃
−2≤j≤i Ej(x). Similarly, if x ∈ E , then Ei(x) consists of all y with (x, y) ∈ Ei,

and E≤i(x) denotes
⋃

−2≤j≤i Ej(x).

Proposition 2.3.9. Suppose L is a Lie algebra defined over a field k, generated
by its set of extremal elements E. Suppose moreover that L contains a pure
extremal element. Then if L is simple, the extremal form g is non-degenerate
and (E , E2) is connected. The converse also holds if char(k) "= 2.

Proof. First assume that L is simple. As L contains a pure extremal element, the
form g is non-trivial and its radical Rad(g) is not L. This radical is an ideal of L,
so L being simple implies this radical to be trivial and g to be non-degenerate.

Since sandwiches are contained in the radical of g, all elements of E are pure.
Now by Theorem 28 of [CI06] we find (E , E2) to be connected.

Assume from now on char(k) "= 2, g to be non-degenerate and (E , E2) to be
connected. Let I be a non-zero ideal of L. Then we can find an extremal element
x and i ∈ I such that g(x, i) "= 0. But then [x, [x, i]] = 2g(x, i)x ∈ I, which
implies that 〈x〉 is in I.

Applying the same argument to (x, y) ∈ E2 instead of (i, x) we find that all
neighbors of 〈x〉 in the graph (E , E2) are in I. By connectedness of the latter
graph we even find all elements of E in I, implying I = L, and proving L to be
simple.

The case that g is trivial and all extremal elements are sandwich elements is
covered by the next result:

Proposition 2.3.10 ([ZK90]). If L is a finite-dimensional Lie algebra generated
by its sandwich elements, then L is nilpotent.

Corollary 2.3.11. If L is a simple finite-dimensional Lie algebra defined over a
field of characteristic different from 2 generated by its extremal elements, then L
does not contain a sandwich element.

Proof. If L does contain a pure element, then Proposition 2.3.9 shows that L
does not contain sandwich elements. If L does not contain pure elements, then
L is generated by its sandwich elements and, by Proposition 2.3.10, we find L to
be nilpotent.

Definition 2.3.12. Let L be a Lie algebra. The associated extremal geometry is
the incidence geometry with as points

E = E(L) := {〈x〉 | x ∈ E = E(L)},

as lines
F = F(L) := {〈x, y〉 | x, y ∈ E, (x, y) ∈ E−1},
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and inclusion as incidence relation. We denote this geometry by Γ(L), or in case
it is clear what L is, by Γ.

The rank of Γ(L) is the maximal dimension (as a linear subspace of L) of a
subspace X of Γ(L) in which any two points are collinear.

If x and y are two extremal points with (x, y) ∈ E2, then they generate an
sl2-subalgebra. This subalgebra is generated by any two of its extremal points.
The intersection of E with this subalgebra is called the sl2-line on x and y.

Example 2.3.13. Let V be a vector space over a field k of dimension at least 3
and W ∗ a subspace of V ∗ separating the points of the projective space of V . Let
E be the set of extremal points in s(V ⊗ W ∗), which is, as follows from [Fle15,
Corollary 3.4.11], the set of elements 〈v ⊗ φ〉 where v ∈ V and φ ∈ W ∗ with
φ(v) = 0. Then each extremal point 〈v ⊗ φ〉 corresponds to an incident point-
hyperplane pair (〈v〉, ker(φ)) of P(V ). The extremal geometry with point set E is
isomorphic to the geometry Γ(V,W ∗) described in Example 2.1.3. In particular,
if V has dimension n + 1 < ∞, then the extremal geometry is a root shadow
space of type An,{1,n}.

Theorem 2.3.14 ([CI06, Theorem 28]). Suppose L is a simple Lie algebra gen-
erated by its set of pure extremal elements E. If the set E−1 is not empty, then
(E ,F) is a root filtration space.

The following lemma characterizes collinearity.

Lemma 2.3.15 ([CI07, Lemma 27]). Suppose L is a generated by its set of pure
extremal elements E. Let x, y ∈ E be linearly independent and pure. Then
(x, y) ∈ E−1 ⇔ there are λ, µ ∈ k× with λx+ µy ∈ E.

Combining Theorem 2.1.5 and the main result of Cuypers-Roberts-Shpectorov
[CRS15, Theorem 1.1] and Cuypers-Fleischmann [CF18, Theorem 1.1] we obtain:

Theorem 2.3.16. Suppose that the extremal geometry Γ of a simple Lie algebra
L, generated by its set of pure extremal elements, has finite rank.

If E−1 "= ∅, we find Γ to be isomorphic to a root shadow space of type An,{1,n}
(n ≥ 2), BCn,2 (n ≥ 3), Dn,2 (n ≥ 4), E6,2, E7,1, E8,8, F4,1 or G2,2.

Furthermore, if both E−1 and E0 are non-empty, then L is determined, up to
isomorphism, by its extremal geometry Γ.

Note that the labeling of the Coxeter diagrams follows [Bou68].

Theorem 2.3.17. Assume that L is generated by its pure extremal elements,
and that F "= ∅. If there is a line in F which is a maximal singular subspace of
the extremal geometry (E ,F), then (E ,F) is a generalized hexagon.

Proof. This is [CI07, Corollary 18] combined with [CI06, Theorem 28(ii)].
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Remark 2.3.18. The only case in which E−1 "= ∅ while E0 = ∅, is when the
extremal geometry is a root shadow space of type G2,2. Indeed, if E−1 "= ∅ and
E0 = ∅, then combining Theorem 13 and Theorem 15 of [CI07] yields that we
either have a root filtration space of type G2.2 or a root filtration space as in
Example 2.1.3 or Example 2.1.4, but in these last two cases E0 is non-empty, see
Examples 2.1.7 and 2.1.8.

In this last theorem of this section we show that the automorphism group
works transitive on extremal points.

Theorem 2.3.19. Let L be simple Lie algebra generated by its set E of pure
extremal elements. Then the automorphism group of L acts transitively on E.

Proof. Let x, y ∈ E with g(x, y) = g(y, x) "= 0. Then, after replacing y by a
scalar multiple, we can assume g(x, y) = g(y, x) = 1. But then exp(x, 1)y =
y + [x, y] + x = exp(y,−1)x. So, exp(y, 1)exp(x, 1) maps y to x. This implies
that for each (x, y) ∈ E2 there is an automorphism of L that maps x to y.

As L is simple, we find the graph (E , E2) to be connected by Proposition 2.3.9,
and hence by the above the automorphism group of L to be transitive on E .

In the next lemma, NL(x) denotes the normalizer of x, i.e. NL(x) = {l ∈ L |
[x, l] ∈ 〈x〉}, similarly for NL(y). In this chapter we will use the next lemma only
once, in Chapter 4 it is a key lemma.

Lemma 2.3.20 ([CI06, Proposition 22]). Suppose that there exist extremal ele-
ments x, y ∈ L such that gx(y) = 1. Then L has a Z-grading

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

with L−2 = 〈x〉, L2 = 〈y〉, L0 = NL(x) ∩ NL(y), L1 = [y, U ] and L−1 = [x, U ],
where

U = {u ∈ L | gx(u) = gy(u) = gx([y, u]) = 0}.

Moreover, Li is contained in the i-eigenspace of ad[x,y], and adx defines a linear
isomorphism from L1 tot L−1 with inverse − ady.

Example 2.3.21. If L = sln, the special linear Lie algebra of traceless n × n-
matrices, then x = E1n and y = −En1 are hyperbolic extremal elements with
gx(y) = 1. (With Eij the n × n-matrix with all entries equal to 0, except for
the (i, j)-entry, which equals 1.) The 5-grading corresponding to x and y as
above is: L−1 = ⊕n−1

i=2 (〈E1i〉 ⊕ 〈Ein〉), L1 = ⊕n−1
i=2 (〈Ei1〉 ⊕ 〈Eni〉) and L0 =∑n−1

i,j=2,i )=j〈Eij〉 ⊕ {λ1E11 + λ2E22 + · · ·+ λnEnn | λ1 + · · ·+ λn = 0}. The above
claims can, for example, be verified using Example 2.3.2, and Lemma 4.1.3 can
also be used to simplify some calculations.
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Theorem 2.3.16 excludes Lie algebras generated by pure extremal elements in
which E−1 = ∅ (and hence also E1 is empty, by Proposition 2.3.7(d)). In this
section we will study the Lie algebras generated by pure extremal elements with
E−1 = ∅ somewhat closer.

From now on we assume L to be a simple Lie algebra over a field k generated
by its set of pure extremal elements such that E × E = E−2 ∪ E0 ∪ E2. Moreover,
we sometimes have to assume the field k to be of characteristic different from 2.
By Proposition 2.3.7 we get:

Lemma 2.4.1. Any two extremal elements in E either commute or generate an
sl2(k).

Examples of Lie algebras generated by extremal elements that either commute
or generate an sl2 are the finitary symplectic and special unitary ones described
in Example 2.3.3.

In [CF17, Theorem 1.1] we find the following characterization of the symplec-
tic Lie algebras.

Theorem 2.4.2. Let L be a simple Lie algebra over the field k of characteristic
"= 2 and generated by its set of pure extremal elements. Assume the following:
(a) any two extremal elements x and y in L either commute or generate an

sl2(k);
(b) for any three extremal elements x, y, z in L with [x, y] "= 0, there is an

extremal element u in the subalgebra 〈x, y〉 commuting with z.
Then L is isomorphic to fsp(V, f) for some non-degenerate symplectic space

(V, f).
Moreover, under this isomorphism the extremal elements in L are mapped to

rank 1 elements in fsp(V, f).

In the proof of the above theorem, as provided in [CF17], particular Lie
subalgebras generated by three extremal elements play an important role. These
subalgebras are also of importance in our setting. They are described in the
following example.

Example 2.4.3. Let (V, f) be a non-degenerate symplectic space containing
three linearly independent u, v, w with f(u, v) = 1, f(v, w) = 1 and f(u,w) = 0.

Then the subalgebra of sf generated by the three extremal elements u ⊗ fu,
v ⊗ fv, and w ⊗ fw is 6-dimensional and we denote it by sp3(k). It contains
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a 1-dimensional center spanned by (u + w) ⊗ fu+w. Notice that this center is
non-trivial, as there is a vector x ∈ V with f(u+ w, x) = 1. Modulo this center,
sp3(k) is isomorphic to an extension of sl2 by its natural 2-dimensional module,
which we denote by psp3(k).

The group 〈Exp(〈u⊗ fu〉),Exp(〈v⊗ fv〉),Exp(〈w⊗ fw〉)〉 acts transitively on
the non-central extremal points of (p)sp3(k). Moreover, for any two non-central
commuting extremal points x and y of (p)sp3(k) we find that every extremal
point z commuting with x also commutes with y. A maximal set of pairwise
commuting non-central extremal points is called a transversal of (p)sp3(k). The
transversal on 〈u⊗ fu〉 consists of all extremal points 〈x⊗ fx〉, where x ∈ 〈u,w〉
but not in 〈u−w〉. In particular, it contains |k| extremal points. Notice that this
transversal is contained in the linear span of u⊗fu, w⊗fw and [u⊗fu, [w⊗fw, z]]
for any non-central z of (p)sp3(k) not in the transversal. It intersects each sl2-line
spanned by two non-central points of (p)sp3(k) in exactly one extremal point.

We note that the (non-central) extremal points and sl2-lines in (p)sp3(k) form
a dual affine plane, i.e. a projective plane from which a point and all the lines on
this point are removed. If ∞ denotes the removed point, then the union of {∞}
and any transversal is a removed line.

All these properties can be checked easily. For more details, see [CF17, Ex-
ample 3.8].

Any triple (x, y, z) of distinct extremal elements from E with [x, z] = 0, and
[x, y] "= 0 "= [y, z] is called a symplectic triple. A symplectic triple of extremal
points is a triple (x, y, z) such that there exist x1 ∈ x, y1 ∈ y and z1 ∈ z such
that (x1, y1, z1) is a symplectic triple of extremal elements.

The following theorem is Proposition 4.2 of [CF17]. Although it is stated in
loc. cit. for char(k) "= 2, it holds in that case as well, using the Premet identities.
Proposition 2.4.4. A symplectic triple (x, y, z) of extremal elements of the Lie
algebra L generates either a subalgebra isomorphic to sp3(k), in which case it is
of dimension 6, or to psp3(k) of dimension 5.

Under this isomorphism x, y and z are mapped onto scalar multiples of pure
tensors of sp3(k) or psp3(k), respectively.

For each x ∈ E we denote by x⊥ the set E≤0(x).
Lemma 2.4.5. Consider a point z on the transversal on x and y in the subalgebra
generated by a symplectic triple (x, u, y). Then x⊥ ∩ y⊥ ⊆ z⊥.

Proof. By Example 2.4.3, x, y, z are contained in the linear span of x, y and
[x, [y, u]]. Now if v ∈ x⊥∩y⊥ , then by associativity of g we have g(v, [x, [y, u]]) =
g([v, x], [y, u]) = g(0, [y, u]) = 0. So g(v, z) = 0 and v ∈ z⊥.

Lemma 2.4.6. Assume char(k) "= 2. Let x, y, z ∈ E be linearly independent and
such that g(x, y), g(x, z) and g(y, z) are all non-zero. If there is no extremal
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element u ∈ 〈x, y〉 commuting with z, then there exists a quadratic extension k̂ of
k such that L⊗k k̂ contains extremal lines.

Proof. Suppose x, y and z ∈ E such that g(x, y), g(x, z) and g(y, z) are all non-
zero. Moreover, assume that there is no extremal element u ∈ 〈x, y〉 commuting
with z. Note that the elements uλ = g(x, y)x+ λ2y+ λ[x, y] = exp(x, 1/λ)(λ2y),
where λ ∈ k, are extremal. Now

g(z, uλ) = g(x, y)g(z, x) + λ2g(z, y) + λg(z, [x, y])

either takes the value 0 for some value λ = λ1 ∈ k and we find that uλ1 does
not commute with z but g(z, uλ1) = 0 (case (d) of Proposition 2.3.7), which
implies E−1 "= ∅, a contradiction, or, as the characteristic of k is different from
2, we find two distinct elements λ1 and λ2 in a quadratic extension k̂ of k with
g(z, uλ1) = g(z, uλ2) = 0.

Suppose we are in the latter case. Then inside L ⊗k k̂ we find the following.
As 〈uλ1 , uλ2〉 contains 〈x, y〉, the element z cannot commute with both uλ1 and
uλ2 , which then implies that z and at least one of uλ1 and uλ2 are in relation (d)
of Proposition 2.3.7. But then L⊗k k̂ contains extremal lines.

Now we are in a position to prove the main result of this section.

Theorem 2.4.7. Let L be a simple Lie algebra over the field k "= F2 generated
by its set of pure extremal elements such that any two extremal elements x and y
in L either commute or generate an sl2(k).

If char(k) "= 2, then either L is isomorphic to the finitary symplectic Lie
algebra fsp(V, f) for some non-degenerate symplectic space (V, f), or there is a
quadratic Galois extension k̂ of k such that the Lie algebra L̂ := L ⊗k k̂ is a
simple Lie algebra generated by its pure extremal elements and with its extremal
geometry Γ := Γ(L̂) being a root filtration space.

In the latter case, also if char(k) = 2, the extremal points of the Lie algebra L
form the point set of the geometry Γσ, which is a non-degenerate thick polar space.
Here σ denotes the automorphism of Γ induced by the unique field automorphism
of order 2 of the extension k̂ of k.

Proof. Assume char(k) "= 2. By Theorem 2.4.2 we either have that L is a finitary
symplectic Lie algebra as in the theorem, or by Lemma 2.4.6 there is a quadratic
field extension k̂ of k such that the Lie algebra L̂ := L ⊗k k̂ is generated by its
extremal elements and its extremal geometry contains lines. From now on we
consider the latter case, and allow char(k) = 2 again.

Let σ denote the automorphism of Γ induced by the unique field automor-
phism of order 2 of the extension k̂ of k. Then σ induces an automorphism of L̂,
also denoted by σ, that acts on x⊗λ by (x⊗λ)σ = x⊗λσ. Note that σ does not
fix a line in L̂, otherwise the extremal geometry in L would contain lines (using
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Lemma 2.5.9). We identify L and its elements with the subalgebra and elements
of L̂ fixed by σ.

We claim that L̂ is simple. Let I be a non-trivial ideal of L̂, and suppose
0 "= i ∈ I. Then, as the extremal elements in E linearly span L, we find that
over k̂ they also span L̂. So, we can express i as x1 ⊗ λ1 + · · · + xk ⊗ λk where
xj ∈ E are linearly independent and 0 "= λj ∈ k̂. After replacing i with a scalar
multiple, we can assume λ1 + λσ1 "= 0. Then i + iσ is a non-trivial element in
I + Iσ fixed by σ. But then the subspace spanned by the elements in I + Iσ

fixed by σ forms a non-trivial ideal of L, which by simplicity of L equals L. This
implies that I+Iσ = L̂. Since both I and Iσ are ideals, I∩Iσ is an ideal which is
stabilized by σ. Then Lemma 2.5.9, together with the simplicity of L implies that
if I "= L̂, then I ∩ Iσ = 0. So we may assume L = I ⊕ Iσ. Since [I, Iσ] ≤ I ∩ Iσ,
[I, Iσ] = 0 and thus [L̂, L̂] = [I, I] ⊕ [Iσ, Iσ]. Since L is simple, L = [L,L] and
thus [I, I] = I. Let ĝ be the extremal form on L̂. For x ∈ E we can find (up
to switching I and Iσ) an element y ∈ I with ĝ(x, y) "= 0. By I = [I, I], we can
find z1, z2 ∈ I such that [z1, z2] = y. Then (2.2) implies x = gx([z1, z2])x ∈ I.
Since x ∈ E was arbitrary, E is contained in I. As E generates L̂ we find I = L̂,
proving simplicity of L̂.

Clearly σ also induces an automorphism (again denoted by σ) on the extremal
geometry Γ of L̂. The set E is the point set of Γσ. The relation ⊥ denotes the
relation of being equal or collinear in Γσ. By Proposition 2.2.3 we know that Γσ
is a polar space. Moreover, as for each point x ∈ E , the set E2(x) is non-empty, no
point is collinear to all and hence Γσ is non-degenerate. But in a non-degenerate
polar space a line on two collinear points x, y equals (x⊥ ∩ y⊥)⊥. Now as follows
from Lemma 2.4.5, any transversal on x, y is contained in the line on x and y. As
transversals contain |k| ≥ 3 points, the line on x and y is thick, provided there is
at least one transversal on x and y. This follows from the following observations.

Let x = x1, . . . , xn = y be a shortest path from x to y in the E2-graph. Such
path exists by Proposition 2.3.9. If n > 3, then, according to Example 2.4.3
and Proposition 2.4.4, x⊥

1 meets the sl2-line on x2 and x3 in x3, while x⊥
4 meets

this line in x2. As such sl2-line contains at least 3 points, we find a point on the
line which is in relation E2 with both x1 and x4, contradicting that we have a
shortest path from x to y. In particular we find that there is a symplectic triple
on x and y and thus a transversal.

Example 2.4.8. Suppose L is a Lie algebra as in the hypothesis of Theo-
rem 2.4.7, but not isomorphic to a finitary symplectic Lie algebra. If moreover,
the extremal geometry Γ of L̂ := L ⊗k k̂ is isomorphic to Γ(V,W ∗) for some
k̂-vector space V and subspace W ∗ of V ∗ separating the points of the projective
space of V , then it can be shown that the involution σ induces a Hermitian polar-
ity on P(V ) and that Γσ is isomorphic to the polar space of absolute points with
respect to this polarity. See also Example 2.2.2. In this particular case we can
identify the Lie algebra L̂, up to a center, with the Lie algebra s(V ⊗W ∗) and
L, up to a center, with the corresponding finitary unitary Lie algebra fsu(V, h),



$IBQUFS �� &YUSFNBM HFPNFUSJFT BOE QPMBS TQBDFT 52

where h is a Hermitian form with associated involution σ. This has been worked
out by Marc Oostendorp and Hans Cuypers in [CO19].
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In this section we assume that L is a simple Lie algebra over a field k generated
by its set of pure extremal elements E. Its extremal geometry is denoted by Γ.

In the first few lemmas we allow the field k to be of characteristic 2.
Recall the definition of an inner ideal.

Definition 2.5.1. An inner ideal of L is a linear subspace I such that

[I, [I, L]] ⊆ I.

Extremal points are inner ideals.
An inner line ideal is an inner ideal I, properly contained in L, and containing

at least two extremal points, which is minimal with respect to this property.

Definition 2.5.2. The inner ideal geometry of a Lie algebra L is the point-line
geometry with E(L) as point set, and as lines the intersections of E(L) with the
inner line ideals of L.

Notice that by the minimality of inner line ideals, this geometry is a partial
linear space.

If X ⊂ E then we denote by LX the Lie subalgebra of L generated by X.

Lemma 2.5.3. Suppose , is a line of Γ. Then the 2-dimensional subalgebra L)
is an inner line ideal of L.

Proof. Let x, y ∈ E be two linearly independent elements from E such that 〈x〉
and 〈y〉 are points of ,. Then [x, y] = 0, and x+ y ∈ E. So, for all z ∈ L we have

[x+ y, [x+ y, z]] = [x, [x, z]] + 2[x, [y, z]] + [y, [y, z]]

and thus, if the characteristic is not 2,

[x, [y, z]] ∈ L).

This shows L) to be an inner ideal, which clearly is an inner line ideal.
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Now assume that the characteristic is 2.2 If z ∈ E≤0(〈x〉), then [x, [y, z]] =
[y, [x, z]] = 0, by the Jacobi identity and [x, y] = 0 = [x, z]. If z ∈ E1(〈x〉), then
[x, [y, z]] = [y, [x, z]] as before. Since [x, z] ∈ E is a neighbor of 〈x〉, 〈y〉 and [x, z]
are at distance at most 2. If [x, z] ∈ E≤0(〈y〉) we get [y, [x, z]] = 0. If 〈y〉 and
[x, z] are special, then clearly 〈x〉 = [y, [x, z]]. We conclude [x, [y, z]] ≤ 〈x〉 for
all z ∈ E≤1(〈x〉). Similarly, [x, [y, z]] = [y, [x, z]]] ≤ 〈y〉 for all z ∈ E≤1(〈y〉). By
Corollary 2.1.17 and Lemma 2.1.9(e) we get that [x, [y, L]] ≤ 〈x, y〉 = L), which
concludes the proof.

Lemma 2.5.4. Suppose Γ contains lines. Then every inner line ideal equals L)
for some line , of Γ.

Proof. Suppose I is an inner line ideal containing two points x, y ∈ E . If (x, y) ∈
E−1, then by minimality I = L), where , is the line on x and y.

If (x, y) ∈ E1, then let z be an element in E2(x) collinear with y. Then
[x, y] = [x, [[x, y], z]] = [x, [y, [z, x]]] is in I, using the Jacobi identity and [y, z] = 0.
The inner line ideal L), where , is the line through x and [x, y], is thus contained
in I. This contradicts the minimality of I.

If (x, y) ∈ E0, we can find z ∈ E1(x) ∩ E−1(y) by Lemma 2.1.9. Let S be
the symplecton through x and y. Then E−1(z) ∩ S is a line , through y. Hence
[x, z] is the unique point of , collinear with x. By Lemma 2.1.9(e) there exists
an extremal point u such that [u, y] = z. Hence I contains [x, [y, u]] = [x, z] ∈ ,
and thus Ll ≤ I, again contradicting the minimality.

Finally assume that (x, y) ∈ E2. Then there is a path x, u, z, y from x to y
and [u, y] = z and [x, z] = u. So u = [x, [y, u]] is in I, which again leads to a
contradiction.

Lemma 2.5.5. Suppose S is a symplecton of Γ. Then LS is an inner ideal.
Moreover, if I is an inner ideal containing two non-collinear points of S then
LS ⊆ I.

Proof. Suppose x, y ∈ E are points of S. If x, y are collinear we find for each
point z ∈ E that [x, [y, z]] ⊆ LS . If (x, y) ∈ E0, then for each point z ∈ E we
have, as [x, y] = 0,

[x, [y, z]] = −[y, [z, x]] = [y, [x, z]].

So, for all z ∈ E≤0(x) ∪ E≤0(y) we find

[x, [y, z]] = 0.

If z ∈ E1(x), then [x, z] is a point at distance 1 from x and E−1([x, z]) ∩ S
contains a line ,. Then either [y, [x, z]] = 0, or [x, z] ∈ E1(y) and [y, [x, z]] is a

2The proof is actually valid for all characteristics but the argument in the previous paragraph
is more elegant if the characteristic is not 2.
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point on , and thus in S. By symmetry of the argument we now have for all
z ∈ E≤1(x) ∪ E≤1(y) that

[x, [y, z]] ⊆ LS .

As E0(y) contains a point z in E2(x), by Lemma 2.1.9, and Γ and hence also
L is generated by E≤1(x) ∪ {z}, see Corollary 2.1.17, we find that

[x, [y, L]] ⊆ LS .

Suppose I is an inner ideal containing the two non-collinear points x and y of
S. By Lemma 2.1.9 there is a point u ∈ E0(x) ∩ E2(y).

Then Lemma 2.1.12 implies that each point z ∈ S collinear with x and y
has a common neighbor v with x and u. But then v ∈ E1(y). Note that by
Lemma 2.1.9(e) there exists u ∈ E collinear with v and special with x, hence
[x, u] = v. Together with [y, v] = z this yields z = [y, v] = [y, [x, u]] ∈ I. So any
common neighbor of x and y is in I. Repeating this argument, we find that all
points of S are in I and I contains LS .

Corollary 2.5.6. Let P be a convex subspace of Γ such that for all (x, y) ∈ P×P
we have (x, y) ∈ E≤0. Then LP is an inner ideal.

Lemma 2.5.7. If I is an inner ideal containing two points x and y with (x, y) ∈
E2, then I = L.

Proof. Suppose x, y are in I with (x, y) ∈ E2. We may assume gx(y) = 1. Now
consider the 5-grading on L as in Lemma 2.3.20. Then I contains [y, [x, L1]] = L1

and similarly L−1. Now note [u, [v, [x, y]]] = −[u, v] for all u ∈ L−1 and v ∈ L1.
Note that L−2 ⊕ L−1 ⊕ ([L−1, L1] ⊕ [L−2, L2]) ⊕ L1 ⊕ L2 is an ideal of L and
hence it equals L. We get I = L.

From now on we assume the characteristic of k to be different from 2.
In the remaining lemmas we consider the case that there are no lines in Γ.

As we have seen in the previous section, we either find L to be isomorphic to a
finitary symplectic Lie algebra, or there is a quadratic field extension k̂ of k such
that L̂ := L⊗ k̂ is a simple Lie algebra generated by its set of extremal elements
Ê and the extremal geometry Γ̂ contains lines.

We first handle the symplectic case.

Lemma 2.5.8. Let L be sf (V ⊗V ∗), where (V, f) is a non-degenerate symplectic
space. If I is an inner line ideal, then there is a singular 2-dimensional subspace
U of V such that I is the subspace spanned by the elements v⊗fv, with 0 "= v ∈ U .

Proof. Suppose I contains v ⊗ fv and w ⊗ fw with v, w linearly independent. If
f(v, w) "= 0, then Lemma 2.5.7 applies. So assume that f(v, w) = 0. Consider
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an extremal element u⊗ fu. Then

[v ⊗ fv, [w ⊗ fw, u⊗ fu]] = f(w, u)[v ⊗ fv, w ⊗ fu + u⊗ fw]

= f(w, u)f(v, u)
(
w ⊗ fv + v ⊗ fw

)

= f(v, u)f(w, u)
(
(v + w)⊗ fv+w − v ⊗ fv − w ⊗ fw

)
.

As the latter element is in 〈t⊗ft | t ∈ 〈v, w〉〉, the proposition follows immediately.
(Note that there exist u ∈ V such that f(u, v) "= 0 "= f(u,w).)

Denote by σ the field automorphism of order 2 of k̂ fixing k as well as the
induced automorphisms of L̂ and its extremal geometry Γ̂, such that Γ = Γ̂σ.

Lemma 2.5.9. For any subspace I of L̂ fixed by σ there exists a subspace J of
L such that J ⊗ k̂ = I.

Proof. Let B be a basis of L. Consider 0 "= a ∈ I such that aσ is a k̂-multiple of a.
We can write a uniquely as b1⊗λ1+ · · ·+bn⊗λn, for non-zero λ1, . . . ,λn ∈ k̂ and
b1, . . . , bn ∈ B, with all bi different from each other. By considering a′ = λ−1

1 a
instead of a and using the fact that a′σ should be a multiple of a′, we get a′σ = a′

and a′ = x⊗ 1, for some x ∈ L.
Consider a ∈ I such that aσ is not a multiple of a. Then v = a + aσ is

non-zero and fixed by σ. Now consider an element λ ∈ k̂ not fixed by σ. Set
w = λa+λσaσ, then wσ = w. Moreover w is not a multiple of v by construction.
Hence the subspace 〈a, aσ〉 contains linearly independent elements x1 ⊗ 1 and
x2 ⊗ 1, for some x1, x2 ∈ L.

Let BI be a basis of I. If for b ∈ BI we find bσ to be a multiple of itself, we
can replace it by a b′ ∈ 〈b〉 which is fixed by σ by the first paragraph. If it is not
a multiple of b then we can find an element of b′ in 〈b, bσ〉 which is fixed by σ
and is linearly independent of the other basis elements by the second paragraph.
Applying this procedure for any basis element, we see that we can assume that
any b is fixed by σ, and the k-subspace J = 〈b | b ∈ BI〉 satisfies I = J ⊗ k̂.

Corollary 2.5.10. If I is an inner line ideal of L, then I meets E in the set of
all the points of a line of Γ̂σ.

Proof. Let x and y be two points in I. If (x, y) ∈ E0, then the minimal inner ideal
of L̂ containing x, y is the subspace J of L̂ spanned by all the extremal points of
L̂ inside the symplecton on x and y, by Lemma 2.5.5. Note that J is fixed by σ.
But then Lemma 2.5.9 implies that I meets E in the points of S fixed by σ.

If (x, y) ∈ E2, then by Lemma 2.5.7 we find that the minimal inner ideal of
L̂ containing x and y is L̂, which implies I = L, contradicting that I is a proper
inner ideal of L.

Combining all results from the above we find the following.
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Theorem 2.5.11. Suppose L is a simple Lie algebra generated by pure extremal
elements over a field of characteristic not 2.

Then we have one of the following:
(a) The extremal geometry Γ of L contains lines and equals the inner ideal

geometry, which is then a root filtration space.
(b) The extremal geometry Γ of L contains no lines, but L contains two com-

muting, but linearly independent extremal elements; the inner ideal geometry
is a non-degenerate polar space of rank at least 2.

(c) The Lie algebra L does not contain commuting, but linearly independent
extremal elements, and the inner ideal geometry has no lines.

Proof. If the extremal geometry Γ of L does contain lines, then Lemmas 2.5.3
and 2.5.4 and Theorem 2.3.14 imply that its inner ideal geometry equals Γ, which
is then a root filtration space.

So, we can assume that Γ contains no lines. Then, by Theorem 2.4.7, either
L is isomorphic to a symplectic Lie algebra or there is a quadratic field extension
k̂ of k such that the extremal geometry Γ̂ of L̂ := L⊗k k̂ does have lines.

If L is isomorphic to fsp(V, f) for some non-degenerate symplectic space (V, f)
of dimension at least 2, then Lemma 2.5.8 shows that the inner ideal geometry is
isomorphic to the non-degenerate polar space defined by (V, f). If the dimension
is 2, then L ; sl2 has no inner line ideals. If the dimension is at least 3 (and
hence at least 4), then the inner ideal geometry is isomorphic to the symplectic
polar space.

If L is not a symplectic Lie algebra, then the point sets of Γ and Γ̂σ can
be identified, where σ is the automorphism induced on Γ̂ by the unique field
automorphism of k̂ of order 2 fixing k. Applying Corollary 2.5.10 we find that
the inner ideal geometry is isomorphic with Γ̂σ, which is a non-degenerate polar
space by Theorem 2.4.7 containing lines if and only if L contains two distinct but
commuting extremal points.
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We can summarize the main results of this chapter as follows.
Main Theorem 3.0.1. Let A be a structurable algebra and let G be the poset of
all proper non-trivial inner ideals of the TKK Lie algebra associated to A.

(i) If A is a structurable division algebra, then G forms a Moufang set (Theo-
rems 3.2.9 and 3.3.4).

(ii) If A = D⊕Dop for some alternative division algebra D, equipped with the
exchange involution, then G forms the incidence graph of a dual double of
a Moufang triangle (Theorem 3.4.19).

(iii) If A = M(J, 1) for some cubic Jordan division algebra J , then G forms the
incidence graph of a Moufang hexagon (Theorems 3.5.11 and 3.5.15).

In each case, we also describe the root groups of these geometries in terms of
the associated structurable algebras.

Notice that in part (ii) of our main theorem, we obtain the Moufang triangles
only via their dual double (which is a thin generalized hexagon). Indeed, it is
impossible to construct Moufang triangles directly as the geometry G for some
structurable algebra. See Remark 3.4.1 below.

In the previous chapter we discussed extremal geometries, and also extended
the concept to allow for polar spaces. However, if there are no one-dimensional
inner ideals, then the extremal geometry is empty. In these cases, one can take
the minimal proper inner ideals as points. Only some of our constructions are ex-
amples of extremal geometries: in Sections 3.1, 3.2 and 3.4 we describe geometries
which are not extremal geometries.

57
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The correspondence between inner ideals of a Jordan algebra and inner ideals
of its TKK Lie algebra is obvious. Conversely, by [FL19, Section 12.5] any abelian
inner ideal of a Lie algebra is Jordan isomorphic to an inner ideal of a Jordan
algebra. In [Gar01], Skip Garibaldi defines inner ideals in structurable algebras
of skew-dimension one1, and this is also what we will use in Section 3.5. To
the best of our knowledge, inner ideals in structurable algebras in general have
not yet been considered in the literature, but we can do without such a notion in
Sections 3.2 to 3.4. Our rather technical proof of Proposition 3.5.4 below suggests
that it is not obvious to show that inner ideals of an arbitrary structurable algebra
of skew-dimension one correspond to inner ideals of its TKK Lie algebra. (We
only prove this for a restricted class of structurable algebras of skew-dimension
one.) For arbitrary structurable algebras (not necessarily of skew-dimension one),
it seems likely that a more restrictive definition than the one of Skip Garibaldi
will be needed, but we have not pursued this.

Recently, some deep connections between structurable algebras and low rank
geometries have been discovered. More precisely, Lien Boelaert, Tom De Medts
and Anastasia Stavrova have established a strong relationship between struc-
turable division algebras and Moufang sets [BDMS19]. In Sections 3.2 and 3.3,
we translate this result to the setting of inner ideals of Lie algebras of relative
rank one. This settles the case for rank 1 geometries.

We now briefly discuss the organization of this chapter.
In Section 3.1 we prove, among other things, that we can reduce the situation

to inner ideals containing S+. We then apply this reduction theorem in all other
sections, except in Section 3.2.

We then proceed to prove our main theorem. We prove (i) in Sections 3.2
and 3.3, we prove (ii) in Section 3.4 and we finally prove (iii) in Section 3.5. In
each case, we include the description of the root groups in terms of the corre-
sponding structurable algebra.

Assumption 3.0.2. We assume in this chapter that all our algebras are finite-
dimensional over a field k of characteristic different from 2 and 3. Except for Lie
algebras, all algebras in this chapter are assumed to be unital, but not necessarily
associative.

1Interestingly, Garibaldi shows in [Gar01, §7] that some of the inner ideals of a Brown algebra
are related to a building of type E7, which is a result in the spirit of the current paper.
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In this section, we will provide a tool to reduce our study of inner ideals of K(A)
to those containing the 2-component S+. We will need one technical condition
(Assumption 3.1.10), but as we will see, this assumption will be satisfied in all
situations we are interested in; see Theorems 3.4.9 and 3.5.3 below.
Assumption 3.1.1. Throughout this section, we will assume that A is a central
simple structurable algebra over k such that S "= 0 and all non-zero elements of
S are conjugate invertible.
Remark 3.1.2. Recall that by Corollary 1.1.73, all proper inner ideals of K(A)
are abelian. We will use this fact repeatedly in this section without explicitly
mentioning it.
Remark 3.1.3. It will be obvious that if we replace S+ by S− and A+ by A−
in any statement in this section, the statement remains valid.
Remark 3.1.4. Let B be an arbitrary central simple structurable algebra. In
many cases, we can find a central simple structurable algebra A satisfying As-
sumption 3.1.1 such that K(B) ∼= K(A). In other words, Assumption 3.1.1
ensures that we choose a ‘good’ model of the Lie algebra.

We now make a few comments about when we can and when we cannot re-
choose the structurable algebra such that Assumption 3.1.1 is satisfied.

Assume that K(B) contains (at least) one pure extremal element. Then, along
similar lines as the proof of Proposition 4.2.2, it follows that K(B) is generated by
extremal elements. Hence Theorem 4.2.7 shows that in this case, K(B) ∼= K(A)
for a certain skew-dimension one structurable algebra A if and only if K(B) is
not a symplectic Lie algebra.

The condition for K(B) to contain a pure extremal element is often satisfied.
For example, every possible non-division central simple structurable algebra B
such that K(B) is of exceptional type satisfies this condition. (Notice that As-
sumption 3.1.1 is of course satisfied if B is a division algebra.) On the other
hand, the previous paragraph shows that for a symplectic Lie algebra, we cannot
find a model such that Assumption 3.1.1 is satisfied. However, in that case we
recover a Kantor pair and one could, in principle, try to generalize the theory in
this section to Kantor pairs to resolve this issue.
Remark 3.1.5. Recall that the i-component of x ∈ L is the image of the pro-
jection of x onto Li, where Li = K(A)i.
Lemma 3.1.6. If I is an inner ideal of K(A) containing s+, with s ∈ S non-zero,
then S+ ≤ I.
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Proof. Note that I contains [s+, [s+, t−]] = −2sts+ for any t ∈ S, using (1.11).
Since s is conjugate invertible, we get S+ ≤ I.

Our goal is to show that any proper non-trivial inner ideal of L := K(A) can
be mapped by an element of E(A) to an inner ideal containing the set of skew
elements S+.

Lemma 3.1.7. Let I be a non-trivial inner ideal of L. Then there exists an
automorphism in E(A) mapping I to an inner ideal containing an element with
non-zero 2-component.

Proof. By Lemma 1.1.70 the subspace
∑
ϕ∈E(A) ϕ(I) is a non-zero ideal of L.

Consider 0 "= s ∈ S arbitrary, since L is non-degenerate, [s+, [s+,ϕ(I)]] "= 0 for
some ϕ ∈ E(A). This implies that ϕ(I) is an inner ideal containing an element
with non-zero 2-component.

Lemma 3.1.8. Let I be a minimal inner ideal of L containing an element with
non-zero 2-component. Then I ∩ (L−2 ∪ L−1 ∪ L0 ∪ L1) = 0.

Proof. By assumption I contains an element x with non-zero 2-component s+ ∈
S+. By Lemma 1.1.74, [x, [x,S−]] ≤ I is an inner ideal. Now note that the
2-component of [x, [x, t−]] equals −2sts+, which is non-zero if t ∈ S is non-zero.
Hence I = [x, [x,S−]] and I ∩ (L−2 ∪ L−1 ∪ L0 ∪ L1) = 0.

Lemma 3.1.9. Let I be a minimal inner ideal of L containing an element with
non-zero 2-component. Then there exists an element of E−(A) mapping I to S+.

Proof. By assumption, I contains an element x := t− + b− + V + a+ + s+, with
a, b ∈ A, V ∈ Instrl(A), s, t ∈ S, with s "= 0. Then I also contains

[x, [x,−ŝ−]] = [x,−V εδ(ŝ)− + (ŝa)− + id]
=
(
−(V εδ)2(ŝ)− + (V εδ(ŝ)a)− − LsLV εδ(ŝ)

)

+
(
ψ(b, ŝa)− + V ε(ŝa)− + Va,ŝa − a+

)

+
(
2t− + b− − a+ − 2s+

)

=
(
2t+ ψ(b, ŝa)− (V εδ)2(ŝ)

)
− +

(
b+ V ε(ŝa) + V εδ(ŝ)a

)
−

+
(
Va,ŝa − LsLV εδ(ŝ)

)
− 2a+ − 2s+.

By adding twice the element x, we find that I contains

y :=
(
4t+ ψ(b, ŝa)− (V εδ)2(ŝ)

)
− +

(
3b+ V ε(ŝa) + V εδ(ŝ)a

)
−

+
(
2V + Va,ŝa − LsLV εδ(ŝ)

)
.

Since y ∈ L−2 ⊕ L−1 ⊕ L0, Lemma 3.1.8 now implies that y = 0. Set

s′ = − 1
2V

εδ(ŝ) and a′ = ŝa.
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Expressing that the 0-component of y is 0 yields

V = 1
2 (−Va,ŝa + LsLV εδ(ŝ)) =

1
2Vsa′,a′ − LsLs′ , (3.1)

using a = −sa′. Now we use this equation, the formulas in Definition 1.1.48 and
the fact that the (−1)-component of y equals 0 to get

3b = −V ε(ŝa)− V εδ(ŝ)a

=
(
1
2Va′,sa′(a′)− s′(sa′)

)
+
(
− 1

2ψ(a
′, ŝ(sa′))− s′(sŝ)− ŝ(ss′)

)
a

= 1
2Va′,sa′(a′)− 3s′(sa′),

hence
b = 1

6Va′,sa′(a′)− s′(sa′). (3.2)
Finally, expressing that the (−2)-component of y equals 0 yields, using (3.1)
and (3.2), that

4t = −2V εδ(s′) + ψ(a′, b)

= −ψ(a′, s′(sa′))− 4s′(ss′) + ψ
(
a′, 1

6Va′,sa′(a′)− s′(sa′)
)

= −4s′(ss′)− 2ψ(a′, s′(sa′)) + 1
6ψ(a

′, Ua′(sa′)).

Hence
t = −s′(ss′)− 1

2ψ(a
′, s′(sa′)) + 1

24ψ(a
′, Ua′(sa′)). (3.3)

By (3.1) to (3.3) and Lemma 1.1.76, we conclude that x = e−(a′, s′)(s+).
Hence J := e−(a′, s′)−1(I) is an inner ideal containing s+ ∈ S+. Since s is

non-zero and I is minimal, Lemma 3.1.6 implies S+ = J .

Assumption 3.1.10. Consider the following (technical) assumption:

If V ∈ Instrl(A) is such that V δ(S) = 0 and V 2 = 0, then there exists
some W ∈ Instrl(A) such that U := [V, [V,W ]] ∈ Instrl(A) satisfies
U2 "= 0. In particular, U "∈ 〈V 〉.

We will always explicitly mention when we make this assumption.

Remark 3.1.11. Our motivation for Assumption 3.1.10 is that it basically en-
sures that we cannot get a generalized quadrangle as the point-line geometry we
will obtain in the next sections. We now explain this in some detail.

Assume that there are two types of non-trivial proper inner ideals in K(A),
say of dimension m and n, with m < n, and assume that the point-line space
with as points the m-dimensional inner ideals and as lines the n-dimensional
inner ideals is a generalized quadrangle.

Since every non-zero element of S is conjugate invertible, S+ is a minimal
inner ideal by Lemma 3.1.6, hence m = dim(S). So S+ and S− are two points
of the generalized quadrangle. Since [s+, ŝ−] = LsLŝ = − id "= 0, these two
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points are not collinear (since collinear points lie in a common n-dimensional
inner ideal, which is abelian). Hence they should be at distance 2 and have a
common neighbor, say I. Then I is an inner ideal of K(A) of dimension m. Since
S+ and I are collinear, they are contained in a common proper inner ideal, which
is abelian, hence [S+, I] = 0. Using that all non-zero elements of S are conjugate
invertible, we get I ≤ Instrl(A) ⊕ A+ ⊕S+. Similarly, the fact that S− and I
are collinear implies I ≤ S− ⊕A− ⊕ Instrl(A) and hence I ≤ Instrl(A). Consider
any non-zero V ∈ I. Since I ≤ Instrl(A), [V, [V, a+]] = V 2(a)+ for all a ∈ A
implies V 2 = 0. Using [I,S+] = 0 we get V δ(S) = 0.

However, for each W ∈ Instrl(A), we now have U := [V, [V,W ]] ∈ I, so by the
previous observations U2 = 0. Hence A does not satisfy Assumption 3.1.10.
Lemma 3.1.12. Let I be a proper inner ideal properly containing S+. Then I =
I0⊕I1⊕S+ for some inner ideal I0 ≤ Instrl(A) and some subspace 0 "= I1 ≤ A+.
If, in addition, A satisfies Assumption 3.1.10, then I0 = 0.

Proof. Consider an arbitrary element x := u− + b− + V + a+ + t+ ∈ I. Choose
some 0 "= s ∈ S; then by assumption, s+ ∈ I. Since I is abelian, [s+, x] = 0,
which implies [s+, b−] = 0 and [s+, u−] = 0. Since s is conjugate invertible,
(sb)+ = [s+, b−] = 0 implies b = 0 and LsLu = [s+, u−] = 0 implies u = 0. Hence
I ≤ L0 ⊕ L1 ⊕ L2.

Note that a+ + 2t+ = −[x, id] = [x, [s+, ŝ−]] ∈ I. Together with t+ ∈ I and
V + a+ + t+ = x ∈ I this implies V ∈ I and a+ ∈ I. Hence I = I0 ⊕ I1 ⊕ S+,
with I0 ≤ Instrl(A) and I1 ≤ A+.

Consider V and W in I0 arbitrary. Since I is abelian [V,S+] = V δ(S) = 0.
Moreover, since I ≤ L0 ⊕ L1 ⊕ L2, [V, [W,Li]] = 0 for i = −1,−2. Hence
Lemma 1.1.56 implies [V, [W,L1]] = 0 and clearly [V, [W,L0]] ≤ I0. Hence I0 is
indeed an inner ideal.

Consider 0 "= V ∈ I0, then V (sa)+ = [V, [s+, a−]] ∈ I for all a ∈ A and
0 "= s ∈ S. Since V "= 0 and s is conjugate invertible, this implies I1 "= 0.

Now assume that A satisfies Assumption 3.1.10. Consider 0 "= V ∈ I0. Note
that the fact that I is abelian implies V δ(S) = 0. For each b ∈ A, (V ε)2(b)− =
[V, [V, b−]] ∈ I ≤ L0 ⊕ L1 ⊕ L2 must be 0; hence (V ε)2 = 0. By Lemma 1.1.56,
we get V 2 = 0 and by Assumption 3.1.10, there exists W ∈ Instrl(A) such
that U := [V, [V,W ]] satisfies U2 "= 0. Hence U ∈ I0. The previous argument
shows that U δ(S) = 0 and (U ε)2 = 0 and hence, by Lemma 1.1.56, U2 = 0, a
contradiction. We conclude that I ≤ L1 ⊕ L2 = A+ ⊕S+.

Remark 3.1.13. If char(k) "= 5 (and still char(k) "= 2, 3), then [FL19, Proposi-
tion 5.29] shows a claim similar to Lemma 3.1.9. Under the same condition on
the characteristic of the field, Proposition 11.56 of loc. cit. shows the same as
Lemma 3.1.12 and moreover shows that if I0 = 0 then I1 is an inner ideal.
Theorem 3.1.14. Let A be a central simple structurable algebra satisfying As-
sumption 3.1.1 and let I be a proper non-trivial inner ideal of K(A).
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(i) There exists an element of E(A) mapping I to an inner ideal J such that
S+ ≤ J ≤ Instrl(A)⊕A+ ⊕S+.

(ii) If, in addition, A satisfies Assumption 3.1.10, then S+ ≤ J ≤ A+ ⊕S+.

Proof. Let J be a minimal inner ideal contained in I. By Lemma 3.1.7, we can as-
sume that J contains an element with a non-zero 2-component. By Lemma 3.1.9,
we may then assume that J equals S+. Now Lemma 3.1.12 concludes the
proof.

The next result will not be used in this thesis, but it is a useful fact requiring
only very little effort to prove at this point.
Proposition 3.1.15. Let A be a central simple structurable algebra satisfying
Assumption 3.1.1. Any proper non-trivial inner ideal of K(A) is linearly spanned
by its minimal inner ideals.

Proof. We will prove this claim by induction on dim(I). When dim(I) = dim(S),
I itself is a minimal inner ideal by Theorem 3.1.14 and then the claim is obvious.
Assume dim(I) > dim(S+). By Theorem 3.1.14, we may assume that S+ ≤ I.
By Lemma 3.1.12, I = I0⊕ I1⊕S+ for some inner ideal I0 ≤ Instrl(A) and some
subspace 0 "= I1 ≤ A+. By induction, I0 is spanned by its minimal inner ideals
(where we allow I0 = 0).

Let a+ ∈ I1 be arbitrary and let s ∈ S \{0}. Then [a+, [a+, s−]] = −Va,sa is
contained in I0 and hence [Va,sa, [a+, s−]] = Vsa,a(sa)− ∈ L−1 is contained in I
and is thus 0. Together with Lemma 1.1.76 this gives e−(sa)(ŝ+) = − 1

2Va,sa +
a+ + ŝ+. This is an element of the minimal inner ideal e−(sa)(S+). Since ŝ+ is
an element of a minimal inner ideal and Va,sa ∈ I0 is contained in the linear span
of minimal inner ideals, a+ is also contained in the linear span of minimal inner
ideals.

As was pointed out to us by Antonio Fernández López, this actually holds in
a larger generality:
Proposition 3.1.16. Let A be a central simple structurable algebra. Any proper
non-trivial inner ideal of K(A) is linearly spanned by its minimal inner ideals.

Proof. By Corollaries 1.1.72 and 1.1.73, the Lie algebra L := K(A) is non-
degenerate and any proper inner ideal I of L is abelian. Hence any element
a ∈ I is ad-nilpotent of index 3. By [FL19, Theorem 8.43], there is a Jordan
algebra J := La attached to a. Moreover, J is non-degenerate by Proposition
8.51 of loc. cit. Since it is also finite-dimensional, the Capacity Existence Theo-
rem [McC04, II.20.1.3] implies that J is unital. So by [FL19, Proposition 8.61],
we have a ∈ [a, [a, L]]. Note that for each minimal inner ideal B of L, [a, [a,B]]
is either 0 or a minimal inner ideal of L by Corollary 4.20 of loc. cit. By the
first line of the proof of Lemma 3.1.7, L is linearly spanned by its minimal inner
ideals, so we see that a lies in the linear span of minimal inner ideals.
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Note, however, that by [Ben74, Lemma 2.8], K(A) has a 5-grading such that
the Jordan pair associated to the ends of the 5-grading is a division Jordan
pair. So in the case that this particular 5-grading corresponds to a structurable
algebra, one obtains that any proper non-trivial inner ideal is spanned by the
minimal ones.
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We are now prepared to begin our investigation of the geometry of proper non-
trivial inner ideals in specific situations. In Sections 3.2 and 3.3, we will deal with
the case of structurable division algebras and we will show that this gives rise to
Moufang sets. The case of Jordan division algebras will give rise to Moufang sets
with abelian root groups (Section 3.2) whereas the structurable division algebras
of skew-dimension > 0 will give rise to Moufang sets with non-abelian root groups
(Section 3.3).

Throughout this section, we will assume that A is a Jordan division algebra
and we denote A by J . We also write a−1 := â, as is usual in Jordan theory. Note
that J is commutative and hence Vx,yz = Vz,yx for all x, y, z ∈ J . Set L = K(J).

Remark 3.2.1. It is obvious, as in the previous section, that if we replace J+
by J− in any statement in this section, the statement remains valid.

Lemma 3.2.2. Let I be an inner ideal of L. If I ∩ J+ "= 0, then J+ ≤ I.

Proof. Consider 0 "= a+ ∈ I ∩ J+. The inner ideal I contains

[a+, [a+, b−]] = [a+, Va,b] = −(Va,ba)+ = −(Uab)+,

for every b ∈ J . Since J is a Jordan division algebra, Ua is invertible and hence
this implies J+ ≤ I.

Lemma 3.2.3. Let x, y ∈ J \ {0}. Then V 2
x,y "= 0 and (V ε

x,y)
2 "= 0.

Proof. Since J is a division algebra, the elements x and y are invertible. Then
Vx,y(y−1) = Vy−1,y(x) = x and hence (Vx,y)2(y−1) = Vx,y(x) = Ux(y) which is
non-zero since Ux is invertible; therefore V 2

x,y "= 0. Since V ε
x,y = −Vy,x, we also

have (V ε
x,y)

2 "= 0.

Lemma 3.2.4. Let I be an inner ideal of L with J− ⊕ J+ ≤ I. Then I = L.
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Proof. Consider x, y ∈ J arbitrary. Then I contains

[y−, [x+, id]] = [x+, y−] = Vx,y.

Hence Instrl(J) ≤ I and our claim follows.

Lemma 3.2.5. Let 0 "= V ∈ Instrl(J) be arbitrary. The only inner ideal of L
containing V is L itself.

Proof. Note that V "= 0 implies V ε "= 0. Suppose that I is an inner ideal
containing V . For each a ∈ J , we then have

I < [V, [V, a+]] = [V, V (a)+] = V 2(a)+.

Similarly, I also contains (V ε)2(a)−, for all a ∈ J . We distinguish the following
cases:

• V 2 "= 0 "= (V ε)2: By Lemma 3.2.2 we get J− ⊕ J+ ≤ I.
• V 2 "= 0 = (V ε)2: By Lemma 3.2.2 we get J+ ≤ I. So I contains x+ and V

and thus
[x+, [V, x

−1
− ]] = [x+, V

ε(x−1)−] = Vx,V ε(x−1),

for any 0 "= x ∈ J . By Lemma 3.2.3 there exists an x ∈ J such that
Vx,V ε(x−1) "= 0. By the first case and Lemma 3.2.3 we get J− ⊕ J+ ≤ I.

• V 2 = 0 "= (V ε)2: Similarly as in the previous case we get J− ⊕ J+ ≤ I.
• V 2 = 0 = (V ε)2: For any x, y ∈ J the inner ideal I contains

[V, [V, Vx,y]] = [V, VV (x),y + Vx,V ε(y)] = 2VV (x),V ε(y).

By V "= 0 "= V ε and Lemma 3.2.3 we get that 0 "= Va,b ∈ I for some a, b ∈ J .
Again, by the first case and Lemma 3.2.3 we get J− ⊕ J+ ≤ I.

So, in any case, we get J− ⊕ J+ ≤ I. Hence, by Lemma 3.2.4 we have I = L.

Lemma 3.2.6. Let I be a proper inner ideal containing a+ + V , where V "=
0, a ∈ J . Then I = L.

Proof. If a = 0, the claim follows from Lemma 3.2.5. Note that I contains

[V + a+, [V + a+, id]] = [V + a+,−a+] = (−V (a))+.

Suppose V (a) "= 0, we get by Lemma 3.2.2 that J+ ≤ I and hence 0 "= V ∈ I and
thus, by Lemma 3.2.5, I = L. So we may assume V (a) = 0. By Lemma 1.1.55
we get V ε(a−1) = 0. Hence, I contains

[V + a+, [V + a+, a
−1
− ]] = [V + a+, V

ε(a−1)− + id] = −a+,

and thus, as in the previous case, J+ ≤ I and I = L.

Corollary 3.2.7. There are only two inner ideals of L containing J+, namely
J+ and L.
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Proof. Let I be an inner ideal containing J+. If J− ∩ I "= 0 we get J− ≤ I
by Lemma 3.2.2 and Lemma 3.2.4 yields I = L. If J− ∩ I = 0 and I "= J+,
I contains an element a− + V with V "= 0 and Lemma 3.2.6 yields I = L, a
contradiction.

Proposition 3.2.8. Let I be a proper non-trivial inner ideal of L with I "= J+.
Then there exists a unique x ∈ J such that

I = e+(x)(J−) =
{
b− + Vx,b − 1

2Vx,b(x)+ | b ∈ J
}
.

Moreover, for each x ∈ J , e+(x)(J−) is an inner ideal.

Proof. Since J− is clearly an inner ideal of L, we get that e+(x)(J−) is an inner
ideal for all x ∈ J , using e+(x) ∈ Aut(L).

Consider an arbitrary proper non-trivial inner ideal I "= J+ of L and let
0 "= b− + V + a+ ∈ I be arbitrary. If b = 0, then Lemma 3.2.6 yields V = 0. But
this is also impossible since I then contains J+ and is, by Corollary 3.2.7, equal
to L. So b "= 0 and I contains

[b− + V + a+, [b− + V + a+, b
−1
+ ]] = [b− + V + a+,− id+V (b−1)+]

= −b− − VV (b−1),b + (V 2(b−1) + a)+.

Hence, I contains W + c+ := (V − VV (b−1),b) + (V 2(b−1) + 2a)+. If W = 0 and
c "= 0, Lemma 3.2.2 and Corollary 3.2.7 imply I = L, a contradiction. If W "= 0,
then Lemma 3.2.6 implies I = L which yields a contradiction. Hence W = 0 and
c = 0 and thus V = VV (b−1),b and

a = − 1
2VV (b−1),b(V (b−1)).

Hence (e+(V (b−1)))−1(I) ∩ J− "= 0 and by Corollary 3.2.7 and Lemma 3.2.2, we
get (e+(V (b−1)))−1(I) = J−, or equivalently, I = e+(V (b−1))(J−).

The uniqueness claim follows since Vx,b = Vy,b implies Vx−y,b = 0 and hence
x = y, by Lemma 3.2.3.

Theorem 3.2.9. Let J be a Jordan division algebra. Then the set of all proper
non-trivial inner ideals of L = K(J) forms a Moufang set, with root groups

UJ+ = E+(J);

Ue+(j)(J−) = E−(J)
e+(j), for all j ∈ J.

This Moufang set is isomorphic to the Moufang set M(J) as defined in [DMW06,
§4].

Proof. Let X be the set of proper non-trivial inner ideals. By Proposition 3.2.8
we see that UJ+ acts sharply transitively on the set of all proper non-trivial
inner ideals different from J+. Similarly, UJ− acts sharply transitively on the
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set of all proper non-trivial inner ideals different from J−. Clearly E−(J)e+(j)

fixes e+(j)(J−) and acts sharply transitively on the set of all other proper non-
trivial inner ideals, for j ∈ J arbitrary. By definition of the root groups, we
have G+ = 〈E−(J), E+(J)〉. So in order to prove Ug

x = Ux.g for all g ∈ G+ and
x ∈ X it suffices to show this for all g ∈ E−(J) and x ∈ X, since it is clear
for all g ∈ E+(J) by construction. By the last equation in [BDMS19, Theorem
5.1.1] we find, for each 0 "= x ∈ J , an element y ∈ J such that Ue+(x)

J−
= Ue−(y)

J+
.

Since Ue−(y)
J+

fixes e−(y)(J+) we get Ue−(y)(J+) = Ue+(x)
J−

= Ue−(y)
J+

. Now it is
clear that Ug

x = Ux.g for all g ∈ E−(J) and x ∈ X as well. The last claim now
follows since the corresponding abstract rank one groups coincide; see [BDMS19,
Lemma 1.1.12 and §5.1].
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We continue with our investigation of structurable division algebras. Throughout
this section, A is a central simple structurable division algebra with S "= 0. Notice
that Assumption 3.1.1 is trivially satisfied. Set L = K(A).

Lemma 3.3.1. A satisfies Assumption 3.1.10.

Proof. Consider 0 "= V ∈ Instrl(A) arbitrary with V 2 = 0 and V δ(S) = 0. By
Lemma 1.1.56 we get (V ε)2 = 0. Consider a ∈ A arbitrary, with a "= 0. Then,
using V 2(a) = 0 and (V ε)2(â) = 0, we get

0 = [V, [V, id]] = [V, [V, Va,â]] = 2VV (a),V ε(â).

Since A is division, Lemma 1.1.55 implies V (a) = 0 or V ε(â) = 0. By the same
lemma we get V = 0, a contradiction. Hence Assumption 3.1.10 is trivially
satisfied.

Lemma 3.3.2. The only inner ideal strictly containing S+ is L itself.

Proof. Let I be a proper inner ideal containing S+ properly. By Lemma 3.1.12
there exists 0 "= a+ ∈ I. Thus I also contains [a+, [a+, b−]] = Ua(b)+. Since
0 "= a is conjugate invertible Ua is invertible, we get A+ ≤ I. Hence ψ(A,A) =
[A+,A+] ≤ [I, I] = 0, we get a contradiction by Lemma 1.1.53.

Proposition 3.3.3. If I is an inner ideal of L distinct from S+, then I =
e+(a, s)(S−), for unique a ∈ A, s ∈ S.
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Proof. Consider 0 "= a ∈ A and 0 "= s ∈ S arbitrary. Since A is division,
[BDMS19, Lemma 3.3.4(ii)] shows that ψ(a, Ua(sa)) "= 0. By Theorem 3.1.14
and Lemmas 3.3.1 and 3.3.2 it suffices to show E(A)(S+) = {S+}∪E+(A)(S−) =:
S. Since E+(A)(S) = S it suffices to show E−(A)(S) = S.

Consider a ∈ A and s ∈ S arbitrary with (a, s) "= (0, 0). We show that
e−(a, s)(S+) ∈ E+(A)(S−). By Lemma 3.1.9 it suffices to show that e−(a, s)(S+)
has an element with non-zero (−2)-component. Recall Lemma 1.1.76 for a pre-
cise description of the elements inside e−(a, s)(S+). Assume first s = 0, then
e−(a, 0)(t+) has (−2)-component 1

24ψ(a, Ua(ta)) which is non-zero as soon as t
is non-zero, as noted before. Assume now a = 0, then e−(0, s)(ŝ+) has non-zero
(−2)-component s. So we may assume a "= 0 and s "= 0. Then e−(a, s)(ŝ+)
has (−2)-component s + 1

24ψ(a, Ua(ŝa)). If this is non-zero we are done, hence
assume it is zero. Note that the (−1)-component equals b := a + 1

6Ua(ŝa). If
this component is also 0, we would get 1

24ψ(a, Ua(ŝa)) = 1
4ψ(a,−a) = 0 and

hence s = 0, a contradiction. Now note that the inner ideal e−(a, s)(S+) con-
tains [e−(a, s)(ŝ+), [e−(a, s)(ŝ+), Vtb,b]], for 0 "= t ∈ S. This element has (−2)-
component ψ(b, Ub(tb)), which is non-zero. So clearly E−(A)(S+) ⊆ S. This
argument also shows that for any a ∈ A and s ∈ S with (a, s) "= (0, 0) we
have e+(a, s)(S−) ∈ E−(A)(S+). Together with E−(A)(S−) = S− this shows
E−(A)(S) = S.

The uniqueness claim follows from the fact that ta = tb implies a = b and
LsLt = Ls′Lt implies s = s′ for non-zero t ∈ S, since t is conjugate invertible.

Theorem 3.3.4. Let A be a structurable division algebra with S "= 0. Then the
set of all proper non-trivial inner ideals of L = K(A) forms a Moufang set, with
root groups

US+ = E+(A);

Ue+(a,s)(S−) = E−(A)e+(a,s), for all a ∈ A, s ∈ S .

This Moufang set is isomorphic to the Moufang set M(A) as defined in [BDMS19,
Theorem 5.1.6].

Proof. The proof of this claim is a mutatis mutandis copy of the proof of Theo-
rem 3.2.9, replacing J with A, e+(j) with e+(a, s) etc., using Proposition 3.3.3
in place of Proposition 3.2.8.
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We now proceed to the next case, which will give rise to Moufang triangles, i.e.,
to Moufang projective planes. In fact, this case will be somewhat peculiar: the
geometry we will obtain, will be the dual double of a projective plane (which is,
in fact, a thin generalized hexagon). Likewise, the structurable algebras we will
use will be the double of the division algebra coordinatizing the projective plane.
(Notice, however, that they are equipped with an involution exchanging the two
components; they are still central simple, as we will show below.)

Remark 3.4.1. Notice that it is impossible to find the Moufang triangles directly
as the geometry of the poset of all inner ideals of the TKK Lie algebra of any
central simple structurable algebra. Indeed, the inner ideals S+ and S− would
either both correspond to points or both to lines. In the former case, there cannot
be a proper inner ideal containing both S+ and S− (since such an inner ideal
would have to be abelian). In the latter case, the intersection of S+ and S− is
trivial and hence there would be no point incident with both lines. (A similar
argument applies if the structurable algebra is a Jordan algebra.)

Construction 3.4.2. Let F be an alternative division algebra over a field of
characteristic different from 2 and 3. Set k = Z(F ). Then A := F ⊕ F is a
k-algebra, with multiplication

(a, b).(c, d) = (ac, db),

for all a, b, c, d ∈ F . This algebra has the involution

(x, y) -→ (y, x).

In particular, the subspace of skew elements is

S = {(x,−x) | x ∈ F}. (3.4)

Set L = K(A).

Lemma 3.4.3 ([TW02, (9.15), (9.22)], [Sch66, (3.4)]). For any alternative alge-
bra F , the following identities hold:

(i) [eσ(1), eσ(2), eσ(3)] = sgn(σ)[e1, e2, e3], for all e1, e2, e3 ∈ F and σ ∈ Sym(3).
(ii) e−1(ef) = f = (fe)e−1, for all e ∈ F× and all f ∈ F .
(iii) (fef)g = f(e(fg)), for all e, f, g ∈ F .

Lemma 3.4.4. A is a central simple structurable algebra over k.
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Proof. In principle, this follows by showing that A is isomorphic to one of the
known central simple structurable algebras (distinguishing between whether F is
associative or not and relying on the classification of alternative division algebras),
but we believe that the following short and direct proof is instructive. However,
see Remark 3.4.5 below.

By [All78, Theorem 13] and Lemma 3.4.3 it suffices to show Da2,a(H) =
0 for all a ∈ H. (Recall that H denotes the set of hermitian elements with
respect to the involution of A.) Since F is power-associative, [a, a2] = 0.
Hence D(e,e),(e,e)2(f, f) = 2[(e, e), (e2, e2), (f, f)], for all e, f ∈ F . Now e(e2f) =
e(e(ef)) = (ee2)f by Lemma 3.4.3. Hence Da2,a(H) = 0 and A is a structurable
algebra.

Since k = Z(F ), we get Z(A) ≤ k ⊕ k. The fact that Z(A) is contained in H
shows Z(A) = k1. Let I be an ideal of A. Consider 0 "= (e, f) ∈ I arbitrary. If
e "= 0, then e is invertible and hence (g, 0) = (ge−1, 0)(e, f) ∈ I, for all g ∈ F , by
Lemma 3.4.3. Since I is closed under the involution, we get I = A. Similarly if
f "= 0.

Remark 3.4.5. If F is a composition (division) algebra, then A is isomorphic
to F ⊗ (k ⊕ k), where k ⊕ k is the split 2-dimensional composition algebra with
involution (a, b) -→ (b, a). Indeed, mapping (e, f) ∈ A to the element e⊗ (1, 0) +
f ⊗ (0, 1) of F ⊗ (k ⊕ k) yields an isomorphism of structurable algebras.

If F is an associative (division) algebra, then A is a central simple associative
algebra with involution, and hence belongs to one of the (classical) classes of
structurable algebras.

Lemma 3.4.6. All elements (e, f) ∈ A with e, f "= 0 are conjugate invertible,
with (̂e, f) = (f−1, e−1).

Proof. By Lemma 3.4.3(ii), we have V(e,f),(f−1,e−1) = id.

Lemma 3.4.7. Let 0 "= f ∈ F . Then U(f,0)(A) = (F, 0) and U(0,f)(A) = (0, F ).

Proof. Clearly, U(f,0)(A) ≤ (F, 0). Conversely, let g ∈ F be arbitrary. Using
Lemma 3.4.3, we have

U(f,0)(0, f
−1gf−1) = 2((f, 0)(f−1gf−1, 0))(f, 0)− ((f, 0)(0, f))(0, f−1gf−1)

= 2(g, 0).

The proof of the other statement is similar (or follows by applying the involution).

Lemma 3.4.8. Let D ∈ Der(A). Then there is some derivation D′ of F such
that D(e, f) = (D′(e), D′(f)) for all e, f ∈ F . In particular, D(λ, µ) = 0 for all
λ, µ ∈ k.
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Proof. Clearly D(1, 1) = 0. Since (1, 1) = (1,−1)2, we have

0 = D(1, 1) = D(1,−1)(1,−1) + (1,−1)D(1,−1) = 2(1,−1)D(1,−1).

Left multiplying by (1,−1) implies D(1,−1) = 0. Since D is k-linear, this already
implies that D(λ, µ) = 0 for all λ, µ ∈ k. In particular, D(1, 0) = D(0, 1) = 0.

For each e ∈ F , we now have D(e, 0) = D((1, 0)(e, 0)) = (1, 0)D(e, 0). Hence
there is some derivation D′ ∈ Der(F ) such that D(e, 0) = (D′(e), 0) for all e ∈ F .
Similarly, there is some derivation D′′ ∈ Der(F ) such that D(0, f) = (0, D′′(f))
for all f ∈ F . Hence D(e, f) = (D′(e), D′′(f)) for all e, f ∈ F . Expressing that
D(x) = D(x) for all x ∈ A now implies D′ = D′′.

Theorem 3.4.9. A satisfies Assumption 3.1.10.

Proof. By Lemma 3.4.4, A is central simple. By (3.4) and Lemma 3.4.6, As-
sumption 3.1.1 is satisfied.

Consider an arbitrary non-zero V ∈ Instrl(A) with V δ(S) = 0 and V 2 = 0.
By Lemma 1.1.51, we have V = Tx +D, for some D ∈ Der(A), with x = (e, f),
for some e, f ∈ F . By Lemma 3.4.8, there is a derivation D′ of F such that
D(g, h) = (D′(g), D′(h)) for all g, h ∈ F . Note that Dδ = D + RD(1) = D. By
assumption,

0 = V δ(1,−1) = −ψ(x, (1,−1)) +D(1,−1) = (e+ f,−e− f);

using (1.9). Hence f = −e so x = (e,−e) ∈ S. Then

0 = V δ(e,−e) = −ψ((e,−e), (e,−e)) +D(e,−e) = (D′(e),−D′(e))

and thus D′(e) = 0.
Now V (1, 0) = Tx(1, 0) = (3e, 0). Since D′(e) = 0 and V 2 = 0, this implies

0 = V 2(1, 0) = Tx(3e, 0) +D(3e, 0) = 3Tx(e, 0) = (9e2, 0).

Hence e2 = 0 and e = 0, since F is division. We conclude that V = D is a
derivation. In particular, V ε = V .

Since V "= 0, there exists f ∈ F such that D′(f) "= 0. Set y = (f, f) and
a = V (y) = (D′(f), D′(f)). Then V (a) = 0 and hence

U := [V, [V, Vy,y]] = 2Va,a.

Since a = a, we get Va,a = La2 by Lemma 1.1.52. Since A is power-associative,
this implies V 2

a,a(1) = a4. If U2 = 0 we get 4a4 = 0 and thus a = 0, a contradic-
tion.

Lemma 3.4.10. The only proper inner ideals of L properly containing S+ are
the two inner ideals (F, 0)+ ⊕ S+ and (0, F )+ ⊕ S+.
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Proof. Let I be a proper non-trivial inner ideal properly containing S+. By
Lemma 3.1.12 and Theorem 3.4.9, I ≤ A+ ⊕S+, so I contains some non-zero
a+ ∈ A+. If a were conjugate invertible, then the operator Ua would be invertible,
but then the fact that −Ua(b)+ = [a+, [a+, b−]] ∈ I for all b ∈ A would imply
that A+ ≤ I. Since I is abelian, this is in contradiction with Lemma 1.1.53.
Hence a is not conjugate invertible, so by Lemma 3.4.6, a is contained in (F, 0)
or (0, F ). Assume without loss of generality that a ∈ (F, 0). By Lemma 3.4.7,
we get (F, 0)+ ≤ I. If moreover (0, f)+ ∈ I for some some non-zero f ∈ F , then
[(0, f)+, (f, 0)+] = ψ((0, f), (f, 0))+ = (−f2, f2)+ "= 0 yields a contradiction with
the fact that I is abelian. Hence I = (F, 0)+ ⊕ S+.

It only remains to show that J := (F, 0)+ ⊕ S+ is an inner ideal, i.e., that

[(F, 0)+ ⊕ S+, [(F, 0)+ ⊕ S+, L]] ≤ (F, 0)+ ⊕ S+ = (F, 0)+ ⊕ L2.

Using the 5-grading of L, this means that we only have to verify the following
inclusions:

[(F, 0)+, [(F, 0)+,A−]] ≤ (F, 0)+, (3.5)
[(F, 0)+, [(F, 0)+,S−]] = 0, (3.6)

[(F, 0)+, [S+,S−]] ≤ (F, 0)+, (3.7)
[S+, [(F, 0)+,S−]] ≤ (F, 0)+. (3.8)

Let e, f, x, y ∈ F be arbitrary and let s = (x,−x) and t = (y,−y). To show (3.5),
we compute that

[(e, 0)+, [(f, 0)+, (x, y)−]] = −V(f,0),(x,y)(e, 0)+ = (−fy.e− ey.f, 0)+ ⊆ (F, 0)+.

To show (3.6), we compute that

[(e, 0)+, [(f, 0)+, s−]] = −V(e,0),(xf,0) = 0.

To show (3.7), we compute that

[(e, 0)+, [s+, t−]] = [(e, 0)+, LsLt] = (−x.ye, 0)+ ∈ (F, 0)+.

Finally, (3.8) follows from (3.7) by the Jacobi identity because [S+, (F, 0)+] =
0.

We are now ready to construct a point-line geometry from the proper non-
trivial inner ideals of K(A).
Definition 3.4.11. We define the point-line geometry Γ = (M,F) with as points

M := M(L) := {I | I is a minimal proper non-trivial inner ideal of L}

and as lines

F := F(L) := {I | I is a non-minimal proper non-trivial inner ideal of L},

with inclusion as incidence.
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Lemma 3.4.12. Let J ∈ F . Then J is the union of the elements of M it
contains. Moreover, any two distinct such elements intersect trivially and span J .

Proof. By Theorems 3.1.14 and 3.4.9 and Lemma 3.4.10, we may assume that
J = (F, 0)+ ⊕ S+. Since S+ ∈ M, we get e−((f, 0), 0)(S+) ∈ M, for all f ∈ F .
Note that for each (g,−g) ∈ S, we have

e−((f, 0), 0)((g,−g)+) = (g,−g)+ − (gf, 0)+,

since V(gf,0),(f,0) = 0. Moreover, by (3.5) and (3.6) and Vx,y(F, 0) = (F, 0) for
all x, y ∈ A, also (F, 0)+ is an inner ideal contained in J . Since each element of
J \ (F, 0)+ can be written as (g,−g)+− (gf, 0)+ for some f, g ∈ F , the first claim
is proved.

The second claim is obvious since the intersection of inner ideals is again an
inner ideal, the elements of M are minimal inner ideals and the dimension of J
is twice the dimension of an element of M.

Lemma 3.4.13. Two distinct points I, J ∈ M are collinear if and only if [I, J ] =
0.

Proof. If I and J are collinear, then they are contained in a proper inner ideal.
Because this inner ideal is abelian, we get [I, J ] = 0.

Conversely, let I, J ∈ M with [I, J ] = 0. By Theorem 3.1.14, we may assume
I = S+. By [I, J ] = 0 and the fact that all non-zero elements of S are conjugate
invertible, we get J ≤ L0⊕L1⊕L2. Suppose that there is an x := V +a++s+ ∈ J
with s ∈ S, a ∈ A, V ∈ Instrl(A) and V "= 0. Since [I, J ] = 0, we have V δ(S) = 0.
If V 2 "= 0, then there exists some b ∈ A such that [x, [x, b−]] ∈ J has a non-zero
(−1)-component, a contradiction. If V 2 = 0, then by Theorem 3.4.9, we can
find 0 "= U ∈ Instrl(A) such that W := [V, [V, U ]] satisfies W 2 "= 0. Hence
y := [x, [x, U ]] ∈ J has 0-component W , so we can repeat the previous argument
with x replaced by y and V replaced by W to get a contradiction. We conclude
that J ≤ A+ ⊕S+.

Since J "= I, there exists a non-zero a ∈ A and an s ∈ S such that y :=
a+ + s+ ∈ J . For each t ∈ S, the inner ideal J contains the element [y, [y, t−]],
which has 0-component −Va,ta. Since J ≤ L1 ⊕ L2, we must have Va,ta = 0 for
all t ∈ S and hence, by Lemma 1.1.57, we get a ∈ (F, 0) or a ∈ (0, F ). Hence
J intersects one of the inner ideals (F, 0)+ ⊕ S+ and (0, F )+ ⊕ S+ non-trivially.
Since J is a minimal inner ideal, we conclude that either J ⊆ (F, 0)+ ⊕ S+ or
J ⊆ (0, F )+ ⊕ S+. Since these inner ideals both contain I = S+, the points I
and J are indeed collinear.

Lemma 3.4.14. Two points I, J ∈ M that satisfy [I, [I, J ]] "= 0 are at distance 3
in Γ. Moreover, we then have [i, j] "= 0 for all non-zero i ∈ I, j ∈ J .
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Proof. By Theorem 3.1.14, we may assume that I = S+. The assumption
[I, [I, J ]] "= 0 then implies that J contains an element with non-zero (−2)-
component. By Lemma 3.1.9 and the fact that S+ is fixed by E+(A), we may
assume that J = S−. Since all non-zero elements of S are conjugate invertible,
this already shows that [i, j] "= 0 for all 0 "= i ∈ I and 0 "= j ∈ J .

By Lemma 3.4.13, the points (F, 0)+ and (F, 0)− are collinear, so we can
consider the path (S+, (F, 0)+, (F, 0)−,S−) to see that the points I and J are at
distance at most 3. By Lemma 3.4.13, the points I and J are not collinear.

Now suppose that I and J are at distance 2 and let K ∈ M be a point collinear
with both I and J . By Lemma 3.1.12 we get K ≤ (S− ⊕A−) ∩ (A+ ⊕S+) = 0,
a contradiction.

The following lemma is a stronger version of Lemma 3.4.13.

Lemma 3.4.15. Two distinct points I, J ∈ M are collinear if and only if there
is some 0 "= j ∈ J such that [I, j] = 0.

Proof. Let 0 "= j ∈ J be such that [I, j] = 0; we have to show that [I, J ] = 0. By
Lemma 3.4.14, we already know that [I, [I, J ]] = 0.

By Theorem 3.1.14, we may assume that I = S+. Then [I, [I, J ]] = 0 yields
J ≤ L−1 ⊕ L0 ⊕ L1 ⊕ L2. Hence j = b− + V + a+ + s+ for some a, b ∈ A, V ∈
Instrl(A) and s ∈ S. Since all non-zero elements of S are conjugate invertible,
[I, j] = 0 implies b = 0 and V δ(S) = 0.

We claim that J contains an element in L1 ⊕L2 with non-zero 1-component.
For each c ∈ A, J contains [j, [j, c+]] ∈ L1 ⊕L2, which has 1-component V 2(c)+,
so if V 2 "= 0, then the claim holds. If V 2 = 0, we use Theorem 3.4.9 to find
W ∈ Instrl(A) such that j′ := [j, [j,W ]] ∈ L0 ⊕L1 ⊕L2 has 0-component U with
U2 "= 0. Replacing j by j′ then shows the claim.

Denote this element of J by x = c+ + t+ where 0 "= c ∈ A and t ∈ S. Then
for each d ∈ A, J also contains [x, [x, d−]], which has 1-component −Uc(d)+.
If c were conjugate invertible, then Uc would be an invertible operator, hence
the projection of J onto A+ would be all of A+. This contradicts the fact that
dim J = dimS < dimA. Hence c is not conjugate invertible, so c ∈ (F, 0) or
c ∈ (0, F ). It follows that the minimal inner ideal J intersects one of the two
non-minimal inner ideals (F, 0)+ ⊕S+ or (0, F )+ ⊕S+ non-trivially and is hence
contained in it. We conclude that indeed [I, J ] = 0.

Lemma 3.4.16. Let I, J ∈ M be two distinct points such that [I, J ] "= 0 and
[I, [I, J ]] = 0. Then there is exactly one point K ∈ M collinear with both I
and J .

Proof. By Theorem 3.1.14, we may assume J = S+. Since [I, J ] "= 0 we can
find i ∈ I and j ∈ J such that e := [i, j] "= 0. By [I, [I, J ]] = 0 we get I ≤
L−1 ⊕ L0 ⊕ L1 ⊕ L2. Hence e ∈ L1 ⊕ L2 and i = b− + V + a+ + s+ for some
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a, b ∈ A, s ∈ S and V ∈ Instrl(A). Note that for each c ∈ A, I contains
[i, [i, c+]], which has (−1)-component −Ub(c)−. Since dim I = dimS < dimA,
Lemma 3.4.6 implies that b is contained in (F, 0) or (0, F ). Hence e is contained
in either (F, 0)+ ⊕ S+ or (0, F )+ ⊕ S+. By Lemma 3.4.12, e is contained in a
unique element E ∈ M. Since J = S+, we get [E, J ] = 0, so E and J are collinear
by Lemma 3.4.13. Since [I, [I, J ]] = 0, we get [I, e] = 0, so Lemma 3.4.15 implies
that I and E are collinear. Since [I, J ] "= 0, it already follows from Lemma 3.4.13
that I and J are at distance 2 in the collinearity graph of Γ.

Suppose now that K ∈ M is another point collinear with both I and J . By
Lemma 3.4.10, E and K are contained in either (F, 0)+ ⊕ S+ or (0, F )+ ⊕ S+.
Assume first that both E,K ≤ (F, 0)+ ⊕ S+. Then Lemma 3.4.12 implies that
E ⊕K = (F, 0)+ ⊕ S+. Since [E, I] = 0 = [K, I], this implies that also [J, I] =
[S+, I] = 0, a contradiction.

Hence we may assume that E ≤ (F, 0)+ ⊕ S+ and K ≤ (0, F )+ ⊕ S+. Since
E ∩ S+ = 0 by Lemma 3.4.12, the projection of E onto A+ is (F, 0)+. Similarly,
the projection of K onto A+ is (0, F )+. Hence the projection of E⊕K ≤ A+ ⊕S+

onto A+ is all of A+. Since [E ⊕K, I] = 0, this implies that for each c ∈ A, we
can find some t ∈ S such that [c++ t+, I] = 0. Now let i = b−+V + a++ s+ ∈ I
be arbitrary. Then [c+ + t+, i] has 0-component Vc,b, hence Vc,b = 0 for all c ∈ A
and in particular Uc(b) = Vc,b(c) = 0 for all c ∈ A. By choosing c conjugate
invertible, we get b = 0. This implies that [c+ + t+, i] has 1-component V (c),
hence V (c) = 0 for all c ∈ A, so also V = 0. So I ≤ A+ ⊕S+, but then [I, J ] = 0,
which is again a contradiction.

Corollary 3.4.17. Let I, J ∈ M be two distinct points at distance d in Γ. Then

d = 1 ⇐⇒ [I, J ] = 0,

d = 2 ⇐⇒ [I, J ] "= 0 and [I, [I, J ]] = 0,

d = 3 ⇐⇒ [I, [I, J ]] "= 0.

Lemma 3.4.18. The geometry Γ does not contain triangles, quadrangles or
pentagons.

Proof. Let I ∈ M be a point and suppose that I would be contained in a triangle
(I, J,K) in Γ. By Theorems 3.1.14 and 3.4.9, we may assume that I = S+. By
Lemma 3.4.10, there are only two lines through I, namely (F, 0)+ ⊕ S+ and
(0, F )+ ⊕ S+, so we must have J ⊆ (F, 0)+ ⊕ S+ and K ⊆ (0, F )+ ⊕ S+ (or
conversely). Since J "= I "= K, there is some (e, 0)++s+ ∈ J and (0, f)++t+ ∈ K
with e, f "= 0. Since J and K are collinear, we have [J,K] = 0 by Lemma 3.4.13,
so in particular 0 = [(e, 0)+ + s+, (0, f)+ + t+] = ψ((e, 0), (0, f))+, which is a
contradiction. Hence Γ does not contain triangles.

By Lemma 3.4.16 and Corollary 3.4.17, Γ does not contain quadrangles.
Suppose now that Γ would contain a pentagon (I, J,M,N,O) for certain

points I, J,M,N,O ∈ M. By Theorem 3.4.9, we may again assume that I = S+.
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By Lemma 3.4.10, we may then assume that J contains some j = a+ + s+ with
a = (f, 0) for some non-zero f ∈ F . Write s = (g,−g) with g ∈ F . Then

e+((0, f
−1g), 0)(a+ + s+) = a+.

Since e+((0, f−1g), 0) fixes I = S+, we may assume that J = (F, 0)+ as well.
Notice that 〈(F, 0)+, (F, 0)−〉 is a line through I and that any point lies on exactly
two lines by Lemma 3.4.10; hence M ≤ 〈(F, 0)+, (F, 0)−〉. So M contains some
y := (f, 0)+ + (g, 0)− with f, g ∈ F . Note that g "= 0 since J ∩M = 0. We now
observe that

e+
(
0, (−fg−1, fg−1)

)
(y) = (g, 0)−

and that e+(0, (−fg−1, fg−1)) preserves I and J . We may thus assume that
M = (F, 0)−.

Since O is collinear with I and not on the line IJ , Lemma 3.4.10 shows that
O contains some element s+ + (0, f)+ with s ∈ S and 0 "= f ∈ F . Since O and
M are at distance at most 2, we get [O, [O,M ]] = 0. Hence

[s+ + (0, f)+, [s+ + (0, f)+, (g, 0)−]] = 0

for all g ∈ F . In particular, the 1-component −U(0,f)(g, 0) must be 0 for all
g ∈ F . Since U(0,f)(g, 0) = 2(0, fgf), we get a contradiction. We conclude that
Γ does not contain pentagons.

Theorem 3.4.19. Let A be the structurable algebra from Construction 3.4.2 and
set L = K(A). Consider the graph Ω = (V,E), with

V = {I | I is a proper non-minimal non-trivial inner ideal of L},
E = {{I, J} | I ∩ J "= 0}.

Then Ω is the incidence graph of the Moufang triangle equivalent with the pro-
jective plane defined over F . Its root groups can be identified with

U1 = e−((F, 0), 0), U2 = e−(0,S), U3 = e−((0, F ), 0),

and the commutator relations are as in E−(A).
Moreover, the geometry Γ (as introduced in Definition 3.4.11) is a thin gen-

eralized hexagon, which is the dual double2 of this Moufang triangle.

Proof. By Lemma 3.4.13, the cycle of points
(
S+, (F, 0)+, (F, 0)−, S−, (0, F )−, (0, F )+, S+

)

forms a hexagon in Γ. Then Theorem 3.4.9, Lemmas 3.4.10 and 3.4.18, and Corol-
lary 3.4.17 show that Γ is a thin generalized hexagon.

2The dual double of a point-line geometry ∆ is the geometry with as point set the flags of
∆, i.e., the incident point-line pairs, and as line set the union of the point set and the line set
of ∆.
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Note that the intersection of two non-minimal proper inner ideals is a minimal
inner ideal if this intersection is non-empty. This intersection is a point of the
thin generalized hexagon Γ. Therefore, Ω is the incidence graph of a generalized
triangle and Γ is the dual double of this triangle.

Consider the following 6-cycle in Ω:

(x0, . . . , x5, x0) =
(
(0, F )+⊕S+, S+ ⊕(F, 0)+, (F, 0)+⊕(F, 0)−, (F, 0)−⊕S−,

S− ⊕(0, F )−, (0, F )− ⊕ (0, F )+, (0, F )+ ⊕ S+

)
.

We now show that e−((F, 0), 0) fixes all neighbors of x2 and x3 and acts transi-
tively on the set of all neighbors of x1 distinct from x2. Note that if I is a proper
non-minimal inner ideal, we can identify a neighbor J of I with the minimal inner
ideal I ∩ J , since Γ is a thin generalized hexagon. Moreover, any automorphism
stabilizing I and I ∩ J stabilizes J . So in order to check that e−((F, 0), 0) fixes
all neighbors of xi it suffices to check that it fixes xi itself and all the minimal
inner ideals it contains, for i = 2, 3, and this is clear since it fixes the inner ideals
x2 and x3 elementwise. Similarly, in order to check that that e−((F, 0), 0) acts
transitively on the set of all neighbors of x1 distinct from x2, it suffices to show
that it acts transitively on the set of all minimal inner ideals in x1 distinct from
x1 ∩ x2 = (F, 0)+. This follows from the fact that [(f, 0)−, (g,−g)+] = (−fg, 0)+
for all f, g ∈ F and a short computation.

By Lemma 1.2.11, it now follows that the root group U1 coincides with
e−((F, 0), 0); similarly, the root group U3 coincides with e−((0, F ), 0). In order to
determine the root group U2, note that e−(0,S) fixes all neighbors of x3 and x4

since [S−, xi] = 0, for i = 3, 4. Using the fact that [(f,−f)−, (g, 0)+] = (fg, 0)−,
we deduce that it acts transitively on the set of all neighbors of x2 different from
x3.

In order to show that Ω is the incidence graph of a Moufang triangle it suffices
to show that E(A) acts transitively on the set of all cycles of length 6. Consider
any 6-cycle (y0, . . . , y5, y0). By Theorem 3.1.14, the minimal inner ideal y0 ∩ y1
can be mapped onto S+. Consider the minimal inner ideal I = y3 ∩ y4. By
Corollary 3.4.17, we get [S+, [S+, I]] "= 0. Then by Lemma 3.1.9, there exists
an automorphism fixing S+ and mapping I onto S−. Since there are precisely
two proper inner ideals through a minimal inner ideal and [(0, F )+,S−] "= 0,
there exists an automorphism mapping our cycle (y0, . . . , y5, y0) onto the cycle
(x0, . . . , x5, x0).

In order to show that Ω is the incidence graph of the Moufang triangle
equivalent with the projective plane defined over F , it suffices to set x1(f) =
e−((f, 0), 0), x2(f) = e−(0, (f,−f)), x3(f) = e−((0, f), 0) for all f ∈ F and
compare Theorem 1.2.21 with (1.14).

Remark 3.4.20. Another way to obtain the Moufang triangles associated with
an octonion division algebra O, is to consider the proper non-trivial inner ideals
of the exceptional Jordan algebra H3(O) (not of its TKK Lie algebra!). These
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inner ideals are either 1- or 10-dimensional; the former can be identified with the
points of the projective plane and the latter with the lines of the projective plane.
This is, of course, related to the fact that these Moufang triangles arise as rank
2 forms of buildings of type E6. See [Fau73, 2(B)] and [McC04, p. 34-35].

Remark 3.4.21. As we have mentioned in the introduction of this thesis, a Lie
algebra can often be obtained in more than one way as the TKK Lie algebra
of a structurable algebra; see [Sta20, Theorem 5.9]. Moreover, by [LGLN07,
5.2], any inner ideal is the “end” of a Z-grading, at least if char k "= 2, 3, 5. For
some choices of inner ideals, this Z-grading will be different from the standard
5-grading obtained via the TKK construction.

In the case that we are currently considering, the inner ideal S+ is, of course,
the end of a Z-grading on L. On the other hand, consider an inner ideal contained
in F (i.e., a non-minimal proper inner ideal); then this inner ideal will also be
the end of a Z-grading on L. Indeed, note that adT(1,−1)

is a grading derivation
with components

L−1 = (0, F )− ⊕ (0, F )+;

L0 = S− ⊕ Instrl(A)⊕ S+;

L1 = (F, 0)− ⊕ (F, 0)+.

Then (L−1, L1) is a Jordan pair (as defined in [Loo75, 1.2]), a special case of
a Kantor pair. More precisely, one checks that (L−1, L1) is isomorphic to the
Jordan pair (M1,2(F ),M1,2(F op)) via the isomorphism

(0, f)− + (0, g)+ -→ 2(f, g);

(f, 0)− + (g, 0)+ -→ (g, f),

using [Loo75, 8.15].
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We now come to the case of the Moufang hexagons. It is known from the clas-
sification of Moufang hexagons by Jacques Tits and Richard Weiss [TW02] that
Moufang hexagons are parametrized by anisotropic cubic norm structures, or
equivalently, by cubic Jordan division algebras, see Theorem 1.2.21. The struc-
turable algebra we will use will be a matrix structurable algebra constructed from
this Jordan algebra.

Notation 3.5.1. Let J be a cubic Jordan division algebra over a field of char-
acteristic different from 2 and 3, with non-degenerate admissible form N , trace
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form T and Freudenthal cross product ×. Let A be the structurable algebra
M(J, 1) of skew-dimension one. (Recall Definition 1.1.60.) Let s :=

(
1 0
0 −1

)
∈ S.

Set L = K(A). The aim of this section is to prove that the geometry of the
proper non-trivial inner ideals of L, with inclusion as incidence, is a generalized
hexagon.

We begin with a description of the derivations of A; this will be used in the
proof of Theorem 3.5.3 below.

Lemma 3.5.2. Let D ∈ Der(A). Then there exist m,n ∈ Endk(J) such that

D

(
α l
j β

)
=

(
0 m(l)

n(j) 0

)

for all α,β ∈ k and l, j ∈ J . If D "= 0, then m "= 0 "= n.

Proof. The fact that D(1) = 0 is evident. Since D(S) ⊆ S, we have D(s) = λs
for some λ ∈ k. Hence 0 = D(1) = D(s2) = D(s)s + sD(s) = 2λs2 = 2λ and
thus D(s) = 0. This already shows that D

(
α 0
0 β

)
for all α,β ∈ k.

We now consider an element of the form

x =

(
0 l
0 0

)
.

Then sx = x and xs = −x. Hence D(x) = D(s)x + sD(x) = sD(x) and
−D(x) = D(x)s+ xD(s) = D(x)s. This implies that

D(x) =

(
0 l′

0 0

)

for some l′ ∈ J . Similarly, for each j ∈ J , there is some j′ ∈ J such that D
(
0 0
j 0

)
=( 0 0

j′ 0

)
. Since D is k-linear, we conclude that there exist m,n ∈ Endk(J) such

that
D

(
α l
j β

)
=

(
0 m(l)

n(j) 0

)

for all α,β ∈ k and l, j ∈ J .
Assume now that m = 0; we will show that this implies D = 0. We have

x2 =
(

0 0
l×l 0

)
and l × l = 2l#. Since m = 0, we have D(x) = 0. Hence also

D(x2) = D(x)x+ xD(x) = 0, which implies n(l#) = 0. Since l ∈ J was arbitrary
and J is division, this implies that n = 0.

Theorem 3.5.3. Let A be as in Notation 3.5.1. Then A satisfies Assump-
tion 3.1.10.

Proof. Notice that A is central simple by [AF84, §4, Lemma 2.1]. Assump-
tion 3.1.1 is now obviously satisfied.
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Consider V ∈ Instrl(A) such that V 2 = 0, V δ(s) = 0 and V "= 0. By
Lemma 1.1.51, we can write V = D+Tx for some D ∈ Der(A) and x ∈ A. Write

x =

(
α l
j β

)

for some α,β ∈ k and j, l ∈ J . Let m,n ∈ Endk(J) be as in Lemma 3.5.2.
Then D(1) = 0 = D(s), and thus Dδ(s) = 0 and Dε = D. On the other hand,
T δx (s) = −ψ(x, s) = xs + sx =

( α+β 0
0 −α−β

)
. Hence the condition V δ(s) = 0

implies β = −α. In particular, x− x = 2αs.
Now let y = ( 1 0

0 0 ). Then

Tx(y) = xy + y(x− x) = xy + 2αys =

(
3α 0
j 0

)

and hence

T 2
x (y) = xTx(y) + Tx(y)(x− x) =

(
3α2 + T (l, j) + 6α2 j × j

2αj + 2αj 0

)

=

(
9α2 + T (l, j) 2j#

4αj 0

)
.

Using Lemma 3.5.2 and the fact that D(y) = 0, we get

0 = V 2(y) = D(Tx(y)) + T 2
x (y) =

(
9α2 + T (l, j) 2j#

4αj + n(j) 0

)
.

In particular, j# = 0; since J is division, this implies j = 0. Hence 9α2 = 0, i.e.,
α = 0. By considering

(
0 0
0 1

)
instead of y, we obtain in a similar fashion that

l = 0. We conclude that x = 0.
Hence V = D for some D ∈ Der(A). Since V "= 0, it follows from Lemma 3.5.2

that we can find some j ∈ J with l := m(j) "= 0. Consider a =
(
0 j
0 0

)
and notice

that D(a) =
(
0 l
0 0

)
∈ H, D(a)2 =

(
0 0
2l# 0

)
and (D(a)2)2 =

(
0 8l##
0 0

)
. Since V 2 = 0

and V ε = V , we have

U := [V, [V, Va,a]] = 2VD(a),D(a) = 2LD(a)2

by Lemma 1.1.52. If U2 = 0, then L2
D(a)2 = 0, which can be applied on 1 to get

(D(a)2)2 = 0, hence 8l## = 8N(l)l = 0. Since J is division, this implies l = 0 and
we get a contradiction. Hence U2 "= 0.

We now consider the extremal geometry associated to L. Recall from Def-
inition 2.3.12 that E(L) is the collection of one-dimensional inner ideals of L
and that the non-zero elements of these inner ideals are precisely the extremal
elements of L. The lines are two-dimensional subspaces of L such that every
one-dimensional subspace of it is an element of E(L).
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Proposition 3.5.4. Let a be a non-zero element of A. The following are equiv-
alent:
(a) a+ is extremal;
(b) Ua(A) ≤ 〈a〉;
(c) Usa(A) ≤ 〈sa〉;
(d) Va,sa = 0;
(e) 〈s+, a+〉 is a line of Γ(L).

Proof. First note that s+ ∈ S+ is extremal since 〈s+〉 = S+ is the 2-component
of the 5-grading on L. Recall that s2 = 1.
(a)⇒(b) If a+ is extremal, then for each b ∈ A, the element [a+, [a+, b−]] =

−Ua(b)+ must be a multiple of a+.
(b)⇒(c) This follows immediately from the identity Usa = −LsUaLs (see [AH81,

Proposition 11.3]).
(c)⇒(d) Let x := e−(−sa, 0)(s+). Since s+ is extremal, so is x. Using Lemma

1.1.76 together with the fact that s(sa) = (s2)a = a, we get

x = 1
24ψ(sa, Usa(a))− − 1

6Usa(a)− + 1
2Va,sa + a+ + s+.

Now Usa(a) ∈ 〈sa〉 by assumption. Since ψ(sa, sa) = 0, it follows that

x = (λsa)− +
1

2
Va,sa + a+ + s+

for some λ ∈ k.
Assume first that λ "= 0. Since [x, [x, s+]] ≤ L0⊕L1⊕L2, the fact that x
is extremal but has a non-zero (−1)-component implies that [x, [x, s+]] =
0. In particular, the 0-component λ2Va,sa equals 0 and hence Va,sa = 0.
Assume next that λ = 0. Let b ∈ A be arbitrary. Then [x, [x, b−]]
must be a multiple of 1

2Va,sa + a+ + s+, but this element has (−1)-
component 1

4V
2
sa,a(b)−. Since b was arbitrary, this implies V 2

sa,a = 0.
Moreover, V δ

a,sa(s) = −ψ(a, a) = 0. By Lemma 1.1.56, we also have
V 2
a,sa = 0. Suppose now that Va,sa "= 0. By Theorem 3.5.3, there exists

W ∈ Instrl(A) such that [Va,sa, [Va,sa,W ]] "∈ 〈Va,sa〉. Since x is extremal
and [Va,sa, [Va,sa,W ]] is 4 times the 0-component of [x, [x,W ]], this is a
contradiction. Hence Va,sa = 0 also in this case.

(d)⇒(e) Let λ ∈ k be arbitrary and let x := e−(−λsa, 0)(s+). Since Va,sa = 0 by
assumption, we have

ad(−λ(sa)−)2(s+) = λ2Va,sa = 0

and hence ad(−λ(sa)−)j(s+) = 0 for all j ≥ 2. It follows that x =
λa+ + s+, and since s+ is extremal, we already obtain that λa+ + s+
is also extremal for all λ ∈ k. In particular, the element a+ + s+ is
extremal.
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It remains to show that a+ is extremal; the result will then follow because
[s+, a+] = 0. Note that for any i ∈ [−2, 2], we have

[a+ + s+, [a+ + s+, Li]] ≤ Li+2 ⊕ Li+3 ⊕ Li+4

and the projection of [a++s+, [a++s+, Li]] onto Li+2 equals [a+, [a+, Li]].
Together with [a+ + s+, [a+ + s+, Li]] ≤ 〈a+ + s+〉 this implies that
[a+, [a+, Li]] ≤ 〈a+〉. We conclude that a+ is indeed extremal.

(e)⇒(a) This is obvious.

Definition 3.5.5 ([Gar01, Definition 6.1]). Let I be a subspace of a structurable
algebra A of skew-dimension one. Then I is called an inner ideal of A if Ui(A) ≤
I, for all i ∈ I.

Corollary 3.5.6. All proper non-trivial inner ideals of A are 1-dimensional.

Proof. Let I be a proper non-trivial inner ideal of A. Consider a ∈ I. Let
x := e−(−sa, 0)(s+). Since s+ is extremal, so is x. Using Lemma 1.1.76 we get

x = 1
24ψ(sa, Usa(a))− − 1

6Usa(a)− + 1
2Va,sa + a+ + s+.

Now since a is not conjugate invertible (otherwise I = A), we get ψ(sa, Usa(a)) =
0 by [AF84, Theorem 2.11]. Hence

x = (sa′)− +
1

2
Va,sa + a+ + s+

for some a′ ∈ I. For any b ∈ A we get that [x, [x, b+]] has (−1)-component
−Usa′(b). Since x is extremal we get Usa′(A) ≤ 〈sa′〉. By Proposition 3.5.4 we
get that 〈a′〉 is a 1-dimensional inner ideal contained in I. Then [Gar01, Theorem
6.12] concludes this proof.

Remark 3.5.7. By Proposition 3.5.4, an element a of the structurable algebra A
is extremal 3, i.e. Ua(A) ≤ 〈a〉, if and only if a+ is extremal (in the Lie algebra).
Note that the proof uses the fact that we are working with a structurable algebra
of skew-dimension one and the implication from (c) to (d) relies on the assumption
that J is division (via Theorem 3.5.3). One could expect that there is a more
direct proof of the equivalence of (b) and (d), without going to the Lie algebra,
which may hold in a more general setting.

Corollary 3.5.8. The set of extremal elements of L contained in A+ equals

B :=

{
λ

(
N(x) x
x# 1

)

+

∣∣∣ x ∈ J,λ ∈ k×
}

∪
{
λ

(
1 0
0 0

)

+

∣∣∣ λ ∈ k×
}
.

Moreover, if ψ(a, b) = 0 for a, b ∈ B, then a and b are linearly dependent.
3This notion coincides with the notion of a singular element in [Gar01, Definition 5.1] and

a strictly regular element in [AF84, p. 196].
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Proof. By Proposition 3.5.4, a+ is extremal if and only if Ua(A) ≤ 〈a〉. Recall
that J is a division algebra, so in particular, if j ∈ J , then (j#)# = N(j)j and if
j# = 0, then j = 0. The first statement now follows from [Gar01, Lemma 5.7].

A straightforward calculation shows that for any x, y ∈ J ,

ψ

((
N(x) x
x# 1

)

+

,

(
N(y) y
y# 1

)

+

)
= λs+

with λ = N(x) − N(y) + T (x, y#) − T (y, x#) = N(x − y). Since J is division,
λ = 0 if and only if x = y. Finally observe that

ψ

((
N(x) x
x# 1

)

+

,

(
1 0
0 0

)

+

)
= −s+.

The second statement is now clear.

Remark 3.5.9. By Corollary 3.5.6 the only proper non-trivial inner ideals of the
structurable algebra A are 1-dimensional, and form the Moufang set correspond-
ing to J (see [DM20]). Proposition 3.5.4 shows that if x is an extremal element
of A, then x+ is an extremal element of L = K(A). Hence, we get an embedding
of the Moufang set into the geometry of inner ideals of L, which will turn out to
be the Moufang hexagon associated to J ; see Theorem 3.5.11 below.
Lemma 3.5.10. Any proper inner ideal I containing S+ is either S+ itself or
equals 〈a+, s+〉 for some extremal element a+ ∈ A+. Moreover, any non-zero
element in I is extremal.

Proof. We may assume I "= S+. By Theorem 3.5.3 and Lemma 3.1.12, we get
S+ " I ≤ A+ ⊕S+. Hence a+ ∈ I for some non-zero a ∈ A. Then I also
contains [a+, [a+, s−]] = −Va,sa ∈ L0, hence Va,sa = 0. By Proposition 3.5.4, a+
is then extremal.

Suppose that I is at least 3-dimensional. By the previous paragraph, any
element of I is of the form µa+ + λs+, for some λ, µ ∈ k and some extremal
element a+. Since dim(I) ≥ 3, we can find two linearly independent extremal
elements a+ and b+ in I ∩A+. Since I is abelian, ψ(a+, b+) = [a+, b+] = 0, but
this contradicts Corollary 3.5.8. Hence I must be 2-dimensional and hence equal
to 〈a+, s+〉 for some extremal element a+ ∈ A+. The last claim follows from
Proposition 3.5.4(e).

Theorem 3.5.11. Let A be the structurable algebra M(J, 1) (of skew-dimension
one) over a field of characteristic different from 2 and 3, where J is a cubic
Jordan division algebra. Set L = K(A). Consider the graph Ω = (V,E), with

V = {I | I is a proper non-trivial inner ideal of L},
E = {{I,K} | I # K}.

Then Ω is the incidence graph of a generalized hexagon.
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Proof. Let I be an arbitrary proper non-trivial inner ideal. By Theorem 3.5.3
and Theorem 3.1.14, there exists an element of E(A) mapping I to an inner
ideal containing S+. By Lemma 3.5.10, the only proper non-trivial inner ideals
containing S+ are S+ itself and the inner ideals 〈a+, s+〉 for an extremal element
a+ ∈ A+. Moreover, all non-zero elements of such an inner ideal are extremal,
i.e., these inner ideals are singular. This implies that any line in the extremal
geometry (E(L),F(L)) is a maximal singular subspace. Theorem 2.3.17 now
implies that (E(L),F(L)) is a generalized hexagon (notice that the conditions
of this theorem are satisfied by Corollary 1.1.72 and Corollary 3.5.8). Since all
proper non-trivial inner ideals are either points or lines of the extremal geometry,
we conclude that Ω is the incidence graph of a generalized hexagon.

Remark 3.5.12. In [Fau77, Chapter 11], John Faulkner defines a Lie algebra
starting from a Jordan cubic division algebra J , which we will denote by F (J).
There is a lot of evidence that this Lie algebra is isomorphic to K(M(J, 1)),
but we have not pursued this in detail. Indeed, in [Fau77, Chapter 12], John
Faulkner proves that the geometry with as points the 1-dimensional inner ideals
of F (J) and as lines the 2-dimensional inner ideals of F (J) containing at least
two 1-dimensional inner ideals, with inclusion as incidence, form a generalized
hexagon. If it is indeed true that K(M(J, 1)) ∼= F (J), then Theorem 3.5.11
is a generalization of Faulkners’ result, in the sense that we are considering all
inner ideals (rather than only the 1-dimensional ones and the 2-dimensional ones
containing at least two 1-dimensional ones). Moreover, our approach also allows
to identify the Moufang sets associated to J in the Moufang hexagon associated
to J (see Remark 3.5.9).

Remark 3.5.13. Let us again (as in Remark 3.4.21 for the triangle case) try to
obtain each inner ideal as the end of a Z-grading. Of course, the inner ideal S+

is the end of a Z-grading on L.
Let us now consider a 2-dimensional inner ideal; then this inner ideal will

also arise as the end of a Z-grading on L. Indeed, note that adTs0
is a grading

derivation with components

L−3 = ( 0 0
0 k )− ⊕ ( 0 0

0 k )+

L−2 = T( 0 0
J 0 )

L−1 = ( 0 J
0 0 )− ⊕ ( 0 J

0 0 )+

L0 = 〈T( 1 0
0 0 )

〉 ⊕ 〈T( 0 0
0 1 )

〉 ⊕ Inder(A)⊕ S− ⊕S+

L1 = ( 0 0
J 0 )− ⊕ ( 0 0

J 0 )+

L2 = T( 0 J
0 0 )

L3 = ( k 0
0 0 )− ⊕ ( k 0

0 0 )+,
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using V( 0 J
0 0 ),(

0 0
0 1 )

= V( 0 0
J 0 ),(

1 0
0 0 )

= V( 1 0
0 0 ),(

1 0
0 0 )

= V( 0 0
0 1 ),(

0 0
0 1 )

= 0 and Lemma
1.1.51. So in this case, as opposed to the triangle case, we do not get a Jordan
pair, and not even a Kantor pair.
Remark 3.5.14. We have chosen to use the matrix structurable algebra M(J, 1),
but we could also have chosen M(J, η) for any parameter η ∈ k×. Indeed,
the structurable algebras M(J, 1) and M(J, η) are isotopic (see, e.g., [Gar01,
Proposition 4.11 and Lemma 4.13], where the result is stated for Albert alge-
bras J but holds in general). Since isotopic structurable algebras give rise to
graded-isomorphic Lie algebras under the TKK-construction by [AH81, Proposi-
tion 12.3], this does not affect the resulting geometry.

Now we show that the generalized hexagon is, in fact, a Moufang hexagon.
Since we generalized the method used in Section 7 of [DMM20] in Section 4.4 to
determine the root groups even if the characteristic equals 2 or 3, we will make
use of the results of that section. For a self-contained proof, see [DMM20].
Theorem 3.5.15. Let Ω be the incidence graph of a generalized hexagon from
Theorem 3.5.11. Then Ω is the incidence graph of the Moufang hexagon associated
to the cubic Jordan division algebra J .

Proof. By Proposition 4.2.2 the Lie algebra K(A) is a simple non-degenerate Lie
algebra generated by its extremal elements. By (the proof of) Theorem 3.5.11
the incidence graph of the extremal geometry coincides with Ω and the extremal
geometry is a generalized hexagon. In Section 4.4 we recover a cubic norm struc-
ture on a subspace of L−1, see Notation 4.4.3 and Construction 4.4.11, which
we now denote by J1. Choose s−, s+, ( 1 0

0 0 )− and ( 0 0
0 1 )− as x, y, e′1 and e′2 in

Notation 4.4.1. Then e1 = ( 1 0
0 0 )+ and e2 = −( 0 0

0 1 )+ in the same notation. Then
by Notation 4.4.27, J1 is the (−1)-eigenspace of A− with respect to ad[e′1,e2]

.
Using [e′1, e2] = V( 0 0

0 1 ),(
1 0
0 0 )

we see that J1 coincides with {
(
0 0
j 0

)
− | j ∈ J}. So

σ : j -→
(

0 0
−j 0

)
− is a bijection between the vector space J and the vector space

J1. Now in Construction 4.4.11 we define the corresponding cross product which
we now denote by #1 as follows (recall Theorem 4.3.11(vi) and char(k) "= 2):

(
0 0
j 0

)#1
− =

1

2
[
(
0 0
j 0

)
−, [
(
0 0
j 0

)
−, e2]]

=
1

2
U(

0 0
j 0

)( 0 0
0 1 )− =

1

2

(
0 j×j
0 0

)
− =

(
0 j#

0 0

)

−
, (3.9)

for any j ∈ J . Note

e−(−( 0 0
1 0 )−)(e2) = −1

3
[( 0 0

1 0 )−,
(
0 1#
0 0

)
−] +

(
0 1#
0 0

)
− + Ve2,( 0 0

1 0 )
+ e2

= s− + ( 0 1
0 0 )− + Ve2,( 0 0

1 0 )
+ e2,

hence N1(−( 0 0
1 0 )−) = 1, with N1 the norm as is Construction 4.4.11. So we have

a basepoint for N1, and find a bijection σ2 between J ′
1 = {

(
0 j
0 0

)
− | j ∈ J} and J1
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as in Definition 4.4.16 and a straightforward calculation shows that this bijection
is the obvious one, namely sending

(
0 j
0 0

)
− to

(
0 0
−j 0

)
−. Then Construction 4.4.19

and (3.9) show that
(
0 0
j 0

)#J1

− =
(

0 0
−j# 0

)

−
. Hence the bijection σ is an isomor-

phism between the cubic norm structure (J, k, #) and the cubic norm structure
(J1, k, #J1). Now Theorem 4.4.38 concludes this proof.

Remark 3.5.16. The explicit description of the root groups, as described in
Section 4.4.2, is related to Peirce subspaces. More precisely, if one considers the
idempotent e = ( 1 0

0 0 ), and sets

Aij = {x ∈ A | ex = ix, xe = jx},

for i, j = 0, 1, we get U2 = e−(A11, 0), U3 = e−(A01, 0), U5 = e−(A10, 0) and
finally U6 = e−(A00, 0), where A = M(J), with J a cubic Jordan division algebra.

A similar remark applies to the triangle case. In this case, consider A = F⊕F
as in Construction 3.4.2, with F an alternative division algebra. Then e = (1, 0) is
an idempotent and Theorem 3.4.19 yields U1 = e−(A11, 0) and U3 = e−(A00, 0).
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We start this chapter in Section 4.1 by associating a 5-grading to certain pairs of
extremal elements and then we deduce certain properties of these gradings.

Section 4.2 is based on the last section of [CM21]. We show that any finite-
dimensional simple Lie algebra over a field of characteristic different from 2, 3
is generated by its extremal elements if, and only if, L is isomorphic to the
symplectic Lie algebra sp(V, f) for some non-degenerate symplectic space (V, f),
or L is obtained by applying the Tits-Kantor-Koecher construction to a (finite-
dimensional) simple structurable algebra A of skew-dimension 1. This result is
obtained without using any classification results on spherical buildings, (classical)
Lie algebras or structurable algebras.

In Section 4.3 we again consider arbitrary simple Lie algebras generated by
pure extremal elements and show that there exist certain automorphisms which
depend on elements in the (−1)- and 1-part of the 5-grading induced by two
hyperbolic extremal elements. Essentially, we extend the notion of algebraicity,
as defined in Definition 1.1.68, to these specific Lie algebras in characteristic 2
and 3 as well, and prove that these Lie algebras satisfy this extended notion.

We start Section 4.4 by showing that we can associate a cubic norm structure
to the Lie algebra if its extremal geometry contains lines and is not of a specific
type, which extends a result of Section 4.2 to characteristic 2 and 3. Then we use
this correspondence in the specific case of an anisotropic cubic norm structure
and show that the extremal geometry is then the Moufang hexagon associated
with this anisotropic cubic norm structure. We can use this result to show that a
simple Lie algebra generated by its pure extremal elements is characterized by its

87
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extremal geometry if this geometry has lines. In the final subsection of Section 4.4
we have a look at the case when there are lines in the extremal geometry but
there is no associated cubic norm structure.

In Section 4.5 we look at the case in which there are symplectic pairs in the
extremal geometry, and also assume that after a Galois extension of degree at
most 2 there are lines in the extremal geometry. In particular, we allow the
line set of the extremal geometry to be the empty set. We show that, if the
characteristic of the field is not 2, we can associate a quadrangular algebra to the
Lie algebra. Then we use this correspondence in the specific case an anisotropic
quadrangular algebra and show that the inner ideal geometry is the Moufang
quadrangle associated with this anisotropic quadrangular algebra.

In the final section we consider the remaining case of an extremal geometry
with no lines, nor symplectic pairs and show that the extremal points, together
with the appropriate root groups, form a Moufang set.

It is advised to read Chapter 2, and especially Sections 2.1 and 2.3, before
reading this chapter.

4&$5*0/ ���
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In this section we describe the 5-grading which we can associate with any two
hyperbolic extremal elements, and prove several results on this grading which
we will need in the rest of this chapter. In this section we do not make any
assumptions on the field k over which the Lie algebra L is defined.

We start by recalling the Z-grading from Lemma 2.3.20. This grading plays
a central role in this section.

Lemma 4.1.1 ([CI06, Proposition 22]). Suppose that there exist extremal ele-
ments x, y ∈ L such that gx(y) = 1. Then L has a Z-grading

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

with L−2 = 〈x〉, L2 = 〈y〉, L0 = NL(x) ∩ NL(y), L1 = [y, U ] and L−1 = [x, U ],
where

U = {u ∈ L | gx(u) = gy(u) = gx([y, u]) = 0}.

Moreover, Li is contained in the i-eigenspace of ad[x,y], and adx defines a linear
isomorphism from L1 tot L−1 with inverse − ady.

Recall that the i-component of x ∈ L is the image of the projection of x onto
Li. In the next sections we will often consider different 5-gradings, but the i-
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component will always refer to the component according to the grading denoted
by ⊕2

i=−2Li.
Using the following lemma we can describe gx and gy more explicitly.

Lemma 4.1.2 ([CI06, Lemma 18, 19]). Consider a, b ∈ E and l ∈ L. Then

ga(b) = gb(a),

ga([b, l]) = −gb([a, l]).

Also, if a ∈ E and b ∈ L satisfy [a, b] = 0, then ga(b) = 0 and ga([b, l]) = 0 for
all l ∈ L.
Lemma 4.1.3. Let x, y and Li be as in Lemma 4.1.1. Then gx(L≤1) = 0 =
gy(L≥−1).

Proof. By the last part of Lemma 4.1.2, gx(L≤−1) = 0. Lemma 21 of [CI06]
together with L0 ≤ NL(x) implies gx(L0) = 0. Now by definition of U , we have
gx(L1) = gx([y, U ]) = 0. The argument for gy(L≥0) = 0 is completely similar.
Finally gy(L−1) = gy([x, U ]) = gx([y, U ]) = 0, by Lemma 4.1.2.

The following lemma describes an automorphism which switches x and y,
and also switches L−1 and L1, while stabilizing L0. In the lemma thereafter we
describe certain automorphisms which stabilize the components Li.
Lemma 4.1.4. Let x, y and Li be as in Lemma 4.1.1. Consider the automor-
phism ϕ = exp(y) exp(x) exp(y). Then

ϕ(λx+ l−1 + l0 + l1 + µy) = µx+ [x, l1] + ([x, [y, l0]] + l0) + [y, l−1] + λy,

for any λ, µ ∈ k and li ∈ Li, i = −1, 0, 1.

Proof. By gx(y) = gy(x) = 1, we get ϕ(x) = y and ϕ(y) = x. For any l1 ∈ L1

we get ϕ(l1) = exp(y)([x, l1] + l1) = [x, l1] + (l1 + [y, [x, l1]]) = [x, l1], using
gx(L1) = 0 = gy(L−1), see Lemma 4.1.3. Similarly ϕ(l−1) = [y, l−1] for all
l−1 ∈ L−1. Let l0 ∈ L0 be arbitrary. Let λ ∈ k be such that [x, l0] = λx. Using
Lemma 4.1.2, we get

[x, l0] + gx([y, l0])x = λx− gy([x, l0])x = λx− λgy(x)x = 0.

So, using Lemma 4.1.3 multiple times and using [y, l0] ∈ L2 in the last line, we
get

ϕ(l0) = exp(y)(exp(x)(l0 + [y, l0]))

= exp(y)(([x, l0] + gx([y, l0])x) + ([x, [y, l0]] + l0) + [y, l0])

= exp(y)(([x, [y, l0]] + l0) + [y, l0])

= ([x, [y, l0]] + l0) + ([y, l0] + [y, [x, [y, l0]]] + [y, l0])

= ([x, [y, l0]] + l0) + (2[y, l0] + [[y, x], [y, l0]]])

= [x, [y, l0]] + l0.
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Lemma 4.1.5. Let x, y and Li be as in Lemma 4.1.1. Let 0 "= λ ∈ k be
arbitrary. Consider the map ϕλ : L → L defined by ϕλ(li) = λili for all li ∈ Li,
with i ∈ {−2,−1, 0, 1, 2}. Then ϕλ ∈ Aut(L).

Proof. Clearly ϕλ is bijective. Consider li ∈ Li and lj ∈ Lj arbitrary, with
i, j ∈ {−2,−1, 0, 1, 2}, then

ϕλ([li, lj ]) = λi+j [li, lj ] = [λili,λ
j lj ] = [ϕλ(li),ϕλ(lj)].

The following lemma will ensure the non-degeneracy of certain maps later on.
Lemma 4.1.6. Let x, y and Li be as in Lemma 4.1.1. Assume moreover that
L is simple. If a ∈ Lσ1 satisfies [a, b] = 0 for all b ∈ Lσ1, then a = 0, with
σ ∈ {−,+}.

Proof. Let Z−1 be the subspace of L consisting of all a ∈ L−1 satisfying [a, b] = 0
for all b ∈ L−1. Similarly one defines Z1. For z ∈ Z−1 and a ∈ L−1 we get, using
the Premet identities, Lemma 4.1.3 and z, a ∈ L−1,

[[y, a], [y, z]] = gy([a, z]) + gy(z)[y, a]− gy(a)[y, z] = 0.

Hence [y, Z−1] ≤ Z1 and, since − adx ady fixes all elements of L−1, we get
[y, Z−1] = Z1. Also note [[L0, Z−1], L−1] = [L0, [Z−1, L−1]] + [Z−1, [L0, L−1]] = 0
and thus [L0, Z−1] ≤ Z−1 and similarly [L0, Z1] ≤ Z1. Moreover, by

[y, [Z−1, L1]] = [[y, Z−1], L1] = [Z1, L1] = 0

and Lemmas 4.1.1 and 4.1.4 we get [Z−1, L1] = [[y, Z−1], [x, L1]] = [Z1, L−1].
Now one verifies that

Z−1 ⊕ [Z−1, L1]⊕ Z1

is an ideal of L. Hence Z−1 = 0 and Z1 = 0.

Lemma 4.1.7. Consider x, y, a, b ∈ E such that gx(y) = 1 = ga(b). Let L =
L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 and L = L′

−2 ⊕ L′
−1 ⊕ L′

0 ⊕ L′
1 ⊕ L′

2 be the 5-
gradings corresponding to the hyperbolic pairs (x, y) and (a, b), respectively, as in
Lemma 4.1.1, so with x ∈ L−2, a ∈ L′

−2, y ∈ L2, b ∈ L′
2.

If ϕ ∈ Aut(L) maps L−2 and L2 onto L′
−2 and L′

2, respectively, then ϕ(Li) =
L′
i for all i ∈ {−2, . . . , 2}.

Proof. Consider 0 "= λ, µ ∈ k such that ϕ(x) = λa and ϕ(y) = µb. We get
L0 = NL(x)∩NL(y) and L′

0 = NL(a)∩NL(b) by Lemma 4.1.1, so L0 is mapped
onto L′

0 by ϕ. Also, L1 = [y, U ] and L′
1 = [b, U ′], with U as in Lemma 4.1.1 and

U ′ = {u ∈ L | ga(u) = gb(u) = ga([b, u]) = 0}. Then
ϕ(U) ≤ {u ∈ L | gϕ(x)(u) = gϕ(y)(u) = gϕ(x)([ϕ(y), u]) = 0}

= {u ∈ L | λga(u) = µgb(u) = λµga([b, u]) = 0} = U ′,

using λ, µ "= 0. Hence ϕ(L1) = ϕ([y, U ]) ≤ [b, U ′] = L′
1, similarly ϕ(L−1) ≤ L′

−1.
Since ϕ is an automorphism, these containments are actually equalities.
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The next lemma connects the grading to extremal elements in a certain rela-
tion with x.

Lemma 4.1.8. Let x, y and Li be as in Lemma 4.1.1. Assume moreover that L
is generated by E. For all i ∈ {−1, 0, 1, 2}, we have

Ei(x) = (E ∩ L≤i)\(E ∩ L≤i−1).

Proof. This claim is shown in the proof [CI06, Theorem 28].

In the next three lemmas we prove some facts on the grading if the extremal
geometry has lines. Recall that if L is generated by its set of extremal elements
E, then there exists a bilinear symmetric form g on L which associates with the
Lie bracket such that g(x, y) = gx(y) for all x, y ∈ E, see Proposition 2.3.6.

Lemma 4.1.9. Let L be a Lie algebra generated by extremal elements. Let x, y
and Li be as in Lemma 4.1.1. If the extremal geometry of L contains lines, then
for each element a ∈ E−1(x) ∩ E1(y) we have a ∈ L−1.

Proof. By Lemma 4.1.8 and a similar property for Ei(y), which we can obtain
by Lemma 4.1.8 and Lemma 4.1.4.

Lemma 4.1.10. Let x, y and Li be as in Lemma 4.1.1 and σ ∈ {−,+}. Assume
that L is generated by E. Consider e ∈ E ∩ Lσ1. Then ge(x) = 0 for all x ∈ Li

with i "= −σ1.

Proof. We will assume σ = +. By gx(l) = 0 for all l ∈ L≤1 and gy(l) = 0
for all l ∈ L≥−1, we get ge(x) = 0 = ge(y). Moreover, for any l ∈ L1, there
exists l′ ∈ L−1 such that l = [y, l′] by Lemma 4.1.1. By Lemma 4.1.2 we have
ge(l) = ge([y, l′]) = g([e, y], l′) = 0. Similarly, there exist e′ ∈ L−1 such that
e = [y, e′]. Consider l ∈ L0 arbitrary, by [y, l] ≤ 〈y〉 there exists a λ ∈ k such
that [y, l] = λy. Then ge(l) = g([y, e′], l) = −g(e′, [y, l]) = λgy(e′) = 0, using
e′ ∈ L−1.

Lemma 4.1.11. Let x, y and Li be as in Lemma 4.1.1. Assume moreover that L
is generated by E. If the extremal geometry of L contains lines, then there exist
a0, b0 ∈ E ∩ L−1 such that [a0, b0] = x. Moreover,

[a0 + b0,−[a0, y] + [b0, y]] = [x, y].

Proof. Fix an extremal point a in E−1(〈x〉) ∩ E1(〈y〉). By Lemma 4.1.9 we find
a ≤ L−1.

Now, by Lemma 2.1.9(f), we can find a point b collinear with 〈x〉 and special
with a. Since E≤0(a) and E≤1(a) are subspaces of the extremal geometry, any
point of the line through 〈x〉 and b, with the exception of 〈x〉, is special with
a. Consequently, we may assume that b is special with y as well and is thus
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contained in L−1, again using Lemma 4.1.9. Since a and b are special and 〈x〉 is
a common neighbor, we get [a, b] = 〈x〉. Since a and 〈y〉 are special, [a, 〈y〉] is the
unique point collinear with both a and 〈y〉. Clearly, 〈x〉 is special with [a, 〈y〉]
and thus [a, 〈y〉] ≤ L1 by Lemma 4.1.9. Similarly for b and 〈y〉. Note that we can
find a0 ∈ a and b0 ∈ b such that [a0, b0] = x. Now note

[a0 + b0,−[a0, y] + [b0, y]] = −2ga0(y)a0 + 2gb0(y)b0 + [a0, [b0, y]]− [b0, [a0, y]]

= [a0, [b0, y]] + [b0, [y, a0]] = −[y, [a0, b0]]

= −[y, x] = [x, y],

where we used (a, 〈y〉), (b, 〈y〉) ∈ E1 and the Jacobi identity.

4&$5*0/ ���
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In this section we describe how one can associate a (skew-dimension one) struc-
turable algebra to a simple Lie algebra generated by its extremal elements.

Assumption 4.2.1. In this section we assume the characteristic of the field to
be distinct from 2 and 3. We also assume all algebras to be finite-dimensional in
this section.

Proposition 4.2.2. If A is a simple skew-dimension one structurable algebra,
then K(A) is a simple non-degenerate Lie algebra generated by its extremal ele-
ments.

Proof. By [All79, Corollary 6], K(A) is a simple Lie algebra. Clearly s+ is an
extremal element which is not a sandwich by Proposition 1.1.61, with 0 "= s ∈ S
arbitrary. Hence [CIR08, Theorem 1.1] and Corollary 2.3.11 imply that K(A)
is generated by its extremal elements and is non-degenerate, unless K(A) is
isomorphic to W1,1(5) and the characteristic of the field equals 5. The Witt
algebra W1,1(5) is a 5-dimensional Lie algebra. The dimension of K(A) equals
2dim(A) + 2 dim(S) + dim(Instrl(A)). Since 1 = dim(S) < dim(A), the Lie
algebra K(A) can never have dimension equal to 5.

We now focus on the converse of the above proposition. We will show in a
series of steps that any simple non-symplectic Lie algebra which is generated by
its extremal elements can be obtained by the above construction.

Recall that by the definition of the Lie bracket on K(A) we clearly see that
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this Lie algebra has a 5-grading given by K(A)j = 0 for all |j| > 2 and

K(A)−2 = S−, K(A)−1 = A−, K(A)0 = Instrl(A),

K(A)1 = A+, K(A)2 = S+ .

Even more generally, for any Kantor pair (P−, P+) there exists a 5-graded
Lie algebra denoted by TKK(P−, P+) and with 1-component isomorphic with
P+ and (−1)-component isomorphic with P−. Since the construction itself is
not relevant here, we refer to [AF99, §4] for more details.

Lemma 4.2.3. Let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be a 5-grading of a simple
Lie algebra L. Then (L−1, L1) is a Kantor pair with products defined by

{x, y, z}σ = [[x, y], z],

with x, z ∈ Lσ1, y ∈ L−σ1 and σ = ±. If (L−1, L1) "= 0, L is graded-isomorphic
to TKK(L−1, L1) and L0 = [L−1, L1].

Proof. The first statement is [AFS17, 4.2, page 728]. The second statement
follows from Lemma 4.4, Definition 4.5 and Corollary 4.17 combined with Propo-
sition 4.19 of loc. cit.

Lemma 4.2.4 ([Sta20, Lemma 4.13]). Let L = TKK(L−1, L1) be the 5-graded
Lie algebra associated with the Kantor pair (L−1, L1). Then (L−1, L1) is the
Kantor pair associated with a structurable algebra A if and only if there exist
u ∈ L−1 and v ∈ L1 such that [u, v] is the grading derivation of L. In that case
L is graded-isomorphic to K(A).

Now we are able to apply these results to our setting of extremal geometries.

Lemma 4.2.5. Let L be a simple Lie algebra generated by pure extremal elements.
Let x, y and Li be as in Lemma 4.1.1. If L is not a symplectic Lie algebra, then
there exist e ∈ L−1 and f ∈ L1 such that [x, y] = [e, f ].

Proof. Assume that the extremal geometry of L contains lines. Let a0 and b0 be
as in Lemma 4.1.11. Then consider e := a0 + b0 and f := −[a0, y] + [b0, y] and
note e ∈ L−1, f ∈ L1. By Lemma 4.1.11 we conclude [x, y] = [e, f ].

Assume now that the extremal geometry does not contain any lines and that L
is not symplectic. Then by Theorem 2.4.2 we find three extremal elements x, y, z
where x and y generate an sl2 not containing z, and gz(u) "= 0 for all extremal
elements u in this sl2. Denote the subalgebra of L generated by x, y and z by H.
From the proof of Lemma 2.4.6 we see that g(x, [y, z])2−4g(x, y)g(x, z)g(y, z) "= 0.
As described in [CSUW01, p. 130], we can find z′ ∈ E∩H such that g(x, [y, z′]) =
0, g(x, z′) = g(x, z) "= 0 and

g(y, z′) = g(y, z)− g(x, [y, z])2

4g(x, z)g(x, y)
"= 0,
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by g(x, [y, z])2−4g(x, y)g(x, z)g(y, z) "= 0. (Recall that the extremal form f from
loc. cit. satisfies f = 2g.) Then Theorem 5.2 of loc. cit. implies that there exists a
Galois extension k′/k of degree at most 2 such that H⊗k′ is a quotient of sl3(k′).
Since the characteristic is not equal to 3 we get that H ⊗ k′ is isomorphic to sl3.
The extremal geometry of this Lie algebra is a root shadow space of type A2,{1,2}.
If k′ = k, we can apply the first paragraph to find e ∈ H−1 and f ∈ H1 such that
[x, y] = [e, f ]. Then H−1 ≤ L−1 and H1 ≤ L1 conclude the proof in this case.
Assume k′/k is a degree 2 extension and let σ be the non-trivial element of its
Galois group, we also denote the Lie algebra automorphism mapping h⊗ λ onto
h ⊗ λσ by σ. Since the extremal geometry of H ⊗ k′ contains lines, we can find
a ∈ E(H⊗k′)∩ (H⊗k′)−1. If aσ is a multiple of a, then a is a multiple of a1⊗ 1
for a1 ∈ H−1, and then there would be lines in the extremal geometry of H and
we can apply the first paragraph. Note that aσ is contained in both E(H ⊗ k′)
and (H ⊗ k′)−1. Since the extremal geometry of H ⊗ k′ is of type A2,{1,2}, which
is a generalized hexagon, aσ "∈ 〈a〉 implies (a, aσ) ∈ E1. Hence [a, aσ] = λx for
certain non-zero λ ∈ k′. Note λσx = (λx)σ = [a, aσ]σ = −[a, aσ] = −λx and thus
λσ = −λ. Set e = a+aσ, and f = λ−1[y, a]+(λ−1[y, a])σ = λ−1[y, a]−λ−1[y, aσ].
Since e and f are fixed by σ, they are contained in H−1 ≤ L−1 and H1 ≤ L1,
respectively. By Lemmas 4.1.2 and 4.1.3, we have ga(y) = gy(a) = 0 and gaσ (y) =
gy(aσ) = 0. Hence,

[e, f ] = −2λ−1ga(y)a+ 2gaσ (y)aσ − λ−1[a, [y, aσ]] + λ−1[aσ, [y, a]]

= λ−1[y, [aσ, a]] = λ−1λ[x, y] = [x, y].

Remark 4.2.6. The proof of Lemma 4.2.5 also holds for infinite-dimensional
simple Lie algebras of characteristic not 2 or 3 generated by their pure extremal
elements.

Theorem 4.2.7. Let L be a simple finite-dimensional Lie algebra over a field
of characteristic different from 2, 3 generated by extremal elements. Unless
L = sp(V, f) for some non-degenerate symplectic space (V, f), L = K(A) for
some simple skew-dimension one structurable algebra A.

Proof. Consider the 5-grading on L from Lemma 4.1.1. (The existence of x and
y follows from Proposition 2.3.9 and Corollary 2.3.11.) Then [x, y] is the grading
derivation of this 5-grading.

Assume first L−1 "= {0} "= L1. By Lemma 4.2.3, L ∼= TKK(L−1, L1). By
Lemma 4.2.5, the grading derivation equals [u, v], for some u ∈ L−1 and v ∈ L1.
Hence Lemma 4.2.4 implies that L is graded-isomorphic to K(A), with A a
structurable algebra. Recall that S denotes the set of skew elements of A. By
construction of K(A), its (−2)- and 2-component are isomorphic with S. Since
L−2 and L2 are 1-dimensional (by construction), we get dim(S) = 1.

Now assume L−1 = {0} = L1. Then L = L−2 ⊕ L0 ⊕ L2 is a 3-graded Lie
algebra. Hence it is a simple 3-graded Lie algebra with (−1)-component L−2

and 1-component L2. Since L is simple we get L0 = [L−2, L2] = 〈[x, y]〉 and
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L = 〈x〉 ⊕ 〈[x, y]〉 ⊕ 〈y〉. Hence L ; sl2, which is a symplectic Lie algebra. A
contradiction.

It remains to consider the symplectic Lie algebras generated by extremal
elements.

Example 4.2.8. Let A be an associative algebra with involution σ. Then
H(A,σ) := {a ∈ A | aσ = a} is a Jordan algebra, with multiplication given
by a ◦ b = ab+ba

2 . The transpose yields an involution of the associative algebra
Matn(k). We denote this involution by =.

Lemma 4.2.9. The symplectic Lie algebra sp(V, f), with (V, f) non-degenerate
symplectic space of dimension 2n, is isomorphic to K(H(Matn(k),=)).

Proof. By [All79, p. 1868], the Lie algebra K(H(Matn(k),=)) is isomorphic to
the Lie algebra

{(
x y
z −x*

)
| x ∈ Matn(k), y, z ∈ H(Matn(k),=)

}
,

modulo its center, which is isomorphic to sp(V, f).

Corollary 4.2.10. Let L be a finite-dimensional simple Lie algebra over a field
of characteristic different from 2, 3 generated by its extremal elements. Then
L = K(A), for some simple structurable algebra A.

Proof. By Theorem 4.2.7 and Lemma 4.2.9.

In the next few theorems we determine when the extremal geometry contains
lines in terms of the associated structurable algebra.

Theorem 4.2.11. Let A be a simple skew-dimension one structurable algebra.
The extremal geometry in K(A) contains lines if and only if A− contains an
extremal element.

Proof. If the extremal geometry contains lines, then clearly A− contains an ex-
tremal element, by Lemma 4.1.9. Conversely, assume A− contains an extremal
element a−. Then by Lemma 4.1.8 we get that (S−, 〈a−〉) ∈ E−1.

Corollary 4.2.12. The extremal geometry of K(M(J, η)) contains lines, with
M(J, η) as in Definition 1.1.60.

Proof. Consider a =

(
1 0
0 0

)
. Note that s :=

(
1 0
0 −1

)
is an element of S. Then

sa = a. We have

Va,a(x) = (aa)x+ (xa)a− (xa)a = (aa)x,
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for any x ∈ M(J, η). Then aa = 0 implies Vsa,a = 0. Hence [a−, [a−,S+]] = 0.
Now we still need [a−, [a−,A+]] ≤ 〈a−〉 and [a−, [a−, Instrl(A)]] = 0 in order to
obtain that a− is extremal. The former is equivalent to showing that Ua(A) ≤ 〈a〉.
The latter boils down to ψ(a, Vx,y(a)) = 0 for all x, y ∈ A. Both claims are
straightforward to check. Hence Theorem 4.2.11 concludes this proof.

Corollary 4.2.13. A symplectic Lie algebra is not isomorphic to K(A), with A
a simple skew-dimension one structurable algebra.

Proof. Let L be a symplectic Lie algebra. Assume L = K(A), for some simple
skew-dimension one structurable algebra A. By Corollary 1.1.62 there exists
a field extension k̂ of k of degree at most 2 such that A ⊗k k̂ is isomorphic
to a structurable matrix algebra M(J, η). But K(A ⊗k k̂) ∼= K(A) ⊗k k̂. By
Corollary 4.2.12 there are lines in the extremal geometry of this Lie algebra. On
the other hand, K(A)⊗k k̂ is still a symplectic Lie algebra, which does not contain
lines in its extremal geometry. We get a contradiction.

Corollary 4.2.14. Let A be a simple skew-dimension one structurable algebra.
The extremal geometry in K(A) contains lines if and only if A is isotopic to
M(J, 1), with J as in Definition 1.1.60.

Proof. By Corollary 4.2.12 and [AH81, Proposition 12.3] one direction is obvious.
Assume now that the extremal geometry in K(A) contains lines. By The-

orem 4.2.11 we find a ∈ A non-zero such that a+ is extremal. In particular
−Ua(b)+ = [a+, [a+, b−]] ∈ 〈a+〉 for any b ∈ A. Hence Ua(A) ≤ 〈a〉. Then
[AF84, Theorem 4.6] and [Gar01, Lemma 4.13] conclude this proof.

Remark 4.2.15. Combining the above Corollary 4.2.14 with Corollary 1.1.62,
and Theorem 4.2.7 we obtain an algebraic proof of Theorem 2.4.7, in case the
characteristic is not 2, 3. Indeed, if L is a simple Lie algebra generated by its
extremal elements, then Theorem 4.2.7 implies that, if L is not symplectic, there
is a skew-dimension one structurable algebra A such that L is isomorphic to
K(A). Extending the field quadratically, if needed, we can, by Corollary 1.1.62
assume that A is a structurable matrix algebra and find the extremal geometry
of L to contain lines by Corollary 4.2.14.

We need the automorphisms eσ(a, s) as defined in Definition 1.1.75, in order
to prove that the inner ideal geometry is a Moufang set if there are no inner
line ideals. Note that the proof that these are indeed automorphisms, see Theo-
rem 1.1.71, depends on the classification of simple Lie algebras over algebraically
closed fields of characteristic larger or equal than 5. However, if the characteris-
tic of the field is strictly larger than 5 one does not need this classification, see
Lemma 1.1.69.



97 ���� 3FDPWFSJOH B TUSVDUVSBCMF BMHFCSB

Let a ∈ A. For later use, we deduce the image of S− under the automorphism
exp(a+). For any t ∈ S we have, as a special case of Lemma 1.1.76

exp(a+)(t−) = t− − ta− − 1
2Va,ta +

1
6Ua(ta)+ + 1

24ψ(a, Ua(ta))+. (4.1)

In the next theorem we prove that the automorphism group acts transitively
on hyperbolic pairs of extremal points. As noted before, we have to rely on the
classification of simple Lie algebras in the characteristic 5 case.

Theorem 4.2.16. Let A be a simple skew-dimension one structurable algebra.
Then the automorphism group of K(A) acts transitively on the pairs (x, y) ∈ E2.

Proof. Since L = K(A) is simple and generated by its extremal elements, The-
orem 2.3.19 shows that it suffices to show that the stabilizer of S− ≤ K(A)
is transitive on the points in E2(S−). By Lemma 3.1.9 any element in E2(S−)
equals 〈e−(a, t)(s+)〉, for some a ∈ A and s, t ∈ S. Now note that e−(a, t) is an
automorphism and e−(a, t)(S−) = S−.

Theorem 4.2.17. Assume that the characteristic of k is not 2 or 3. Then the
map

A -→ K(A)

induces a one-to-one correspondence between simple skew-dimension one struc-
turable algebras over k (up to isotopy) and simple finite-dimensional Lie algebras
over k generated by extremal elements which are not symplectic (up to isomor-
phism).

Proof. Let A be a simple skew-dimension one structurable algebra. By Propo-
sition 4.2.2 we find that K(A) is a simple Lie algebra generated by its extremal
elements, which by Corollary 4.2.13 is not symplectic. By [AH81, Proposition
12.3], two isotopic structurable algebras yield isomorphic Lie algebras.

Consider two simple skew-dimension one structurable algebras A and A′ such
that K(A) and K(A′) are isomorphic. Since (S−,S+) and (S ′

−,S ′
+) are both

hyperbolic pairs of extremal points, Theorem 4.2.16 implies that K(A) and K(A′)
are graded-isomorphic and hence A and A′ are isotopic by [AH81, Proposition
12.3]. Now Theorem 4.2.7 concludes this proof.

Suppose that the simple Lie algebra L is generated by its set of extremal
elements and no two linearly independent extremal elements commute. The inner
ideal geometry of L only contains points, by Theorem 2.5.11. Moreover, by
Lemma 2.5.8, L is not a symplectic Lie algebra, unless L ; sl2. Hence L = K(A)
for a unique – up to isotopy – simple skew-dimension one structurable algebra
A, unless L ; sl2. In the latter case one easily sees that all extremal points
form a Moufang set. In the former case S− and exp(a+)(S−) are hyperbolic for
any 0 "= a ∈ A. Equation (4.1) implies ψ(a, Ua(sa)) "= 0, for 0 "= s ∈ S. Then
[AF84, Proposition 2.11] shows that A is a structurable division algebra. By
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(1.14) and Theorem 1.1.71 we get that E−(A) := {exp(a− + s−) | a ∈ A, s ∈ S}
is a subgroup of the automorphism group of L = K(A). Similarly for E+(A) :=
{exp(a+ + s+) | a ∈ A, s ∈ S}. Note that Lemma 3.1.9 implies that E−(A) is
transitive on E2(S−). It is not hard to see that it is actually sharply transitive.
Using [BDMS19, Theorem 5.1.1] we see that E is indeed a Moufang set, with
root groups as below. The little projective group is E(A) = 〈E−(A), E+(A)〉.
The multiplication in this group is defined as fg = f ◦ g for any f , g ∈ E(A).
Conversely, if A is a skew-dimension one structurable division algebra, it is shown
in Theorem 3.3.4 that the only non-trivial inner ideals of K(A) are 1-dimensional
and form a Moufang set.

So we obtained:

Theorem 4.2.18. Suppose L is a finite-dimensional simple Lie algebra over
a field k of characteristic different from 2, 3 generated by its set of extremal
elements. If no two linearly independent extremal elements commute and L "= sl2,
then L = K(A) with A a skew-dimension one structurable division algebra. The
set of proper non-trivial inner ideals of L equals E = {S−} ∪ E−(A)(S+) and is
a Moufang set with root groups

US− = E−(A);

Ue−(a,s)(S+) = E+(A)e−(a,s), ∀a ∈ A, s ∈ S .

Remark 4.2.19. We will show in Section 4.6 that Theorem 4.2.18 holds in char-
acteristic 2 and 3 as well. Of course, the connection with structurable (division)
algebras is lost, since these algebras are not defined in those characteristics, but
the extremal points still form a Moufang set. Actually, my initial motivation
to develop the whole theory and machinery in Section 4.3 was to eliminate this
dependence on Anastasia Stavrova’s result in Theorems 4.2.17 and 4.2.18. As
mentioned before, this result of Anastasia Stavrova on algebraicity depends on
the classification of simple Lie algebras if the characteristic equals 5, and this
seemed to me as quite a strong result to use to prove the above theorems. That
is why I started thinking about proving this algebraicity property independently
in this case, using the extremal elements and the extremal geometry. Eventually,
it turned out that the proof did not only work for the original aim (characteristic
5), but also for characteristics 2 and 3. In these characteristic one cannot apply
results on structurable algebras as above (since these do not exist) to obtain a
Jordan algebra if there are lines in the extremal geometry. So we have to show
this correspondence more or less from scratch on, and that is what we do in Sec-
tion 4.4. Then, in Section 4.5, we can recover a quadrangular algebra, if there
are symplectic pairs in the extremal geometry, char(k) "= 2 and after a Galois
extension of degree at most 2 there are lines in the extremal geometry.

The following two examples give examples of Lie algebras which are generated
by extremal elements and which are not symplectic. So by Theorem 4.2.17 there
should exist a corresponding structurable algebra of skew-dimension one, but it
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is not immediately clear how to describe this algebra. However, we will see in
Section 4.5 that this algebra is coordinatized by a quadrangular algebra.

Example 4.2.20. Consider the tensor product C1⊗C2, where C1 is an octonion
algebra and C2 is a composition algebra of dimension 2, 4 or 8 over a field k. As
noted before, this is a structurable algebra and its set of skew elements is equal
to {s1 ⊗ 1 + 1 ⊗ s2 | s1 ∈ S1, s2 ∈ S2}, with Si the set of skew elements in Ci.
Hence dim(S) = dim(C1) + dim(C2) − 2, so 8, 10 or 14 respectively. We can
define the following quadratic form on S:

qA : S → k : s1 ⊗ 1 + 1⊗ s2 -→ q1(s1)− q2(s2),

which is called the Albert form. (With qi the quadratic form associated with
the composition algebra Ci.) Denote the associated bilinear form by qA as well.
We also define (s1 ⊗ 1 + 1 ⊗ s2)- = s1 ⊗ 1 − 1 ⊗ s2. We now assume that qA
has Witt index 1 and that k has characteristic 0. If s ∈ S is not an isotropic
vector, then s is conjugate invertible (see [All88, Corollary 3.13]). If s ∈ S is
an isotropic vector, then for any t ∈ S we have, due to [All88, Proposition 3.3],
sts = qA(s)t- − qA(s, t-)s = −qA(s, t-)s. Hence [s+, [s+, t−]] = [s+, LsLt] =
−2sts+ ∈ 〈s+〉. So since S+ is the end of a 5-grading, we obtain that s+ is an
extremal element of L := K(C1 ⊗ C2). Consider s, t ∈ S linearly independent
and satisfying qA(s) = 0 = qA(t). Now assume that the extremal geometry of
L contains lines. If (s+, t+) ∈ E−1, then S+ contains an extremal line, namely
〈s+, t+〉. Otherwise, due to [s+, t+] = 0, we get (s+, t+) ∈ E0. So by Lemma 2.5.5
and the fact that S+ is an inner ideal we get that S+ contains all points (and
lines) of a symplecton of the extremal geometry. So in any case, S+ would
contain extremal lines. By the previous considerations this implies that qA has
Witt index at least 2, a contradiction. Hence the extremal geometry of L does not
contain lines. So, in this case, due to Theorem 2.5.11, the inner ideal geometry
is a polar space. Moreover, its rank equals 2 if there does not exist an inner
ideal I with [I, I] = 0 properly containing S+, by Corollary 2.5.6. So assume
that I is an inner ideal containing S+ properly with [I, I] = 0. Since there
exist conjugate invertible elements in S the fact that I is abelian implies I ≤
Instrl(A) ⊕ A+ ⊕S+. Consider 0 "= V + a+ ∈ I and s ∈ S conjugate invertible.
Then V (sb)+ + ψ(a, sb)+ = [V + a+, [s+, b−]] ∈ I for any b ∈ A. Together with
S+ ≤ I this implies that there exists 0 "= a+ ∈ A+ ∩ I. Then [S+, [a+,S−]] ≤ I
implies that LSLS(A+ ∩ I) ≤ A+ ∩ I. By [All88, Theorem 4.5] we get A+ ≤ I.
Now [s+, 1+] = ψ(s, 1)+ = 2s+ "= 0 for any s ∈ S contradicts [I, I] = 0. Hence
the inner ideal geometry of L is a generalized quadrangle.

Note that by Corollary 4.2.14 the Lie algebra L is also isomorphic to the
TKK-construction of a form of a structurable matrix algebra.

Example 4.2.21. Let Q : M → k be a non-degenerate quadratic form on a k-
vector space M . We assume that there exist a c ∈ M such that Q(c) = 1. Let T
be the associated bilinear form and set x = 2T (x, c)c−x. Recall, Example 1.1.8,
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that M together with the product

x.y = T (x, c)y + T (y, c)x−Q(x, y)c.

is a Jordan algebra, which we denote by J(Q, c). This Jordan algebra is central
simple unless Q is isotropic and dim(M) = 2 (see [McC04, II.3.3], where the
bilinear form Q is slightly different). From now on we will assume dim(M) > 2
and that Q has Witt index 1, so J := J(Q, c) is central simple. By Example 1.1.8
we get Ux,x(y) = 2Q(x, y)x − Q(x)y. Now x+ ∈ K(J) is extremal if, and only
if, Ux(J) ≤ 〈x〉, so if, and only if, Q(x) = 0. As in the previous example, the
existence of lines in the extremal geometry implies the existence of lines in J+.
But then there would be a subspace V of J of dimension 2 such that Q(v) = 0,
for all v ∈ V , contradicting that Q has Witt index 1. Hence the inner ideal
geometry of K(J) is a polar space of rank at least 2. Now note that J+ is the
smallest inner ideal containing two distinct extremal points 〈x+〉 and 〈y+〉 in J+,
since all elements z ∈ J with Q(z) "= 0 are invertible, i.e. Uz is invertible. Now,
if the rank of the polar space were strictly larger than 2, there would be a proper
abelian inner ideal I properly containing J+. But then 0 "= a−+V ∈ I, for a ∈ J ,
V ∈ Instrl(J). Since J is abelian, [V, j+] = V (j)+ = 0 for all j ∈ J implying
V = 0. Hence 0 = [a−, j+] = −Vj,a for all j ∈ J . But 0 = Vj,a(j) = Uj(a) implies
a = 0 if j is invertible. Hence the inner ideal geometry is a polar space of rank
2, i.e. a generalized quadrangle.

Remark 4.2.22. Note that the main theorem of [CIR08] states that if a simple
Lie algebra L over a field of characteristic not 2 or 3 contains one pure extremal
element, then L is either generated by its pure extremal elements or L is isomor-
phic to the 5-dimensional Witt algebra W1,1(5) and the characteristic of the field
equals 5.

4&$5*0/ ���
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In this section we consider a simple Lie algebra over the field k "= F2 which is
generated by its pure extremal elements. We show that if its extremal geometry
contains lines, then the 1-component (and (−1)-component) of the 5-grading com-
ing from two hyperbolic extremal elements as in Lemma 4.1.1 is spanned by the
extremal elements contained in this component. Using this property we can show
that certain automorphisms which behave nicely with respect to the considered 5-
grading exist. We deduce a more precise description of certain extremal elements
to show uniqueness statements about these type of automorphisms. Then we
translate these results to Lie algebras whose extremal geometry does not contain
lines, and finally we determine how these automorphisms commute.
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We will use the existence and uniqueness of these automorphisms often in the
remaining sections of this chapter.

Assumption 4.3.1. We assume in this section that L is a simple Lie algebra
generated by its set E of pure extremal elements. As always L is defined over
the field k, which we assume to be different from F2.

Notation 4.3.2. By Proposition 2.3.9 we can consider x, y ∈ E with gx(y) =
1. Let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be the corresponding 5-grading as in
Lemma 4.1.1, with x ∈ L−2 and y ∈ L2. Denote the subspace of L−1 spanned by
E ∩ L−1 by I−1. Denote the subspace of L1 spanned by E ∩ L1 by I1.

Lemma 4.3.3. If I−1 "= ∅, then L is generated by y and I−1.

Proof. Denote the subalgebra generated by y and I−1 by I. The condition I−1 "=
∅ implies that there are lines in the extremal geometry. Indeed, consider e ∈ I−1,
then gy(e) = 0 but [y, e] "= 0 by Lemma 4.1.1, hence (y, e) ∈ E1 and 〈y〉 and
〈e〉 have a unique common neighbor, namely 〈[y, e]〉. In particular the extremal
geometry contains lines. By Lemma 4.1.11 there are two neighbors of 〈x〉 which
are special to each other, hence [I−1, I−1] = 〈x〉 and thus x ∈ I. By Lemma 4.1.9
and the fact that E≤1(〈y〉) is a hyperplane (by the definition of a root filtration
space), all elements in E−1(x) are contained in I.

Consider z ∈ E2(x) and assume that 〈y〉 and 〈z〉 are collinear. The line
〈y, z〉 then contains a point 〈u〉 ∈ E1(〈x〉). Then [x, u] ∈ E−1(x) ∩ E1(y) and
hence it is contained in L−1 by Lemma 4.1.9. Since Exp(〈[x, u]〉) acts sharply
transitively on all points of 〈y, z〉 without 〈u〉 and exp([x, u])(y) = y + [[x, u], y],
we get z ∈ I. Note that since E≤1(〈x〉) is a hyperplane of the extremal geometry,
this implies E−1(y) ⊆ I. The hyperbolic pair (x, z) yields another 5-grading
with 1-dimensional (−2)- and 2-parts. The extremal elements in the (−1)-part
of this grading are again contained in I since these are contained in E−1(x) by
Lemma 4.1.8. By applying the same argument as before, every z′ ∈ E2(x) ∩
E−1(z) is contained in I.

Now assume that E0 "= ∅, i.e. the extremal geometry is not a generalized
hexagon, see Remark 2.3.18. Then Lemma 2.1.16 yields E2(x) ⊂ I. Since every
element of E1(x) lies on a path of length 3 from 〈x〉 to an element of E2(x) by
Lemma 2.1.9(b) and every neighbor of 〈x〉 is contained in I, we get E1(x) ⊆ I. By
a similar argument one shows I1 ≤ I and then reversing the roles of x and y one
sees E≥1(x) ∪E≥1(y) ∪E≤−1(x) ∪E≤−1(y) ⊆ I. So consider z ∈ E0(x) ∩E0(y).
Let S and S′ be the symplecta containing x and z, and y and z, respectively.
Then S ∩ S′ = 〈z〉 since otherwise x would be collinear with a point symplectic
with y, which contradicts property (D) of a root filtration space since y ∈ E2(x).
Hence in S there exists a line containing z and at least 2 points contained in I
and thus z ∈ I. Since L is generated by E we can conclude I = L in this case.

Assume from now on E0 = ∅, i.e. the extremal geometry is a generalized
hexagon. Consider z ∈ E2(x) such that 〈z〉 and 〈y〉 are at distance 2, and thus
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(y, z) ∈ E1. Recall that the common neighbor of 〈y〉 and 〈z〉 is 〈[y, z]〉. We
want to show z ∈ I, so by the second paragraph of this proof we are done if
[y, z] ∈ E2(x). Since x and y are hyperbolic we may now assume [y, z] ∈ E1(x).
By Lemma 2.1.9(b) we can find u ∈ E such that u ∈ E−1(z)∩E2(y). Using that
E≤1(x) is a hyperplane and replacing u with another element on the line 〈z, u〉,
we may assume u ∈ E1(x). Since we are considering a generalized hexagon,

〈x〉, 〈[x, [y, z]]〉, 〈[y, z]〉, 〈z〉, 〈u〉, 〈[x, u]〉, 〈x〉

forms an ordinary hexagon. Hence [y, z] ∈ E2([x, u]) and since E≤1(〈[x, u]〉) is a
hyperplane, we can replace y by another element of 〈y, [y, z]〉 in order to assume
y ∈ E2([x, u]). Using that E≤1(〈y〉) is a hyperplane there is a unique point 〈b〉
of the line 〈[x, u], u〉 special with 〈y〉. By construction [x, u] "∈ 〈b〉. Let 〈a〉 be
the common neighbor of 〈b〉 and 〈y〉. We previously showed that all neighbors of
〈y〉 and 〈x〉 are contained in I, and hence a, [x, u] and thus [a, [x, u]] ∈ 〈b〉 are
contained in I. Since two different points of the line 〈[x, u], u〉, namely 〈[x, u]〉
and 〈b〉, are contained in I, u is contained in I as well. Since 〈u〉 and 〈[y, z]〉 are
special points with common neighbor 〈z〉, z is is multiple of [u, [y, z]]. Recall that
all points collinear to y are contained in I, so we get [y, z] ∈ I and together with
u ∈ I this yields z ∈ I.

Now consider z ∈ E2(x)∩E2(y). Let 〈y〉, 〈a〉, 〈b〉, 〈z〉 be a path of length 3. If
〈a, b〉 is not completely contained in E≤1(x) we can apply the previous paragraph
twice to obtain z ∈ I. We can assume a, b ∈ E1(x). Note that 〈[a, x]〉 and 〈[b, x]〉
are extremal points collinear with x, and a and b, respectively. If [x, a], [x, b] "∈
〈a, b〉, then there exists an ordinary pentagon (or an ordinary triangle, if [a, x] =
[b, x]), which contradicts the definition of a generalized hexagon. So the line 〈a, b〉
contains a point 〈c〉 collinear with 〈x〉. Since Exp(〈x〉) acts sharply transitively
on the points of the line 〈a, b〉 without 〈c〉, we find that exp(λx)(a) ∈ 〈b〉 for a
certain λ ∈ k. Note that z′ = exp(λx)(y) = y + λ[x, y] + λ2gx(y)x ∈ I. By
exp(λx)(x) = x we get z′ ∈ E2(x). Note that 〈b〉 = exp(λx)(〈a〉) is a neighbor
of 〈z〉 and of 〈z′〉, since 〈a〉 and 〈y〉 are neighbors. Hence z′ ∈ E≤1(z). Since by
construction z′ ∈ I, the previous paragraph then implies z ∈ I. As in the case
E0 "= ∅ this allows us to conclude E≥1(x)∪E≥1(y)∪E≤−1(x)∪E≤−1(y) ⊆ I. In
this case this is the same as E ⊆ I and thus I = L.

Corollary 4.3.4. Suppose I−1 "= ∅. Then I ≤ L is an ideal if [I, y] ≤ I and
[I, I−1] ≤ I.

Proof. By the Jacobi identity and Lemma 4.3.3.

To prove that L1 and L−1 are generated by its extremal elements, i.e. I−1 =
L−1, we use the following property of polar spaces.

Lemma 4.3.5. Let S be a non-degenerate polar space. Let x and y be non-
collinear points of S. Then S is generated by x, y and x⊥ ∩ y⊥.
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Proof. Let X be the subspace generated by x, y and x⊥ ∩ y⊥. Since every line
through x contains a point collinear to y, we have x⊥ ⊆ X, and similarly y⊥ ⊆ X.
Consider z ∈ X arbitrary. Let K be any line through x, if x⊥ ∩ K "= y⊥ ∩ K,
then K ⊆ X. So we may assume that K contains a unique point a ∈ x⊥∩y⊥. By
the non-degeneracy, we find b ∈ x⊥ ∩ y⊥ such that a and b are not collinear. But
then K and by are opposite lines, and hence there exists a point c on K distinct
from a which is collinear to a point of by distinct from y and b. Hence c lies on
a line M such that M ∩ y⊥ ∈ by\{b, y} and thus M ∩ y⊥ "= M ∩ x⊥. As before,
M ⊆ X. In particular c ∈ X, so together with a ∈ X we obtain z ∈ X.

This lemma gives a more precise description of the subspace LS of L spanned
by the elements in S.

Lemma 4.3.6. Let S be a symplecton containing x, then

LS = 〈x〉 ⊕ 〈{〈z〉 ∈ S | z ∈ L−1}〉 ⊕ 〈{〈z〉 ∈ S | z ∈ L0}〉.

Moreover 〈{〈z〉 ∈ S | z ∈ L0}〉 is 1-dimensional.

Proof. By Lemma 2.1.12 we get that S ∩ E0(y) is a point 〈z〉. By Lemma 4.1.1
[z, y] = 0 = [z, x] implies z ∈ L0. By Lemma 4.3.5 we get that LS is spanned by
x, z and all points 〈a〉 collinear to both 〈x〉 and 〈z〉. Since such a point 〈a〉 is
collinear to 〈x〉, we get a ∈ L≤−1 by Lemma 4.1.8. Since 〈a〉 is collinear to 〈z〉,
we get, using Lemma 2.1.12, a ∈ E1(y) and hence a ∈ L≥−1 by Lemma 4.1.8.
Hence a ∈ L−1.

We are now ready to prove the first theorem of this section.

Theorem 4.3.7. Assume that L is a simple Lie algebra over k "= F2 generated
by its pure extremal elements, and F "= ∅. Consider x, y ∈ E with gx(y) = 1 and
let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be the associated 5-grading. Then both L−1

and L1 are linearly spanned by the extremal elements contained in it.

Proof. As before, let I−1 and I1 be the subspaces of L linearly spanned by the
extremal elements contained in L−1 and L1, respectively. We will show that

I = 〈x〉 ⊕ I−1 ⊕ [I−1, I1]⊕ I1 ⊕ 〈y〉

is an ideal of L using Corollary 4.3.4. Since L is simple the conclusion of this
theorem then follows.

By Lemma 4.1.11 we see that [x, y] ∈ [I−1, I1]. Also by a ∈ E ∩ L−1 we
get a ∈ E1(y) and hence [a, y] ∈ I1. So [I, y] ≤ I is clear. Now we only need
to show [I, I−1] ≤ I. Obviously [〈x〉 ⊕ I−1 ⊕ I1, I−1] ≤ I. Similarly as before
[〈y〉, I−1] ≤ I1 ≤ I, so the only case left to prove is [[I−1, I1], I−1] ≤ I−1. Consider
arbitrary a, b ∈ E ∩ L−1 and c ∈ E ∩ L1. We show [[a, c], b] ∈ I−1.
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If a = b this is obvious. If a ∈ E−1(b), then 〈a, b〉 is an inner ideal by
Lemma 2.5.3 and hence [b, [a, c]] ∈ 〈a, b〉 ≤ I−1. If a ∈ E0(b), then a and b are
contained in a symplecton S. The subspace LS spanned by all elements of S is
an inner ideal by Lemma 2.5.5 and hence [b, [a, c]] ∈ LS . By Lemma 4.3.6 we
obtain that LS is spanned by x, {〈z〉 ∈ S | z ∈ L0} and {〈z〉 ∈ S | z ∈ L−1}.
Since [b, [a, c]] ∈ L−1, it is a linear combination of elements in this last set, so it
is contained in I−1.

Note that by the Jacobi identity and the fact that [x, c] is contained in E∩L−1,
the containment of [b, [a, c]] in I−1 is equivalent with the containment of [a, [b, c]]
in I−1. Note that c ∈ E≤0(a) and c ∈ E≤0(b) imply [c, a] = 0 and [c, b] = 0
respectively. These two observations allow us to assume c ∈ E≥1(a)∩E≥1(b). By
the previous paragraph we can assume a ∈ E≥1(b), and since x ∈ E−1(a)∩E−1(b)
we obtain a ∈ E1(b). If c ∈ E1(a), then [a, c] ∈ E and since the extremal form g
is associative, gb([a, c]) = g(b, [a, c]) = g([b, a], c) = g[b,a](c) = 0, using c ∈ E1(x).
Hence [a, c] ∈ E≤1(b), so either [b, [a, c]] ∈ E or [b, [a, c]] = 0. In any case we
obtain [b, [a, c]] ∈ I−1. If c ∈ E1(b) then [a, [b, c]] ∈ I−1 and thus [b, [a, c]] ∈ I−1.

The only case left to consider is a ∈ E1(b) and c ∈ E2(a) ∩ E2(b). We may
assume gc(a) = 1 = gc(b). Consider λ, µ ∈ k arbitrary. Then

ϕ = exp(µc) exp(λb) exp(c)(a)

is an extremal element. Using Lemma 4.1.10, gc(a) = 1 = gc(b) and ga(b) = 0,
one deduces the components of ϕ explicitly. Its (−2)-component equals λ[b, a],
its (−1)-component

a+ λ2b+ λ[b, [c, a]] + λµ[c, [b, a]] (4.2)

and its 2-component 0. Now we will choose non-zero λ and µ such that the 0-
and 1-component of ϕ equal 0. The 0-component of ϕ equals

(µ+ 1)[c, a] + (−λ+ λ2µ)[c, b] + λµ[c, [b, [c, a]]].

Now, since c is extremal the Premet identities imply [c, [b, [c, a]]] = gc([b, a]) −
gc(a)[c, b] − gc(b)[c, a] = −[c, b] − [c, a]. So for the 0-component to be zero it is
sufficient that µ+1− λµ = 0 and −λ+ λ2µ− λµ = 0. Actually since the second
equation follows from the first, we need non-zero λ and µ such that µ+ 1 = λµ.
Since |k| ≥ 3 we can always find such scalars. Now, using the associativity of g
we have gc([b, [c, a]]) = −g[c,[c,b]](a) = −2gc(b)gc(a) = −2, and we see that the
1-component of ϕ equals

(2µ− 2λµ− 2λµ2 + λ2µ2 + µ2 + 1)c,

and after using µ+ 1 = λµ to express this completely in terms of µ, we see that
this component equals zero. We conclude that ϕ is contained in E≤−1(x). If ϕ
is a multiple of x, then (4.2) equals 0 and [b, [c, a]] can be written as the sum of
3 extremal elements contained in L−1. Indeed, obviously a, b ∈ E, but moreover
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[c, [b, a]] ∈ E since 〈c〉 and 〈x〉 = 〈[b, a]〉 are special. If ϕ "∈ 〈x〉, then 〈ϕ, x〉 is
a line of the extremal geometry. Since the (−1)-component of ϕ is contained in
〈ϕ, x〉, it is contained in E. So by (4.2) the element [b, [c, a]] can be written as
the sum of 4 extremal elements contained in L−1. This concludes the proof of
the claim [[I−1, I1], I−1] ≤ I−1.

Now we will work towards showing the so-called algebraicity of the Lie al-
gebra, using the previous theorem. We will define this property later on, but
loosely speaking it means that for any element in L−1 there exist automorphisms
depending on this element which behave nicely with respect to the 5-grading.
Actually, if the characteristic is not 2, 3, or 5, this property is easily shown, see
Lemma 1.1.69, so it is not surprising that we sometimes have to handle the low
characteristic cases a bit more carefully.

In the next two lemmas we show that as soon as an extremal element has a
certain form, it is contained in the image of Exp(〈x〉), which we will use to show
the uniqueness of certain automorphisms. Recall that exp(e) is an automorphism
if e is a pure extremal element, see Proposition 2.3.5.

Lemma 4.3.8. Assume char(k) "= 3. Consider l = l−2 + l−1 + e ∈ E, with
e ∈ E ∩ L1, l−1 ∈ L−1 and l−2 ∈ L−2. Then l = exp(λx)(e), for certain λ ∈ k.

Proof. Note

[l, [l, [x, y]]] = [l, 2l−2 + l−1 − e] = −3[l−2, e]− 2[l−1, e].

Since l is extremal this implies [l−2, e] = 0 and hence l−2 = 0 by Lemma 4.1.1.
If l−1 = 0 there is nothing to show, so assume l−1 "= 0. By Lemma 4.1.8 we have
l ∈ E1(y) and thus [l−1, y] = [l, y] ∈ E. By the same lemma [l−1, y] ∈ E1(x)
and thus l−1 = [x, [l−1, y]] ∈ E. Since l−1, e and l = l−1 + e are contained in E,
Lemma 2.3.15 implies (l−1, e) ∈ L−1. Hence 〈l−1〉 is the common neighbor of the
special pair 〈x〉, 〈e〉 and thus l−1 ∈ 〈[x, e]〉.

Lemma 4.3.9. Consider l = l−2 + l−1 + l0 + y ∈ E, with l−2 ∈ L−2, l−1 ∈ L−1

and l0 ∈ L0. Then l = exp(λx)(y), for certain λ ∈ k.

Proof. By assumption l has 0 as 1-component. Let λ and µ be such that l−2 = λx
and [l0, x] = µx. Then

[l, [l, x]] = [λx+ l−1 + l0 + y, µx+ [y, x]]

= (µ2x+ µ[y, x]) + (−2λx− l−1 + 2y).

Since l is extremal and gl(x) = gx(l) = gx(y) = 1 by Lemma 4.1.3, we get
−l−1 = 2l−1, µ[y, x] = 2l0 and 4λ = µ2. If char(k) is not 2 or 3, then clearly
l = exp(− 1

2µx)(y).
Assume now char(k) = 3, then ψ = exp( 12µx)(l) is an extremal element such

that ψ = l−1 + y, with l−1 ∈ L−1 as before. Assume l−1 "= 0. By Lemma 4.1.8
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ψ ∈ E1(y) and thus [y,ψ] = [y, l−1] ∈ E. By the same lemma [y, l−1] ∈ E1(x)
and thus l−1 = [[y, l−1], x] ∈ E. Since l−1, y and ψ = l−1 + y are contained in E,
Lemma 2.3.15 implies l−1 ∈ E−1(y), contradicting Lemma 4.1.8. Hence l−1 = 0
and l = exp(− 1

2µx)(y).
Assume now char(k) = 2, then by the first paragraph l−1 = 0. There exist

e1, e2,∈ E ∩ L−1 such that [e1, e2] = x by Lemma 4.1.11. By Lemma 4.1.8 we
can assume that e1 and e2 are contained in L−1. By Lemma 4.1.10 we get for
any e ∈ E ∩ L−1 that ge(l) = 0 and since [e, y] "= 0, this implies that 〈e〉 and
〈l〉 are special and hence [l, e] = [l0, e] + [y, e] is extremal. Now note that by the
Premet identities

[[l, e1], [l, e2]] = gl([e1, e2])l + gl(e2)[l, e1]− gl(e1)[l, e2] = l.

Now, by Lemma 4.3.8 and [l, e1] ∈ E there exists an automorphism α in Exp(〈x〉)
such that α([l, e1]) = [y, e1]. Hence the Premet identities imply

α(l) = [α([l, e1]),α([l, e2])] = [[y, e1], l
′
−1 + [y, e2]]

= [[y, e1], l
′
−1] + gy([e1, e2])y = [[y, e1], l

′
−1] + y,

for a certain l′−1 ∈ L−1. If l′−1 = 0 we are done, so assume l′−1 "= 0. Now
note that [[[y, e1], l′−1], y] = [[y, l′−1], [y, e1]] "= 0 since 0 "= [y, l′−1] ∈ 〈[y, e2]〉 by
Lemma 4.3.8. Hence [[[y, e1], l′−1], y] would equal λy with 0 "= λ ∈ k. Then

0 = 2gα(l)(y)α(l) = [α(l), [α(l), y]] = λ2y

yields a contradiction.

Notation 4.3.10. Assume that the extremal geometry of L has lines. We set

Eσ(x, y) = 〈{exp(e) | e ∈ E, e ∈ Lσ2 ⊕ Lσ1}〉 ≤ Aut(L),

where σ ∈ {−,+}.

The following theorem, which we will often use in the rest of this chapter,
shows that Eσ(x, y) is a solvable subgroup of Aut(L) of length 2 whose commuta-
tor subgroup equals exp(L2σ). For every l ∈ Lσ1, we show that Eσ(x, y) contains
an automorphism depending on l, more precisely it satisfies (4.3) and (4.4). Au-
tomorphisms satisfying these two properties are not uniquely defined, but they
can only differ by an element of exp(Lσ2), see part (v). In part (iv) we show that
for any scalar λ ∈ k and any automorphism of Eσ(x, y) depending on l ∈ Lσ1 as
in part (iii), we can construct an automorphism in Eσ(x, y) depending on λl in
a straightforward fashion.

Theorem 4.3.11. Assume that L is a simple Lie algebra over k "= F2 generated
by its pure extremal elements, and F "= ∅. Consider x, y ∈ E with gx(y) = 1 and
let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be the associated 5-grading. Let σ ∈ {−,+}.
Then:
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(i) [Eσ(x, y), exp(Lσ2)] = 1.
(ii) [Eσ(x, y), Eσ(x, y)] = exp(Lσ2).

(iii) For every l ∈ Lσ1, there exists an automorphism αl ∈ Eσ(x, y) and maps
qαl , nαl , vαl from L to itself such that for every m ∈ L we have

αl(m) = m+ [l,m] + qαl(m) + nαl(m) + vαl(m), (4.3)

with

qαl(Li) ⊆ Li+σ2, nαl(Li) ⊆ Li+σ3 and vαl(Li) ⊆ Li+σ4, (4.4)

for every i ∈ {−2,−1, 0, 1, 2}.
(iv) For any λ ∈ k and any αl ∈ Aut(L) satisfying (4.3) and (4.4), the map αλl

defined by

αλl(m) = m+ λ[l,m] + λ2qαl(m) + λ3nαl(m) + λ4vαl(m),

for any m ∈ L, is also an element of Eσ(x, y).
(v) If βl ∈ Aut(L) satisfies the same conditions (4.3) and (4.4) as αl (with pos-

sibly different maps qβl , nβl , vβl), then αl = βl exp(z) for unique z ∈ L2σ.
In particular βl ∈ Eσ(x, y). Moreover, we have the following alternative
description of Eσ(x, y)

Eσ(x, y) = {ϕ ∈ Aut(L) | There exist l ∈ Lσ1 and maps qϕl , nϕl , vϕl

from L to itself such that (4.3) and (4.4) are satisfied.}.

(vi) If char(k) "= 2, then there is a unique αl as in (iii) such that qαl(m) =
1
2 [l, [l,m]]. We denote this αl by eσ(l). Its inverse is eσ(−l) = α−l.

Proof. We will assume σ = +.
(i) Consider a, b ∈ E with ga(b) = 0 and a, b ∈ L≥1. Then for any l ∈ L we

have:

exp(a) exp(b)(l) = exp(a)(gb(l)b+ [b, l] + l)

=(ga([b, l])a+ gb(l)[a, b]) + (ga(l)a+ gb(l)b+ [a, [b, l]])

+ [a+ b, l] + l. (4.5)

Using the Premet identities and ga(b) = 0 we have

[[a, b], [a+ b, l]] =[[a, b], [a, l]]− [[b, a], [b, l]]

=ga([b, l])a+ ga(l)[a, b]− ga(b)[a, l]

− gb([a, l])b− gb(l)[b, a] + gb(a)[b, l]

=ga([b, l])a− gb([a, l])b+ (ga(l) + gb(l))[a, b]. (4.6)

Consider l ∈ L≥−1 arbitrary. Since [a, b] ∈ L2 we get [[a, b], gb([a, l])b +
ga(l)[b, a]] = 0. By [[a, b], [b, [a, l]]] ∈ L≥3 = 0 we get [[a, b], ga(l)a+ gb(l)b+
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[b, [a, l]]] = 0. Hence, by (4.5) with the roles of a and b reversed, (4.6) and
the Jacobi identity, we see that

exp(a) exp(b)(l) = exp([a, b]) exp(b) exp(a)(l).

Since L is generated by L≥−1, this implies

exp(a) exp(b) = exp([a, b]) exp(b) exp(a).

If a ∈ L2, then [a, b] = 0 and ga(b) = 0. Since E+(x, y) is generated by
exp(b) with b ∈ (L1 ⊕ L2) ∩ E, we get [exp(y), E+(x, y)] = 1.

(ii) Considering a, b ∈ E ∩L1, then since 〈a〉 and 〈b〉 have a common neighbor,
namely 〈y〉, we have ga(b) = 0. So by the identities obtained in the proof
of (i), we get [exp(a), exp(b)] ∈ Exp(〈y〉). Using the commutator identities

[g1, g2g3] = [g1, g3][g1, g2]
g3 , [g1g2, g3] = [g1, g3]

g2 [g2, g3],

with g1, g2 and g3 elements of a group G, we see that

[E+(x, y), E+(x, y)] ≤ Exp(〈y〉)

follows from the fact that the commutators of the generators of E+(x, y)
lie in exp(y), and that exp(y) commutes with all elements in E+(x, y) by
part (i). Now in the extremal geometry there exist two neighbors of 〈y〉
which are special, see Lemma 4.1.11, so there exist a, b ∈ E ∩L1 such that
[a, b] "= 0 and hence [E+(x, y), E+(x, y)] = Exp(〈y〉).

(iii) Consider l ∈ L1 arbitrary. By Theorem 4.3.7 we can write l as the sum of
a finite number of extremal elements in L1. Let nl be the smallest natural
number such that l can be written as the sum of nl extremal elements
contained in L1. We will prove that there exists an automorphism αl

satisfying (4.3) and (4.4) by induction on nl.
If nl = 1, then l is extremal. If we set αl = exp(l), qαl(m) = gl(m)l for all
m ∈ L, and let nαl and vαl be the 0-map. By Proposition 2.3.5 this is an
automorphism. We see that (4.3) is satisfied. By Lemma 4.1.10 and the
fact that the image of qαl is 〈l〉, (4.4) holds as well.
Now assume nl > 1. Then l = e1 + · · · + enl , with ei ∈ E ∩ L1. Set
l′ = e2 + · · ·+ eln , then by induction there exist an automorphism αl′ and
maps qαl′ , nαl′ and vαl′ satisfying (4.3) and (4.4). We set αl = exp(e1)αl′ ,
which is an element of E+(x, y). If we set

qαl(m) = qαl′ (m) + ge1(m)e1 + [e1, [l
′,m]]; (4.7)

nαl(m) = nαl′ (m) + ge1([l
′,m])e1 + [e1, qαl′ (m)]; (4.8)

vαl(m) = vαl′ (m) + [e1, nαl′ (m)]; (4.9)

for all m ∈ L, then these maps satisfy (4.3), using

[e1, vαl′ (m)] ∈ L≥(−2+1+4) = L≥3 = 0,
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and ge1(qαl′ (m)) = ge1(nαl′ (m)) = ge1(vαl′ (m)) = 0. This last identity
holds by Lemma 4.1.10 and (4.4) for qαl′ , nαl′ and vαl′ .
By Lemma 4.1.10, the containment of e1 and l′ in L1, and the fact that
(4.4) holds for qαl′ , nαl′ , and vαl′ , (4.4) holds for qαl , nαl and vαl as well.

(iv)+(v) If z is extremal and λ ∈ k, then

exp(λz) : m -→ m+ λ[z,m] + λ2gz(m)z

is also an automorphism by Proposition 2.3.5, and moreover an element of
E+(x, y) since λz ∈ E. Then by the same induction as in part (iii) and the
formulas (4.7) to (4.9) we see that αλl is also an element of E+(x, y) if αl

is constructed as in (iii).
Let βl ∈ Aut(L) be any automorphism satisfying (4.3) and (4.4) and let αl

be as constructed in (iii). Set ϕ = α−lαl, note that α−l is well-defined by
the previous paragraph. Then ϕ fixes L1 and sends the extremal element
x to an extremal element with zero (−1)-component. By Lemmas 4.1.4
and 4.3.9 and since L is generated by L1 and x, we get ϕ = exp(λy) for
unique λ ∈ k. Hence α−1

l βl fixes L1 and sends x to an extremal element
with 0 as (−1)-component, so as before α−1

l βl = exp(µy) for unique µ ∈ k.
This shows the first part of (v). In particular we get that E+(x, y) contains
all automorphisms which satisfy (4.3) and (4.4) for certain l ∈ L1. Now
we show the converse. Consider βl = exp(µy)αl, with µ ∈ k arbitrary. Set
qβl = qαl+adµy, nβl = nαl+adµy adl and vβl(m) = vαl(m)+[µy, qαl(m)]+
gy(m)y for all m ∈ L. Then these maps satisfy (4.3) and (4.4), since αl, qαl ,
nαl and vαl satisfy (4.4) and since y ∈ L2. Together with (the argument
in the paragraph surrounding) (4.7) to (4.9), this shows that the set of all
automorphisms which satisfy (4.3) and (4.4) for certain l ∈ L1 is closed
under left multiplication by elements in E+(x, y). This concludes the proof
of (v).
We now know that any other βl satisfying (4.3) and (4.4) equals exp(µy)αl

for unique µ ∈ k. Then βλl = exp(λ2µy)αλl ∈ E+(x, y), showing (iv).
(vi) Assume char(k) "= 2. We first show the existence of such an automorphism.

Let nl, l′, qαl′ and e1 be as in the proof of part (iii). If l is extremal, then
qαl(m) = gl(m)l = 1

2 [l, [l,m]] so the case nl = 1 is clear. Now assume
nl > 1 and qα′

l
(m) = 1

2 [l
′, [l′,m]] by induction, then by (4.7) we have

qαl(m) =
1

2
[l′, [l′,m]] +

1

2
[e1, [e1,m]] + [e1, [l

′,m]].

Consider βl = exp(− 1
2 [e1, l

′])αl, then

qβl(m) =
1

2
[l′, [l′,m]] +

1

2
[e1, [e1,m]] +

1

2
[e1, [l

′,m]]

+
1

2
([e1, [l

′,m]] + [m, [e1, l
′]])

=
1

2
[l′ + e1, [l

′ + e1,m]] =
1

2
[l, [l,m]].
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The uniqueness follows by part (v) and the fact that [x, y] "= 0, so the images
of x under e+(l) and exp(λy)e+(l) only coincide if λ = 0. Now e+(−l)e+(l)
fixes L1 and maps x onto an extremal element with zero as (−1)- and
0-component and hence Lemmas 4.1.4 and 4.3.9 imply e+(−l)e+(l) = id.
Since qβ−l(m) = 1

2 (−1)2[l, [l,m]] = 1
2 [−l, [−l,m]], the automorphism β−l

coincides with e+(−l), by the uniqueness of e+(−l).

We now turn our attention to the case where the extremal geometry does not
necessarily contain lines.

Definition 4.3.12. Let L be a Lie algebra over k with extremal elements x and y
with gx(y) = 1 such that we have a 5-grading as in Lemma 4.1.1. For σ ∈ {−,+}
we set

Eσ(x, y) = {ϕ ∈ Aut(L) | There exist l ∈ Lσ1 and maps qϕl , nϕl , vϕl

from L to itself such that (4.3) and (4.4) are satisfied.}.

Note that this definition is consistent with our earlier definition for when the
extremal geometry has lines by Theorem 4.3.11(v). We call L algebraic if the
conclusions of Theorem 4.3.11 are satisfied, with the above definition of Eσ(x, y).

Now we can extend the results of Theorem 4.3.11 to a larger class of Lie
algebras, using a Galois descent argument.

Theorem 4.3.13. Assume L is a Lie algebra over k with extremal elements x
and y with gx(y) = 1 and let k′/k be a Galois extension such that L ⊗ k′ is a
simple Lie algebra generated by its pure extremal elements, with F(L ⊗ k′) "= ∅
and |k′| ≥ 3. Then L = L−2 ⊕L−1 ⊕L0 ⊕L1 ⊕L2, the 5-grading associated with
x and y, as in Lemma 4.1.1, is algebraic.

Proof. Consider l ∈ L1 arbitrary. To ease notation, we set l = l ⊗ 1 in L⊗ k′.
By assumption, we find an automorphism αl of L⊗k′ satisfying (4.3) and (4.4).

Since [x, y] "= 0, we can find a basis B of L0, and thus of L0 ⊗ k′, such that B
contains [x, y]. Now, by (4.4), qαl(x) ∈ L0. Hence we can find unique b1, . . . , bn ∈
B\{[x, y]} and λ,λ1, . . . ,λn ∈ k′ such that qαl(x) = [x, y]⊗λ+b1⊗λ1+· · ·+bn⊗λn.
Now consider βl = exp(λy)αl, then there exist maps qβl , nβl and vβl such that
(4.3) and (4.4) are satisfied. More precisely for qβl , we have qβl = qαl + adλy.
Hence qβl(x) = ([x, y]⊗λ+b1⊗λ1+· · ·+bn⊗λn)+[y, x]⊗λ = b1⊗λ1+· · ·+bn⊗λn.

Consider g ∈ Gal(k′/k). Then ϕg, which sends m ⊗ λ to m ⊗ g(λ) for any
m ∈ L and λ ∈ k′, is an automorphism of L ⊗ k′. Now for any m′ ∈ L ⊗ k′ we
have, using ϕg(l) = l,

(ϕg ◦ βl ◦ ϕ−1
g )(m′) = m′ + [l,m′] + ϕg(qβl(ϕ

−1
g (m′)))

+ ϕg(nβl(ϕ
−1
g (m′))) + ϕg(vβl(ϕ

−1
g (m′))).
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Set γl = ϕg ◦ βl ◦ ϕ−1
g , qγl = ϕg ◦ qβl ◦ ϕ−1

g , nγl = ϕg ◦ nβl ◦ ϕ−1
g and vγl =

ϕg◦vβl ◦ϕ−1
g . Then these maps satisfy (4.3) and (4.4) since qβl , nβl and vβl satisfy

(4.4) and since ϕg stabilizes the components Li ⊗ k′. Hence Theorem 4.3.11(v)
implies that there exists µ ∈ k′ such that γl = exp(µy)βl. In particular

b1 ⊗ g(λ1) + · · ·+ bn ⊗ g(λn) = qγl(x) = qexp(µy)βl
(x) = [y, x]⊗ µ+ qβl(x)

= [y, x]⊗ µ+ b1 ⊗ λ1 + · · ·+ bm ⊗ λn.

Since b1, . . . , bn and [x, y] are linearly independent by construction, this implies
µ = 0. Hence βl = ϕg ◦ βl ◦ ϕ−1

g , and moreover qβl = ϕg ◦ qβl ◦ ϕ−1
g , nβl =

ϕg ◦ nβl ◦ ϕ−1
g and vβl = ϕg ◦ vβl ◦ ϕ−1

g . Since g ∈ Gal(k′/k) was arbitrary,
we get ϕg(qβl(m ⊗ 1)) = qβl(m ⊗ 1) for all m ∈ L and g ∈ Gal(k′/k). Hence
qβl(L⊗ 1) ≤ L⊗ 1, since k′/k is a Galois extension and thus Fix(Gal(k′/k)) = k.
Similarly, nβl(L⊗ 1) ≤ L⊗ 1, vβl(L⊗ 1) ≤ L⊗ 1 and thus βl(L⊗ 1) ≤ L⊗ 1. If
βl(L ⊗ 1) = M ⊗ 1, with M a proper subspace of L, then βl(L ⊗ k′) = M ⊗ k′,
contradicting βl ∈ Aut(L ⊗ k′). So βl(L ⊗ 1) = L ⊗ 1 and hence we find an
automorphism of L satisfying (4.3) and (4.4).

So we showed that conclusion (iii) of Theorem 4.3.11 holds. The fact that
conclusion (i), (v) and (vi) hold is clear, since they hold over a field extension.
Conclusion (iv) also holds since we can extend αl ∈ Aut(L) to an automorphism
Aut(L ⊗ k′) such that the maps qαl , nαl and vαl fix L ⊗ 1, and hence for λ ∈ k
the map αλl is an automorphism of L⊗ k′ stabilizing L⊗ 1.

Now we only have to show that conclusion (ii) holds. Since [L1⊗k′, L1⊗k′] "= 0
by Lemma 4.1.6, we have [L1, L1] = L2. Consider a, b ∈ L1 such that [a, b] "= 0,
and let αa and αb be automorphisms as in conclusion (iii). By (4.3) and (4.4)
and conclusion (v) we get αaαb = exp([a, b])αbαa.

In the next two lemmas we determine how the obtained automorphisms com-
mute.

In these lemmas and the corollary thereafter we use (only) the results of
Theorem 4.3.11, so we can loosen our assumptions on the Lie algebra L to the
assumptions made in Theorem 4.3.13 in the next two lemmas and corollary.

Lemma 4.3.14. Consider a, b ∈ Lσ1. Let αa and αb be as in Theorem 4.3.11(iii).
Then αaαb = exp([a, b])αbαa.

Proof. Assume σ = − this time. Let qαa and qαb be as in Theorem 4.3.11(iii). If
l ∈ Li, then the (i− 1)-components of αaαb(l) and exp([a, b])αbαa(l) both equal
[a+b, l]. Moreover, the (i−2)-component of αaαb(l) equals qαa(l)+qαb(l)+[a, [b, l]]
and the (i − 2)-component of exp([a, b])αbαa equals qαa(l) + qαb(l) + [[a, b], l] +
[b, [a, l]]. Using the Jacobi identity, these components coincide. By applying
both αaαb and exp([a, b])αbαa onto L2 and noting that [x, y] "= 0 we can use
Theorem 4.3.11(v) to get αaαb = exp([a, b])αbαa.

If char(k) "= 2 we can be more precise.
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Lemma 4.3.15. Assume char(k) "= 2. Then

eσ(a)eσ(b) = exp(1
2
[a, b])eσ(a+ b)

for all a, b ∈ Lσ1 and σ ∈ {−,+}.

Proof. Assume σ = −. Note that both e−(a)e−(b) and exp( 12 [a, b])e−(a+ b) are
contained in E−(x, y). For all l ∈ Li, the (i−1)-component of both e−(a)e−(b)(l)
and exp( 12 [a, b])e−(a+b)(l) equals [a+b, l]. By Theorem 4.3.11(v) there is a unique
λ ∈ k such that exp(λx)e−(a)e−(b) = exp( 12 [a, b])e−(a+ b). Applying both sides
to y and looking at the 0-component yields

1

2
[a, [a, y]] + [a, [b, y]] +

1

2
[b, [b, y]] + λ[x, y] =

1

2
([[a, b], y] + [a+ b, [a+ b, y]])

and hence, using the Jacobi identity, λ[x, y] = 0 and thus λ = 0.

Now an explicit description of the maps neσ(l) and veσ(l) as in part (iii) of
Theorem 4.3.11 follows if char(k) "= 2, 3.

Corollary 4.3.16. If char(k) "= 2, 3, then for all m ∈ L we have neσ(l)(m) =
1
6 [l, [l, [l,m]]] and veσ(l)(m) = 1

24 [l, [l, [l, [l,m]]]].

Proof. Denote e−(l) by αl as in Theorem 4.3.11(iii). Let α2l be as in Theo-
rem 4.3.11(iv). Since qα2l = qe−(2l), the uniqueness property in part (vi) of
Theorem 4.3.11 yields α2l = e−(2l). By Lemma 4.3.15 we get α2l = e−(2l) =
e−(l)e−(l). Hence 8ne−(l)(m) = nel(m) + 1

2 [l, [l, [l,m]]] + 1
2 [l, [l, [l,m]]] + nel(m)

for all m ∈ L, which implies neσ(l)(m) = 1
6 [l, [l, [l,m]]]. Similarly ve−(l)(m) =

1
24 [l, [l, [l, [l,m]]]] for all m ∈ L.

The following theorem shows that E−(x, y) acts sharply transitively on the
set of all extremal points which contain elements with non-zero 2-component. We
will use this in Section 4.6 to show the first axiom of a Moufang set. Note that if
the characteristic is not 2 or 3, this next theorem is a special case of Lemma 3.1.9.

Theorem 4.3.17. Assume L is a Lie algebra over k with extremal elements x
and y with gx(y) = 1 and let k′/k be a Galois extension such that L ⊗ k′ is a
simple Lie algebra generated by its pure extremal elements, with F(L ⊗ k′) "= ∅
and |k′| ≥ 3. Let L = L−2 ⊕L−1 ⊕L0 ⊕L1 ⊕L2 be the 5-grading associated with
x and y, as in Lemma 4.1.1. Then

• every extremal element with 2-component equal to y equals ϕ(y), for unique
ϕ ∈ E−(x, y).

• every extremal element with (−2)-component equal to x equals ϕ(x), for
unique ϕ ∈ E+(x, y).
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Proof. Let e be an extremal element with 2-component equal to y. By L1 =
[L−1, y] and [[l−1, y], x] = −l−1 for all l−1 ∈ L−1, there exist a unique a ∈ L−1

such that [a, y] is equal to the 1-component of e. By Theorem 4.3.11(iii) there
exists α ∈ E−(x, y) such that α(e) = l−2 + l−1 + l0 + y, with li ∈ Li. By
Lemma 4.3.9, there exists λ ∈ k such that exp(λx)(α(e)) = y. Note that exp(λx)α
is contained in E−(x, y). Hence ϕ := (exp(λx)α)−1 is also contained in this
subgroup E−(x, y) of Aut(L), and clearly ϕ(y) = e.

Assume ϕ′ ∈ E−(x, y) satisfies ϕ′(y) = e = ϕ(y). The definition of E−(x, y)
implies ϕ(l) = l+[a, l] = ϕ′(l) for all l ∈ L−1. Hence the action of ϕ and ϕ′ coin-
cide on L2 and L−1 and since these two subspaces generate L, the automorphisms
ϕ and ϕ′ coincide.

The second claim is shown completely similarly.

Remark 4.3.18. Assume for this remark char(k) "= 2, 3. Recall that we already
introduced a notion of algebraicity of 5-graded Lie algebras if this condition on
the characteristic holds, see Definition 1.1.68. Assume L is a Lie algebra over
k with extremal elements x and y with gx(y) = 1 and let L = L−2 ⊕ L−1 ⊕
L0 ⊕ L1 ⊕ L2 be the associated 5-grading. Note that Corollary 4.3.16 implies
that if L is algebraic according to Definition 4.3.12, it is algebraic according to
Definition 1.1.68. Assume now that L is algebraic according to Definition 1.1.68.
For ease of notation (we do not want to introduce notation for Kantor pairs),
assume that the 5-grading on L is coming from a skew-dimension one structurable
algebra A. Then the arguments in the proof of Theorem 4.3.11(v) and the first
paragraph of the proof of Lemma 4.3.9 can be used to show that Eσ(A), as defined
in Definition 1.1.75, coincides with Eσ(x, y). By [BDMS19, Lemma 3.1.3], we get
that L is algebraic according to Definition 4.3.12.

Remark 4.3.19. Note that we did not make any assumptions on the dimension
of the Lie algebra L in this section. In particular, the results also hold for
infinite-dimensional Lie algebras. In the next sections of this chapter, we will
always explicitly mention when we assume L to be finite-dimensional.

4&$5*0/ ���
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In this section we prove that if L is a simple Lie algebra over a field k, with
|k| > 3, which is generated by its pure extremal elements and if its extremal
geometry contains lines, then L1 can be decomposed as k ⊕ J ⊕ J ⊕ k, for a
certain cubic norm structure J and L can be defined using the maps from this
cubic norm structure. (Unless the norm, which we will define later, is the 0-map.)
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We briefly outline the proof strategy. By considering a pair of special extremal
elements in E∩L−1 we can decompose L−1 in 4 parts. Then using the algebraicity
proven in the previous section, see Theorem 4.3.11, we exploit the existence of
certain extremal elements to define a cubic form and a trace on one of these
four components which we denote by J . Using some uniqueness properties of
certain extremal elements we can show that J has the structure of a cubic norm
structure, if the cubic form is not the 0-map.

Note that if the characteristic is different from 2 or 3, we can obtain this
existence of J in a more straightforward fashion, relying on the theory of (skew-
dimension one) structurable algebras. See Corollary 4.2.14 and Theorem 4.2.17.

This cubic norm structure is not necessarily anisotropic, but if it is anisotropic
the associated extremal geometry is the Moufang hexagon corresponding to J as
in Theorem 1.2.21. This is the main theorem of Section 4.4.2. In Section 4.4.3
we look at the other extreme: the case that this cubic form is the 0-map. This
turns out to be equivalent to the extremal geometry being of type An,{1,n} (if the
Lie algebra is finite-dimensional).

Notation 4.4.1. We fix some notation for this section.
The Lie algebra L is simple and generated by its pure extremal elements E

and there are lines in its extremal geometry. This Lie algebra is defined over a
field k and we assume |k| > 3.

Fix x, y ∈ E such that gx(y) = 1, the existence of these elements follows by
Proposition 2.3.9. By Lemma 4.1.1 there exists a 5-grading L = L−2 ⊕ L−1 ⊕
L0 ⊕ L1 ⊕ L2 with L−2 = 〈x〉 and L2 = 〈y〉.

Since the extremal geometry contains lines, Lemma 4.1.11 implies that there
exist extremal elements e′1 and e′2 contained in L−1 such that [e′1, e′2] = x. Set e1 =
[y, e′1] and e2 = [y, e′2]. Again by Lemma 4.1.11 we see that [x, y] = [e′1+e′2, e1−e2].

����� $POTUSVDUJOH UIF DVCJD OPSN TUSVDUVSF

In this section we will construct all the maps involved in a cubic norm structure
and verify that these satisfy all axioms of a cubic norm structure.

We start with the following observation, needed to obtain a second grading
on the Lie algebra which we will use often in this section.

Lemma 4.4.2. We have ge2(e
′
1) = −1.

Proof. Using the associativity and symmetry of the extremal form g, see Propo-
sition 2.3.6,

ge2(e
′
1) = g([y, e′2], e

′
1) = −g(y, [e′1, e

′
2]) = −g(y, x) = −gx(y) = −1.
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We are now ready to define a subspace J which will turn out to have the
structure of a cubic norm structure. Using the grading related to (e′1,−e2) ∈ E2

we are able to describe a decomposition of L−1 into 4 parts.

Notation 4.4.3. We denote the 5-grading of L obtained by considering the pair
(e′1,−e2) ∈ E2 in Lemma 4.1.1 by

L = L′
−2 ⊕ L′

−1 ⊕ L′
0 ⊕ L′

1 ⊕ L′
2, (4.10)

where L′
−2 = 〈e′1〉 and L′

2 = 〈e2〉. Recall from Lemma 4.1.1 that L′
i is contained

in the i-eigenspace of ad[e′1,−e2] = − ad[e′1,e2]
. By [e′1, L

′
−1] = 0 = [e2, L′

1] this
implies

[e′1, [e2, l
′
−1]] = l′−1, [e2, [e

′
1, l

′
1]] = l′1, (4.11)

for any l′−1 ∈ L′
−1 and l′1 ∈ L′

1.
We set

J = L−1 ∩ L′
−1, J ′ = L−1 ∩ L′

0.

Note that 〈e′1〉 and 〈e′2〉 are both collinear with 〈x〉 by Lemma 4.1.8. Since 〈e′1〉
and 〈y〉 are special, 〈e1〉 = 〈[y, e′1]〉 is collinear with both 〈e′1〉 and 〈y〉. Similarly
for 〈e2〉 and hence 〈x〉, 〈e′1〉, 〈e1〉, 〈y〉, 〈e2〉, 〈e′2〉, 〈x〉 forms an ordinary hexagon in
the extremal geometry. Then by Lemma 4.1.9 we have x ∈ L′

−1 and e′2 ∈ L′
1.

Similarly y ∈ L′
1 and e1 ∈ L′

−1.
Now, as in Lemma 4.4.2, one obtains ge1(e

′
2) = 1. We denote the 5-grading

of L obtained by considering (e′2, e1) ∈ E2 in Lemma 4.1.1 by

L = L′′
−2 ⊕ L′′

−1 ⊕ L′′
0 ⊕ L′′

1 ⊕ L′′
2 , (4.12)

where L′′
−2 = 〈e′2〉 and L′′

2 = 〈e1〉. Recall from Lemma 4.1.1 that L′′
i is contained

in the i-eigenspace of ad[e′2,e1]
. By [e′2, L

′′
−1] = 0 = [e1, L′′

1 ] this implies

[e′2, [e1, l
′′
−1]] = −l′′−1, [e1, [e

′
2, l

′′
1 ]] = −l′′1 , (4.13)

for any l′′−1 ∈ L′′
−1 and l′′1 ∈ L′′

1 . Similarly as before, we have y, e′1 ∈ L′′
1 and

x, e2 ∈ L′′
−1.

In the second lemma of this subsection we obtain a decomposition of L−1 into
4 parts.

Lemma 4.4.4. We have the following decomposition

L−1 = 〈e′1〉 ⊕ J ⊕ J ′ ⊕ 〈e′2〉,

and moreover L−1 ∩ L′
1 = 〈e′2〉.
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Proof. By Lemma 4.1.10 we get ge′1(L−1) = 0. Together with e′1 ∈ L′
−2 and

Lemma 4.1.8 this yields L−1 ≤ L′
−2 ⊕ L′

−1 ⊕ L′
0 ⊕ L′

1. So if we consider l ∈ L−1

arbitrary, then there exist unique l′i ∈ L′
i, i = −2,−1, 0, 1, such that l = l′−2 +

l′−1 + l′0 + l′1. By L′
−2 = 〈e′1〉 ≤ L−1 we get l′−1 + l′0 + l′1 ∈ L−1. From now on we

may assume l′−2 = 0. Using [e′1, e2] ∈ L0, we get l′−1 − l′1 = [[e′1, e2], l] ∈ L−1.
Let λ ∈ k be any non-zero scalar. Consider the map ϕλ defined by ϕλ(li) =

λili for all li ∈ L′
i. By Lemma 4.1.5, applied to the 5-grading (4.10), ϕλ is an

automorphism of L.
By x ∈ L′

−1 and y ∈ L′
1, we get ϕλ(x) = λ−1x and ϕλ(y) = λy. Then

Lemma 4.1.7 implies ϕλ(L−1) = L−1. Hence ϕλ(l) = λ−1l′−1+l′0+λl
′
1 is contained

in L−1. Since λ was arbitrary, l ∈ L−1 implies (λ−1−1)l′−1+(λ−1)l′1 ∈ L−1 for all
non-zero λ ∈ k. We showed before l′−1−l′1 ∈ L−1. Hence (λ−1−1+λ−1)l′−1 ∈ L−1

for any non-zero λ ∈ k. If char(k) "= 2, consider λ = −1 to get l′−1 ∈ L−1. If
char(k) = 2, then |k| > 2 implies that we can find λ such that λ+ λ−1 "= 0. We
can conclude l′−1 ∈ L−1. By l′−1 − l′1 ∈ L−1 and l ∈ L−1, we get that both l′1 and
l′0 are also contained in L−1. Hence

L−1 = (L′
−2 ∩ L−1)⊕ (L′

−1 ∩ L−1)⊕ (L′
0 ∩ L−1)⊕ (L′

1 ∩ L−1)

= 〈e′1〉 ⊕ J ⊕ J ′ ⊕ L′
1 ∩ L−1.

Consider l′1 ∈ L′
1 ∩ L−1 arbitrary. By (4.11) we get [e2, [e′1, l

′
1]] = l′1. Since

[e′1, l
′
1] ∈ L−2 = 〈x〉 this implies that l′1 is a multiple of [e2, x] = e′2. We showed

L′
1 ∩ L−1 = 〈e′2〉 and obtain the claimed decomposition.

Using this decomposition we obtain some more information on the Lie bracket.

Corollary 4.4.5. We obtain the following decomposition of L1

L1 = 〈e1〉 ⊕ [y, J ]⊕ [y, J ′]⊕ 〈e2〉,

and the following identities

〈e1〉 = L1 ∩ L′
−1, [y, J ] = L1 ∩ L′

0, [y, J ′] = L1 ∩ L′
1; (4.14)

[J, J ] = 0, [J, e′1] = [J, e′2] = 0, [J, e1] = 0; (4.15)
[J ′, J ′] = 0, [J ′, e′1] = [J ′, e′2] = 0, [J ′, e2] = 0; (4.16)
[J, [J, e2]] ≤ J ′, [J ′, [J ′, e1]] ≤ J. (4.17)

Proof. By [y, L−1] = L1, [x, [y, l−1]] = −l−1 for all l−1 ∈ L−1 and Lemma 4.4.4,
the decomposition is clear. The identities in (4.14) follow from this new decom-
position and y ∈ L′

1.
Since [J, J ] ≤ L−2 ∩ L′

−2 and x ∈ L′
−1 spans L−2, the first identity of (4.15)

follows. The second identity of (4.15) follows completely similarly. Since J ≤ L′
−1

and e1 ∈ L′
−1, we have [J, e1] ≤ L′

−2 = 〈e′1〉 ≤ L−1. On the other hand, looking
at the standard grading, [J, e1] ≤ L0, which yields [J, e1] = 0.
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The identities of (4.16) are shown completely similarly as these of (4.15).
By [J, [J, e2]] ≤ L−1 and [J, [J, e2]] ≤ [L′

−1, [L
′
−1, L

′
2]] ≤ L′

0 the first identity
of (4.17) is clear, similarly for the second identity.

Lemma 4.4.6. We can alternatively describe J and J ′ as follows

J = {l ∈ L−1 | [e′1, l] = 0 = [e′2, l] = [e1, l]}, (4.18)
J ′ = {l ∈ L−1 | [e′1, l] = 0 = [e′2, l] = [e2, l]}, (4.19)

Proof. By (4.15) it is clear that J is contained in the set on the right hand side
of (4.18).

Conversely, by [e′1, e
′
2] "= 0 and Lemma 4.4.4 it is clear that the set on the right

hand side of equation (4.18) is contained in J ⊕ J ′. Consider j′ ∈ J ′ arbitrary.
By Lemma 4.1.11, j′ ∈ L′

0 and [e1, e′1] = [e2, e′2] = 0, we get

−j′ = [[x, y], j′] = [[e′1 + e′2, e1 − e2], j
′]

= −[[e′1, e2], j
′] + [[e′2, e1], j

′] = [e′2, [e1, j
′]].

Hence [j′, e1] = 0 implies j′ = 0 and (4.18) follows by (4.15). Similarly for
(4.19).

The subspace L0 also has a decomposition, but this time it is a decomposition
into 3 parts.

Lemma 4.4.7. We have the following decomposition of L0

L0 = (L0 ∩ L′
−1)⊕ (L0 ∩ L′

0)⊕ (L0 ∩ L′
1), (4.20)

and moreover

L0 ∩ L′
1 = [J, e2] (4.21)

L0 ∩ L′
−1 = [e′1, [y, J

′]] (4.22)

Proof. By Lemma 4.1.10 applied to e′1 ∈ L−1 we get ge′1(L0) = 0 and hence
Lemma 4.1.8 yields L0 ≤ L′

−2 ⊕ L′
−1 ⊕ L′

0 ⊕ L′
1. By considering the extremal

element e2 ∈ L1 instead of e′1, we get L0 ≤ L′
−1 ⊕ L′

0 ⊕ L′
1 ⊕ L′

2. Hence L0 ≤
L′
−1 ⊕ L′

0 ⊕ L′
1. Now by the last sentence of the first paragraph and the second

and third paragraph of the proof of Lemma 4.4.4 we obtain decomposition (4.20).
Consider l0 ∈ L0 ∩ L′

1 arbitrary. By Lemma 4.1.1 there exists a (unique)
l ∈ L′

−1 such that l0 = [l, e2]. Since e2 ∈ L1 and l0 ∈ L0, we get, using
Lemma 4.4.4, Corollary 4.4.5, and (4.20), l ∈ L−1. Hence l ∈ L−1 ∩ L′

−1 = J .
Clearly [J, e2] ≤ L0 ∩ L′

1. This shows equation (4.21). Equation (4.22) is shown
completely similarly.

In the next lemma we deduce some connections between grading (4.10) and
grading (4.12).
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Lemma 4.4.8. We have

L−1 ∩ L′′
−1 = J ′, L−1 ∩ L′′

0 = J, L−1 ∩ L′′
1 = 〈e′1〉, (4.23)

L0 ∩ L′
1 = L0 ∩ L′′

−1, L0 ∩ L′
0 = L0 ∩ L′′

0 , L0 ∩ L′
−1 = L0 ∩ L′′

1 . (4.24)

Proof. As in Lemma 4.4.4 we get that

L−1 = 〈e′2〉 ⊕ (L−1 ∩ L′′
−1)⊕ (L−1 ∩ L′′

0)⊕ 〈e′1〉,

with 〈e′1〉 = L−1 ∩ L′′
1 . Then as in (4.18) and (4.19) we can describe these two

intersections without using the 5-gradings, but now the roles of e1 and e2 are
reversed. Hence (4.23) follows

By the same arguments used to prove (4.21), we get L0 ∩ L′′
1 = [J ′, e1], and

similarly L0∩L′′
−1 = [e′2, [y, J ]]. Consider the automorphism ϕ from Lemma 4.1.4.

Now note that [y, L0 ∩ L′′
−1] ≤ L2 ∩ L′′

1−1 = 0, since y ∈ L′′
1 . Together with

Lemma 4.1.4 this yields

L0 ∩ L′′
−1 = ϕ(L0 ∩ L′′

−1) = ϕ([e′2, [y, J ]]) = [e2, J ] = L0 ∩ L′
1,

and similarly L0 ∩ L′′
1 = L0 ∩ L′

−1. Now consider l ∈ L0 ∩ L′
0. By Lemma 4.1.11

and [e′1, e1] = 0 = [e′2, e2], we get

0 = [[x, y], l] = [[e′1 + e′2, e1 − e2], l] = −[[e′1, e2], l] + [[e′2, e1], l] = [[e′1, e2], l].

Hence l is contained in the 0-eigenspace of ad[e′1,e2]
. By the decomposition of L0

in (4.20), we get l ∈ L′
0. Hence L0∩L′′

0 ≤ L0∩L′
0, and L0∩L′

0 ≤ L0∩L′′
0 follows

similarly.

The next lemma on the uniqueness of certain extremal elements will be used
to define the maps involved in the cubic norm structure.

Lemma 4.4.9. For every a ∈ J , there is a unique extremal element of the
following form

a−2 + a−1 + [a, e2] + e2,

with a−1 ∈ J ′ and a−2 ∈ L−2. Moreover it is equal to αa(e2), for unique
αa ∈ E−(x, y) satisfying (4.3) and (4.4).

Proof. By Theorem 4.3.11(iii) there exists an automorphism αa satisfying (4.3)
and (4.4) and hence an extremal element

αa(e2) = a−2 + a−1 + [a, e2] + e2,

with a−1 ∈ L−1 and a−2 ∈ L−2. Note that 〈e2〉 and 〈e′2〉 are collinear extremal
points. Applying the automorphism αa yields that 〈αa(e2)〉 and 〈e′2〉 = 〈[a, e′2] +
e′2〉 = 〈αa(e′2)〉 are collinear extremal points, using [J, e′2] = 0. Consider the 5-
grading from (4.12), associated with the pair (e′2, e1) ∈ E2. Since 〈e′2〉 = L′′

−2
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and αa(〈e2〉) are collinear, Lemma 4.1.8 implies αa(e2) ∈ L′′
−2 ⊕ L′′

−1. Hence
a−1 ∈ 〈e′2〉 ⊕ J ′ by (4.23) and the similar decomposition of L−1 into 4 parts as
in Lemma 4.4.4. Now since [x, e2] = [x, [y, e′2]] = [[x, y], e′2] = −e′2, there exists
λ ∈ k such that exp(λx)(αa(e2)) has (−1)-component contained in J ′. This
shows that there exists an extremal element of the claimed form. Assume from
now on a−1 ∈ J ′ and replace αa by exp(λx)αa. Now we show the uniqueness
claims.

Suppose ϕ = a′−2+a′−1+[a, e2]+e2 is an extremal element such that a′−2 ∈ L−2

and a′−1 ∈ J ′. Then α−a(ϕ) has 0-component 0.1 Moreover, its (−1)-component
equals a′−1+a−1−[a, [a, e2]]. By assumption a′−1 ∈ J ′, by the previous paragraph
a−1 ∈ J ′, and by (4.17) we get [a, [a, e2]] ∈ J . Hence the (−1)-component of
α−a(ϕ) is contained in J ′ ≤ L′

0. Note that the (−2)-component of α−a(e2) is
contained in L′

−1 and its only other non-zero component equals e2 ∈ L′
2. By

Lemma 4.3.9, applied to the grading (4.10) associated with (e′1,−e2), we get
α−a(ϕ) = exp(λe′1)(e2) for certain λ ∈ k. Considering the 0-components of
these extremal elements yields 0 = λ[e1, e′2] and thus λ = 0 and e2 = α−a(ϕ).
Since α−1

−a = exp(λx)αa, for certain λ ∈ k, we get ϕ = exp(λx)αa(e2). By
−[x, e2] = e′2 "∈ J ′, and the fact that the (−1)-components of ϕ and αa(e2)
are contained in J ′, we get λ = 0. This shows the uniqueness of this extremal
element.

Note that [j, e2] = 0 for j ∈ J implies 0 = [e′1, [j, e2]] = [j, [e′1, e2]] = −j
using j ∈ L′

−1 and [j, e′1] = 0. Consider ψ ∈ E−(x, y) such that ψ(e2) = αa(e2).
Comparing 0-components of both elements and using that [j, e2] = 0 implies
j = 0, we get ψ = exp(λx)αa for certain λ ∈ k by Theorem 4.3.11(v). But again,
as in the end of the previous paragraph, the fact that (−1)-component of the
extremal element has to lie in J ′ implies λ = 0, showing the uniqueness of the
automorphism.

Lemma 4.4.10. If e ∈ E satisfies (e′2, e) ∈ E−1 and (e, x) ∈ E1, then there exist
unique a ∈ J , a−1 ∈ J ′ and a−2 ∈ L−2 such that

a−2 + a−1 + [a, e2] + e2 ∈ 〈e′2, e〉.

Proof. By (x, e) ∈ E1, Lemma 4.1.3 yields that e = l−2 + l−1 + l0 + l1 for unique
li ∈ Li, i = −2,−1, 0, 1. Consider the 5-grading (4.12) associated with the pair
(e′2, e1). Recall 〈e2〉 = L′′

−2. Hence Lemma 4.1.8 together with (e′2, e) ∈ E−1

implies e ∈ L′′
−2 ⊕ L′′

−1. So Lemma 4.4.4 and (4.20), (4.23) and (4.24) imply
l−1 ∈ 〈e′2〉 ⊕ J ′ and l0 = [a, e2] for certain a ∈ J . Note that without loss of
generality we may change e by adding a multiple of e′2 to e. We can thus assume
l−1 ∈ J ′.

Since (x, e′2) ∈ E−1, 〈e′2〉 is the unique common neighbor of the special pair
of extremal points 〈x〉 and 〈e〉. Hence 0 "= [x, e] ∈ 〈e′2〉. After rescaling of e, we

1The automorphism α−a is obtained from the automorphism αa of the previous paragraph
as in Theorem 4.3.11(iv).
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can assume [x, e] = −e′2. The (−1)-component of [x, e] equals [x, l1] and hence
−l1 = [y, [x, l1]] = [y, [x, e]] = −[y, e′2] = −e2. So the 1-component of e equals e2.

The uniqueness claim follows from the uniqueness properties in Lemma 4.4.9
and e′2 "∈ J .

We can now define some maps.
Construction 4.4.11. We define maps N : J → k, # : J → J ′, T : J × J ′ → k,
× : J × J → J ′ as follows:

N(a)x = a−2, for any a ∈ J with a−2 as in Lemma 4.4.9;
a# = a−1, for any a ∈ J with a−1 as in Lemma 4.4.9;

T (a, b)x = [a, b], for any a ∈ J, b ∈ J ′;

a× b = [a, [b, e2]], for any a, b ∈ J.

Note that by [J, J ] = 0, × is a symmetric map. Completely similarly, one defines
maps N ′ : J ′ → k, #′ : J ′ → J , ×′ : J ′ × J ′ → J .

Using Lemma 4.4.9 we can deduce some identities.
Lemma 4.4.12. For all a, b ∈ J and λ ∈ k, we have

(λa)# = λ2a#; (4.25)
N(λa) = λ3N(a); (4.26)

(a+ b)# = a# + a× b+ b#; (4.27)
N(a+ b) = N(a) + T (b, a#) + T (a, b#) +N(b); (4.28)

(a#)#
′
= N(a)a. (4.29)

Proof. Equations (4.25) and (4.26) follow immediately from Lemma 4.4.9 and
Theorem 4.3.11(iv).

There exist automorphisms αa and αb such that αa(e2) = N(a)x+a#+[a, e2]+
e2 and αb(e2) = N(b)x+ b# + [b, e2] + e2 by Lemma 4.4.9. Hence

αb(αa(e2)) =(N(a)x+ T (b, a#)x+ qαb([a, e2]) +N(b)x)

+ (a# + a× b+ b#) + [a+ b, e2] + e2

is also an extremal element. On the other hand
αa(αb(e2)) =(N(b)x+ T (a, b#)x+ qαa([b, e2]) +N(a)x)

+ (b# + b× a+ a#) + [b+ a, e2] + e2

is also an extremal element. Since b# + b× a+ a# ∈ J ′, we can use Lemma 4.4.9
to obtain (4.27) and

N(a+ b)x = N(a)x+ T (b, a#)x+ qαb([a, e2]) +N(b)x

= N(a)x+ T (a, b#)x+ qαa([b, e2]) +N(b)x.
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In particular, we have:

T (a, b#)x− qαb([a, e2]) = T (b, a#)x− qαa([b, e2]). (4.30)

Since b ∈ J is arbitrary, we can replace it by λb for arbitrary λ ∈ k. By The-
orem 4.3.11(iv), (4.25), and the linearity of T , the left hand side of (4.30) is
quadratic in λ, while the right hand side is linear in λ. Then |k| ≥ 3 implies that
both the left and the right hand side of (4.30) equal 0. So we obtain (4.28).

Consider a ∈ J arbitrary. Consider the extremal element ϕ = N(a)x + a# +
[a, e2] + e2. Since a# ∈ J ′, we get

ge1(a
#) = g([y, e′1], a

#) = g(y, [e′1, a
#]) = 0.

First assume N(a) "= 0. Then Lemma 4.1.10, ge1(a
#) = 0 and [e2, e1] "= 0

imply (ϕ, e1) ∈ E1 and hence −N(a)e′1 + [a#, e1] + [[a, e2], e1] − y = [ϕ, e1] ∈
E. Using the automorphism from Lemma 4.1.4 we get −x + [x, [[a, e2], e1]] +
[[y, a#], [x, e1]] − N(a)e1 ∈ E. Now using [a, e1] = 0, we have [x, [[a, e2], e1]] =
−[x, [a, [e1, e2]] = −a. On the other hand [[y, a#], [x, e1]] = [x, [[y, a#], e1]] −
[[x, [y, a#]], e1] = [x, [y, [a#, e1]]]+ [a#, e1] = [[x, y], [a#, e1]]+ [a#, e1] = [a#, e1]. Mul-
tiplying the obtained extremal element by −N(a)−1, we get N(a)−1x+N(a)−1a+
[−N(a)−1a#, e1] + e1. So by definition (−N(a)−1a#)#

′
= N(a)−1a. Using (4.25),

which also holds for #′ by a similar argument, we get (a#)#′ = N(a)a, so we obtain
(4.29) if N(a) "= 0.

Now assume N(a) = 0 and a# "= 0. By Lemma 4.1.8 we get (ϕ, y) ∈ E1 and
hence [a#, y] = [ϕ, y] ∈ E. Similarly −a# = [x, [y, a#]] ∈ E. Hence exp(a#)(e1) =
[a#, e1] + e1, using ge1(a

#) = 0, and thus (a#)#
′
= 0 = N(a)a. Finally, if a# = 0

and N(a) = 0, then (4.29) is trivially satisfied.

Lemma 4.4.13. For all a, b, c ∈ J we have

T (a, a#) = 3N(a); (4.31)
a× a = 2a#; (4.32)

T (c, a× b) = T (a, b× c); (4.33)
a# ×′ (a× b) = N(a)b+ T (b, a#)a; (4.34)

a# ×′ b# = −(a× b)#
′
+ T (b, a#)b+ T (a, b#)a. (4.35)

Proof. By [TW02, (15.16), (15.18)] and (4.25) to (4.29) . (It is stated for a
slightly different situation, but it continues to hold in this case. Also note that
we assumed |k| > 3.)

In the following lemma we deduce some Lie brackets in terms of T , × and ×′.
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Lemma 4.4.14. Let i, j, l ∈ J and i′, j′, l′ ∈ J ′ be arbitrary, then

[j, [i, [y, l]]] = T (j, i× l)e′1; (4.36)
[j, [i, [y, l′]]] = −T (j, l′)i− T (i, l′)j + (i× j)×′ l′; (4.37)
[j, [i′, [y, l]]] = (j × l)×′ i′ − T (j, i′)l; (4.38)
[j, [i′, [y, l′]]] = −(i′ ×′ l′)× j; (4.39)
[j′, [i′, [y, l′]]] = T (i′ ×′ l′, j′)e′2; (4.40)

Proof. By Lemma 4.4.4 and [j, [i, [y, l]]] ∈ L1 ∩ L′
−2, we get [j, [i, [y, l]]] = λe′1 for

certain λ ∈ k. Using [e′1, e
′
2] = x and (4.15), we get

−λx = [e′2, [j, [i, [y, l]]]] = −[j, [i, [l, e2]]] = −[j, i× l] = −T (j, i× l)x,

and hence (4.36) holds. Similarly, (4.40) holds.
By applying the Jacobi identity multiple times while using [j, [i, l′]] ∈ L−3 = 0,

we have

[j, [i, [y, l′]]] = [y, [j, [i, l′]]]− [[y, j], [i, l′]]− [j, [[y, i], l′]]

= 0− [[y, j], T (i, l′)x]− [[y, i], [j, l′]] + [l′, [j, [y, i]]]

= −T (i, l′)j − T (j, l′)i+ [l′, [j, [y, i]]].

By y = [e1, e2] and (4.15), we get

[l′, [j, [y, i]] = [l′, [j, [[e1, e2], i]]] = [l′, [[j, [i, e2]], e1]] = (i× j)×′ l′. (4.41)

So we recover (4.37).
By the Jacobi identity and j ∈ L−1,

[j, [i′, [y, l]]] = [j, [y, [i′, l]]] + [j, [l, [y, i′]]] = T (l, i′)j + [j, [l, [y, i′]]],

so, by (4.37), (4.38) holds.
Equation (4.39) follows by y = [e1, e2] and a completely similar calculation as

(4.41).

Now note that by the simplicity of L, (4.15) and (4.16) and Lemma 4.1.11,
we have

L0 = 〈[x, y]〉+ [J + J ′, [y, J + J ′]] + [J, e1] + [J ′, e2] + 〈[e′1, e2]〉.

By Lemma 4.4.14, the definition of T , # and #′, (4.15) and (4.16) and the Jacobi
identity, we can determine all Lie brackets of these elements in L0 with an element
of L−1 in terms of T , # and #′. By Lemma 4.1.4, the same holds for the Lie
brackets with elements in L1. Since L2 = [L1, L1], L−2 = [L−1, l−1] and L0 =
[L−1, L1] + [L−2, L2], the Lie bracket of elements in L0 with any element in L
can be expressed in terms of T , × and ×′. Also, clearly the Lie bracket of any
two elements in L≤−1 can be expressed in terms of T , similarly for L≥1.



123 ���� &YUSFNBM HFPNFUSZ XJUI MJOFT � SFDPWFSJOH B DVCJD OPSN TUSVDUVSF

Lemma 4.4.15. If N "= 0, then we can re-choose e′1 and e′2 in Notation 4.4.1
such that there exist c ∈ J with N(c) = 1.

Proof. Consider a ∈ J such that N(a) "= 0. Note that [N(a)e′1, N(a)−1e′2] =
[e′1, e

′
2] = x. Hence if we replace e′1 by N(a)e′1 and e′2 by N(a)−1e′2, then the

conditions in Notation 4.4.1 are satisfied. Also note that the two subspaces de-
fined in Notation 4.4.3 with respect to these new extremal elements are precisely
J and J ′ by (4.18) and (4.19). Denote the norm obtained in Construction 4.4.11
by N1. Since N(a)x+a#+[a, e2]+e2 ∈ E, we get x+N(a)−1a#+[a,N(a)−1e2]+
N(a)−1e2 ∈ E. Hence N1(a) = 1.

Using this c, which we call a basepoint, we can define isomorphisms from J to
J ′ and from J ′ to J . For the rest of this section assume N "= 0.

Definition 4.4.16. Define the map σ1 : J → J ′ by

σ1(j) = T (j, c#)c# − c× j,

for all j ∈ J and the map σ2 : J ′ → J by

σ2(j
′) = T (c, j′)c− j′ ×′ c#,

for all j′ ∈ J ′.

We now show some properties of these two maps.

Lemma 4.4.17. We have σ2σ1 = idJ and σ1σ2 = idJ ′ .

Proof. Consider j ∈ J arbitrary. Then

σ2(σ1(j)) = T (c, T (j, c#)c#)c− T (c, c× j)c− T (j, c#)c# ×′ c# + c# ×′ (c× j)

= T (j, c#)T (c, c#)c− T (j, c× c)c− 2T (j, c#)(c#)#
′
+N(c)j + T (j, c#)c

= 3T (j, c#)c− 2T (j, c#)c− 2T (j, c#)c+ j + T (j, c#)c

= j,

using (4.29) and (4.31) to (4.34) and N(c) = 1. Similarly for the second identity.

Lemma 4.4.18. We have σ2 ◦ # = #′ ◦ σ1.

Proof. Consider j ∈ J arbitrary, then

σ2(j
#) = T (c, j#)c− j# ×′ c#

= T (c, j#)c+ (j × c)#
′
− T (c, j#)c− T (j, c#)j

= (j × c)#
′
− T (j, c#)j,
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using (4.35). On the other hand

σ1(j)
#′ = (T (j, c#)c# − c× j)#

′

= T (j, c#)2(c#)#
′
− T (j, c#)c# ×′ (c× j) + (c× j)#

′

= T (j, c#)2c− T (j, c#)j − T (j, c#)2c+ (c× j)#
′

= (j × c)#
′
− T (j, c#)j,

using N(c) = 1, (4.25), (4.27), (4.29) and (4.34).

We are now ready to define the cubic norm structure and prove that it indeed
satisfies all properties of a cubic norm structure.
Construction 4.4.19. Consider a, b ∈ J arbitrary, then define the maps TJ :
J × J → k, ×J : J × J → J and #J : J → J as follows:

TJ(a, b) = T (a,σ1(b)); (4.42)
a×J b = σ2(a× b); (4.43)

a#J = σ2(a
#). (4.44)

Proposition 4.4.20. Let L be as in Notation 4.4.1 and J be as in Nota-
tion 4.4.3. Assume N , as defined in Construction 4.4.11, to be non-zero. The
data (J, k,N, #J , TJ ,×J , c) is a non-degenerate cubic norm structure.

Proof. Recall that by Lemma 1.1.19 we only have to show that conditions (i),
(ii), (iv), (v), (vii), (x) and (xi) of Definition 1.1.15 are satisfied.

First of all note that ×J is symmetric and bilinear by construction. For TJ ,
note that

TJ(a, b) = T (a, T (b, c#)c#)− T (a, c× b) = T (a, c#)T (b, c#)− T (c, a× b),

by (4.33), and hence TJ is symmetric and bilinear.
Condition (i) follows from the linearity of σ2 and (4.25).
Condition (ii) is precisely (4.26).
Condition (iv) follows from the linearity of σ2 and (4.27).
Condition (v) follows from σ1σ2 = idJ ′ and (4.28).
Condition (vii) follows from σ1σ2 = idJ ′ , Lemma 4.4.18 and (4.29).
Condition (x) follows by σ2(c#) = T (c, c#)c− c# ×′ c# = 3N(c)c− 2N(c)c = c,

using (4.29), (4.31) and (4.32) and N(c) = 1.
Condition (xi) follows from

c×J j = σ2(c× j) = T (c, c× j)c− c# ×′ (c× j)

= T (j, c× c)c−N(c)j − T (j, c#)c

= T (j, c#)c− j = TJ(j, c)− j,
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using (4.32) to (4.34), σ1(c) = c# and N(c) = 1, with j ∈ J arbitrary.
The cubic norm structure is non-degenerate by (4.15), the definition of TJ

and Lemma 4.1.6.

Similarly as in Construction 4.4.19 and Proposition 4.4.20 we can define maps
for J ′ such that (J ′, k,N ′, #J ′ , TJ ′ ,×J ′ , c#) is a cubic norm structure.

Lemma 4.4.21. The map σ1 is an isomorphism between the cubic norm struc-
tures (J, k,N, #J , TJ ,×J , c) and (J ′, k,N ′, #J ′ , TJ ′ ,×J ′ , c#).

Proof. Clearly σ1(c) = c#. For any j ∈ J we have σ1(j#J ) = σ1(σ2(j#)) = j# =
σ2(σ1(j#))) = σ1(σ1(j)#

′
) = σ1(j)#J′ , using Lemmas 4.4.17 and 4.4.18.

����� 5IF BOJTPUSPQJD DBTF� .PVGBOH IFYBHPOT

We now look more closely at the case corresponding to a generalized hexagon.

Theorem 4.4.22. We assume that L is as in Notation 4.4.1. The extremal
geometry of L is a generalized hexagon (i.e., is of type G2,2) if, and only if,
N "= 0 and the cubic norm structure is anisotropic or J = 0.

Proof. First assume that there exist a non-zero j ∈ J such that N(j) = 0. We
will show that the extremal geometry is not a generalized hexagon. By definition
of N , #, (4.25) and (4.26), we get that

eλ = λ2j# + λ[j, e2] + e2

is an extremal element, for every λ ∈ k.
By property (vii) of a cubic norm structure we may assume j# = 0. Since

then e2 ∈ E and λ[j, e2] + e2 for all non-zero λ ∈ k, Lemma 2.3.15 implies
that [j, e2] ∈ E. By Lemma 4.1.8, we have ([y, e2], y) ∈ E0. Now note that a
generalized hexagon has no symplectic pairs, so the extremal geometry is not a
generalized hexagon.

Now assume that the extremal geometry is not a generalized hexagon. By
Remark 2.3.18 there exist symplectic pairs. By Corollary 2.1.14 the line 〈x, e′1〉
is contained in a symplecton S. Then by Proposition 2.1.6(d), Lemma 4.3.6 and
(e′1, e

′
2) ∈ E1, there exists z ∈ E ∩ L−1 such that (z, e′1) ∈ E0 and (z, e′2) ∈ E−1.

In particular [z, e′2] = 0 and z ∈ L′
−1 ⊕ L′

−2 by Lemma 4.1.8. By (4.15) we get
z ∈ L′

−1 ∩ L−1 = J . Now exp(z) is an automorphism of L and hence gz(e2)z +
[z, e2] + e2 is an extremal element. Note gz(e2) = g(z, e2) = −g(z, [e′2, y]) =
−g([z, e′2], y) = 0. So [z, e2]+e2 is an extremal element. Since z ∈ J , Lemma 4.4.9
and the definition of N imply N(z) = 0.

We first handle the case J = 0.
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Lemma 4.4.23. The Lie algebra L is isomorphic to sl3/Z(sl3) if and only if
J = 0 if and only if the extremal geometry is isomorphic to Γ(V, V ∗), with V a
3-dimensional vector space (which is of type A2,{1,2}).

Proof. Note that sl3, the Lie algebra of traceless (3×3)-matrices over k, is simple
only if char(k) "= 3. If char(k) = 3 then its center Z = Z(sl3) is 1-dimensional
and consists of the multiples of the identity matrix. After modding out this center
the Lie algebra is simple. Let Ei,j be the (3 × 3)-matrix over k with all entries
equal to 0, except for the (i, j)-entry, which equals 1. Set Ei,j = Ei,j + Z.

Assume first J = 0. Then mapping x, y, e′1, e′2, e1, e2, [e′1, e2] and [e′2, e1] to
E3,1, −E1,3, E3,2, E2,1, −E1,2, E2,3, −E2,2 + E3,3 and E1,1 − E2,2, respectively,
defines an isomorphism between L and sl3/Z. (Note that L0 is spanned by [e′1, e2]
and [e′2, e1] by [e′1, e1] = [e′2, e2] = 0 and Lemma 4.1.11.)

Note that a geometry of type A2,{1,2} is a generalized hexagon with only two
lines through every point. Hence if the extremal geometry is of type A2,{1,2},
Theorem 4.4.22 and Lemma 4.4.29 imply J = 0.2

If J = 0, then L ∼= sl3/Z and it is straightforward to check that the extremal
geometry is isomorphic to a geometry of type A2,{1,2}, more precisely, it is iso-
morphic to Γ(V, V ∗) as in Example 2.1.3, with V a 3-dimensional vector space
over k.

Assumption 4.4.24. Assume for the rest of this subsection that N "= 0 and that
the associated cubic norm structure is anisotropic, so the extremal geometry is a
generalized hexagon.

Now we proceed to show that the generalized hexagon is, in fact, a Moufang
hexagon and we determine the root groups. In the rest of this subsection, we
fix a cycle (x0, x1, . . . , x11, x0) of length 12 in Ω := E ∪F , the incidence graph
of the extremal geometry, corresponding to the following cycle of length 6 in the
extremal geometry (which is a generalized hexagon):

〈e1〉 = x11〈e′1〉 = x9

〈x〉 = x7

〈e′2〉 = x5 〈e2〉 = x3

〈y〉 = x1

2The proof of Lemma 4.4.29 does not depend on this lemma.
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So explicitly, we have x0 = 〈e1, y〉, x1 = 〈y〉, etc.
Let U1, . . . , U6 be the root groups, as defined in Notation 1.2.9. So U1 is

the subgroup of Aut(Ω) which fixes all neighbors of x2, x3, x4, x5 and x6 (in
Ω), and similarly for the other root groups. It turns out that, except for U1,
all these root groups are subgroups of E−(x, y). In order to determine the root
groups explicitly, we can use Lemma 1.2.11 to see that it suffices to show that the
claimed subgroup (of E−(x, y)) fixes all the neighbors of a set of 5 distinguished
vertices and acts transitively on the set of neighbors of another distinguished
vertex, with one neighbor excluded. We first determine U2, U4 and U6 using the
following lemma. In order to do this, we make the following easy observation.

Lemma 4.4.25. Consider extremal elements e, e′ such that (e, e′) ∈ E−1. Then
exp(e) fixes all lines (in the extremal geometry) through 〈e′〉. In particular, exp(e)
fixes 〈e′〉.

Proof. Since (e, e′) ∈ E−1, we get ge(e′) = 0 and [e, e′] = 0. Hence exp(e) fixes e′.
Consider z ∈ E such that (e′, z) ∈ E−1. Then (e, z) ∈ E≤0 or (e, z) ∈ E1. In the
former case [e, z] = 0 and ge(z) = 0, so exp(e) fixes the line 〈e′, z〉. In the latter
case 〈[e, z]〉 is equal to the common neighbor of 〈x〉 and 〈e〉, i.e. it is equal to 〈e′〉.
Also note that z ∈ E1(e) implies ge(z) = 0 and thus exp(e)(z) = [e, z]+z ∈ 〈e′, z〉,
so exp(e) fixes the line 〈e′, z〉.

Corollary 4.4.26. For the root groups U2, U4 and U6, we have

U2 = {exp(λe′2) | λ ∈ k}, U4 = {exp(λx) | λ ∈ k}, U6 = {exp(λe′1) | λ ∈ k}.

Moreover, Ui acts transitively on the set of all neighbors of xi distinct from xi+1,
for i = 2, 4, 6.

Proof. By Lemma 4.4.25, Exp(〈e′2〉) = Exp(x5) fixes all neighbors of x3, x5 and
x7. The neighbors of x4 = 〈e′2, e2〉 are all the 1-dimensional subspaces contained
in this 2-dimensional space. Since exp(e′2) fixes e′2 and e2 it fixes all neighbors
of x4. A similar argument holds for x6. Now we still need to check that the
subgroup U2 = {exp(λe′2) | λ ∈ k} = Exp(〈e′2〉) acts transitively on the set of
all neighbors of x2 = 〈y, e2〉 distinct from x3 = 〈e2〉. Since (e′2, y) ∈ E1 implies
exp(e′2)(y) = [e′2, y] + y = −e2 + y, this is obvious. This shows the claim for U2.
The proof for U4 and U6 is similar.

We introduce the following notation in order to obtain the other type of root
groups.

Notation 4.4.27. For any a ∈ J , let e−(a) ∈ E−(x, y) be the unique automor-
phism from Lemma 4.4.9 and set

E−(J) = {e−(a) | a ∈ J}.
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Similarly for any a′ ∈ J ′, let e−(a′) ∈ E−(x, y) be the unique automorphism such
that

e−(a
′)(e1) = N ′(a′)x+ a′#

′
+ [a′, e1] + e1,

and define E−(J ′) accordingly.

Lemma 4.4.28. For every a ∈ J

e−(a)
−1 = e−(−a),

and moreover E−(J) is a subgroup of Aut(L). The same holds for E−(J ′).

Proof. Consider a ∈ J arbitrary, then, by definition, e−(−a)(e−(a)(e2)) has (−1)-
component equal to a# − [a, [a, e2]] + (−a)# which is contained in J by (4.17).
Moreover its 0-component equals [a, e2]+[−a, e2] = 0, hence Lemma 4.4.9 implies
e−(−a)(e−(a)(e2)) = e2. By the uniqueness claim about the automorphism in
Lemma 4.4.9 we get e−(−a)e−(a) = id = e−(0).

Clearly E−(J) contains the identity of Aut(L). Consider a, b ∈ J arbitrary,
then e−(b)−1(e−(a)(e2)) = e−(−b)(e−(a)(e2)) has 0-component [a − b, e2] and
(−1)-component a#− [b, [a, e2]]+(−b)#, which is contained in J . So, by definition
of E−(J), we get e−(b)−1e−(a) = e−(−b+ a) and hence E−(J) is a subgroup of
Aut(L).

In order to determine the other root groups it is necessary to describe all lines
through x5 and x9. One can easily modify the argument to get a suitable de-
scription for all lines through x3 and x11 as well. (For example by Lemma 4.1.4.)

Lemma 4.4.29. The only lines of the extremal geometry containing x5 different
from x6 are

x5 ⊕ e−(a)(e2), with a ∈ J.

The only lines of the extremal geometry containing x9 different from x8 are

x9 ⊕ e−(a
′)(e1), with a′ ∈ J ′.

Proof. Recall that we assume J to be anisotropic, so our extremal geometry is a
generalized hexagon by Theorem 4.4.22. Hence any two distinct extremal points
are either collinear, special, or hyperbolic (at distance 3).

Consider any line l of the extremal geometry through 〈e′2〉 = x5 different from
x6. Consider any point p distinct from 〈e′2〉 on this line. If p is collinear with 〈x〉,
then the extremal geometry would contain an ordinary 3-gon, namely 〈x〉, 〈e′2〉,
p, a contradiction. Since 〈e′2〉 is a common neighbor of both 〈x〉 and p, p and 〈x〉
are special. Hence Lemma 4.4.10 implies that this line l through 〈e′2〉 contains the
extremal point 〈e−(a)(e2)〉. Completely similarly for the lines through x9.
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Lemma 4.4.30. For any a ∈ J

e−(a)(e1) = e1.

Proof. Since [a, e′1] = 0, the extremal elements e−(a)(e1) and e−(a)(e′1) = e′1
are collinear. Hence Lemma 4.4.29 together with [a, e1] = 0 imply e−(a)(e1) =
λe′1 + e1 for certain λ ∈ k. By (e1, e2) ∈ E1, also

(λe′1 + e1, N(a)x+ a# + [a, e2] + e2) = (e−(a)(e1), e−(a)(e2)) ∈ E1. (4.45)

Now using the associativity of g and (4.16), we get

g(e1, a
#) = g([y, e′1], a

#) = g(y, [e′1, a
#]) = 0.

Together with Lemmas 4.1.10 and 4.4.2 this yields g(λe′1+e1, N(a)x+a#+[a, e2]+
e2) = λg(e′1, e2) = −λ. Now (4.45) implies λ = 0.

Lemma 4.4.31. For the root groups U3 and U5, we have

U3 = E−(J
′), U5 = E−(J).

Moreover, Ui acts transitively on all neighbors of xi distinct from xi+1, for i =
3, 5.

Proof. We show the claim for U5. Let a ∈ J be arbitrary. Observe that e−(a)
fixes all neighbors of x6, x8 and x10 by [a, x] = 0 = [a, e′1] = [a, e′2] = [a, e1] and
Lemma 4.4.30. By Lemma 4.1.8 we see that any neighbor of x7 = 〈x〉 is of the
form 〈x〉⊕〈l−1〉, for some extremal element l−1 ∈ L−1. Clearly e−(a)(〈x, l−1〉) =
〈x, l−1〉. Hence e−(a) also fixes all neighbors of x7, i.e., all lines of the extremal
geometry through 〈x〉.

We now need to check that e−(a) fixes all lines through x9 = 〈e′1〉. By
Lemma 4.4.29 every line through x9 different from x8 contains e−(a′)(e1) for
certain a′ ∈ J ′. Using Lemmas 4.3.14 and 4.4.30 and [x, [a′, e1]] = [a′, [x, e2]] =
−[a′, e′2] = 0, we get

e−(a)(e−(a
′)(e1)) = exp([a, a′])(e−(a′)(e−(a)(e1))) = exp([a, a′])(e−(a′)(e1))

= e−(a
′)(e1) + λe′1 ∈ 〈e−(a′)(e1), e′1〉,

where λ ∈ k is such that λx = [a, a′]. So e−(a) fixes all neighbors of x6, x7, x8,
x9 and x10. By Lemma 4.4.29, we see that E−(J) acts transitively on the set of
all neighbors of x5 different from x6.

We now get to the final root group, which is the hardest to determine.
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Consider the automorphism ϕ = exp(−e2) exp(e′1) exp(−e2). Note that by
Lemma 4.1.4 applied to grading obtained from the hyperbolic pair (e′1,−e2), i.e.
L = L′

−2 ⊕ L′
−1 ⊕ L′

0 ⊕ L′
1 ⊕ L′

2, we obtain

ϕ(e′1) = −e2, ϕ(e2) = −e′1, (4.46)
ϕ(l′−1) = [−e2, l

′
−1], ϕ(l

′
0) = l′0 − [e′1, [e2, l0]], ϕ(l

′
1) = [e′1, l

′
1], (4.47)

for all l′i ∈ L′
i, i = −1, 0, 1.

Lemma 4.4.32. The root group U1 is equal to

U1 = ϕE−(J)ϕ
−1,

and acts transitively on the set of all neighbors of x1 distinct from x2.

Proof. Using x ∈ L′
−1 and (4.47), we get ϕ(x) = −[e2, x] = −[[y, e′2], x] = −e′2.

Similarly, ϕ(e′2) = x, ϕ(y) = −e1 and ϕ(e1) = y. Together with (4.46) this
implies that ϕ maps (x0, x1, x2, . . . , x10, x11, x0) to (x0, x11, x10, . . . , x2, x1, x0).
Hence ϕU5ϕ−1 fixes all neighbors of ϕ(x6) = x6, ϕ(x7) = x5, ϕ(x8) = x4,
ϕ(x9) = x3, and ϕ(x10) = x2. Moreover, by Lemma 1.2.12 the root group U5

acts transitively on the neighbors of x11 different from x10 as well. Hence ϕU5ϕ−1

acts transitively on all neighbors of ϕ(x11) = x1 distinct from ϕ(x10) = x2 and
thus ϕU5ϕ−1 = U1.

By Lemma 4.4.31 we get ϕU5ϕ−1 = ϕE−(J)ϕ−1.

Notation 4.4.33. Note that since J ≤ L′
−1, we get by (4.47) that ϕ(J) = [J, e2].

So we will denote ϕe−(j)ϕ−1 by e−([j, e2]), and denote the subgroup of Aut(L)
consisting of these automorphisms by E−([J, e2]). Then U1 = E−([J, e2]).

Corollary 4.4.34. For any a ∈ J

e−([a, e2])(e
′
1) = e′1 + a− a# +N(a)e′2.

The non-zero multiples of these extremal elements, together with the non-zero
multiples of e′2, are all extremal elements contained in L−1.

Proof. Consider a ∈ J arbitrary. By (4.47) together with x ∈ L′
−1, [a, e2] ∈

L′
−1+2 = L′

1, a# ∈ L′
0 and [a#, e2] = 0, see (4.16), we get ϕ(x) = −[e2, x] = −e′2,

ϕ([a, e2]) = [e′1, [a, e2]] = [a, [e′1, e2]] = −a and ϕ(a#) = a#, respectively. Hence

e−([a, e2])(e
′
1) = −ϕ(e−(a)(e2)) = −ϕ(N(a)x+ a# + [a, e2] + e2)

= N(a)e′2 − a# + a+ e′1.

Now, since every line through 〈x〉 = x7 contains a unique extremal point con-
tained in L−1 (see Lemma 4.1.8) and U1 acts transitively on all lines through 〈x〉
distinct from 〈x, e′2〉 by Lemma 1.2.12, the last claim is clear as well.
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Lemma 4.4.35. Every cycle (y0, . . . , y11, y0) of length 12 in Ω can be mapped
onto the cycle (x0, . . . , x11, x0) by an element of Aut(L).

Proof. We may assume that y1 is 1-dimensional. By Theorem 2.3.19, the extremal
point y1 can be mapped onto 〈y〉. So we may assume y1 = 〈y〉 = x1. Now
y7 is at distance 3 from y1 in the extremal geometry. This is equivalent with
y7 having a non-zero (−2)-component by Lemma 4.1.8. By Theorem 4.3.17,
there exists an element of E+(x, y) mapping y7 onto 〈x〉 while fixing 〈y〉. So
we may assume y7 = 〈x〉 = x7. Since y5 is collinear with y7 and at distance 2
from y1, Lemma 4.1.9 implies that y5 is a 1-dimensional subspace of L−1. By
Corollary 4.4.34 and Lemma 4.4.32 we may then assume y5 = x5. Similarly,
we may assume that y9 = x9. Since y3 is the unique neighbor of y1 = x1 and
y5 = x5, we get y3 = x3, and similarly y11 = x11.

Proposition 4.4.36. Ω is the incidence graph of a Moufang hexagon.

Proof. This follows from Lemmas 4.4.31, 4.4.32 and 4.4.35 and Corollary 4.4.26.

We now determine the commutator relations.

Lemma 4.4.37. The commutator relations between U2, U3, U4, U5 and U6 are
as in E−(x, y), see Lemma 4.3.14. The commutator relations with U1 are trivial
except for:

[e−([a, e2]), exp(λe′1)] = exp(λN(a)e′2)e−(λa
#) exp(λ2N(a)x)e−(λa),

[e−([a, e2]), e−(b)] = exp(−T (a#, b)e′2)e−(−a× b) exp(T (a, b#)x),
[e−([a, e2]), e−(b

′)] = exp(−T (a, b′)e′2),

for all a, b ∈ J and b′ ∈ J ′ and λ ∈ k.

Proof. We now deduce the commutator relation between U1 and U6, all other
commutator relations can be deduced in a similar fashion, but this one is the
most difficult to obtain. Also note that one can use Lemma 4.3.15 to determine
the commutator relations between elements of Ui and Uj , with i, j ∈ {2, 3, 4}.

Consider a ∈ J and λ ∈ k arbitrary. Set

ψ = [e−([a, e2]), exp(λe′1)]
= e−(−[a, e2]) exp(−λe′1)e−([a, e2]) exp(λe′1),

where we used Lemma 4.4.28. By Theorem 1.2.13 there exist b ∈ J , b′ ∈ J ′ and
γ, µ ∈ k such that

ψ = exp(γe′2)e−(b′) exp(µx)e−(b).
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We get ψ exp(−λe′1) = exp(γe′2)e−(b′) exp(µx)e−(b) exp(−λe′1). Now we deter-
mine the image of y under both sides of the previous equality to deduce b, b′, γ
and µ. Note that by Lemma 4.4.30

e−(b)(y) = e−(b)([e1, e2]) = [e−(b)(e1), e−(b)(e2)]

= [e1, N(b)x+ b# + [b, e2] + e2]

= N(b)[[y, e′1], x] + [e1, b
#] + [b, [e1, e2]] + y

= N(b)e′1 + [e1, b
#] + [b, y] + y,

and similarly e−(b′)(y) = −N ′(b′)e′2 + [b′#
′
, e2] + [b′, y] + y. Now a straightfor-

ward calculation shows that the 1-component and 0-component of exp(γe′2)e−(b′)
exp(µx)e−(b) exp(−λe′1)(y) are λe1 + [b, y] + [b′, y]− γe2 and

[e1, b
#] + µ[x, y] + λ[b′, e1] + [b′, [b, y]] + [b′#

′
, e2] + λγ[e′2, e1] + γ[e′2, [b, y]],

(4.48)

respectively.
By e−(−a)(e1) = e1, see (4.15), and ϕ−1(y) = e1, we get e−(−[a, e2])(y) =

ϕe−(−a)ϕ−1(y) = y. So we deduce by e1 = [y, e′1] and Corollary 4.4.34 that
e−(−[a, e2])(e1) equals e1 − [y, a] − [y, a#] − N(a)e2. Hence the 0-component
of ψ exp(−λe′1)(y) = e−(−[a, e2])(λe1 + y) equals 0 and its 1-component equals
λe1 + λ[a, y] + λ[a#, y] − λN(a)e2. So we can already conclude b = λa, b′ = λa#

and γ = λN(a).
Now we deduce µ using that (4.48) equals zero. By (4.20) and

µ[x, y] + [b′, [b, y]] + λγ[e′2, e1] = µ[x, y] + λ2[a#, [a, y]] + λ2N(a)[e′2, e1] ∈ L′
0,

[e1, b
#] + λ[b′, e1] ∈ L′

−1,

[b′#
′
, e2] + γ[e′2, [b, y]] ∈ L′

1,

all these components have to equal zero.
In particular we get by e2 ∈ L1, [a#, e2] = 0 = [y, e2] = [e′2, e2], and [[a, e2], y] ∈

L2 ∩ L′
2 = 0,

0 = [µ[x, y] + λ2[a#, [a, y]] + λ2N(a)[e′2, e1], e2]

= µ[[x, y], e2] + λ2[[a#, [a, y]], e2] + λ2N(a)[[e′2, e1], e2]

= µe2 + λ2[a#, [[a, e2], y]] + λ2N(a)[e′2, y] = (µ− λ2N(a))e2.

We obtain µ = λ2N(a).

Theorem 4.4.38. Let L be as in Notation 4.4.1 and J as in Notation 4.4.3.
Assume J to be anisotropic. (Or, equivalently, the extremal geometry to be
a generalized hexagon and J "= 0, by Theorem 4.4.22.) The incidence graph
Ω = E ∪F of the extremal geometry of L is the incidence graph of the Moufang
hexagon associated to the anisotropic cubic norm structure (J, #J).
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Proof. Consider the following parametrization:

x1(a) = e−([a, e2]), x4(t) = exp(tx),
x2(t) = exp(te′2), x5(a) = e−(a),

x3(a) = e−(−σ1(a)), x6(t) = exp(−te′1),

for all a ∈ J and t ∈ k. Using Lemma 4.4.37, we see that the commutator
relations are the same as in Theorem 1.2.21.

Theorem 4.4.39. Let L be a simple Lie algebra over k generated by its pure
extremal elements such that its extremal geometry Γ is of type G2,2. Assume
|k| > 3. If L′ is a simple Lie algebra generated by its pure extremal elements such
that its extremal geometry is isomorphic to Γ, then L ∼= L′.

Proof. Denote the extremal geometry of L′ by Γ′.
If Γ is of type A2,{1,2}, this is handled in Lemma 4.4.23.
By Theorem 4.4.38, there exist cubic norm structures (J1, #J1) and (J2, #J2)

such that Γ is the Moufang hexagon associated with (J1, #J1) and Γ′ is the Mou-
fang hexagon associated with (J2, #J2). By Theorem 1.2.23 the cubic norm struc-
tures (J1, #J1) and (J2, #J2) are isotopic. Hence there exists d ∈ J1\{0} such that
(J2, #J2) is isomorphic to (J1, (#J1)d).

First suppose d = 1, i.e. (J1, #J1) and (J2, #J2) are isomorphic. By using the
bijection σ1, we can identify J ′

1 with J1. Then Lemma 4.4.4, the definition of T ,
TJ1 , # and #J1 , and Lemma 4.4.14 imply that we can define L purely in terms of
the cubic norm structure. Obviously, an isomorphism of cubic norm structures
then yields a 5-graded isomorphism.

Now suppose d ∈ J×
1 arbitrary. Consider the maps

σ1,d : J1 → J ′
1 : j -→ N(d)(T (j, d#)d# − d× j);

σ2,d : J ′
1 → J1 : j′ -→ N(d)−1(T (d, j′)d− j′ ×′ d#).

These maps satisfy σ2,dσ1,d = idJ , σ1,dσ2,d = id′
J , and σ2,d◦# = #′◦σ1,d, by exactly

the same arguments as in the proofs of Lemmas 4.4.17 and 4.4.18. Similarly, one
can define TJ1,d, #J1,d and ×J1,d as in Construction 4.4.19 and obtain a cubic
norm structure as in Proposition 4.4.20. Now note that, by using the definition
of TJ1 , #J1 and ×J1 and the identities σ1σ2 = idJ ′

1
, σ2σ1 = idJ1 , σ2 ◦ # = #′ ◦ σ1,

we have

N(d)j#J1,d = N(d)σ2,d(j
#) = T (d, j#)d− j# ×′ d#

= TJ1(d,σ2(j
#))d− σ1(j

#J1 )×′ σ1(d
#J1 )

= TJ1(d, j
#J1 )d− σ2(j

#J1 × d#J1 ) = TJ1(d, j
#J1 )d− (j#J1 ×J1 d

#J1 ),

for all j ∈ J . So by using different bijections in Construction 4.4.19 we see that
we may assume d = 1, which concludes this proof. (Recall (1.3).)
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Remark 4.4.40. Note that in [CRS15, CF18], see Theorem 2.3.16, it is shown
that the extremal geometry determines the Lie algebra if the extremal geometry
contains lines and is not of type G2,2. Hence the preceding theorem settles this
last case.

Corollary 4.4.41. Let L be a simple finite-dimensional Lie algebra over k gen-
erated by its pure extremal elements such that its extremal geometry Γ contains
lines. Assume |k| > 3. If L′ is a simple Lie algebra generated by its pure extremal
elements such that its extremal geometry is isomorphic to Γ, then L ∼= L′.

Proof. By Theorems 2.3.16 and 4.4.39 and Remark 2.3.18.

Remark 4.4.42. To show that the extremal geometry is Moufang as soon as
it is a generalized hexagon, one can use the theory of abstract root subgroups
by Timmesfeld [Tim01], see [CM21, Theorem 7.2]. Using the classification of
Moufang hexagons one could then also obtain an anisotropic cubic norm struc-
ture. Possibly, but this will certainly require some effort, one could deduce the
description of the Lie algebra in terms of a cubic norm structure as described in
this section, but we have not pursued this. Moreover, since one has to rely on
the classification of Moufang hexagons in this argument, one would not get an
elementary proof for Theorem 4.4.39. Now we do get an elementary proof for
this theorem.

����� 5IF DBTFN = 0� 5ZQFAn,{1,n}

Now we have a more thorough look at the case N = 0. We start by showing that
most other maps are also the zero map then.

Lemma 4.4.43. If N = 0, then # = 0, × = 0, N = 0, #′ = 0 and ×′ = 0.

Proof. By (4.25) and (4.28), we have λ2T (b, a#) + λT (a, b#) = 0, for any a, b ∈ J
and λ ∈ k. Since |k| > 2, we get T (b, a#) = 0 = T (a, b#). Since a and b are
arbitrary, Lemma 4.1.6 implies a# = 0 = b#. Equations (4.27) and (4.29) imply
all other identities.

In the following theorem we describe which extremal geometries correspond
to the case N = 0. First, we need two lemmas.

Lemma 4.4.44. Consider the root filtration space Γ(V,W ∗) for a certain vector
space V and subspace W ∗ of V ∗ which separates the points of the projective space
of V . Then, for any pair of special points p and p′, every point collinear with the
unique common neighbor of p and p′ is collinear with p or p′.

Proof. Recall from Example 2.1.3 that the points of this root filtration space are
(〈v〉, 〈φ〉) ∈ P(V )×P(W ∗) such that φ(v) = 0. Consider two points (〈v〉, 〈φ〉) and
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(〈w〉, 〈ψ〉) (hence φ(v) = 0 = ψ(w)). From Example 2.1.3 we see that these are
special points if either ψ(v) = 0 or φ(w) = 0, but not both. Assume without loss
of generality the latter. The point collinear with both (〈v〉, 〈φ〉) and (〈w〉, 〈ψ〉) is
(〈w〉, 〈φ〉). Now note that the only points collinear with (〈w〉, 〈φ〉) are (〈w〉, 〈ϕ〉),
with ϕ ∈ W ∗ such that ϕ(w) = 0, and (〈u〉, 〈φ〉), with u ∈ V such that φ(u) = 0.
The former type of points is collinear with (〈w〉, 〈ψ〉) and the latter type of points
is collinear with (〈v〉, 〈φ〉). Hence Γ has the claimed property.

Lemma 4.4.45. Consider a root filtration space Γ such that there exists a special
pair of points p and p′ such that every point special with p and collinear with the
unique common neighbor of p and p′ is collinear with p′ Then either Γ isomorphic
to Γ(V,W ∗), for a certain vector space V and subspace W ∗ of V ∗ which separates
the points of the projective space of V or Γ is a generalized hexagon such that
every point is contained in exactly two lines.

Proof. By [CI07, Theorem 13, Theorem 15] the root filtration space Γ either
only has symplecta of rank at least 3, or is a generalized hexagon, or is as in
Example 2.1.4 with the polar space having rank 3, or is isomorphic to Γ(V,W ∗)
for a certain vector space V and subspace W ∗ of V ∗ which separates the points
of the projective space of V .

First assume that Γ only has symplecta of rank at least 3. Let p and p′ be
any pair of special points, let q be its common neighbor. By Corollary 2.1.14
there is a symplecton through every line. In particular there exists a symplecton
S containing the line qp′. By Corollary 2.1.13 we get that E−1(p) ∩ S is a line L
containing q. Since the rank of the symplecton S is at least 3, there exists a line
through q not collinear with all points of qp′ nor L. Let u be any point on this
line distinct from q, then Corollary 2.1.13 implies u ∈ E1(p) and since u and p′

are not collinear but are contained in a symplecton we get u ∈ E0(p′).
Assume Γ is a generalized hexagon. Then there do not exist symplectic pairs

of points. Let p and p′ be a special pair with common neighbor q. We can assume
that there exists a neighbor t of q not on pq nor on p′q, since otherwise we have
nothing to show. If t is collinear with p, then p, q, t would be an ordinary 3-gon
in the generalized hexagon. Hence t is special with p. Similarly t is special with
p′.

Now assume that the root filtration space has as points the lines of a polar
space of rank 3, see Example 2.1.4. Note that the maximal singular subspaces of
this root filtration space consists of all lines in a plane of the polar space. If there
is a line in the polar space which is contained in exactly two planes of the polar
space, then we can apply [CI07, Theorem 35] to obtain that Γ is isomorphic to
Γ(V,W ∗), with V and W ∗ as before, and then there is nothing to prove. So we
can assume that in the polar space any line is contained in at least 3 planes of
the polar space. Two lines L and M of this polar space are special if each of them
contains exactly one point collinear with all points of the other line, denote these
points by p and q, respectively. The unique neighbor of L and M is the line pq.
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Since there are 3 distinct planes through pq, we can find a plane π through the
line pq different form the plane on pq on L and different from the plane on pq
and M . Since the rank of the polar space is 3, this line L is not collinear with all
points of π and similarly M is not collinear with all points of π. Consider a line
N in this plane through a point of pq distinct from p and q. Then pq and N are
collinear, but since by construction L ∩N = ∅ = M ∩N , N is not collinear with
L nor M . Note that since not every point of N is collinear with every point of
L, N and L are special.

Hence we can conclude that if there exists a special pair of points p and p′ such
that every point special with p and collinear with the unique common neighbor
of p and p′ is collinear with p′, then Γ is isomorphic to Γ(V,W ∗), with V and
W ∗ as before, or Γ is a generalized hexagon with every point on precisely two
lines.

Theorem 4.4.46. Let L be as in Notation 4.4.1 and N as in Construction 4.4.11.
The extremal geometry of L is isomorphic to Γ(V,W ∗) for a certain vector space
V and subspace W ∗ of V ∗ which separates the points of the projective space of V
if and only if N = 0.

Proof. Assume N = 0, then # = 0 by Lemma 4.4.43. By definition of N , # and
Lemma 4.4.9 we get [a, e2] + e2 ∈ E for all a ∈ J . Then obviously λ[a, e2] + e2 =
[λa, e2]+e2 is also contained in E, for any λ ∈ k. Now Lemma 2.3.15 implies that
〈[a, e2], e2〉 is a line of the extremal geometry and in particular ([a, e2] + e2, e2) ∈
E−1 for all 0 "= a ∈ J . Note that 〈x〉 and 〈e2〉 are a pair of special extremal
points, with common neighbor 〈e′2〉 = 〈[x, e2]〉. By Lemma 4.4.10 any line R
through 〈e′2〉 containing an extremal element special with x contains

N(a)x+ a# + [a, e2] + e2 = [a, e2] + e2

for some a ∈ J . As noted before, this extremal element is contained in E−1(e2)
if a "= 0. Since 〈e′2〉 and 〈e2〉 are collinear, all extremal points of this line R are
collinear with 〈e2〉. By Lemma 4.4.45, we obtain that the extremal geometry is
isomorphic to Γ(V,W ∗) or J = 0. But if J = 0, we can apply Lemma 4.4.23.

Conversely, assume that the extremal geometry is isomorphic to Γ(V,W ∗).
Then by Lemma 4.4.44 any neighbor of 〈e′2〉 which is special with 〈x〉 has to be
collinear with 〈e2〉. This, by the same arguments as in the previous paragraph,
is equivalent with

N(a)x+ a# + [a, e2] + e2

being contained in E−1(e2) for all a ∈ J . In particular 0 = [N(a)x+a#+[a, e2]+
e2, e2] = N(a)[x, e2] + [a#, e2] + [[a, e2], e2] for all a ∈ J . Since [x, e2] = −e′2 "= 0,
we get N(a) = 0 for all a ∈ J .

In particular, if the Lie algebra is finite-dimensional we have the following
corollary.
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Corollary 4.4.47. Let L be a simple Lie algebra over k generated by its pure
extremal elements such that its extremal geometry Γ is of type An,{1,n}, for a
certain n ∈ N, and |k| > 3. If L′ is a simple Lie algebra generated by its
pure extremal elements such that its extremal geometry is isomorphic to Γ, then
L ∼= L′.

Proof. Let x, y, L = ⊕2
i=−2Li, e′1, e′2, J , and N be as in Section 4.4.1. By

Theorem 4.4.46, we get N = 0. First we show that dim(J) = n − 2, and then
we show that we can find bases for J and J ′ such that T has a canonical form,
only depending on n. By Lemma 4.4.4, the definition of T , #, and Lemma 4.4.14,
the Lie bracket on L can be determined completely in terms of T . Since we can
apply the same argument for L′, we see that L and L′ are then isomorphic.

Let V be a k-vector space of dimension n + 1. The extremal geometry of
type An,{1,n} is isomorphic with Γ(V, V ∗). Since 〈x〉 is a point of the extremal
geometry Γ of type An,{1,n}, there exist v ∈ V and φ ∈ V ∗ with φ(v) = 0 such
that 〈x〉 can be identified with (〈v〉, 〈φ〉). From the definition of lines in Γ(V, V ∗)
we obtain that there are precisely two maximal singular subspaces containing
(〈v〉, 〈φ〉), namely {(〈w〉, 〈φ〉) | w ∈ V such that φ(w) = 0} and {(〈v〉, 〈ψ〉) |
ψ ∈ V ∗ such that ψ(v) = 0}. Both these singular subspaces have the same rank,
namely n. Consider a ∈ J arbitrary. As shown in the proof of Theorem 4.4.46, we
get [a, e2] ∈ E. By Lemma 4.1.10 and [a, e2] ∈ L0, we get ([a, e2], e′1) ∈ E≤1. Now
note that [a, e′1] = 0 and a ∈ L′

−1 imply [e′1, [a, e2]] = [a, [e′1, e2]] = −a. Hence
([a, e2], e′1) ∈ E1 and a ∈ E. So J\{0} ⊆ E. By Lemma 2.3.15, (a, b) ∈ E−1 for
all linearly independent a, b ∈ J . By Lemma 4.1.8, (a, x) ∈ E−1 for all a ∈ J . By
Lemma 4.1.8, but now applied to the grading (4.10) associated with e′1 and e2, we
get (a, e′1) ∈ E−1 for all a ∈ J . Hence {〈λx+ j + µe′1〉 | j ∈ J,λ, µ ∈ k, (λ, j, µ) "=
(0, 0, 0)} is a singular subspace of the extremal geometry of L containing 〈x〉.
By [e′1, e

′
2] = x, (4.14) and Lemmas 4.1.6 and 4.1.8, we get that it is a maximal

singular subspace. Its rank is dim(〈x, J, e′1〉) = dim(J)+2. Since this rank equals
n, dim(J) equals n− 2.

By (4.15) and Lemma 4.1.6, T : J × J ′ → k is a non-degenerate bilinear
form. It is well-known that we can find bases for J and J ′ such that T has a
canonical form, but for the sake of completeness we indicate a proof. For j ∈ J ,
set j⊥ = {j′ ∈ J ′ | T (j, j′) = 0}. Consider two linearly independent elements
b1 and b2 of J . Then by the non-degeneracy of T , b⊥1 and b⊥2 are two distinct
hyperplanes of J ′. So we can find b′1 and b′2 in J ′ such that T (b1, b′1) = 0 =
T (b2, b′2), while T (b1, b′2) = 1 = T (b2, b′1). By repeating this argument, we can
find linearly independent subsets {b1, . . . , b2m} and {b′1, . . . , b′2m} of J and J ′,
where n − 2 = 2m or n − 2 = 2m + 1, such that T (bi, b′j) = 0 if (i, j) does
not equal (2l + 1, 2l + 2) or (2l + 2, 2l + 1) for certain l ∈ {0, . . . ,m − 1} and
T (b2l+1, b′2l+2) = 1 = T (b2l+2, b′2l+1) for all l ∈ {0, . . . ,m− 1}. If n− 2 = 2m we
obtain a canonical form for T . If n− 2 = 2m+ 1, then the non-degeneracy of T
implies that b⊥1 ∩ · · ·∩b⊥2m has dimension 1 and is, by construction, not a subspace
of 〈b′1, . . . , b′2m〉. Hence, we can find b′n−2 = b′2m+1 ∈ J ′ such that T (bi, b′n−2) = 0
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if i "= n − 2 and T (bn−2, b′n−2) = 1. Hence we obtain a canonical form for T in
this case as well.

Remark 4.4.48. Note that Corollary 4.4.47 is certainly not a new result, see
Theorem 2.3.16. It appeared for the first time in (the proof of) the main theorem
of the doctoral thesis of Kieran Roberts, see Theorem 2 of [Rob12] and the
remarks before that theorem. But it is a nice application of the machinery that
we developed in this chapter. The above argument can probably be modified
to deal with the extremal geometries isomorphic to Γ(V,W ∗), with V infinite
dimensional and W ∗ a subspace of V ∗ separating the points of V . This problem
has recently been studied in [CM21].

4&$5*0/ ���

&YUSFNBM HFPNFUSZ XJUI TZNQMFDUJD QBJST � SFDPWFSJOH B
RVBESBOHVMBS BMHFCSB

In this section L is a simple Lie algebra generated by its pure extremal elements
which has an extremal geometry with symplectic pairs of extremal points. More-
over, we assume that after a Galois extension of degree at most 2, the extremal
geometry has lines. Let x and y be extremal elements such that gx(y) = 1 and let
L = L−2⊕L−1⊕L0⊕L1⊕L2 be the corresponding 5-grading, as in Lemma 4.1.1.

We start Section 4.5.1 by showing that L−1 can be decomposed as M⊕X⊕M ′

into 3 parts, using a second 5-grading, as in Section 4.4.1. Then we proceed to
show that we can define certain maps on M and X such that, if char(k) "= 2, M
and X together with these maps form a quadrangular algebra. This quadrangular
algebra might or might not be isotropic.

In Section 4.5.2 we first show that the inner ideal geometry, as defined in
Section 2.5, is a generalized quadrangle if and only if the associated quadrangular
algebra is anisotropic. Then we continue this subsection with determining the
root groups of this generalized quadrangle. We end this subsection by showing
that the generalized quadrangle is the Moufang quadrangle corresponding to the
quadrangular algebra associated with (M,X), as in Theorem 1.2.20.

In Section 4.5.3 we determine another 5-grading on L, whose ends are not
one-dimensional subspaces.
Assumption 4.5.1. In this section we assume that L is a simple Lie algebra,
defined over a field k with |k| > 2, which is generated by its set of pure extremal
elements such that

(i) there exists a Galois extension k′ of k of degree at most 2 such that the
extremal geometry of L⊗ k′ contains lines;
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(ii) there exist symplectic pairs of extremal elements.

Note that by Theorem 4.3.13 the 5-gradings on L as in Lemma 4.1.1 are
algebraic. (In Theorem 2.4.7 we show that L ⊗ k′ is simple.) Also note that
if char(k) "= 2 then by Theorem 2.4.7 Assumption (i) is satisfied if L is not a
symplectic Lie algebra.

����� $POTUSVDUJOH UIF RVBESBOHVMBS BMHFCSB

By assumption there exist symplectic pairs of extremal points, i.e. E0 "= ∅. In the
next lemma we show that this implies the existence of certain extremal elements,
which we can then use to define another grading on L and obtain a decomposition
of L−1 into 3 parts.
Lemma 4.5.2. There exist extremal elements x, y, a and b such that gx(y) =
ga(b) = 1 and (x, a), (x, b), (y, a), (y, b) ∈ E0.

Proof. If the extremal geometry of L does not contain lines, then this follows
from Theorem 2.4.7.

Assume that the extremal geometry of L contains lines. By assumption (ii)
of 4.5.1 there exist x ∈ E and a symplecton S of the extremal geometry con-
taining 〈x〉. By Proposition 2.3.9 there exist y ∈ E such that gx(y) = 1. Using
Lemma 2.1.12 there exists a ∈ E such that 〈a〉 ∈ S and (a, y) ∈ E0. Now a ∈ S
and property (D) of a root filtration space imply (x, a) ∈ E0. By Lemma 2.1.9(c)
there exists a symplecton T containing x and containing an extremal point hy-
perbolic with 〈a〉. In fact, by Lemma 2.1.11, all extremal points in T not collinear
with or equal to 〈x〉 are hyperbolic with 〈a〉. Then, using Lemma 2.1.12 again,
we find b ∈ E such that 〈b〉 ∈ T is symplectic with 〈y〉. Since (x, y) ∈ E2,
Lemma 2.1.11 implies that (b, x) ∈ E0. As noted before, this implies (a, b) ∈ E2.
By rescaling a we obtain ga(b) = 1.

Notation 4.5.3. Let x, y, a, b be as in Lemma 4.5.2.
Denote the 5-grading on L associated with the hyperbolic pair (x, y) as in

Lemma 4.1.1 by

L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, (4.49)

so with L−2 = 〈x〉.
Denote the 5-grading on L associated with the hyperbolic pair (a, b) as in

Lemma 4.1.1 by

L′
−2 ⊕ L′

−1 ⊕ L′
0 ⊕ L′

1 ⊕ L′
2, (4.50)

so with L′
−2 = 〈a〉. Now set

M = L−1 ∩ L′
−1, X = L−1 ∩ L′

0, M ′ = L−1 ∩ L′
1.
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Note that by Lemma 4.1.8 and (x, a), (y, a) ∈ E0 we get a ∈ L0 and similarly
b ∈ L0. Also recall, see Lemma 4.1.1, that L′

i is contained in the i-eigenspace of
ad[a,b]. Similarly, x, y ∈ L′

0.

Lemma 4.5.4. We have ga(L−2⊕L−1⊕L1⊕L2) = 0 = gb(L−2⊕L−1⊕L1⊕L2).

Proof. Since (x, a) ∈ E0, we get ga(x) = 0. Similarly one obtains ga(L2) = 0 =
gb(L−2 ⊕ L2). Consider l ∈ L−1, then [x, [y, l]] = −l. Using the associativity of
g, see Proposition 2.3.6,

−ga(l) = g(a, [x, [y, l]]) = g([a, x], [y, l]) = g(0, [y, l]) = 0.

Similarly one obtains ga(L1) = 0 = gb(L−1 ⊕ L1).

Lemma 4.5.5. We have the following decompositions

L−1 = M ⊕X ⊕M ′,

L1 = [y,M ]⊕ [y,X]⊕ [y,M ′].

Proof. By Lemma 4.5.4 we get gb(L−1) = 0 and hence we obtain L−1 ≤ L′
−1 ⊕

L′
0 ⊕ L′

1 ⊕ L′
2 by Lemma 4.1.3 applied to the grading (4.50). Similarly, L−1 ≤

L′
−2 ⊕ L′

−1 ⊕ L′
0 ⊕ L′

1. Hence L1 ≤ L′
−1 ⊕ L′

0 ⊕ L′
1.

Consider l ∈ L1 arbitrary, then there exist unique l′−1 ∈ L′
−1, l′0 ∈ L′

0 and
l′1 ∈ L′

1 such that l = l′−1+ l′0+ l′1. Using [a, b] ∈ L0, we get −l′−1+ l′1 = [[a, b], l] ∈
L−1.

Now, consider a non-zero scalar λ ∈ k. Consider the map ϕλ defined by
ϕλ(l) = λili for all li ∈ L′

i. By Lemma 4.1.5, applied to the 5-grading (4.50), ϕλ
is an automorphism of L.

Note that x, y ∈ L′
0 and hence ϕλ(x) = x and ϕλ(y) = y. By Lemma 4.1.7

we obtain ϕλ(L−1) = L−1. Hence ϕλ(l) = λ−1l′−1 + l′0 + λl′1 is contained in L−1.
Since λ was arbitrary, l ∈ L−1 implies (λ−1− 1)l′−1+(λ− 1)l′1 ∈ L−1 for all non-
zero λ ∈ k. We showed before −l′−1 + l′1 ∈ L−1. Hence (λ− 1+ λ−1 − 1)l′1 ∈ L−1

for any non-zero λ ∈ k. If char(k) "= 2, consider λ = −1 to get l′1 ∈ L1. If
char(k) = 2, then |k| > 2 implies that we can find λ such that λ+ λ−1 "= 0. We
can conclude l′1 ∈ L−1, so by −l′−1 + l′1 ∈ L−1 and l ∈ L−1, we see l′−1, l

′
0 ∈ L−1.

This shows the first decomposition, the second one is similar. (Or follows by
Lemma 4.1.4.)

By combining both gradings we obtain some more information on the Lie
bracket.
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Corollary 4.5.6. The following identities and inclusions hold

[b,M ] = M ′, [a,M ] = M ′; (4.51)
[M,M ] = [M ′,M ′] = [M,X] = [M ′, X] = 0; (4.52)
[X, [X, [y,M ]] ≤ M, [X, [X, [y,M ′]] ≤ M ′; (4.53)

[X, [M, [y,M ′]]] ≤ X, [X, [M ′, [y,M ]]] ≤ X; (4.54)
[a,M ] = 0 = [b,M ′]; (4.55)
[a,X] = 0 = [b,X]. (4.56)

Proof. Consider m ∈ M arbitrary. Since m ∈ L′
−1, and b ∈ L′

2, we get [b,m] ∈
L−1 ∩ L′

1 = M ′. By Lemma 4.1.1 we get [a, [b,m]] = −m, and similarly we get
[b, [a,m′]] = −m′ for all m′ ∈ M ′. Hence (4.51).

By x ∈ L′
0 we get L2 ∩ L′

i = 0 for i = −2,−1, 1, 2. This implies (4.52).
By y ∈ L′

0, M ≤ L′
−1 implies [y,M ] ≤ L′

−1. Hence [X, [X, [y,M ]] ≤ L−1 ∩
L′
−1 = M and similarly [X, [X, [y,M ′]] ≤ M ′, so (4.53) holds.

By [X, [M, [y,M ′]]] ≤ L′
0 and [X, [M ′, [y,M ]]] ≤ L′

0, (4.54) holds.
By M ≤ L′

−1 and a ∈ L′
−2, [a,M ] ≤ L′

3 = 0 and similarly [b,M ′] = 0. Hence
(4.55).

Consider z ∈ X arbitrary. Then z ∈ L′
0 and 〈a〉 = L′

−2 implies that [z, a] = λa
for certain λ ∈ k. Since [z, a] ∈ L−1 and a ∈ L0, we get λ = 0. Hence [X, a] = 0
and similarly [b,X] = 0. Hence (4.56).

We will now exploit the uniqueness of certain extremal elements to define a
quadratic form on M .

Lemma 4.5.7. For every m ∈ M there is a unique λ ∈ k such that

lm := λx+ [m, b] + b (4.57)

is an extremal element. Moreover, lm = lm′ if and only if m = m′, where
m,m′ ∈ M .

Proof. First note that there is at least one λ ∈ k such that (4.57) holds, by
applying any automorphism obtained in Theorem 4.3.11(iii) to b ∈ L0.

Assume that that there are two distinct scalars such that (4.57) holds. Then
the 2-dimensional subspace 〈x, [m, b] + b〉 contains three distinct extremal ele-
ments, so Lemma 2.3.15 implies that this is a line of the extremal geometry.
This contradicts E≤−1(x) ≤ L−2 ⊕ L−1, see Lemma 4.1.8.

By the previous paragraph, lm = lm′ if, and only if, [m, b] = [m′, b]. Now by
m,m′ ∈ L′

−1, we get [a, [m, b]] = m and [a, [m′, b]] = m′. Hence [m, b] = [m′, b] if
and only if m = m′.
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Notation 4.5.8. Define the map Q : M → k by letting Q(m) be the unique
λ ∈ k from Lemma 4.5.7. Define the bilinear form T : M ×M → k by

T (m,m′)x = [m, [m′, b]],

with m,m′ ∈ M arbitrary.

Lemma 4.5.9. The map Q is a quadratic form on M , with corresponding bilinear
form T .

Proof. Consider λ ∈ k and m,m′ ∈ M arbitrary. Let αm be as in Theo-
rem 4.3.11(iii), then qαm(b) + [m, b] + b ∈ E. By Theorem 4.3.11(iv), λ2qαm(b) +
λ[m, b] + b ∈ E. Hence Q(λm) = λ2Q(m).

Let αm′ be as in Theorem 4.3.11(iii). Then

(Q(m′)x+Q(m)x+ [m, [m′, b]]) + [m′ +m, b] + b = αm(Q(m′)x+ [m′, b] + b)

= αm(αm′(b)) ∈ E.

By Lemma 4.5.7 this yields Q(m +m′) −Q(m) −Q(m′) = T (m,m′). The map
T is bilinear by construction and hence Q is a quadratic form on M .

In the next few lemmas we show the existence of certain extremal elements
depending on Q and show that Q is not the zero-map.

Lemma 4.5.10. For any m ∈ M

Q(m)x+m+ a ∈ E.

Proof. By definition, Q(m)x + [m, b] + b ∈ E. Using Lemma 4.1.4, applied to
the grading (4.50), we find an automorphism ϕ flipping the components of that
grading. Using [a,m] = 0 (see (4.55)), [a, x] = 0 = [b, x], and m ∈ L′

−1 in the last
equation, we get

ϕ(Q(m)x+ [m, b] + b) = Q(m)x+ [a, [m, b]] + a

= Q(m)x+ [m, [a, b]] + a = Q(m)x+m+ a.

Lemma 4.5.11. If Q(m) = 0 for 0 "= m ∈ M , then m and [b,m] are contained
in E.

Proof. By definition of Q and Lemma 4.5.9 we get λ[m, b] + b ∈ E for all λ ∈ k.
Note [m, b] "= 0 by Lemma 4.5.7 (for m′ = 0 in that lemma). By Lemma 2.3.15,
we get [m, b] ∈ E. Since [m, b] ∈ L′

1 and a ∈ L′
−2, this implies (a, [b,m]) ∈ E≤1

and thus 0 "= −m = [a, [b,m]] ∈ E.

Corollary 4.5.12. For any m ∈ M

x+ [m, b] +Q(m)b ∈ E.
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Proof. Assume first that m ∈ M satisfies Q(m) "= 0. By Lemma 4.5.9

Q(m)−1x+Q(m)−1[m, b] + b = Q(Q(m)−1m)x+ [Q(m)−1m, b] + b ∈ E.

Hence x+ [m, b] +Q(m)b ∈ E.
Assume now that m ∈ M satisfies Q(m) = 0. By Lemma 4.5.11 we have

[m, b] ∈ E ∩ L−1. Hence (x, [m, b]) ∈ E−1 by Lemma 4.1.8 and in particular
x+ [m, b] ∈ E.

Lemma 4.5.13. There exists m ∈ M such that Q(m) "= 0.

Proof. First we show M "= 0. Suppose on the contrary M = 0. By (4.51), then
also M ′ = 0. Hence Lemma 4.5.5 and (4.56) imply [[a, b], L−1] = 0. Using [a, y] =
[b, y] = 0 = [x, a] = [y, a], we get [[a, b], L−2] = 0 = [[a, b], L2]. Hence [[a, b], L1] =
[[a, b], [y, L−1]] = 0 and thus [[a, b], L0] = [[a, b], [L−1, L1] + [L−2, L2]] = 0. We
conclude [[a, b], L] = 0, so the simplicity of L implies [a, b] = 0, a contradiction.

Consider 0 "= m ∈ M arbitrary. If Q(m) "= 0, we are done. We may thus
assume Q(m) = 0. By Lemma 4.5.11 the component L−1 then contains extremal
elements, so by Lemma 4.1.8 the extremal geometry contains lines.

Consider z ∈ E−1(b) ∩ E−1(x) arbitrary. Then by Lemma 4.1.8 we get z ∈
(L−2 ⊕ L−1) ∩ (L′

2 ⊕ L′
1). Together with x ∈ L′

0 and the decomposition from
Lemma 4.5.5 this implies z ∈ L−1 ∩ L′

1 = M ′. Now 〈x〉 and 〈b〉 are contained
in a symplecton in the extremal geometry, and in such a symplecton we can find
two points both collinear to 〈x〉 and 〈b〉 but not to each other. I.e., there exist
z1, z2 ∈ E−1(b) ∩ E−1(x) such that (z1, z2) ∈ E0. If z1 + z2 ∈ E, then 〈z1, z2〉
is a line in the extremal geometry by Lemma 2.3.15, contradicting (z1, z2) ∈ E0.
So z1 + z2 "∈ E, and by (4.51) there exist m ∈ M such that [m, b] = z1 + z2. If
Q(m) = 0, then Lemma 4.5.11 implies [m, b] ∈ E, contradicting z1 + z2 "∈ E.

In the next convention we ensure that the image of Q contains 1.

Convention 4.5.14. Consider m ∈ M such that Q(m) "= 0. Set x′ := Q(m)x
and y′ := Q(m)−1y. Then x′, y′, a and b still satisfy the conclusions from
Lemma 4.5.2. Note that the two gradings (4.49) and (4.50) from Notation 4.5.3
remain the same with respect to these new extremal elements and hence the
decomposition from Lemma 4.5.5 is still the same. Now x′+[m, b]+b = Q(m)x+
[m, b]+b ∈ E implies Q′(m) = 1, with Q′ as defined in Notation 4.5.8, with respect
to these new extremal elements.

Assume from now on that we started with these extremal elements x′, y′,
a and b in Notation 4.5.3, so we get Q′(m) = 1 for certain m ∈ M . To ease
notation, we will again write x, y and Q instead of x′, y′ and Q′. We will also
choose a fixed element m ∈ M such that Q(m) = 1 and denote it by 1.

Note that by Lemma 4.5.10 and Lemma 4.1.4, applied to the grading (4.50),
also Q(−m)x + [a, [b,−m]] + a = Q(m)x +m + a is contained in E for all m ∈
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M , where we used [a,m] = 0 (see (4.55)). As in Notation 4.5.8 we can define
Q′ : M ′ -→ k by letting Q′(m′) ∈ k be such that Q(m′)x + [m′, a] + a ∈ E for
m′ ∈ M ′. Since Q(m)x + [[b,m], a] + a ∈ E, we get Q′([b,m]) = Q(m). In
particular Q′([b, 1]) = 1. We set 1′ = [b, 1].
Lemma 4.5.15. For any m ∈ M

Q(m)[a, b]−Q(m)[x, y] = [[b,m], [y,m]]; (4.58)
Q(m)[a, b] +Q(m)[x, y] = [m, [y, [b,m]]]. (4.59)

Proof. Consider m ∈ M arbitrary. By Corollary 4.5.12 we have x + [m, b] +
Q(m)b ∈ E. Using Theorem 4.3.17, we find an automorphism ϕ ∈ E+(x, y) such
that ϕ(x) = x + [m, b] + Q(m)b. Note [m, b] = [[y, [m, b]], x]. So ϕ = α[y,[m,b]],
with α[y,[m,b]] as in Theorem 4.3.11(iii). Hence, the (i + 1)-component of ϕ(li)
equals [[y, [m, b]], li] for all li ∈ Li. In particular ϕ(a) = a + [[y, [m, b]], a] + λy
for certain λ ∈ k. By [y, a] = 0 = [a,m] and m ∈ L′

−1, we get [[y, [m, b]], a] =
[y, [[m, b], a]] = [y, [[a, b],m]]] = −[y,m]. So ϕ(a) = a − [y,m] + λy, this is an
extremal element. By Lemma 4.5.7 and twice applying Lemma 4.1.4, once to the
grading (4.49) and once to the grading (4.50), this scalar λ is unique. On the
other hand, by Lemma 4.5.10 Q(m)x−m+ a = Q(−m)x−m+ a ∈ E, and after
applying the automorphism from Lemma 4.1.4 we get a − [y,m] + Q(m)y ∈ E.
Hence λ = Q(m).

By construction [x, a] = 0, hence [ϕ(x),ϕ(a)] = ϕ([x, a]) = 0. Now note that
the 0-component of [ϕ(x),ϕ(a)] equals

Q(m)[x, y]−Q(m)[a, b]− [[m, b], [y,m]].

Since this is the 0-component of 0, we obtain (4.58).
Note [[b,m],m] = T (m,m)x = 2Q(m)x by Lemma 4.5.9. Hence

[[b,m], [y,m]] = −[m, [[b,m], y]] + 2Q(m)[y, x] = [m, [y, [b,m]]]− 2Q(m)[x, y],

and, together with (4.58), this yields (4.59).

Notation 4.5.16. Define the maps h : X × X → M and · : X × M → X :
(z,m) -→ z ·m as follows

h(x1, x2) = [x2, [x1, [y, 1]]]; (4.60)
z ·m = [z, [m, [y, 1′]]]. (4.61)

Note that the image of these maps is indeed contained in M and X, respectively,
by (4.53) and (4.54).

In the next two lemmas we show that these maps satisfy certain properties
of a quadrangular algebra. Note that we do not assume the characteristic to be
different from 2 in these lemmas.

Recall the involution σ of M associated with Q from Definition 1.1.1.
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Lemma 4.5.17. For all z ∈ X and m ∈ M

z · 1 = z; (4.62)
(z ·m) ·mσ = Q(m)z. (4.63)

Proof. Consider z ∈ X and v ∈ M arbitrary. Using (4.59) for m = 1 we get

z · 1 = [z, [1, [y, 1′]]] = [z, [a, b] + [x, y]].

Using z ∈ X = L−1 ∩ L′
0, we get z · 1 = z.

By (4.59) applied for m = 1, z·v ∈ L′
0∩L−1 and [v, 1′] = [v, [b, 1]] = −T (v, 1)x,

we get

(z · v) · vσ = [z · v, [vσ, [y, 1′]]] = −[z · v, [v, [y, 1′]]] + T (1, v)[z · v, [1, [y, 1′]]]
= −[[z, [v, [y, 1′]]], [v, [y, 1′]]] + T (1, v)[z · v, [a, b] + [x, y]]

= T (v, 1)[[z, [y, x]], [v, [y, 1′]]] + [[z, [1′, [v, y]]], [v, [y, 1′]]] + T (1, v)z · v
= −T (v, 1)[z, [v, [y, 1′]]] + [[z, [1′, [v, y]]], [v, [y, 1′]]] + T (1, v)z · v
= −T (v, 1)z · v + [[z, [1′, [v, y]]], [v, [y, 1′]]] + T (1, v)z · v
= [[z, [1′, [v, y]]], [v, [y, 1′]]].

Now 1′ = [b, 1], [y, b] = 0 and the Jacobi identity yield [v, [y, 1′]] = [[v, b], [y, 1]] +
[b, [v, [y, 1]]]. Note [v, [y, 1]] ∈ L′

−2, so [b, [v, [y, 1]]] is a multiple of [a, b]. Together
with [z, [1′, [v, y]]] ∈ L′

0 we get

[[z, [1′, [v, y]]], [b, [v, [y, 1]]]] = 0.

Hence

(z · v) · vσ = [[z, [1′, [v, y]]], [v, [y, 1′]]]

= [[z, [1′, [v, y]]], [[v, b], [y, 1]]]

= [[1′, [z, [v, y]]], [[v, b], [y, 1]]] (4.64)
= −[[v, b], [[y, 1], [1′, [z, [v, y]]]]] + [[y, 1], [[v, b], [1′, [z, [v, y]]]]]

using [1′, z] = 0 in the third equality. Now we will analyze the two terms in the
last line more carefully.

By y, z ∈ L′
0 and v, 1 ∈ L′

−1, we get [[y, 1], [z, [v, y]]] ∈ L1∩L′
−2 = 0 and hence

[[y, 1], [1′, [z, [v, y]]]] = [[[y, 1], 1′], [z, [v, y]]] + [1′, [[y, 1], [z, [v, y]]]]

= [−[a, b] + [x, y], [z, [v, y]]] = [z, [v, y]], (4.65)

using (4.58) and [z, [v, y]] ∈ L0 ∩ L′
−1.

By y, z ∈ L′
0, v ∈ L′

−1, 1′ ∈ L′
1 and b ∈ L′

2

[[v, b], [1′, [z, [v, y]]]] ∈ L′
1 ∩ L−2 = 0. (4.66)



$IBQUFS �� 'SPN FYUSFNBM HFPNFUSJFT UP BMHFCSBJD TUSVDUVSFT 146

Now using (4.64) to (4.66), [[v, b], z] = 0 (by (4.52)) and (4.58), we get

(z · v) · vσ = −[[v, b], [z, [v, y]]] = −[z, [[v, b], [v, y]]]

= −Q(v)[z, [a, b]− [x, y]] = Q(v)z.

We obtain (4.63).

Lemma 4.5.18. For all x1, x2 ∈ X and m ∈ M

T (h(x1, x2), 1)x = [x1, x2]; (4.67)
T (h(x1 ·m,x2), 1) = T (h(x1, x2),m); (4.68)

h(x1, x2 ·m) = h(x2, x1 ·m) + T (h(x1, x2), 1)m. (4.69)

Proof. Using x1 ∈ X = L−1 ∩ L′
0 and (4.58) for m = 1, we get

[x1, x2] = −[x2, [x1, [x, y]]] = [x2, [x1, [1
′, [y, 1]]]].

Now using the Jacobi identity and [1′, x1] = 0 = [1′, x2], we get

[x1, x2] = [1′, [x2, [x1, [y, 1]]]] = −[h(x1, x2), 1
′]

= −[h(x1, x2), [b, 1]] = T (h(x1, x2), 1)x,

i.e., we obtain (4.67). Now using (4.67), [x1,m] = 0 = [x2,m] and the Jacobi
identity we get

T (h(x1 ·m,x2), 1)x = [x1 ·m,x2] = [[x1, [m, [y, 1′]]], x2]

= −[m, [x2, [x1, [y, 1
′]]]].

By [b, y] = [b, x1] = [b, x2] = 0 and the Jacobi identity applied multiple times

[x2, [x1, [y, 1
′]]] = [b, [x2, [x1, [y, 1]]]] = [b, h(x1, x2)].

Hence

T (h(x1 ·m,x2), 1)x = −[m, [b, h(x1, x2)]]

= T (h(x1, x2),m)x,

so (4.68) holds.
We now show that (4.69) holds and start by considering the case m = 1.

Using (4.62) it suffices to show the following identity

h(x1, x2) = [x2, [x1, [y, 1]]] = −[[x1, x2], [y, 1]] + [x1, [x2, [y, 1]]]

= −T (h(x1, x2), 1)[x, [y, 1]] + h(x2, x1) (4.70)
= T (h(x1, x2), 1)1 + h(x2, x1),

where we used 1 ∈ L−1 and (4.67).
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Now we show the more general case, so let m ∈ M be arbitrary. Using the
Jacobi identity, (4.67) and (4.68)

h(x1, x2 ·m) = [x2 ·m, [x1, [y, 1]]] = [x1, [x2 ·m, [y, 1]]] + [[x2 ·m,x1], [y, 1]]

= [x1, [x2 ·m, [y, 1]]] + T (h(x2 ·m,x1), 1)[x, [y, 1]]

= [x1, [x2 ·m, [y, 1]]]− T (h(x2, x1),m)1.

By [m, 1′] = [m, [b, 1]] = −T (m, 1)x, [1′, x2] = 0 (see (4.52)) and x2 ∈ X ≤
L−1, we have

[x1, [x2 ·m, [y, 1]]] = [x1, [[x2, [m, [y, 1′]]], [y, 1]]]

= −T (m, 1)[x1, [[x2, [y, x]], [y, 1]]]− [x1, [[x2, [1
′, [m, y]]], [y, 1]]]

= T (m, 1)[x1, [x2, [y, 1]]]− [x1, [[1
′, [x2, [m, y]]], [y, 1]]]

= T (m, 1)h(x2, x1)− [x1, [1
′, [[x2, [m, y]], [y, 1]]]]

+ [x1, [[x2, [m, y]], [1′, [y, 1]]]].

Note [[x2, [m, y]], [y, 1]] ∈ L1 ∩L′
−2 = 0. By [x2, [m, y]] ∈ L0 ∩L′

−1 and (a special
case of) (4.58) we get

[x1, [[x2, [m, y]], [1′, [y, 1]]]] = [x1, [[x2, [m, y]], [a, b]− [x, y]]] = [x1, [x2, [m, y]]].

Hence

h(x1, x2 ·m) = T (m, 1)h(x2, x1)− T (h(x2, x1),m)1 + [x1, [x2, [m, y]]]. (4.71)

By (4.67) and m ∈ L−1

[x1, [x2, [m, y]]] = [[x1, x2], [m, y]] + [x2, [x1, [m, y]]]

= T (h(x1, x2), 1)[x, [m, y]] + [x2, [x1, [m, y]]] (4.72)
= T (h(x1, x2), 1)m+ [x2, [x1, [m, y]]].

We can interchange the roles of x1 and x2 in (4.71) to obtain

[x2, [x1, [m, y]]] = h(x2, x1 ·m)− T (m, 1)h(x1, x2) + T (h(x1, x2),m)1. (4.73)

Then (4.71) to (4.73) combine to

h(x1, x2 ·m) = T (m, 1)h(x2, x1)− T (h(x2, x1),m)1 + T (h(x1, x2), 1)m

+ h(x2, x1 ·m)− T (m, 1)h(x1, x2) + T (h(x1, x2),m)1

= h(x2, x1 ·m) + T (h(x1, x2), 1)m+ (h(x2, x1)− h(x1, x2))T (m, 1)

− T (h(x2, x1)− h(x1, x2),m)1

= h(x2, x1 ·m) + T (h(x1, x2), 1)m− T (h(x1, x2), 1)T (m, 1)1

+ T (T (h(x1, x2), 1)1,m)1

= h(x2, x1 ·m) + T (h(x1, x2), 1)m,

where we used (4.70) in the second last equality.
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Assume for the rest of this subsection that char(k) "= 2, then we can define
the following maps.
Notation 4.5.19. Set θ : X ×M → M : (x1, v) -→ 1

2h(x1, x1 · v) and π : X →
M : x1 -→ θ(x1, 1). (Consistent with Lemma 1.1.31 and Notation 1.1.28.)
Remark 4.5.20. If char(k) = 2, then the above definition of θ does not work.
It is quite likely, using well-chosen αx1 as in Theorem 4.3.11 instead of e−(x1),
with x1 ∈ X, that one can construct a map θ such that properties (vi) and (vii)
are satisfied. It seems that it is more difficult to obtain the other properties.

We now determine the image of y under the automorphism e−(x1), with
x1 ∈ X. Recall that since char(k) "= 2, the automorphism e−(x1) is well-defined,
see Theorem 4.3.11(vi).
Lemma 4.5.21. For all x1 ∈ X and m ∈ M

e−(x1)([y,m]) =
1

2
[x1, [x1, [y,m]]] + [x1, [y,m]] + [y,m]; (4.74)

e−(x1)(y) = Q(π(x1))x− x1π(x1) +
1

2
[x1, [x1, y]] + [x1, y] + y. (4.75)

Proof. To ease notation, we set ϕ = e−(x1). By b ∈ L0 and [b, x1] = 0, see (4.56),
we get ϕ(b) = b. Similarly ϕ(a) = a. Since a ∈ L′

−2 and b ∈ L′
2, Lemma 4.1.7

applied to the grading (4.50) implies ϕ(L′
−1) ≤ L′

−1. Since [y,m] ∈ L′
−1 and

x ∈ L′
0, ϕ([y,m]) has (−2)-component equal to 0. Hence (4.74).

We now show (4.75). By ϕ(b) = b, [x1, b] = 0 = [y, b], (4.74) and [b, 1] = 1′,
we get

ϕ([[y, 1], b]) = [ϕ([y, 1]), b] = [π(x1) + [x1, [y, 1]] + [y, 1], b]

= [π(x1), b]− [x1, [y, 1
′]]− [y, 1′]. (4.76)

By Lemma 4.1.5 we have [[y, 1], [y, [1, b]]] = λy with λ ∈ k such that λx = [1, [1, b]].
Now using the definition of T , [1, [1, b]] = T (1, 1)x = 2Q(1)x = 2x. Together with
(4.74) and (4.76) this yields

2ϕ(y) = [ϕ([y, 1]),ϕ([[y, 1], b])]

= [π(x1) + [x1, [y, 1]] + [y, 1], [π(x1), b]− [x1, [y, 1
′]]− [y, 1′]] (4.77)

= [π(x1), [π(x1), b]] + (−[π(x1), [x1, [y, 1
′]]] + [[x1, [y, 1]], [π(x1), b]])

+ [x1, [x1, y]] + 2[x1, y] + 2y,

where we used Theorem 4.3.11(vi) in the last line. Clearly
[π(x1), [π(x1), b]] = T (π(x1),π(x1))x = 2Q(π(x1))x. (4.78)

By [π(x1), [x1, [y, 1]]] ∈ L−1 ∩ L′
−2 = 0, and [b, y] = 0 = [b, x1] we get

−[π(x1), [x1, [y, 1
′]]] + [[x1, [y, 1]], [π(x1), b]] = −x1π(x1) + [π(x1), [x1, [y, [1, b]]]]

= −2x1π(x1). (4.79)
Now (4.77) to (4.79) imply (4.75).
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We now deduce the last property we need in order to prove that (X,M) has
the structure of a quadrangular algebra.

Lemma 4.5.22. For all x1 ∈ X and v ∈ M , we have

(x1 · π(x1)) · v = x1 · θ(x1, v). (4.80)

Proof. First note that by (4.62) and the definition of π,

(x1 · π(x1)) · 1 = x1 · π(x1) = x1 · θ(x1, 1).

Since (4.80) is linear in v, we can now assume T (v, 1) = 0. In particular [v, 1′] =
−[v, [1, b]] = −T (v, 1)x = 0. We also get, using gy(v) = 0 = gy(1′) and 0 =
gy(0) = gy([v, 1′]), that

[[v, [y, 1′]], y] = −[[y, v], [y, 1′]] + 0

= −gy([v, 1
′])− [gy(1

′)y, v] + [gy(v)y, 1
′] = 0.

Hence 0 = e−(x1)([[v, [y, 1′]], y]) = [e−(x1)([v, [y, 1′]]), e−(x1)(y)] and we will now
exploit that the (−1)-component of this element equals zero to obtain the claimed
equality. By definition of · and (4.67),

e−(x1)([v, [y, 1
′]]) =

1

2
[x1, x1 · v] + x1 · v + [v, [y, 1′]]

=
1

2
T (h(x1, x1 · v), 1)x+ x1 · v + [v, [y, 1′]].

Together with (4.75) this yields that the (−1)-component of [e−(x1)([v, [y, 1′]]),
e−(x1)(y)] equals

1

2
T (h(x1, x1 · v), 1)[x, [x1, y]] +

1

2
[x1 · v, [x1, [x1, y]]] + [x1 · π(x1), [v, [y, 1

′]]]

=
1

2
T (h(x1, x1 · v), 1)x1 +

1

2
[x1 · v, [x1, [x1, y]]] + (x1 · π(x1)) · v,

(4.81)

which thus has to equal 0. Now [[y, 1], [y, 1′]] = −2y yields

−2[x1, [x1, y]] = [x1, [x1, [[y, 1], [y, 1
′]]]]

= [[x1, [x1, [y, 1]]], [y, 1
′]] + 2[[x1, [y, 1]], [x1, [y, 1

′]]] (4.82)
+ [[y, 1], [x1, [x1, [y, 1

′]]]].

By definition of h and ·,

[x1 · v, [[x1, [x1, [y, 1]]], [y, 1
′]]] = [x1 · v, [h(x1, x1), [y, 1

′]]] = (x1 · v) · h(x1, x1).
(4.83)
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Since (x1 · v) · h(x1, x1), x1 · v, x1, y ∈ L′
0, 1 ∈ L′

−1, 1′ ∈ L′
1 and [b, (x1 · v) ·

h(x1, x1)] = [b, x1] = [b, y] = [b, x1 · v] = 0, Lemma 4.1.4 applied to the grading
(4.50) associated with (a, b), yields

[x1 · v, [[y, 1], [x1, [x1, [y, 1
′]]]]] = [x1 · v, [[y, [b, 1]], [x1, [x1, [y, [a, 1

′]]]]]]

= −[x1 · v, [[y, 1′], [x1, [x1, [y, 1]]]]]

= (x1 · v) · h(x1, x1). (4.84)

We also have

[x1 · v, [[x1, [y, 1]], [x1, [y, 1
′]]]] = [[x1 · v, [x1, [y, 1]]], [x1, [y, 1

′]]]

+ [[x1, [y, 1]], [x1 · v, [x1, [y, 1
′]]]]

= x1 · h(x1, x1 · v) + [[x1, [y, 1]], [x1 · v, [x1, [y, 1
′]]]]

= 2x1 · h(x1, x1 · v), (4.85)

where the last equality is obtained in a similar fashion as (4.84). Now the fact
that (4.81) equals 0, together with (4.82) to (4.85), implies

0 =
1

2
T (h(x1, x1 · v), 1)x1 − (x1 · v) · π(x1)− 2x1 · θ(x1, v) + (x1 · π(x1)) · v.

(4.86)

Now note that by [x1, x1] = 0 and (4.67), T (π(x1), 1) = 0. Together with
T (v, 1) = 0, (1.4) yields

−(x1 · v) · π(x1) = T (π(x1), v)x1 + (x1 · π(x1)) · v. (4.87)

By (4.67) and (4.68)

2T (π(x1), v) = T (h(x1 · v, x1), 1) = [x1 · v, x1]

= −[x1, x1 · v] = −T (h(x1, x1 · v), 1).

Together with (4.86) and (4.87) this yields (4.80).

Corollary 4.5.23. If char(k) "= 2, then (k,M,Q, 1, X, ·, h, θ) is a quadrangular
algebra, with M , Q, X, 1, ·, h and θ as in Notation 4.5.3, Notation 4.5.8,
Notation 4.5.16 and Notation 4.5.19.

Proof. By their definition and the fact that the Lie bracket is a bilinear map,
h and · are bilinear maps. Note that if 0 "= m ∈ M satisfies T (m,n) = 0 for
all n ∈ M , then [m,M ′] = [m, [M, b]] = 0 by (4.51). But then [m,L−1] = 0 by
(4.52), contradicting Lemma 4.1.6. Hence Q is a non-degenerate quadratic form
by Lemma 4.5.9. Then Lemma 1.1.31 and (4.62), (4.63), (4.68), (4.69) and (4.80)
conclude this proof.
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Assume in this subsection char(k) "= 2. We will show that the inner ideal geo-
metry, as defined in Section 2.5, is a generalized quadrangle if and only if the
associated quadrangular algebra is anisotropic. Then, we will proceed to char-
acterize this quadrangle more precisely, we will show that this quadrangle is the
Moufang quadrangle associated with the quadrangular algebra. Let M , Q, X, 1, ·,
h and θ as in Notation 4.5.3, Notation 4.5.8, Notation 4.5.16 and Notation 4.5.19.
Lemma 4.5.24. Assume that the extremal geometry does not contain lines. If
e ∈ E satisifes [a, e] = 0 = [b, e], then e is

• contained in L0 if [e, x] = 0 = [e, y];
• a multiple of exp(λx)e−(x1)(y), with λ ∈ k and x1 ∈ X, if [e, x] "= 0;
• a multiple of exp(λy)e+([x1, y])(x), with λ ∈ k and x1 ∈ X, if [e, y] "= 0.

Proof. By 0 "= [a, l′1] ∈ L′
−1 for all l′1 ∈ L′

1 and 0 "= [a, b] ∈ L′
0, [e, a] = 0

implies e ∈ L′
−2 ⊕ L′

−1 ⊕ L′
0. Similarly, [e, b] = 0 implies e ∈ L′

0 ⊕ L′
1 ⊕ L′

2.
Hence e ∈ L′

0. By Lemma 4.5.5 this implies e = l−2 + l−1 + l0 + l1 + l2 with
li ∈ Li ∩ L′

0, i ∈ {−2,−1, 0, 1, 2}. If l2 "= 0, we may assume l2 = y. Note
l1 ∈ L1 ∩ L′

0 = [X, y]. So by Theorem 4.3.17 and Theorem 4.3.11(v) there exists
unique x1 ∈ X and λ ∈ k such that exp(λx)e−(x1)(y) = e. Completely similarly,
if the (−2)-component of e is non-zero, it is a multiple of exp(λ′y)e+([x′

1, y])(x)
for unique x′

1 ∈ X and λ′ ∈ k.
Now assume that e has 2- and (−2)-component equal to 0. If its (−1)-

component is non-zero, then [e, y] = [l−1, y] + [l0, y] is an extremal element.
By Lemma 4.1.8, 〈[l−1, y] + [l0, y], y〉 is a line of the extremal geomtry, a contra-
diction. Similarly, the 1-component of e equals 0. Hence e ∈ L0, as claimed.
Now, by the standard 5-grading, [e, x] = λx, for certain λ ∈ k, and hence
[e, [e, x]] = λ[e, x] = λ2x. But e ∈ E implies [e, [e, x]] ∈ 〈e〉, a contradiction.
Hence [x, e] = 0 and similarly [y, e] = 0.

Consider e ∈ E such that [a, e] = [b, e] = 0 = [x, e] = [y, e]. Since e hav-
ing a non-zero 2-component (respectively, (−2)-component) implies [x, e] "= 0
(respectively [y, e] "= 0), the previous paragraph shows e ∈ L0.

Consider e ∈ E such that [a, e] = [b, e] = 0 "= [y, e]. If both its (−2)- and
2-component equal 0, we get e ∈ L0 and [y, e] = 0. If its (-2)-component is
non-zero there is nothing to prove anymore. If its (−2)-component equals 0, its
2-component is non-zero and hence e = l0 + l1 + l2, for certain li ∈ Li, by the
second sentence in the second paragraph of this proof. By the 5-grading there
exists λ ∈ k such that [l0, y] = λy, as before [e, [e, y]] = [e,λy] = λ2y is contained
in 〈e〉 and hence λ = 0, implying [y, e] = 0, a contradiction.

Now we can characterize when the inner ideal geometry is a generalized quad-
rangle, but we first introduce some notation for the lines of this inner ideal geo-
metry, see Section 2.5.
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Notation 4.5.25. Let I be the set of inner ideals I containing at least two
extremal points and such that the only proper non-trivial inner ideals of I are
extremal points.

Theorem 4.5.26. The inner ideal geometry of L, as defined in Section 2.5, with
E as point set, and I as line set, is a generalized quadrangle if and only if the
quadrangular algebra from Corollary 4.5.23 is anisotropic.

Proof. To ease notation we will denote the quadrangular algebra from Corol-
lary 4.5.23 by (X,M).

Assume that the inner ideal geometry forms a generalized quadrangle.
If the extremal geometry contains lines then this inner ideal geometry coin-

cides with the extremal geometry, see Theorem 2.5.11. In the extremal geometry
there exist hyperbolic points and these points lie at distance 3. Since in a gen-
eralized quadrangle (and more generally, a polar space) points lie at distance at
most 2, we obtain a contradiction.

So there are no lines in the extremal geometry. If Q is isotropic, Lemma 4.5.11
implies that there exist extremal elements contained in L−1 and hence lines in
the extremal geometry by Lemma 4.1.8. We can now assume Q to be anisotropic.

Assume that there exists a non-zero x1 ∈ X such that π(x1) = 0. Then
e−(x1)(y) = 1

2 [x1, [x1, y]] + [x1, y] + y, by (4.75). By [a, x1] = 0 = [a, y], see
(4.56), we get [e−(x1)(y), a] = 0. On the other hand,

[y, [x1, [x1, y]]] = [[y, x1], [x1, y]]− [x1, [y, [y, x1]] = 0, (4.88)

using [y, [y, x1]] ∈ L3 = 0, and thus [y, e−(x1)(y)] = 0. Hence e−(x1)(y) is an
extremal element symplectic to both a and y, since E−1 = ∅ because there are
no lines in the extremal geometry. By Lemma 2.5.5, a and y generate an inner
ideal I which contains only extremal points as non-trivial proper inner ideals.
These types of inner ideals are the lines of our inner ideal geometry, so in order
to obtain a generalized quadrangle, every point symplectic with two distinct
extremal points contained in I has to be contained in I. Now by Theorem 4.5.43
and Lemma 4.1.4, 〈a〉 ⊕ [y,M ] ⊕ 〈y〉 is an inner ideal containing a and y, so it
has to contain I. (It is actually equal to I, but this is irrelevant for now.) As
noted before, e−(x1)(y) is symplectic with both a and y. But the 1-component of
e−(x1)(y) equals [x1, y], which is a non-zero element of [y,X]. Since X ∩M = 0,
the extremal element e−(x1)(y) is not contained in I, a contradiction with the
assumption that the inner ideal geometry is a generalized quadrangle. We can
conclude π(x1) "= 0 for all 0 "= x1 ∈ X. Together with the fact that Q is
anisotropic, we get that the quadrangular algebra is anisotropic.

Conversely, asumme (X,M) is anisotropic.
If there are lines in the extremal geometry, there is e ∈ L such that (x, e) and

(b, e) are contained in E−1. Hence e ∈ L−2⊕L−1 and e ∈ L′
2⊕L′

1 by Lemma 4.1.8.
By x ∈ L′

0 and Lemma 4.5.5, e ∈ L−1 ∩ L′
1 = M ′. Since a ∈ L′

−2, we get (e, a) ∈
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E1 and [e, a] ∈ E. Hence exp([e, a])(b) = g[e,a](b)[e, a]+ [[e, a], b]+ b = e+ b using
e ∈ L′

−1 and g([a, e], b) = g(a, [e, b]) = 0, by the associativity of g and [e, b] = 0.
Now Lemma 4.5.7 and the definition of Q imply Q([e, a]) = 0, contradicting the
assumption that the quadrangular algebra is anisotropic.

Now, since the extremal geometry has no lines but it does have symplectic
pairs, the inner ideal geometry forms a polar space by Theorem 2.5.11. We now
show that its rank equals 2, i.e., it is a generalized quadrangle. If the rank is at
least 3, then for every line of the inner ideal geometry, there exists an extremal
point not on this line which is symplectic with two (and thus all) points on this
line. As before, consider the inner ideal I generated by the symplectic pair of
extremal elements y and a. This inner ideal is contained in 〈a〉 ⊕ [M, y] ⊕ 〈y〉.
Assume that there exists an extremal point e not on the line I but symplectic with
both 〈y〉 and 〈a〉. Then e and the line I span a plane in the inner ideal geometry.
Since this inner ideal geometry is a polar space and [x, y] "= 0, there exists an
extremal point e′ in this plane which is symplectic with 〈b〉 but hyperbolic with
〈x〉. Note that since 〈y〉 is symplectic with both 〈a〉 and e, it is symplectic with
e′, i.e. [e′, y] = 0. In particular e′ ≤ L≥0. So Lemma 4.5.24 together with
[a, e′] = 0 = [b, e′] implies that there exist λ ∈ k and x1 ∈ X such that e′ is a
multiple of exp(λx)e−(x1)(y). By (4.75) we get that the 0-component of e′ equals
1
2 [x1, [x1, y]] + λ[x, y]. Now note [ 12 [x1, [x1, y]] + λ[x, y], y] = 2λy, using (4.88).
Hence [e′, y] = 0 implies λ = 0. Now since e′ ≤ L≥0, (4.75) yields π(x1) = 0,
contradicting the assumption that the quadrangular algebra is anisotropic. So
the inner ideal geometry is indeed a generalized quadrangle.

Assumption 4.5.27. From now on we assume that the quadrangular algebra
from Corollary 4.5.23 is anisotropic. Hence the inner ideal geometry is a gener-
alized quadrangle, and in particular E−1 = E1 = ∅.

Now we proceed to show that the generalized quadrangle is, in fact, a Moufang
quadrangle and we determine the root groups. In the rest of this subsection, we
fix a cycle (x0, x1, . . . , x7, x0) of length 8 in Ω := E ∪ I, the incidence graph of
the inner ideal geometry of L, corresponding to the following cycle of length 4 in
the generalized quadrangle:
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〈a〉 = x7

〈x〉 = x5

〈b〉 = x3

〈y〉 = x1

We determine the points x0, x2, x4 and x6 of the incidence graph Ω more
precisely.

Lemma 4.5.28. We have

x4 = 〈x〉 ⊕M ′ ⊕ 〈b〉, x6 = 〈x〉 ⊕M ⊕ 〈a〉;
x0 = 〈a〉 ⊕ [M, y]⊕ 〈y〉, x2 = 〈b〉 ⊕ [M ′, y]⊕ 〈y〉.

Proof. By definition, x6 is the minimal inner ideal containing both a and x. Now
M = [a,M ′] = [a, [x, [y,M ′]]] ≤ I, using (4.51). Hence 〈x〉⊕M ⊕〈a〉 is contained
in I. Since it is also an inner ideal by Theorem 4.5.43, it coincides with I.
Completely similarly for the other identities.

Let U1, U2, U3 and U4 be the root groups, as defined in Notation 1.2.9. So U1

is the subgroup of Aut(Ω) which fixes all neighbors of x2, x3, x4, and similarly
for the other root groups. It turns out that, except for U1, all these root groups
are subgroups of E−(x, y). In order to determine the root groups explicitly, we
can use Lemma 1.2.11 to see that it suffices to show that the claimed subgroup
(of E−(x, y)) fixes all the neighbors of a set of 3 distinguished vertices and acts
transitively on the set of neighbors of another distinguished vertex, with one
neighbor excluded. We first determine U2 and U4.

Lemma 4.5.29. Any extremal element in x4 is a multiple of x or a multiple
of e−(m)(b), with m ∈ M . Any extremal element in x6 is a multiple of x or a
multiple of e−(m′)(a), with m′ ∈ M ′.

Proof. Consider e ∈ x4 with e ∈ E arbitrary. If the 0-component of e is non-zero,
then by (4.51) and Lemmas 4.5.7 and 4.5.28 it is a multiple of e−(m)(b), with
m ∈ M . If the 0-component of e equals 0, then by Lemma 4.1.8, there are lines in
the extremal geometry, unless e is a multiple of x. Now note that by assumption
the extremal geometry does not contain lines. Similarly for x6.
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Notation 4.5.30. Set E−(M) = {e−(m) | m ∈ M} and similarly for E−(M ′).
Set E−(X,x) = {exp(λx)e−(x1) | λ ∈ k, x1 ∈ X}. Note that by (4.52),
Lemma 4.3.15 and Theorem 4.3.11(i) these are subgroups of E−(x, y).

Lemma 4.5.31. All automorphisms of E−(x, y) fix all elements of I containing
x.

Proof. Consider ϕ ∈ E−(x, y) arbitrary. By Theorem 4.3.11(v) there exist λ ∈ k
and l−1 ∈ L−1 such that ϕ = exp(λx)e−(l−1). Let I ∈ I be such that x ∈ I
and e ∈ I, with e ∈ E, e "∈ 〈x〉. By Assumption 4.5.1(i) the extremal geometry
of L ⊗ k′ contains lines. By Corollary 2.5.10, I ⊗ k′ = (L ⊗ k′)S , where S
is the symplecton in the extremal geometry of L ⊗ k′ containing 〈e〉 and 〈x〉.
By Lemma 4.3.6, I = 〈x〉 ⊕ M ′′ ⊕ 〈e′〉, for a certain subspace M ′′ of L−1 and
e′ ∈ L0 ∩ E.

By the 5-grading on L, ϕ(l) ∈ L−2 + l for all l ∈ L−1. Hence it suffices to
show ϕ(e′) ∈ I. Now note ϕ(e′) = µx + [l−1, e′] + e′ for certain µ ∈ k. Since I
is an inner ideal, [l−1, e′] = [e′, [x, [y, l−1]]] ∈ I. Together with x, e′ ∈ I, we get
ϕ(e′) ∈ I.

Lemma 4.5.32. For the root groups U2 and U4, we have

U2 = E−(M
′), U4 = E−(M).

Moreover, Ui acts transitively on all neighbors of xi distinct from xi+1, for i =
2, 4.

Proof. Consider m ∈ M arbitrary. By [m, a] = 0, we get obtain e−(m)(a) =
1
2 [m, [m, a]] + [m, a] + a = a. By (4.52), e−(m)(n) = n for all n ∈ M . Together
with e−(m)(x) = x this implies that e−(m) fixes all neighbors of x6, i.e. all
extremal points contained in x6 = 〈x〉 ⊕ M ⊕ 〈a〉. Since m ∈ M = L−1 ∩ L′

−1,
e−(m) is contained in both E−(x, y) and E−(a, b). Hence Lemma 4.5.31 implies
that e−(m) fixes all neighbors of 〈x〉 = x5 and 〈a〉 = x7 (in Ω). Now note that by
Lemma 4.5.29, the group E−(M) acts transitively on all neighbors of x4 different
from x3. So we showed U4 = E−(M). Completely similarly for U2.

Lemma 4.5.33. For the root group U3, we have

U3 = e−(X,x).

Moreover, U3 acts transitively on all neighbors of x3 distinct from x4.

Proof. Consider x1 ∈ X arbitrary. Since [x1,M ] = 0 = [x1, a], see (4.52)
and (4.56), e−(x1) fixes all elements of x6 = 〈x〉 ⊕ M ⊕ 〈a〉, in particular it
fixes all extremal points contained in x6, i.e. the neighbors of x6 in Ω. Similarly,
e−(x1) fixes all neighbors of x4. By Lemma 4.5.31, e−(x1) fixes all neighbors of
〈x〉 = x5. Completely similarly Exp(〈x〉), and thus E−(X, 〈x〉), fixes all neighbors
of x4, x5 and x6.
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We now show that E−(X,x) acts transitively on the neighbors of x3 different
from x4, then U3 = E−(X,x) follows.

Consider a neighbor I ∈ I of x3 = 〈b〉, i.e. I ∈ I such that b ∈ I. By Theo-
rem 4.5.26 the inner ideal geometry is a generalized quadrangle. Since [a, b] "= 0,
this implies that there exists e ∈ E ∩ I such that [e, a] = 0. Moreover, since
[b, y] = 0, 〈b〉 is the only extremal point of I symplectic with 〈y〉. Hence [e, y] "= 0
and similarly [e, x] "= 0. Now Lemma 4.5.24 implies that there exist λ ∈ k and
x1 ∈ X such that e = exp(λx)e−(x1)(y).

For the final root group we need three lemmas. (These lemmas do not rely
on the condition that the quadrangular algebra is anisotropic.)

Lemma 4.5.34. For all m ∈ M and l ∈ L, e−(m)(l) = 1
2 [m, [m, l]] + [m, l] + l.

We also get e−(m)(y) = Q(m)a+ [m, y] + y.

Proof. For all l ∈ L−2 ⊕ L−1 ⊕ L0, this is true by definition. By Lemma 4.1.4
applied twice to Corollary 4.5.12, Q(m)a + [m, y] + y ∈ E. On the other hand
[m, [m, y]] is contained in the inner ideal x6, and since it is also contained in
L0, it is a multiple of a. By [x, y] "∈ 〈a〉 = L′

−2, since [x, y] ∈ L′
0, Theo-

rem 4.3.17 implies e−(m)(y) = Q(m)a + [m, y] + y. Consider l−1 ∈ L−1 arbi-
trary. Then e−(m)([y, l−1]) = [Q(m)a+[m, y]+y, [m, l−1]+l−1] has 2-component
[Q(m)a, [m, l−1]] = 0 by [a, x] = 0. Hence e−(m)(l1) =

1
2 [m, [m, l1]] + [m, l1] + l1

for all l1 ∈ L1, which concludes this proof.

Lemma 4.5.35. Set ϕ = e−(1)e+([y, 1′])e−(1). Then ϕ(b) = x, ϕ(x) = b,
ϕ(y) = a, ϕ(a) = y and ϕ(x1) = [[y, 1′], x1] for all x1 ∈ X.

Proof. Note e−(1)(b) = Q(1)x+[1, b]+b = x+[1, b]+b. Note that [[y, [b, 1]], [1, b]]
and [[y, [b, 1]], [[y, [b, 1]], x]] are contained in L′

2∩L0 = 〈b〉 and [[y, [b, 1]], b] ∈ L′
3 =

0. So by the obvious generalization of Lemma 4.5.34 to [y,M ′], we get

e+([y, [b, 1]])(e−(1)(b)) = x+ (−[x, [y, [b, 1]]] + [1, b]) + µb = x+ µb

for certain µ ∈ k. If µ "= 0, then Lemma 4.5.7 (applied for m = 0) yields a
contradiction with b ∈ E. Together with e−(1)(x) = x, this yields ϕ(b) = x.
Completely similarly, ϕ(x) = b, ϕ(y) = a, ϕ(a) = y.

Consider x1 ∈ X arbitrary. Using (4.52), e−(1)(x1) = x1. Now, a generaliza-
tion of Lemma 4.5.34 to [y,M ′], and [[y, 1′], [[y, 1′], x1]] ∈ L1 ∩ L′

2 = 0, yields

e+([y, 1
′])(x1) = x1 + [[y, 1′], x1].

Together with x1 ∈ L′
0 ∩ L−1 and (4.59) for m = 1 we get

ϕ(x1) = e−(1)e+([y, 1
′])(x1) = e−(1)(x1 + [[y, 1′], x1])

= x1 + (−1

2
[1, x1]− x1 + [[y, 1′], x1]) = [[y, 1′], x1].
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Lemma 4.5.36. The subalgebra L0 decomposes as

L0 = (L′
−2 ∩ L0)⊕ (L′

−1 ∩ L0)⊕ (L′
0 ∩ L0)⊕ (L′

1 ∩ L0)⊕ (L′
2 ∩ L0),

with moreover

L′
−1 ∩ L0 = [X, [y, 1]] and L′

1 ∩ L0 = [X, [y, 1′]]. (4.89)

Proof. Let ϕ be as in Lemma 4.5.35. Lemmas 4.1.7 and 4.5.35 imply ϕ(Li) = L′
−i

and ϕ(L′
i) = L−i for all i ∈ {−2,−1, 0, 1, 2}. In particular ϕ(X) = ϕ(L−1 ∩

L′
0) = L′

1 ∩ L0. By Lemma 4.5.35, ϕ(X) = [X, [y, 1′]]. Similarly, one deduces
L0 ∩ L′

−1 = [X, [y, 1]].
Consider l ∈ L0 arbitrary, then there exist (unique) l′i ∈ L′

i such that l =
l′−2 + l′−1 + l′0 + l′1 + l′2. Since L′

−2 and L′
2 are contained in L0, l−1 + l0 + l1 ∈ L0.

Now by completely the same argument as in the proof of Lemma 4.5.5 we get
l−1, l0, l1 ∈ L0.

Lemma 4.5.37. For the root group U1, we have

U1 = {exp(λb)e−([x1, [y, 1
′]]) | λ ∈ k, x1 ∈ X}.

Moreover, U1 acts transitively on all neighbors of x1 distinct from x2.

Proof. By interchanging the roles of (x, y) and (b, a) in this whole subsection,
and then applying Lemma 4.5.33 while using (4.89).

Lemma 4.5.38. Every cycle (y0, . . . , y7, y0) of length 8 in Ω can be mapped onto
the cycle (x0, . . . , x7, x0) by an element of Aut(L).

Proof. We may assume that y1 is 1-dimensional. By Theorem 2.3.19, the extremal
point y1 can be mapped onto 〈y〉. So we may assume y1 = 〈y〉 = x1. Now y5 is at
distance 2 from y1 in the inner ideal geometry. This is equivalent with [y5, y] "= 0.
If y5 has 0 as (−2)-component, it would commute with y by Lemma 4.1.8 and
the fact that there are no special pairs of extremal elements. (Since there would
otherwise be collinear extremal points by Proposition 2.3.7(d)) Hence y5 has
a non-zero (−2)-component, so by Theorem 4.3.17 there exists an element of
E+(x, y) mapping y5 onto 〈x〉 and fixing 〈y〉. So we may assume y5 = 〈x〉 = x5.
By Lemma 4.5.37 there exists an automorphism fixing x and y, while sending y0
onto x0. So we may assume y0 = x0. Since x5 = y5, x6, x7, x0 = y0 is the unique
shortest path between y5 and y0, we get y6 = x6 and y7 = x7. Similarly y2 = x2,
y3 = x3, y4 = x4.

Proposition 4.5.39. The inner ideal geometry (E , I) is a Moufang quadrangle.

Proof. This follows from Lemmas 4.5.32, 4.5.33, 4.5.37 and 4.5.38.
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Before determining the commutator relations, we need a lemma on commuting
automorphisms.

Lemma 4.5.40. Consider e ∈ L0∩E and l ∈ L−1 such that [l, e] = 0, then e−(l)
and exp(e) commute.

Proof. Note that e ∈ L0 ≤ NL(x) implies [e, [e, x]] ∈ 〈e〉 ∩ 〈x〉 = 0. Hence
[e, x] = 0 and exp(e)(x) = e. Similarly, exp(e)(y) = y. For all l′ ∈ L1

exp(e)(e−(l)(l′)) = exp(e)([l, l′] + l′) = [l, l′] + (l′ + [e, l′])

e−(l)(exp(e)(l′)) = e−(l)(l
′ + [e, l′]) = [l, l′] + (l′ + [e, l′]),

where we used [e, [e, l′]] ∈ L−1 ∩ 〈e〉 = 0, [l, e] = 0, [e, [l, l′]] ≤ [e, 〈x〉] = 0 and

[l, [e, l′]] = [[l, e], l′] + [e, [l, l′]] = 0.

So both automorphisms coincide on L−1. Since L is generated by y and L−1,
it now suffices to show that they coincide on y. By Theorem 4.3.17 it suffices
to show that the images of y under these automorphisms have the same 0- and
1-components. One easily checks, using [e, l] = 0 and [e, y] = 0, that these are
indeed equal, and more precisely, they are equal to 1

2 [l, [l, y]] and [l, y], respec-
tively.

Lemma 4.5.41. The commutator relations between U1, U2, U3, and U4 are
trivial except for

[exp(λb)e−([x1, [y, 1
′]]), exp(µx)e−(x2)] = e−([h(x1, x2), b]), (4.90)

[exp(λb)e−([x1, [y, 1
′]]), e−(m)] = e−([θ(x1,m)− λm, b])e−(−x1 ·m)

exp(λQ(m)x), (4.91)
[e−(m

′), e−(m)] = exp([m′,m]), (4.92)

for all m ∈ M , m′ ∈ M ′, x1, x2 ∈ X and λ, µ ∈ k.

Proof. Consider x1, x2 ∈ X and λ, µ ∈ k. By Lemma 4.5.40 and (4.56), exp(λb)
commutes with e−(x2). By Theorem 4.3.11(i) applied to the 5-grading associ-
ated with (a, b), exp(λb) also commutes with e−([x1, [y, 1′]]). Using x ∈ L′

0 and
[x1, [y, 1′]] ∈ L′

1, Lemma 4.5.40 applied to the 5-grading associated with (a, b)
shows that exp(µx) commutes with e−([x1, [y, 1′]]). So in order to show (4.90)
we may without loss of generality assume λ = µ = 0.

Set

ϕ = [e−([x1, [y, 1
′]]), e−(x2)]

= e−(−[x1, [y, 1
′]])e−(−x2)e−([x1, [y, 1

′]])e−(x2),

where we used Lemma 4.3.15 to deduce the inverses of these automorphisms.
By Theorem 1.2.13 there exists m′ ∈ M ′ such that ϕ = e−(m′). We get
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ϕ exp(−x2) = e−(m′)e−(−x2). Now we determine the image of y under both
sides of the previous equality to deduce m′. In fact, we only need to deduce the
1-component of these images.

By [[x1, [y, 1′]], y] ∈ L2 ∩ L′
1 = 0 and y ∈ L′

0, we get e−([x1, [y, 1′]])(y) = y.
By (4.75), e−(−x2)(y) = Q(π(x2))x+ x2π(x2) +

1
2 [x2, [x2, y]]− [x2, y] + y. Note

that all components of e−(−x2)(y) are contained in L′
0, denote these components

by li. Then, by li ∈ L′
0 and [x1, [y, 1′]] ∈ L′

1,

e−(−[x1, [y, 1
′]])(li) =

1

2
[[x1, [y, 1

′]], [[x1, [y, 1
′]], li]]− [[x1, [y, 1

′]], li] + li.

In particular, by [x1, [y, 1′]] ∈ L0, e−(−[x1, [y, 1′]])(li) is also contained in Li.
Hence the 1-component of ϕe−(−x2)(y) equals

e−(−[x1, [y, 1
′]])(−[x2, y]) = [[x1, [y, 1

′]], [x2, y]]− [x2, y]

= −[[b, h(x1, x2)], y] + [x2, [y, [[y, 1
′], x1]]]− [x2, y]

= [[h(x1, x2), b]− x2, y],

using [[x1, [y, 1′]], [[x1, [y, 1′]], [x2, y]]] ∈ L1 ∩ L′
2 = 0, [y, [[y, 1′], x1]] ∈ L2 ∩ L′

1 = 0
and [b, y] = [b, x1] = [b, x2] = 0.

On the other hand the 1-component of e−(m′)e−(−x2)(y) equals [m′−x2, y].
We conclude m′ = [h(x1, x2), b], showing (4.90).

Equation (4.92) follows by Lemma 4.3.15.
Now we deduce the most difficult commutator relation, (4.91). Consider

λ ∈ k, x1 ∈ X and m ∈ M arbitrary. Set ϕ = [exp(λb)e−([x1, [y, 1′]]), e−(m)].
Again, by Theorem 1.2.13 there exist m′ ∈ M , x2 ∈ X and µ ∈ k such that
ϕ = e−(m′) exp(µx)e−(x2). We now determine the 0- and 1-component of
ϕe−(−m) in two different ways in order to deduce m′, λ and x2. As before,
e−([x1, [y, 1′]])(y) = y, and by [b, y] = 0 we get exp(λb)(y) = y. By Lemma 4.5.34,
we get e−(−m)(y) = Q(m)a−[m, y]+y. Now we determine the image of m under
e−(−[x1, [y, 1′]]). By a generalization of (4.74), [x1, b] = [y, b] = [x1 · m, b] = 0
and the definition of h, we get

e−(−[x1, [y, 1
′]])(m) =

1

2
[[x1, [y, 1

′]], [[x1, [y, 1
′]],m]]− [[x1, [y, 1

′]],m] +m

= −1

2
[[x1, [y, 1

′]], x1 ·m] + x1 ·m+m

=
1

2
[b, h(x1, x1 ·m)] + x1 ·m+m

= [b, θ(x1,m)] + x1 ·m+m,

and hence, using [b,X] = 0,

exp(−λb)(e−(−[x1, [y, 1
′]])(−[m, y])) = [[θ(x1,m)− λm, b]− x1 ·m−m, y],
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which is the 1-component of ϕe−(−m)(y) since the components Li of our standard
5-grading are fixed by both exp(−λb) and e−(−[x1, [y, 1′]]). On the other hand,
the 1-component of

e−(m
′) exp(µx)e−(x2)e−(−m)(y)

equals [m′ + x2 −m, y]. We obtain m′ = [θ(x1,m)− λm, b] and x2 = −x1 ·m.
Now we only need to determine µ. Note that the 0-component l of

e−(m
′) exp(µx)e−(x2)e−(−m)(y)

can be decomposed as in Lemma 4.5.36. The component of l contained in L′
0

equals µ[x, y] + 1
2 [x2, [x2, y]] − [m′, [m, y]]. By the previous calculations, the 0-

component of ϕe−(−m)(y) equals exp(−λb)e−(−[x1, [y, 1′]])(Q(m)a). By defini-
tion of e−(−[x1, [y, 1′]]), a ∈ L′

−2, [x1, [y, 1′]] ∈ L′
1 and b ∈ L′

2, the component of
exp(λb)e−(−[x1, [y, 1′]])(Q(m)a) contained in L′

0 equals

1

2
Q(m)[[x1, [y, 1]], [[x1, [y, 1]], a]− λQ(m)[b, a],

which thus has to equal µ[x, y] + 1
2 [x2, [x2, y]] − [m′, [m, y]]. Now taking the Lie

bracket with y on both sides of this equality yields 2µy − [[m′, [m, y]], y] = 0.
Together with [y, [y,m]] = 0 and Lemma 4.1.4 this yields

2µx = −[m,m′] = −[m, [θ(x1,m)− λm, b]]

= −T (m, θ(x1,m)− λm)x = (−T (m, θ(x1,m)) + 2λQ(m))x.

Note 2T (m, θ(x1,m)) = T (h(x1, x1 ·m),m) = T (h(x1 ·m,x1 ·m), 1) = [x1 ·m,x1 ·
m] = 0 by (4.67) and (4.68). Now (4.91) follows since exp(x) commutes with all
elements of E−(x, y), see Theorem 4.3.11(i).

Theorem 4.5.42. Let L be as in Assumption 4.5.1 and char(k) "= 2. Assume
that the quadrangular algebra on (X,M), as constructed in Section 4.5.1, is
anisotropic. Consider Ω = E ∪ I, the incidence graph of the inner ideal geometry.
(See Notation 4.5.25 for the definition of I.) Then Ω is the incidence graph of
the Moufang quadrangle associated to the quadrangular algebra on (X,M).

Proof. Recall that, by Proposition 4.5.39, Ω is indeed the incidence graph of a
Moufang quadrangle. Consider the following parametrization of the root groups:

x1(x1,λ) = exp(−λb)e−([x1, [y, 1
′]]), x3(x1,λ) = exp(−λx)e−(x1),

x2(m) = e−([b,m]), x4(m) = e−(m),

for all m ∈ M , x1 ∈ X and λ ∈ k. Now note [m1, [m2, b]] = T (m1,m2)x for all
m1,m2 ∈ M . Hence by Lemma 4.5.41 we see that the commutator relations are
the same as in Theorem 1.2.20.
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In this short subsection we construct another 5-grading on L, see also Figure 4.1,
and make a few remarks.

Theorem 4.5.43. Consider

L′′
i = {l ∈ Li1 ∩ L′

i2 | i1, i2 ∈ Z, i1 + i2 = i},

for i ∈ Z. Then
L = L′′

−2 ⊕ L′′
−1 ⊕ L′′

0 ⊕ L′′
1 ⊕ L′′

2 ,

and moreover this is a Z-grading. If char(k) "= 2, we have more precisely

L′′
−2 = 〈x〉 ⊕M ⊕ 〈a〉, L′′

2 = 〈b〉 ⊕ [y,M ′]⊕ 〈y〉
L′′
−1 = X ⊕ [X, [y, 1]], L′′

1 = [X, y]⊕ [X, [y, 1′]]

Proof. By x, y ∈ L′
0 and Lemma 4.5.5 it is clear that L′′

i = 0 if |i| > 2. By
Lemmas 4.5.5 and 4.5.36, L = ⊕2

i=−2L
′′
i follows. This is a Z-grading because

both ⊕2
i=−2Li and ⊕2

i=−2L
′
i are Z-gradings.

The more precise descriptions of L′′
−2, L′′

−1, L′′
1 and L′′

2 follow by Lemmas 4.5.5
and 4.5.36.

Remark 4.5.44. Assume char(k) "= 2, and assume that the quadrangular alge-
bra constructed in Section 4.5.1 is anisotropic. Let x1, x2, x3 ∈ X be arbitrary.
By Lemma 4.1.4 applied to the grading (4.50), together with [X, b] = 0 = [y, b]
and [[x1, [y, 1]], [x2, [x3, [y, 1′]]]] ∈ X, we get

[[x1, [y, 1]], [x2, [x3, [y, 1
′]]]] = [[x1, [y, 1

′]], [x2, [x3, [y, [a, 1
′]]]]]

= −[[x1, [y, 1
′]], [x2, [x3, [y, 1]]]]. (4.93)

Then −2y = [[y, 1], [y, 1′]], the Jacobi identity, (4.93), [X,M ] = 0, and the defi-
nition of h, imply

−2[x1, [x2, [x3, y]]] = [x1, [x2, [x3, [[y, 1], [y, 1
′]]]]]

=
∑

i<j,j )=k,i )=k

2[[xi, [xj , [y, 1]]], [xk, [y, 1
′]]]

= 2
∑

i<j,j )=k,i )=k

xk · h(xj , xi)

= 2(x1 · h(x3, x2) + x2 · h(x3, x1) + x3 · h(x2, x1)).

Also note, by (4.62), [x1, x2] = T (h(x1, x2), 1) = 2g(x1, x2), with g as in the
proof of Lemma 1.1.31. In [BDM13] they give X a multiplication and involution
such that the obtained algebra is a structurable algebra of skew-dimension one,
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if char(k) "= 2, 3. Comparing the above identities with the ones in Theorem 5.4
of loc. cit. shows that the subalgebra

〈x〉 ⊕X ⊕ ([X, [X, y]] + [x, y])⊕ [X, y]⊕ 〈y〉

of L (and L′
0) is isomorphic to the TKK-Lie algebra of the skew-dimension one

structurable algebra on X as in Theorem 5.4 of loc. cit.

Remark 4.5.45. In [BDM15] they construct a quadrangular algebra out of a so-
called special J-ternary algebra, where J = J(Q′, c′) is a Jordan algebra, with Q′

a quadratic form of Witt index 1 and basepoint c′. If we assume that char(k) "= 2
and that the quadrangular algebra from Section 4.5.1 is anisotropic, then it easy
to see that L′′

−2 ⊕ [L′′
−2, L

′′
2 ] ⊕ L′′

2 is the TKK-Lie algebra of the Jordan algebra
J = J(Q′, c′), with Q′ a quadratic form of Witt index 1 and Q′(c′) = 1. It is
likely that we can give L′′

−1 the structure of a J-ternary algebra.

Remark 4.5.46. Assume that Q is anisotropic. (By Lemmas 4.1.8 and 4.5.11
this condition is automatically satisfied if the extremal geometry has no lines.)
Assume moreover char(k) "= 2. Consider m ∈ M such that Q(m) "= 0 and
T (m, 1) = 0. (By Assumption 4.5.1(i) and Lemma 4.3.6, M has dimension at
least 2.) By Lemma 4.5.34 we get [1, [m, y]] = [m, [1, y]] = 1

2T (1,m)a = 0 and
by using the automorphism of Lemma 4.1.4 applied to the grading (4.50) this
implies [[b,m], [1′, y]] = 0. Together with (4.58) and (4.59) this implies

[1 + [b,m],−Q(m)−1[y,m] + [y, 1′]] = [1, [y, 1′]]−Q(m)−1[[b,m], [y,m]]

= ([a, b] + [x, y])− ([a, b]− [x, y]) = 2[x, y].

If char(k) "= 2, 3, then Lemma 4.2.4 shows that we can give L−1 = M ⊕X ⊕M ′

the structure of a skew-dimension one structurable algebra. In fact, we proved the
stronger statement in Theorem 4.2.17 that the TKK-construction yields a one-
to-one correspondence between skew-dimension one structurable algebras (up to
isotopy) and finite-dimensional simple Lie algebras generated by their extremal
elements which are not symplectic (up to isomorphism). Note however that, by
the above, for this specific associated structurable algebra 1+ [b,m] will play the
role of the unit. Then, using the Lie bracket one can, in principle, deduce the
involution and multiplication on M ⊕X ⊕M ′ in terms of h, · and Q.

Consider a skew-dimension one structurable algebra A which is not isotopic
to a matrix structurable algebra. By Corollary 4.2.14 the extremal geometry of
K(A) contains no lines. By Theorems 2.4.7 and 4.2.17 Assumption 4.5.1(i) is
satisfied. So if there are symplectic pairs in the extremal geometry, then A is
isotopic to the structurable algebra on M ⊕ X ⊕ M ′. If there are no symplec-
tic pairs, then any two distinct points of the extremal geometry are hyperbolic
(since the existence of special pairs implies the existence of collinear pairs of ex-
tremal points). But then A is a structurable division algebra by Theorem 4.2.18.
An idea for further research is thus describing a direct construction of a skew-
dimension one structurable algebra out of a quadrangular algebra. Moreover, it
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would be desirable to have a direct proof that any non-division skew-dimension
one structurable algebra is either isotopic to a matrix structurable algebra or to
the one obtained from a quadrangular algebra.

In Chapter 1 we mentioned a procedure due to Bruce Allison and John
Faulkner to construct skew-dimension one structurable algebras which are not
isotopic to a matrix structurable algebra, namely a generalized Cayley-Dickson
construction, see [AF84]. It seems highly likely that one can also obtain the
structurable algebra on M ⊕X ⊕M ′ by this Cayley-Dickson process.

Remark 4.5.47. Note that if there are lines in the extremal geometry and
there are symplectic pairs of extremal elements, then the results of this section
and the previous section show that L−1 has two different decompositions, one
related to a cubic norm structure (unless the norm is the 0-map) and one to a
quadrangular algebra. The existence of lines and symplectic pairs implies that
this cubic norm structure is isotropic and that the quadratic form associated
with the quadrangular algebra has to be isotropic. It would be interesting to
investigate whether there is a more direct connection between this cubic norm
structure and this quadrangular algebra, preferably a construction with as input
an isotropic cubic norm structure and as output a quadrangular algebra whose
quadratic form is isotropic (and conversely).

Example 4.5.48. If X = 0, char(k) "= 2 and Q is anisotropic, then ⊕2
i=−2L

′′
i =

L′′
−2 ⊕ L′′

0 ⊕ L′′
2 is precisely the Lie algebra of Example 4.2.21. (The quadratic

form in that example is precisely the quadratic form Q′ of Remark 4.5.45.)

4&$5*0/ ���
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In a relatively easy manner we will show that if all pairs of distinct extremal
points are hyperbolic and the Lie algebra is not symplectic, then the set of ex-
tremal points E forms a Moufang set. (In characteristic 2, there is an additional
assumption.)

Assumption 4.6.1. In this section we assume that L is a simple Lie algebra
generated by its set of pure extremal elements such that

(i) there exists a Galois extension k′ of k such that the extremal geometry of
the simple Lie algebra L⊗ k contains lines;

(ii) E−1 = E0 = E1 = ∅.

Remark 4.6.2. By Theorem 4.3.13 the conclusions of Theorem 4.3.11 hold and
hence all lemmas and theorems from Section 4.3 that we apply in this section can
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〈x〉

M ′

X

M

〈b〉

[X, [y, 1′]]

L0 ∩ L′
0

[X, [y, 1]]

〈a〉

[y,M ′]

[y,X]

[y,M ]

〈y〉

L−2 L−1 L0 L1 L2

L′
2

L′
1

L′
0

L′
−1

L′
−2

L′′
−2

L′′
−1

L′′
0

L′′
1

L′′
2

Figure 4.1: Three gradings on L
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actually be applied. Also note that |k′| > 3, since k′/k is a proper field extension.
Indeed, note that by assumption there are no lines in the extremal geometry of
L, but there are lines in the extremal geometry of L⊗ k′.

Remark 4.6.3. Note that, by Theorem 2.4.7, Assumption 4.6.1(i) follows from
Assumption 4.6.1(ii) if L is not a symplectic Lie algebra and char(k) "= 2. In fact
if L is a symplectic Lie algebra such that Assumption 4.6.1(ii) is satisfied, then
L is isomorphic to sl2, and the extremal points of that Lie algebra also form a
Moufang set.

Consider x, y ∈ E such that gx(y) = 1.

Notation 4.6.4. In this section we set ϕ = exp(y) exp(x) exp(y), the automor-
phism from Lemma 4.1.4. Recall that this automorphism interchanges x and y,
and sends the component Li onto the component L−i.

Lemma 4.6.5. We have ϕE−(x, y)ϕ−1 = E+(x, y).

Proof. Consider αl ∈ E−(x, y), with l ∈ L−1, as in Theorem 4.3.11. So there
exist maps qαl , nαl and vαl from L to itself such that (4.3) and (4.4) hold. By
(4.3)

(ϕαlϕ
−1)(m) = m+ [ϕ(l),m] + (ϕqαlϕ

−1)(m) + (ϕnαlϕ
−1)(m) + (ϕvαlϕ

−1)(m)

for all m ∈ L. Since ϕ and ϕ−1 map Li onto L−i, (4.4) implies

(ϕqαlϕ
−1)(Li) ⊆ Li+2, (ϕnαlϕ

−1)(Li) ⊆ Li+3, (ϕvαlϕ
−1)(Li) ⊆ Li+4.

We obtain ϕαlϕ−1 ∈ E+(x, y) by Theorem 4.3.11(v). Hence ϕE−(x, y)ϕ−1 ⊆
E+(x, y) and similarly ϕ−1E+(x, y)ϕ ⊆ E−(x, y). So

E−(x, y) = ϕ−1(ϕE−(x, y)ϕ
−1)ϕ ⊆ ϕ−1E+(x, y)ϕ ⊆ E−(x, y),

and hence all containments are actually equalities.

Lemma 4.6.6. Any e ∈ E not coinciding with 〈x〉 or 〈y〉 equals α(〈x〉) and β(〈y〉)
for unique α ∈ E+(x, y) and β ∈ E−(x, y).

Proof. Since gx(L−2⊕L−1⊕L0⊕L1) = 0 by Lemma 4.1.3, Assumption 4.6.1(ii)
and Lemma 4.1.8 imply that e contains an element with 2-component equal to y.
Then Theorem 4.3.17 implies that there exists a unique β ∈ E−(x, y) such that
β(〈y〉) = e. Using Lemmas 4.1.4 and 4.6.5 the other claim follows as well.

Notation 4.6.7. For all e ∈ E not equal to 〈y〉 or 〈x〉 we set Ue = αE−(x, y)α−1,
with α ∈ E+(x, y) as in Lemma 4.6.6. For 〈x〉 we set U〈x〉 = E−(x, y) and for 〈y〉
we set U〈y〉 = E+(x, y).

Theorem 4.6.8. The data (E , (Ue)e∈E) is a Moufang set.
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Proof. By id ∈ E−(x, y), id(〈y〉) = 〈y〉 and Lemma 4.6.6, we get that E−(x, y) =
U〈x〉 acts sharply transitively on E \{〈x〉} while obviously fixing 〈x〉. For all
e ∈ E \{〈y〉} this implies by definition of Ue that it acts sharply transitively on
E \{e} while fixing e. Again by id ∈ E+(x, y) and Lemma 4.6.6 the group U〈y〉
acts sharply transitively on E \{〈y〉} while fixing 〈y〉. This shows the first axiom
of a Moufang set.

By definition of the root groups, we have G+ = 〈E−(x, y), E+(x, y)〉. So in
order to prove Ug

e = Ug(e) for all g ∈ G+ and e ∈ E it suffices to show this for all
g ∈ E−(x, y) and e ∈ E , since it is clear for all g ∈ E+(x, y) by construction.

Consider e ∈ E \{〈x〉, 〈y〉} arbitrary and let α and β be as in Lemma 4.6.6.
Since β "= id, β−1 "= id and hence by Lemma 4.6.6 there exists a unique γ ∈
E+(x, y) such that γ(β−1(y)) ∈ 〈x〉. By definition Ue = αE−(x, y)α−1. By
Lemma 4.6.5

γβ−1Ueβγ
−1 = γβ−1αϕ−1E+(x, y)ϕα

−1βγ−1 = (U〈y〉)
γβ−1αϕ−1

. (4.94)

Now γβ−1αϕ−1(y) = γ(β−1α)(x)) ∈ γ(〈y〉) = 〈y〉. Similarly γβ−1αϕ−1(x) =
(γβ−1)(α(y)) = (γβ−1)(y) ∈ 〈x〉, by definition of γ. Set δ = γβ−1αϕ−1. By
Lemma 4.1.7 we get δ(Li) = Li.

Now consider αl ∈ E+(x, y), with l ∈ L1, as in Theorem 4.3.11(iii), so with
associated maps qαl , nαl , vαl . Then for all m ∈ L

(δαlδ
−1)(m) = m+ [δ(l),m] + δ(qαl(δ

−1(m)))

+ δ(nαl(δ
−1(m))) + δ(vαl(δ

−1(m))).

Now since δ fixes the components of the 5-grading, setting βl = δαlδ−1, qβl =
δqαlδ

−1, nβl = δnαlδ
−1 and vβl = δvαlδ

−1, we see that these maps satisfy (4.3)
and (4.4). Hence βl ∈ E+(x, y) and thus U δ

〈y〉 = E+(x, y)δ = E+(x, y) = U〈y〉.
Together with (4.94) this implies

Uα(〈x〉) = Uβ(〈y〉) = Ue = βγ−1U〈y〉γβ
−1 = βU〈y〉β

−1 = Uβ
〈y〉,

using γ ∈ E+(x, y). Now Ug
e = Ug(e) for all g ∈ E−(x, y) and e ∈ E follows.
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In 1978 introduceerde Bruce Allison een klasse van niet-associatieve algebra’s,
structureerbare algebra’s genaamd, die de klasse van de Jordan algebra’s om-
vat. Elke structureerbare algebra A heeft een involutie en dus een deelruimte
S van scheve elementen ten opzichte van deze involutie. De Jordan algebra’s
zijn precies de structureerbare algebra’s met een triviale involutie. Een ander
voorbeeld van structureerbare algebra’s zijn associatieve algebra’s met involutie.
Structureerbare algebra’s zijn geclassificeerd door Bruce Allison in [All78] als de
karakteristiek gelijk is aan 0, en door Oleg Smirnov in [Smi92] als de karakter-
istiek minstens 7 is (en hij ontdekte ook een structureerbare algebra van dimensie
35 die in de oorspronkelijke classificatie ontbrak, zie [Smi90]).

In [All79] beschrijft Bruce Allison hoe men vertrekkende van een structureer-
bare algebra een 5-gegradeerde Lie algebra kan construeren. De uiteinden van
deze gradering zijn isomorf met S. Als S = 0, i.e. we beschouwen een Jordan
algebra, krijgen we eigenlijk een 3-gegradeerde Lie algebra. Deze constructie van
een 3-gegradeerde Lie algebra uitgaande van een Jordan algebra is te danken
aan Jacques Tits, Max Koecher en Issai Kantor, zie [Tit62, Koe67, Kan64]. We
noemen deze constructie van gegradeerde Lie algebra’s uit structureerbare al-
gebra’s de Tits–Kantor–Koecher-constructie, of, kortweg, de TKK-constructie.
In [All79] wordt aangetoond dat alle isotrope Lie algebra’s in karakteristiek 0

167
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verkregen worden door de TKK-constructie toe te passen op een structureerbare
algebra, in het bijzonder verkrijgt men de exceptionele Lie algebra’s. Bijvoor-
beeld, de TKK-constructie toegepast op een Brown algebra, een 56-dimensionale
structureerbare algebra van scheef-dimensie één, geeft een Lie algebra van type
E8.

Elke lineaire algebraïsche groep heeft een geassocieerde Lie algebra. Als de
algebraïsche groep isotroop is en het onderliggende veld heeft karakteristiek ver-
schillend van 2 en 3, dan ontstaat de Lie algebra (of preciezer, zijn afgeleide
algebra) ook via de TKK-constructie vertrekkende van een structureerbare alge-
bra, vaak op meer dan één manier [Sta20, Stelling 5.9].

*OXFOEJHF JEFBMFO

Een belangrijk begrip in deze thesis is dat van een inwendig ideaal van een Lie al-
gebra. Een deelruimte I van een Lie algebra L wordt een inwendig ideaal genoemd
indien [I, [I, L]] ≤ I. Inwendige idealen in Lie algebra’s werden geïntroduceerd
door John Faulkner in [Fau73] en verder onderzocht door Georgia Benkart in haar
doctoraatsthesis [Ben74]; zie ook [Ben77, Ben76]. Als de Lie algebra enkelvoudig
is en over een algebraïsch gesloten veld van karakteristiek 0 gedefinieerd is, dan
zijn de inwendige idealen in detail bestudeerd in [DFLGGL12]. Bovendien heeft
John Faulkner onder dezelfde voorwaarden deze inwendige idealen in verband ge-
bracht met meetkundes; zie [Fau73]. In het recente boek [FL19] spelen inwendige
idealen in Lie algebra’s ook een cruciale rol.

Arjeh Cohen en Gabor Ivanyos hebben in [CI06] het concept van een ex-
tremale meetkunde in een Lie algebra geïntroduceerd. Een element van een Lie
algebra heet extremaal als het een één-dimensionaal inwendig ideaal opspant
(als de karakteristiek gelijk is aan 2, moet aan enkele bijkomende voorwaar-
den voldaan zijn), en de overeenkomstige extremale meetkunde heeft als pun-
tenverzameling de verzameling van al die één-dimensionale inwendige idealen.
Onder bepaalde voorwaarden hebben deze extremale meetkunden de structuur
van zogenaamde wortel schaduwruimten van sferische gebouwen, zie [CI06, CI07].
Meer recent hebben Hans Cuypers, Yael Fleischmann, Kieran Roberts en Sergey
Shpectorov [CRS15, CF17, CF18] onderzocht hoe deze enkelvoudige door ex-
tremale elementen gegenereerde Lie algebra’s worden gekarakteriseerd door hun
extremale meetkunde.

Het concept van een inwendig ideaal bestaat ook in de theorie van Jordan
algebra’s. (In feite werd het concept in Jordan algebra’s geïntroduceerd vóórdat
het in Lie algebra’s werd geïntroduceerd). De inwendige idealen van Jordan
algebra’s zijn bestudeerd (en in veel gevallen geclassificeerd) in [McC71] en ze
kunnen ook gebruikt worden om (exceptionele) meetkundes te beschrijven, zie
[Fau70]. In [Gar01] toont Skip Garibaldi aan dat sommige van de inwendige
idealen van een (gespleten) Brown-algebra gerelateerd zijn aan een gebouw van
type E7.
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Sferische gebouwen zijn door Jacques Tits geïntroduceerd als een hulpmiddel om
isotrope enkelvoudige lineaire algebraïsche groepen over willekeurige velden te
bestuderen. Deze sferische gebouwen horende bij algebraïsche groepen voldoen
altijd aan de zogenaamde Moufang eigenschap, die zegt dat de automorfismegroep
van zo’n gebouw zeer transitief is (op een zeer precieze manier). Als de rang van
het gebouw (die samenvalt met de relatieve rang van de algebraïsche groep) 1
is, dan noemen we het gebouw een Moufang verzameling; is deze 2, dan noemen
we het gebouw een Moufang veelhoek. Afhankelijk van het relatief type, is de
Moufang veelhoek een Moufang driehoek (relatief type A2), Moufang vierhoek
(relatief type B2 of BC2) of een Moufang zeshoek (relatief type G2). De Moufang
veelhoeken zijn in detail geclassificeerd en onderzocht in [TW02].

Alle gekende voorbeelden van zogenaamde echte Moufang verzamelingen met
abelse wortelgroepen komen voort uit (kwadratische) Jordan delingsalgebra’s, zie
[DMW06, DMS08, Grü15]. Meer algemeen komen alle gekende voorbeelden van
echte Moufang verzamelingen met (abelse of niet-abelse) wortelgroepen zonder el-
ementen van orde 2 of 3 voort uit structureerbare delingsalgebra’s, zie [BDMS19].

De algebraïsche structuren die Moufang driehoeken coördinatiseren (i.e., Mou-
fang vlakken), zijn de alternatieve delingsalgebra’s. De algebraïsche structuren
die de Moufang zeshoeken coördinatiseren zijn de anisotrope kubische normstruc-
turen (i.e., kubische Jordan delingsalgebra’s).

De classificatie van de Moufang vierhoeken in [TW02] verdeelt ze onder in
verschillende klassen, en elke klasse heeft zijn eigen overeenkomstige algebraïsche
structuur. Om de meeste van deze vierhoeken, en in het bijzonder de exceptionele
vierhoeken, op een uniforme manier te kunnen behandelen, is in [Wei06] het
begrip van een vierhoekige algebra geïntroduceerd. Recent, in [MW19], werd het
begrip van een vierhoekige algebra uitgebreid om isotrope vierhoekige algebra’s
toe te laten. In [BDM13, BDM15], hebben Lien Boelaert en Tom De Medts twee
verschillende verbanden gelegd tussen structureerbare algebra’s en vierhoekige
algebra’s (van exceptioneel type). In het eerste artikel hebben de geassocieerde
structureerbare algebra’s scheef-dimensie één, terwijl in het laatste artikel de
geassocieerde structureerbare algebra’s tensorproducten van compositie-algebra’s
zijn. Wanneer de artikels gepubliceerden werden was het onduidelijk hoe deze
twee verschillende constructies met elkaar te verbinden.

0WFS[JDIU

In Hoofdstuk 1 introduceren we de algebraïsche structuren die nodig zijn in dit
proefschrift en bespreken we overeenkomstige meetkundige structuren, namelijk
Moufang veelhoeken en Moufang verzamelingen.
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We beginnen Hoofdstuk 2 met de introductie van een zeer specifiek soort
meetkunde, namelijk de wortel filtratie ruimten. In Sectie 2.2 beschouwen we
deelmeetkunden van deze wortel filtratie ruimten die gefixeerd worden door een
involutie en tonen we aan dat, onder enkele bijkomende voorwaarden, deze deel-
meetkunde een polaire ruimte vormt. In de volgende sectie lichten we de con-
structie van een wortel filtratie ruimte in bepaalde Lie algebra’s L gegenereerd
door zogenaamde zuivere extremale elementen toe. Meer precies construeren we
een extremale meetkunde Γ = Γ(L), waarvan we de punten- en lijnenverzamelin-
gen noteren met respectievelijk E = E(L) en F = F(L). De verzameling E is
precies de verzameling van 1-dimensionale ruimten opgespannen door de zuiv-
ere extremale elementen van L, en de lijnverzameling F bestaat uit bepaalde
2-dimensionale deelruimten van L, incidentie is gewoon inclusie. Als F "= ∅,
dan heeft de extremale meetkunde de structuur van een wortel filtratie ruimte.
Deze constructie werd voor het eerst geïntroduceerd door Arjeh Cohen en Gabor
Ivanyos [CI06]. In [CI07] hebben zij deze wortel filtratie ruimten geclassificeerd.
In Sectie 2.4 beschouwen we het geval F = ∅. Als we aannemen dat er zoge-
naamde symplectische paren van extremale elementen bestaan en de Lie algebra
niet symplectisch is, dan kunnen we de extremale punten van L identificeren met
de punten van deze polaire ruimte gefixeerd door een involutie uit Sectie 2.2. In
de laatste sectie breiden we het begrip van een extremale meetkunde uit tot dat
van een inwendige ideaal meetkunde en tonen we aan dat deze meetkunde ofwel
een wortel filtratie ruimte is (en samenvalt met de extremale meetkunde), ofwel
een polaire ruimte, ofwel gewoon een verzameling zonder lijnen is.

In Hoofdstuk 3 construeren we Moufang verzamelingen, Moufang driehoeken
en Moufang zeshoeken met behulp van inwendige idealen van Lie algebra’s bekom-
en door de TKK-constructie toe te passen op bepaalde structureerbare algebra’s.
De drie verschillende soorten structureerbare algebra’s die we gebruiken zijn re-
spectievelijk:

• structureerbare delingsalgebra’s; zie Sectie’s 3.2, 3.3;
• algebra’s D ⊕ Dop, waarbij D een alternatieve delingsalgebra is, voorzien

van de uitwisselings involutie; zie Sectie 3.4;
• matrix structureerbare algebra’s M(J, 1), waarbij J een kubische Jordan

delingsalgebra is; zie Sectie 3.5.
In elk geval bepalen we ook de wortelgroepen rechtstreeks in termen van de
structureerbare algebra.

In Hoofdstuk 4 vinden we bepaalde algebraïsche structuren terug, namelijk
structureerbare algebra’s, kubische normstructuren en vierhoekige algebra’s, als
we geschikte veronderstellingen maken over de extremale meetkunde. De eerste
sectie van dit hoofdstuk verzamelt enkele eigenschappen van de 5-graderingen
geassocieerd met bepaalde paren van extremale elementen. De uiteinden van deze
5-gradering, d.w.z. het (−2)- en 2-deel, zijn één-dimensionaal. Met behulp van
deze 5-gradering tonen we in Sectie 4.2 aan dat als de karakteristiek niet gelijk is
aan 2 of 3 dat elke niet-symplectische enkelvoudige Lie algebra gegenereerd door
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zijn extremale elementen verkregen wordt door de TKK-constructie toe te passen
op een structureerbare algebra van scheef-dimensie één. In het bijzonder, als de
extremale meetkunde lijnen bevat, is deze structureerbare algebra isotoop met
een zogenaamde matrix structureerbare algebra. We eindigen deze sectie door
aan te tonen dat als de eerder vermelde inwendige ideaal meetkunde geen lijnen
bevat, de extremale punten, samen met bepaalde wortelgroepen, een Moufang
verzameling vormen.

Daarna breiden we sommige resultaten van Sectie 4.2 uit tot velden van karak-
teristiek 2 en 3. Meer precies tonen we in Sectie 4.3 aan dat als L een enkelvoudige
Lie algebra is, gegenereerd door haar extremale elementen zodanig dat F(L) "= ∅,
dat dan de 1-component van de eerder genoemde 5-gradering lineair voortge-
bracht is door haar extremale elementen. We kunnen dit dan gebruiken om het
bestaan aan te tonen van automorfismen die compatibel zijn met deze gradering.
Met behulp van een afdalingsargument verkrijgen we enkele uitspraken in grotere
algemeenheid. In Sectie 4.4 gebruiken we deze automorfismen en twee verschil-
lende 5-gradering van L om een kubische normstructuur te vinden, tenminste als
de extremale meetkunde lijnen bevat en niet van zogenaamd type An,{1,n} is. We
tonen ook aan dat de extremale meetkunde een Moufang zeshoek is als en slechts
als J een anisotrope kubische normstructuur is, en we bepalen de wortelgroepen
expliciet. Hiermee kunnen we aantonen dat een eindig-dimensionale enkelvoudige
Lie algebra L gegenereerd door zijn zuivere extremale elementen met F(L) "= ∅
bepaald is door zijn extremale meetkunde. In de laatste subsectie van Sectie 4.4
beschouwen we het geval dat de extremale meetkunde van het type An,{1,n} is.

In Sectie 4.5 beschouwen we enkelvoudige Lie algebra’s L over k gegenereerd
door hun zuivere extremale elementen die symplectische paren bevatten en zo-
danig dat er een Galois-extensie k′/k van graad hoogstens 2 bestaat zodat de
extremale meetkunde van L⊗k k′ lijnen bevat. We veronderstellen niet (per se)
F(L) = ∅. Met behulp van twee verschillende 5-graderingen en automorfismen
verkregen uit Sectie 4.3, kunnen we een vierhoekige algebra terugvinden als de
karakteristiek van het veld niet 2 is. Indien F(L) = ∅, dan volgt uit Hoofdstuk
2 dat de inwendige ideaal meetkunde een polaire ruimte vormt. We tonen aan
dat de inwendige ideaal meetkunde een polaire ruimte van rang 2 is, i.e. een ve-
ralgemeende vierhoek, als en slechts als de corresponderende vierhoekige algebra
anisotroop is. In dat geval tonen we aan dat deze vierhoek precies de Moufang
vierhoek is geassocieerd met deze anisotrope vierhoekige algebra.

In het laatste deel van dit hoofdstuk beschouwen we het geval dat L een
enkelvoudige Lie algebra is, gegenereerd door zuivere extremale elementen met
F(L) = ∅ en dat er geen symplectische paren zijn. Dan, onder enkele bijkomende
veronderstellingen indien de karakteristiek 2 is, vormt de verzameling E(L) samen
met geschikte wortelgroepen, die we bekomen door Sectie 4.3, een Moufang verza-
meling.

Hoofdstuk 2 is gebaseerd op de eerste 7 secties van [CM21]. Hoofdstuk 3 is
gebaseerd op [DMM20]. Sectie 4.2 is gebaseerd op de laatste sectie van [CM21].
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De andere secties van Hoofdstuk 4 zijn (nog) niet gepubliceerd.
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