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Abstract

This paper presents an X-FEM based iterative framework for numerical simulation of three-
dimensional fatigue crack propagation. To accurately describe the crack geometry, B-spline
curves and surfaces are used for the crack front and faces respectively. A new crack front exten-
sion method based on the Moller-Trumbore algorithm is introduced to achieve fully automated
crack growth for complex geometries. To validate the presented work, three different cases are
discussed: (1) compact tension specimens with an asymmetrically located hole, (2) a beam with
a slanted crack subjected to a three-point bending load and (3) a beam with a slanted crack sub-
jected to a torsion load. Good agreement between the numerical and experimental results is
observed.
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1. Introduction

The majority of failures in engineering structures and mechanical components can be at-
tributed to fatigue. Fatigue cracks mostly initiate at local stress raising features, e.g. cope holes
or welds. In large structural components, the initiation of a crack does not necessarily imply that
the structural integrity is compromised. Significant fatigue crack propagation life may remain
[1]. The fatigue life is typically said to be exhausted when the crack reaches a critical size [2].
To estimate the remaining fatigue life after fatigue crack initiation, there is a need for reliable
fatigue crack growth (FCG) simulation tools. Some commercial tools such as AFGROW [3] and
NASGRO [4] can be used to simulate the FCG of a predefined planar crack based on analytical
solutions for the stress intensity factors (SIF) under uni-axial loading [5]. However, industrial
structures are mostly subjected to multi-axial loading conditions that result in mixed mode (i.e.
non-planar) FCG.

The most widely used computational method for calculation of stress intensity factors in
cracked geometries is the finite element method (e.g [6, 7]). In the conventional finite element
method (FEM), cracks are modeled as geometrical discontinuities with the crack faces explicitly
defined as contact surfaces [8]. A number of commercial software packages for 3D FCG based
on conventional FEM are Zencrack [9], FRANC3D [10] and ADAPCRACK3D [11]. Although
they have been successfully applied for simulation of mixed mode FCG in complex geometries
(e.g. [12, 13, 14]) there are drawbacks to the use of conventional FEM for simulation of FCG. A
major drawback is that the FEM mesh needs to conform to the geometry of the crack. Therefore
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it is required to update the mesh for each crack increment each time the crack propagates, which
is challenging [15, 16]. For an extensive overview of the state-of-the-art on simulation of FCG
using conventional FEM the reader is referred to [17].

The extended finite element method (X-FEM) by Belytschko and co-workers was introduced
to overcome the need for remeshing when modeling cracks and crack propagation [18, 19]. X-
FEM allows modeling of an arbitrary crack path in the mesh through the enrichment of the
displacement field based on the partition of unity. The nodes of elements that are completely cut
through by a crack have shape functions that are multiplied with the Heaviside function H(x) that
represents the gap between the crack surfaces. Elements that are only partially cut, i.e. the crack
tip elements, are enriched with the asymptotic crack tip functions that reproduce the asymptotic
LEFM fields [18]
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where r, 6 are local polar coordinates defined at the crack tip. The displacement approximation
in X-FEM takes the form [19]
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where u is the nodal displacement vector, S is the set of all nodes in the finite element space, S g
is the set of nodes enriched with the Heaviside function H(x), S is the set of nodes enriched
with the crack tip functions F,(x), a; and b;, are the additional nodal DOF’s corresponding to the
respective enrichment functions. The DOF’s a; and b;, are mutually exclusive, the discontinuity
behind the crack tip is accounted for by Fy(r,6) = 4/rsin g which is discontinuous at 6 = +7.

Combination of X-FEM with the level set method removes the need for remeshing because
the crack is implicitly represented. Two level sets, for which signed distance functions are used,
define the crack. One level set describes the crack surface and the intersection between the first
and second level set defines the crack front. Figure 1 illustrates the representation of an arbitrary
nonplanar crack in three dimensions by two signed distance functions ¢ and y. With the level
set method it is possible to describe the crack entirely with nodal data and as such it is used to
determine which nodes have to be enriched and in what way [20, 21].

Crack surface (¢ = 0)

Figure 1: Representation of an arbitrary nonplanar crack in three dimensions by two signed distance functions ¢ and y.
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The X-FEM method has been implemented in several commercial finite element codes but
most do not directly support FCG analysis based on the theory of linear elastic fracture mechan-
ics (LEFM). Independent researchers and institutions have developed plug-ins for commercial
finite element codes. Examples are Morfeo/crack and XFA3D [22] which implemented 3D non-
planar fatigue crack growth based on the X-FEM method. These tools are based on an implicit
description of the crack using the level set method. Fries and Baydoun [23] noted that for a
methodology using purely implicit crack description, updating the level set functions is not sim-
ple and may introduce inaccuracies. An example is the occurrence of erroneously created crack
surfaces because the level set functions are ill-controlled far away from the true crack surface.
Although this can be improved with the use of narrow-band techniques, as described by Shi et
al. [22], it cannot be eliminated. An example of this can be seen in the work of Sadeghirad et
al. [24]. A hybrid approach that combines implicit and explicit approaches is an effective way
to address the shortcomings of the purely implicit approach. In the hybrid implicit/explicit ap-
proach the level set method (implicit) that is used in the X-FEM step is combined with an explicit
description of the crack to determine the crack increment and to update the crack representation.
The hybrid implicit/explicit approach was first introduced by Fries and Baydoun [25]. For the
explicit representation of the crack in 3D they used flat triangles. After each X-FEM calculation
step, the crack surface is extended at each crack front node based on the corresponding stress
state and as such the explicit crack representation is updated. The level sets are then updated
based on the new explicit description. A similar crack extension technique was implemented in
the simulation software ProCrack of Rabold and Kuna [26]. Sadeghirad et al. [24] presented a
different hybrid explicit/implicit approach that was implemented in XFA3D. This approach up-
dates the implicit crack description and uses the explicit description of the crack to ensure that
the generated level sets are based on a consistent crack description. Although a large number of
papers have been published on the description and tracking of cracks, only a small number deals
with the three-dimensional implementation thereof. The most important challenge is correctly
tracking the crack surface, if continuity is required. Rabczuk et al. [27] noted that most meth-
ods require C° continuity, which means that the curves are continuous. Only a few papers were
concerned with higher order continuous crack surfaces such as C' continuity. A C' continuity
means that the first derivatives of the curves are also continuous. Exhaustive reviews on the ad-
vancements and applications of the X-FEM method have been published for which the reader is
referred to [25, 28, 29, 30].

In this work, an X-FEM based framework for mixed-mode non-planar fatigue crack growth
is presented. It makes use of the X-FEM solver of Abaqus. A hybrid implicit/explicit crack de-
scription approach is adopted for tracking and extending the crack. Similar to the work of Fries
and Baydoun [23] the explicit description of a crack is used to determine the crack increment and
update the level sets. The method employed here is different in that the crack face is described
using a B-spline surface. This increases the accuracy of the crack front description compared to
methods that describe the crack front by a set of flat triangles. This is especially true in simula-
tions where the crack front length increases significantly, because then the fixed discretization of
the crack front leads to a strongly discontinuous crack front geometry. In this work the locations
of the crack front evaluation points are re-positioned equidistantly along the continuous crack
front after each iteration to ensure optimal description of the crack front. Furthermore, with the
use of a B-spline surface for the description of the crack faces it is possible to impose a C! con-
tinuity of the crack faces. To validate the presented work, three different cases are discussed: (1)
compact tension specimens with an asymmetrically located hole, (2) a beam with a slanted crack
subjected to a three-point bending load and (3) a beam with a slanted crack subjected to a torsion
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load.

2. Framework structure

The framework has been developed in Python using an object-oriented programming (OOP)
paradigm. As OOP takes advantage of similarities between objects, it allows for easy implemen-
tation of different crack growth laws, initial crack types, etc. Python was chosen because of its
open-source nature with a large contributing community. The large number of libraries that are
available, make implementation of new algorithms generally simple and efficient. In this work
the Abaqus (v2021) X-FEM solver and the associated Abaqus scripting interface (ASI), which is
an extension of Python, are used. The ASI is based on Python 2.7 which, since January 1, 2020
is no longer supported. To ensure that the developed framework can take full advantage of the
latest Python packages and of future developments of Python 3, the framework is split up in two
parts such that only the functions that directly interact with the ASI were developed in Python
2.7. A communication protocol has to be used to establish a connection between the two parts,
this was realized with a TCP/IP protocol. Here the client (i.e. the main program) runs in a Python
3 environment and sends serialized commands, messages, data, ... to a dedicated network port.
The server (the ASI) which is constantly listening on this port will receive the serialized data, act
accordingly and if necessary send data back. Additional advantages of using a network protocol
are that the Abaqus solver can run on a dedicated machine with more computational resources
and that it enhances the compatibility of the framework with other solvers. If the chosen solver
or software can communicate over a network port it should be compatible with the developed
framework.

The framework structure is presented in Figure 2. It comprises several modules with dedi-
cated tasks which are identified in the flowchart. It also shows where data is being transferred
from the client to the server and vice-versa by means of striped arrows. In the following sections,
each of the modules and their functions will be discussed.

3. Initialization

The framework requires three input files. The first is a generic ASCII configuration file in
which all the simulation parameters have to be defined. This includes the initial crack type and
dimensions, crack growth law, size of the crack growth increment, material type, solver settings,
etc. The second file is used to define the load spectrum, which means the number of cycles,
maximum and minimum load and the corresponding load case. In the finite element model
(FEM), different steps are defined that correspond to different loading conditions. Each of these
loading conditions is solved for a unit load. In the FCG calculation, the output results (i.e. the
stress intensity factors) of the X-FEM simulation can then be scaled with the loads defined in the
load spectrum file, which is valid in the scope of linear elastic fracture mechanics. The last file
is an Abaqus/CAE file that contains the meshed base model in which the initial cracks have to
be inserted. All loading scenarios that should be considered in the FCG analysis also have to be
defined in that file.

3.1. TCP server and communication protocol
When a FCG analysis is launched, the program goes through a number of initialization steps.
The first step is setting up the TCP connection, this is realised with the standard Python pack-
ages socket and SocketServer. The server is created first, this requires instantiating a request
4
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Figure 2: Flowchart of the framework. Green boxes represent the inputs, white boxes represent client-side processes, blue
boxes represent server-side processes, red boxes indicate termination criteria. The striped arrows indicate an exchange
of data between client and server. 5



handler class that inherits functionality of an abstract class called BaseRequestHandler. The
inheriting class is the AbaqusRequestHandler which defines how incoming requests are han-
dled. Next the TCPServer class is instantiated after which the server starts listening for requests.
When the server has been started successfully, a test connection is made from the client side to
confirm this. Once the client-server connection is confirmed, the relevant inputs of the configu-
ration file are sent to the server and the FEM initialization is started.

Since TCP/IP is a stream based protocol, it is required to define message-based protocol on
top of TCP to differentiate message boundaries. This is achieved by preceding the payload with
a message that contains the length of the actual message. It is then possible to determine at the
receiving side if the complete package was received. If a file has to be exchanged between the
client and server, the length of the file is sent first. At the receiving side, the payload byte-stream
is then continuously decoded and written to a temporary file until the length of the temporary file
corresponds to the file length specified in the header.

3.2. X-FEM initialization

The first step is exporting the mesh to a predefined file type (e.g. .OBJ), this file is subse-
quently sent to the client. The mesh topology will be used in the crack front end extension and
crack tip branch algorithms that are performed at the client side. These are discussed in later
sections. Next, the crack geometry is build in the Abaqus part module and subsequently inserted
in the base model in the assembly module. The coordinate system in which the crack is built is
independent of the coordinate system used in the assembly. The positioning of the crack in the
assembly module is achieved using a translation and a rotation. The rotation is based on Euler’s
rotation theorem that states that any arbitrary rotation can be composed of three basic rotations.
Each rotation, i.e. around the x, y and z axes respectively, is specified by an angle of rotation
which is positive for a counterclockwise rotation. The rotation sequence with the accompanying
Euler angles and the translation vector are defined in the configuration file. For example, an arbi-
trary rotation is given in Equation 3, where Pygempiy 1S @ 3 X n matrix of the coordinates of points
in the assembly, P4k is @ 3 X n matrix containing the coordinates of the points in the coordinate
system of the crack geometry. Finally, R.(a), Ry(8) and R.(y) are 3 X 3 rotation matrices for a
rotation around each axis, T is a 3 X 1 translation matrix.

Passembly = X(Q)R7(ﬂ)Rz(7)Pcr‘ack +T (3)

Similar to the FRANC3D crack library, a list of predefined crack shapes is available, but custom
crack shapes based on non-destructive testing (NDT) could also be implemented. After the
initial crack has been inserted in the base model, the enrichment domain has to be defined. The
enrichment domain should consist of those elements that are intersected by the crack and of those
elements that are likely to be intersected by the crack as it propagates. Only the elements that
are part of the enrichment domain are potentially enriched. The enrichment domain has to be
specified in Abaqus/CAE. In Abaqus, each crack that is inserted in the FEM has to be associated
with an enrichment domain and there should not be any overlap between the enrichment domains
associated with different cracks. If only a single crack is inserted in the base model, the whole
enrichment domain will be associated with that crack. If multiple cracks are inserted or if crack
front branching occurs during the FCG, the enrichment domain of each crack (front) has to be
determined accordingly. This will be elaborated further in Section 4.5.



3.3. Client side initialization

Once the mesh topology file is received by the client, the client side objects can be instanti-
ated. This takes place concurrently to the initialization at the server side. The most import client
side classes are Crack, Material, Mesh and LoadSpectrum. The Crack class is an abstract
class that contains all generic functions which are related to FCG. The Crack class is inherited
by the classes SurfaceCrack and EmbeddedCrack which implement crack type specific func-
tions for surface breaking cracks and embedded cracks respectively. At the initialization, the
initial crack front coordinates are stored in the Crack object.

The Material class stores all material parameters relevant to the fatigue crack growth analy-
sis. Using the material identification tag defined in the configuration file, the material parameters
are pulled from a database that is included in the framework. Of course adding custom materials
is straightforward. The material parameters are used to instantiate an object of the Material
class.

An object of the Mesh class is constructed using the exported mesh topology file. The mesh
is exported as a linear tetrahedral mesh regardless of the element type used in the actual FEM.
Quadratic elements are split at their mid-side nodes to create linear elements and quadrilateral
elements are split into triangular elements. The mesh connectivity stored at the client side is
thus different from the FEM mesh, but the nodal data is not altered. In the framework, the
mesh topology will be used to determine where the crack front intersects the mesh boundaries.
Therefore the volumetric data of the mesh is non-essential, i.e. only the element faces on the
external surfaces of the base model should be stored. An element face lies on an exterior face
of the model if that element face is part of only one tetrahedral element. Their identification is
implemented as follows. The number of tetrahedrons that share a particular element face can be
found by counting the connected nodes for each node of the face. Then the number of connected
nodes shared by all three nodes of a face is equal to the number of tetrahedrons containing that
face. Only the element faces from which the nodes share only one common neighbour are kept.

Finally the LoadSpectrun class is constructed based on the load spectrum file. The load
spectrum class is constructed as a list of LoadBlock objects. Each LoadBlock instance stores
the number of cycles, minimum and maximum load and the load case of the FEM it corresponds
to. During the FCG analysis, the LoadSpectrum class mainly tracks which load blocks have
already been applied and how many cycles of the current load block have been applied.

After the initialization, the iterative part of the FCG simulation follows. This will be dis-
cussed in the next section.

4. Iterative crack growth implementation

4.1. Determination of the stress intensity factors

The first step after the initialization stage is solving the finite element model with the initial
crack. The stress intensity factors corresponding to different modes will be evaluated using
contour integrals around the crack tip [19]. Multiple contour integrals around the crack tip are
evaluated using the implementation of Abaqus/Standard [31].

As discussed in the introduction, the crack tip elements are enriched with asymptotic crack tip
functions. An enrichment scheme where only the crack tip elements are enriched is referred to as
topological enrichment. It has been shown that to improve the asymptotic near-tip displacement
solutions, the enrichment should be applied to a zone around the crack tip independent of the
mesh size [32, 33], which is referred to as geometrical enrichment. In Abaqus the size of this zone
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is defined using the enrichment radius R, as illustrated in Figure 3. Kim ef al. [34] recommend
a normalized enrichment radius R,.,,/( V3L,) > 2 which corresponds to an enrichment of at least
two elements near the crack tip.

0 Heavyside-enriched nodes

o Crack tip enriched nodes

o Extra crack tip enriched nodes

R, = Enrichment radius

Figure 3: Tllustration of the enrichment scheme based on the enrichment radius as defined in Abaqus

When the X-FEM model has been solved, the level set values in the nodes surrounding the
cracks and crack tips, the SIF solutions (Mode I, II and III) for all contour integrals along the
crack front and the coordinates of the X-FEM integration points are extracted. The extracted
output data is stored in a nested dictionary data structure, serialized and sent to the client side.

4.2. X-FEM data extraction and processing

First the contour integral data is processed. The SIF values used for the FCG simulation are
obtained by averaging the contour integral values corresponding to the same X-FEM integration
point. The SIF’s obtained from the first two to four contours often exhibit large deviations when
compared to analytical solutions, whilst the other contours converge to the analytical solutions
[35]. Therefore the first four contours are omitted when determining the average SIF values using
the default framework settings.

In a three-dimensional analysis, the multi-axial stress state influences the crack growth rate.
Tanaka [36] proposed a modified Paris law for fatigue crack growth under mixed mode I/II load-
ing

da

an=C (AK.,)" @)

1/4
AK., = (AK} +8AK;;)" 5)

A number of other equations for an equivalent mixed mode stress intensity factor found in litera-
ture have also been implemented. An overview and comparison of a number of these models can
be found in [37]; a thorough review on mixed-mode fracture of metals can be found in [38]. The
oscillating behaviour of the extracted SIF along the crack front can introduce difficulties when
performing a FCG analysis; especially for a simulation that requires a large number of iterations.
Therefore the K., distribution is smoothed. Good results can be obtained by fitting a 5" degree
polynomial to the K., distribution, but in many cases a 374 degree polynomial is sufficient [34].
The smoothed K., distribution will be referred to as K.

Next, an evaluation is done whether the crack will remain unaffected, propagate in a stable
manner, or lead to unstable failure. The former is determined by evaluating the inequality AK,, <
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K, the latter by evaluating K, > Kc. Ky, is the threshold SIF and K¢ the plane strain fracture
toughness. If both inequalities are false, the next stable crack growth increment is determined. If
AKgy, < Ky is true, the framework iterates through subsequent load blocks in the load spectrum
until this condition is false. If no load block in the load spectrum invalidates the condition, the
FCG simulation is terminated. Similarly, if a load block for which Kj,, > K¢ is true is activated,
unstable crack growth occurs and thus the FCG simulation is terminated.

If AK,, < Ky, along a part of the crack front, then the locations where the threshold is not
exceeded will not advance whilst the ones where the threshold is exceeded will. Thus the crack
is allowed to grow irregularly along the crack front. In some cases this can lead to unrealistic
crack growth patterns. Therefore the user has the option to set K;, = 0 or to define a custom
behavior for AKj,, < Kj;, such that a limited amount of crack growth is still allowed.

4.3. Crack growth
4.3.1. Crack front local coordinate system

As mentioned in the introduction, the crack face is defined as a B-spline surface to ensure at
least C' continuity. The crack surface is spatially three-dimensional (x, y, z) and is described in
a two-dimensional parametric space (¢, i7). Thus the B-spline crack surface will be defined as a
vector-valued function that maps a two-dimensional space into the three-dimensional space. The
function is a tensor product of basis functions and a set of three-dimensional control points [39].
To construct the B-spline based crack surface, the open-source modelling framework NURBS-
Python [40] was used.

Let E = {&, ..., £u1p+1) be a non-decreasing sequence of real numbers, i.e. & < &1 withi =
L, ..., p+1. Eis called the knot vector and &; the knots. 7 is the number of basis functions which
comprises the B-spline shape and p is its polynomial order. The basis functions are described
with the Cox-deBoor recursion formula starting with piece-wise constants (p = 0)

1 if&<E<émn

Nio(&) = {O otherwise ©)

The i order basis function N;, p(&) with degree p of the B-spline shape for the parametric dimen-
sion £ is described by [41]:

=& Eivp— €
Nip1() + ———
Eivp =& Eivpr1 — &
Through a linear combination of basis functions, a B-spline shape in R can be constructed.

Consider n basis functions N;,(¢) and the corresponding control points P; then a piece-wise
polynomial B-spline curve is given by:

Nip(&) = Nit1,p-1(6) @)

CE = > Nip@P; withi=12,..n )
i=1

Analogously, considering the two-dimensional parametric space (£, n7) and given a bidirectional
net of control points P; ;, a B-spline surface with polynomial order p in ¢ and polynomial order
g in 7 can be described as the tensor product [41]:

SEM =) Y Nip@Miy ()P ©
i=1 j=1
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where N; ,(£) and M;,(n) are the basis functions of the parametric dimensions defined on the
knot vectors E = {&1, ..., &ip+1} and H = {51, ..., s p+1} respectively. For the construction of the
crack surface, quadratic basis functions are used for both parametric dimensions (&, 7).

In the input configuration file of the framework, the user defines the number of points k at
which the crack front has to be evaluated. This is determinative for the modelling accuracy of
the crack front. When the B-spline crack surface is constructed, (! + 1)k control points are used,
where [ is equal to the number of times the crack front has been extended including the initial
crack front, i.e. for the first framework iteration / = 1. In the following iterations, the control net
for the B-spline crack surface comprises the points that describe the initial crack geometry and
all crack front points of previous iterations. This is illustrated in Figure 4. The knot vectors =
and H of the crack surface are generated using k + p + 1 and (I + 1) + ¢ + 1 knots respectively.
The crack front always corresponds to the (normalized) ¢ = 1.0 knot line. Both knot vectors are
clamped and uniform, meaning that the first and last p and ¢ knots for = and H, respectively, are
0 and 1, have a multiplicity of p + 1 and that the intermediate knots have a multiplicity of one.

Once the B-spline crack surface has been constructed, k local coordinate systems located
on the crack front are determined. Their origin points are equidistantly spaced along the crack
front. The local coordinate systems are defined by (t.;,n.s,n.). t.r are the vectors tangent to
the crack front, n. the vectors normal to the crack surface and n. the vectors that are normal to
the crack front and tangent to the crack face. The vectors that are tangent to the B-spline crack
surface can be determined by evaluating the first partial derivatives S ¢(£,7) and S, (£, n) of the
surface S (¢, 7). They are defined in equation 10. Since the crack front corresponds to the & = 1.0
knot line, the partial derivatives have to be evaluated at (1.0, 7;) in the parameter space. S (&, 1)
and S ,(¢,n) evaluated at (1.0, 7;) give the tangent vectors n.s; and t.s; at crack front point i,
respectively.

Se6.m) = 8%5(5, )

0
an
The normalized surface normal vector n,; at an arbitrary crack front point (1.0, ;) is then given
by

10)

Sll(fa 77) = S(g, ’7)

L S1.0m) X S,(L0.m)
S0, 7) X S, (10,7

Figure 4 shows an example of a crack surface in the physical space. The control points used to
construct the surface are visualized with white cubes. The black line on the front surface indicates
an isoline for n = 0.35. The partial derivatives and their bi-normal evaluated at (1.0, 0.35) are
also shown. The figure illustrates how the local coordinate systems (t. s, n.r, n.,) along the crack
front are defined. The colormap shows the values of the knot vector = across the B-spline surface.

an

4.3.2. Crack growth increment

Every iteration, the crack is advanced with a pre-defined fixed crack length Aa. The Aa
increment is determined for all points along the crack front in such a way that the crack growth
increment in the point with the largest K, is equal to the fixed increment. It would also be
possible to use a fixed number of load cycles AN but then the crack growth increment would be
small at the start of the simulation and increase rapidly as the crack growth rate exponentially
increases.

10



=1

£=0

Figure 4: A bi-cubic B-spline crack surface. The black line corresponds to 77 = 0.35. The crack face tangent vectors 7.5
and n.y obtained by evaluation of the first partial derivatives at & = 1.0, 7 = 0.35, are shown. The binormal vector n; is
also illustrated.

For variable amplitude block loading the crack growth is determined as follows. First the K,
and K, are determined by scaling the unit SIF’s extracted from the model’s corresponding load
case with the active load block of the load spectrum. Next, the crack growth rate da/dN in each
crack front point is determined using the growth law defined in the input file. Different growth
laws have been implemented, the most basic one being the Paris law. But if the mean stress has
to be accounted for, Walker’s equation could for example be used. Crack closure is accounted
for by assuming that no crack growth occurs where AK < Kj,. Using the crack growth rate, a
value Ny, for the crack front point with the largest AK is determined which corresponds to the
number of cycles until Aa is reached at the load level of the active load block. The length of
the active load block is denoted as Npjock. If Npjoek < Nisiop, the crack growth increment in each
crack front point for the active load is determined as da/dN X Npjoc; and stored. Ny, is then
updated by subtracting the number of applied cycles and the next load block is applied. If then
Npiock > Niiop, the growth increment corresponds to da/dN X Ny,,. The total crack growth in
each node is then the sum of crack growth increments for each applied load block.

4.3.3. Crack propagation direction

Concurrently with the crack growth increment, the framework also determines the crack
propagation direction 6 in each crack front point. The vector n.; corresponds to a crack prop-
agation angle 8 = 0°. The crack propagation angle 6 can be determined using the maximum
tangential stress criterion [42] given in equation 12.

, 4 2 g2
. 3K + Kl+8KIKII

6 = sign(—Kjy)cos™
gn(—Kir) K2 + 957

12

Again, other criteria can easily be implemented if needed. The Abaqus solver builds the level set

values for the X-FEM analysis based on the crack geometry that is inserted in the mesh. Since

the determination of the crack propagation direction in the framework is handled independent

of the X-FEM software, it has to be checked if the direction of n.y,; corresponds to that of the

level set ¢. If they are oriented in the same direction (i.e. dot product > 0) n.y; is rotated with

a counterclockwise angle 6; with t.;; as the rotation axis. If they are oriented in the opposite
11



direction, n.y,; has to rotated with a clockwise angle —6;. The counterclockwise rotation of n.,;
around t.; ; with angle 6; has been implemented using Rodrigues’ rotation formula. The rotation
matrix R is determined as

R =1 +5in6;W + (1 — cos §) W? (13)

with I the identity matrix and W the skew-symmetric matrix for the unit vector t.y ; expressed as

0 —teprj —tegy
W= _tcf,zj 0 _tcf,xj (14)
—tepyj “tepnj 0

Then the crack front propagation direction in point j, denoted as q;, is determined as
q;=ng;-R 15)

The use of Rodrigues’ rotation formula makes vectorization of the code simple, which improves
computational efficiency.

4.4. Crack front update

Once the crack growth increment and the crack propagation direction have been determined
along the crack front, the crack is updated. The new crack front coordinates in point j can simply
be obtained as

P,-+1’j=Aaj-qj+P,;j (16)

where Aa; and B; are the crack growth increment and crack propagation direction vector in
crack front point j, respectively. Once the new crack front has been determined, the new crack
geometry is constructed in Abaqus, inserted in the finite element mesh and the next iteration is
started by launching the X-FEM solver.

4.5. Definition of multiple cracks and crack front splitting

Each X-FEM crack feature defined in Abaqus has to be associated with the definition of
an enrichment region and there should be no overlap between enrichment domains of different
crack features. This also implies that a single mesh element cannot contain multiple cracks. The
definition of the enrichment regions during the analysis is handled in an automated manner. For
the initialization of the analysis the user can manually indicate what regions should be considered
when defining the enrichment regions, but this is not required. When a single crack is inserted in
the model, the entire region is automatically associated with that crack. However, when multiple
independent cracks are inserted or the crack front splits into multiple independent crack fronts,
the enrichment region has to be defined accordingly.

When a crack propagates and one of the intermediate crack front points falls outside of the
mesh, the crack front has to be split and both parts have to be handled independently from each
other. This is illustrated in Figure 5. To determine if a crack front point falls outside of the
mesh after propagation, the Moller-Trumbore ray-triangle intersection algorithm is used. It is a
fast method for calculating the intersection of a ray and a triangle [43]. A ray with an arbitrary
direction is cast from each crack front end point. If a ray intersects with an even number of
element faces, then the associated point lies inside the surface mesh (see Figure 6a). Conversely,
if the ray intersects with an uneven number of element faces, the point lies outside the mesh (see

12
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Figure 5: Tllustration of the enrichment regions defined for a crack front after splitting. All elements with the same color
are associated with the crack front intersecting that region.

(a) i% (b) i%
— —

Figure 6: Illustration showing how an arbitrary ray cast from a point can be used to determine if the point lies inside or
outside the mesh depending on the number of times the ray intersects with the surface mesh boundary.

Figure 6a). The Moller-Trumbore algorithm was implemented in a vectorized manner (using
Numpy).

When a crack front is split or multiple cracks are present in the model, the finite element
model has to be sectioned into different enrichment sets. The enrichment sets are automatically
determined as follows. First the middle point on each B-spline crack front is determined, this
corresponds to the point at & = 1.0 and n = 0.5 in the parameter space. Then, for each mesh
element, the center point is determined. The enrichment set of a crack front is then defined by
all elements from which the center points lie closest to that crack front’s center point. Figure
5 shows an example of an elliptical crack that initiated in the bottom flange of an I-profile and
has propagated into the web resulting in three independent crack fronts. The colored regions
correspond to the three enrichment regions that were determined to be used in the definition of
the X-FEM crack feature.

4.6. Robustness measures

4.6.1. Automated crack front widening

The level set values are constructed based on the crack geometry inserted in the finite ele-
ment model. The crack propagation direction vectors are always normal to the crack front. The
crack front end points of the propagated front may fall inside the mesh. This can happen due
to the direction of the crack front normal vectors at the end points or because the geometry of
the specimen widens. This is illustrated in Figure 7. In that case, the spatial curve which corre-
sponds to the crack front does not completely intersect the mesh, and some elements will not be

13



completely cut through. This challenge is encountered not only in X-FEM, but in all crack prop-
agation software packages that are based on an explicit representation of the crack. To resolve
this, the crack front is typically extended using some type of extrapolation (mostly linear) of the
crack front end points. However this can lead to unrealistic scenarios especially when the crack
grows around sharp corners or small radii (compared to the crack growth increment). This can
be solved through the use of different extrapolation functions for the determination of the crack
front ends, however these require operator intervention [10]. Here a new crack front widening
algorithm is introduced that is capable of dealing with these types of features automatically.

Cracked geometry

Figure 7: Linear extrapolation of the crack front ends

First it is determined if the crack front end points lie inside or outside the mesh with the
Moller-Trumbore algorithm as described in Section 4.5. If a crack front end is not inside the
mesh, the corresponding side of the crack front does not have to be extended. If it is inside the
mesh, then the corresponding crack front end has to be extended. A circle centered at the crack
front end point with a radius equal to the Aa increment and defined in the plane tangent to the
crack surface is determined. Let A be an end point of crack front i inside the mesh. t.;4 and n.s4
are the crack front tangent and normal in A. Then the circle is defined by the parametric equation
17.

x=A;+Aacos(O)t.ra, + Aasin(@)ns4,

y =Ay + Aacos(O)tcra, + Aasin(@)n.sa, (17)

7= A, + Aacos(Ot.ra. + Aasin(@n.sa.
Next, n points B; (where j = 0, ...,n—1) are determined on the circle and projected onto the mesh.
Figure 8a illustrates the circle with radius Aa, the crack front end point A and the projected points
B;. With each projected point Bj, an associated vector w; is defined according to equation 18.
These vectors are also illustrated in Figure 8a.

w; = [Bu By, B| —[AnAA] (18)

Any projected point B; that falls outside the green region shown in Figure 8b will be discarded.
This region is demarcated by the boundary of a sphere with the same radius and center point as
the circle and two vectors. Using a widening point that lies outside this region generally leads to
an unrealistic crack front propagation. The vectors that demarcate the boundary are determined
as follows. The vector q is defined as:

T
q=[An Ay A" -4, A7, A (19)

where A is the end point of the current crack front and A" the corresponding end point of the
previous crack front. Then, for each of the projected points the following conditions are required:

q-w;>0
tcf,A cWj > 0 (20)
distance(A, Bj) < Aa
14



If one of these conditions is not full-filled, the projected point corresponding to w; is discarded.
This is illustrated in Figure 8b. The green region is defined through the three imposed conditions
for the projected points. For each of the remaining projected points, the angle between the
corresponding w; and t.r4 is calculated. The vector w; for which the angle is smallest, denoted
Win, 18 then used to determine the extended crack front end point:

T T
W= [Ax, Ay’ A[] + (1 + [wv\‘,min, wz,mim Wx,min] ) (21)

where W is the extended crack front end point or crack front widening point and [[W; |l =
distance(A, B;). Equation 18 results in a point that lies 1 mm outside of the mesh such that it
ensures that the crack front completely cuts the mesh. In most situations, the algorithm result
is equivalent to a simple linear extrapolation of the crack front end points. However, for crack
growth around sharp corners and small radii it enables automated determination of the new crack

front.

Current crack front points

(<]

=== Crack front
— End point tangent vector t 5

— End-to-end crack front vector q
— Projection vectors w;

Previous crack front points
Crack front end points A and A’
Projected points B;

Points outside sphere
Widening point W

— Crack front widening vector w,,;,

© ©¢ O o

1

’t
v—i%-A-o— ©0+~0 -0~ -0-

J q&nn‘ |

-0 -0 -0—- 0

Figure 8: Crack front widening algorithm steps

4.6.2. Handling level set errors
In some cases, Abaqus fails in constructing the level sets. Generally this is due to a numerical
incompatibility between the mesh and the inserted crack geometry. One way to solve this is by
re-meshing the model, however this defeats the purpose of using X-FEM in the first place. In this
framework, when such incompatibility occurs, the crack extension is simply increased with 10%
15



of the defined Aa increment. This has proven to be effective for a large number of simulations
with different geometries. Of course the lifetime corresponding to this increase is also determined
in the same way as explained in Section 4.3.2. Although it is also possible to develop Abaqus
user subroutines (which are mostly written in Fortran) to handle the construction of the level sets,
one of the goals of this work was the development of a purely Python based framework.

5. Validation

To validate the 3D crack growth propagation framework, results of the proposed framework
are compared with both in-house fatigue crack growth experiments and experimental data avail-
able in literature. Three different cases are discussed: (1) compact tension specimens with an
asymmetrically located hole, (2) a beam with a slanted crack subjected to a three-point bending
load and (3) a beam with a slanted crack subjected to a torsion load. Cases (2) and (3) have been
selected to demonstrate the framework’s performance for non-planar 3D crack growth.

5.1. Compact tension specimen with an asymmetrically located hole

Based on literature [44], validation specimens were designed in the form of compact tension
specimens with an additional, asymmetrically placed hole [45]. The geometry of the specimens
is shown in Figure 9. The asymmetrically placed hole introduces mode II, out of plane crack
growth. Four different specimens, each with a thickness of 16mm, were produced with different
A and B combinations. The different combinations are given on the right in Figure 9. The
specimens were made from a high strength low alloy (HSLA) steel, NV F460, developed for
use in offshore structures. The chemical composition and mechanical properties can be found in
tables 1 and 2, respectively [46].

40
17
. A o 1LA=677 B=280
—-- A 2. A =677 B=65
i VB 3.A =877 B-80
40 4 A—877 B—65
e

Figure 9: Geometry of the tested CT specimens, values of A and B are given on the right for the four different specimens.
All dimensions in mm.

Table 1: Chemical properties of NV F460 in steel wt. %
C Mn Si P S Cu Ni Cr Mo
0.08 124 024 001 0.001 0.05 021 0.05 0.005

Before actual testing started, the specimen had been fatigue pre-cracked to make sure that a
sharp crack tip is created according to ASTM E647. Following pre-cracking, a servo-hydraulic
ESH 150 kN universal testing machine was used to perform cyclic sinusoidal loading with a
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Table 2: Mechanical properties of NV F460 steel

Property Symbol Value Unit

Yield strength oy 560 MPa

Ultimate tensile strength  oyrs 630 MPa

Paris’ law exponent m 3.064 -

Paris’ law coefficient C 3.6-107"2  m/cycle
Threshold SIF AKy, 5.0 MPa+ym
Mode I critical SIF K. 84.0 MPa+ym

Young’s Modulus E 209 GPa

maximum value of 13.8 kN and minimum value of 5.2 kN at a frequency of SHz. A digital
image correlation (DIC) system was used to track the crack path at the specimen surface.

Figure 10 shows the post-processed DIC results of the fatigue crack growth experiments and
the associated X-FEM crack path predictions compared to the experimental results. The col-
ormaps on the DIC images correspond to the von Mises strain fields. Overall the X-FEM crack
path predictions show good agreement with the experimental results taking inherent spread of
experimentally determined material data into account. The largest deviation between the numer-
ical and experimental crack paths can be seen for specimen a. Here the experimental crack path
was seemingly unaffected by the influence of the asymmetrically located hole. A slight devia-
tion away from the hole was even observed. On the other hand the X-FEM crack grows slightly
towards the hole. The numerically determined final crack length was slightly larger than the
experimental one for the second and the third specimens, but good agreement was found for the
first and last specimens.
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Figure 10: Comparison between experimental (red) and numerical trajectories (black) shown in the left column. Post-
processed DIC images at the end of the fatigue crack growth experiments shown in the right column.
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5.2. Single edge slanted notch three-point bend test

Based on the numerical/experimental study of Buchholz er al. [47], a single edge notch
(SEN) specimen with a slanted crack in a three-point bending setup is considered. A drawing of
the specimen with dimensions, load and boundary conditions is shown in Figure 11. Identical
to the original work, the material parameters used in the simulation are £ = 210 GPa and v =
0.3. The finite element model is meshed with linear, reduced integration, hexahedral elements.
A load ratio R = 0.1 is assumed and a Aa,,,, = 1 mm is used.

F = 2 kN/mm -
60
p=2 ;
\Z
g t = 20 mm X Y
2 FE B =
I 3, = 20 mm P

W
\
‘I
\
\
\
\
2
=)
=)
=)

Figure 11: SEN specimen with a slanted crack subjected to three point bending

The results are shown in Figure 12. Figure 12a shows the final crack obtained with the
presented framework in the finite element mesh compared to the final experimental crack in the
PMMA specimen of Buchholz et al. Figure 12b shows the different crack front iterations from
the initial to the final fatigue crack growth stage as a top-down view. Quantitative comparison
with the experiments of Buchholz er al. is not possible as this type of data was not published
in [47]. However, a qualitatively good agreement with the experimental results is undeniable as
seen in Figure 12a.

a) b)

Length coordinate [mm]

<
&
N

T T T
-10 -5 0 5 10

Thickness coordinate [mm]

Figure 12: a) Final crack shape in a SEN specimen with a slanted crack subjected to three point bending obtained using
the presented framework compared to an experimentally obtained crack in a PMMA beam [47]. b) Fatigue crack front
iterations in a top-down view
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5.3. Torsion loaded single edge slanted notch specimen

A single edge notch (SEN) specimen with a slanted crack subjected to a torsion load is con-
sidered, as reported in [48, 49]. A drawing of the specimen with dimensions, load and boundary
conditions is shown in Figure 13. Identical to the original work, the material parameters used in
the simulation are E = 210 GPa and v = 0.3. The finite element model is meshed with linear,
reduced integration, hexahedral elements. A load ratio R = 0.1 is assumed and a Ady,z, = 1 mm
is used.

M, =200 Nmm

W = 20 mm

Figure 13: Clamped SEN specimen with a slanted crack subjected a torsion load.

Buchholz et al. [48] performed an experiment on a PMMA specimen. These experiments
only serve a qualitative purpose as the experiment was a displacement controlled quasi-static test,
i.e. not a fatigue crack growth test. Nonetheless, Buchholz ez al. [47] note that previous compar-
isons between displacement controlled quasi-static tests and fatigue crack growth tests showed
nearly identical crack paths for different materials among which PMMA. Figure 14 compares
numerically predicted crack fronts obtained using the presented framework and the experimental
results presented by Buchholz et al. [48]. Here again a qualitative agreement is found, validating
the capability of the presented framework to deal with complex 3D fatigue crack growth.

Current work Buchholz et al.
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Figure 14: Comparison between the experimental results of the current work compared to the numerical results from the
work of Buchholz et al. [48] for crack growth in a SEN torsion loaded beam with a slanted crack. [48]
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6. Conclusions

This paper introduced a Python based numerical framework for arbitrary three-dimensional
fatigue crack propagation based on the X-FEM method. All code related to the description
and propagation of the fatigue crack is developed as a stand-alone code base. For this paper,
the framework takes advantage of the Abaqus X-FEM solver to determine the stress intensity
factor solutions. Combination with the Abaqus scripting interface is achieved through the im-
plementation of a TCP-protocol. To accurately describe the crack front and crack plane in three
dimensions, a B-spline formulation with a C! continuity for the crack faces is used. The crack
advancement is simulated in an iterative manner based on a predefined Ady, .. To improve auto-
mated crack advancement along sharp corners, a new crack front extension algorithm was intro-
duced. The introduced algorithm combines the use of common linear or polynomial extrapolation
extension methods with a mesh boundary detection method based on the Méller-Trumbore algo-
rithm. To further improve the robustness, a pragmatic solution to failure of level set construction
from the explicit crack face geometry was implemented.

The proposed framework is validated through comparison of simulation results with three
cases: (1) compact tension specimens with an asymmetrically located hole, (2) a beam with a
slanted crack subjected to a three-point bending load and (3) a beam subjected to a torsion load
with a slanted crack. For all three specimens a good qualitative agreement was found with respect
to the final 3D crack front shape showing the feasibility of the framework.

7. Acknowledgments

The authors acknowledge the support of SIM (Strategic Initiative Materials in Flanders) and
IBN Offshore Energy. This research was funded by VLAIO, project number 179P04718W.

References

[1] D.B. Brickman, ASM Handbook Volume 11: Failure analysis and prevention, 1997.

[2] J. Schijve, Fatigue of Structures and Materials, 2nd Edition, Springer, Delft, The Netherlands, 2008.

[3] J. Harter, AFGROW User guide and technical manual (Februari 1999).

[4] NASGRO, Fracture mechanics and fatigue crack growth analysis software, NASA Johnson Space Center and
Southwest Research Institute, 6th Edition (2010).

H. Dirik, T. Yal¢inkaya, Crack path and life prediction under mixed mode cyclic variable amplitude loading through
XFEM, International Journal of Fatigue 114 (April) (2018) 34-50. doi:10.1016/].ijfatigue.2018.04.026.

URL https://doi.org/10.1016/j.ijfatigue.2018.04.026

[6] D. G. Pavlou, G. N. Labeas, N. V. Vlachakis, F. G. Pavlou, Fatigue crack propagation trajectories under mixed-
mode cyclic loading, Engineering Structures 25 (7) (2003) 869-875. doi:10.1016/S0141-0296(03)00018-X.

[7]1 D. Colombo, M. Giglio, A methodology for automatic crack propagation modelling in planar and shell FE models,
Engineering Fracture Mechanics 73 (4) (2006) 490-504. doi:10.1016/j.engfracmech.2005.08.007.

[8] M. R. Nikfam, M. Zeinoddini, F. Aghebati, A. A. Arghaei, Experimental and XFEM modelling of high cycle
fatigue crack growth in steel welded T-joints, International Journal of Mechanical Sciences 153-154 (January)
(2019) 178-193. doi:10.1016/j.ijmecsci.2019.01.040.

[91 ZENCRACK, User manual, issue 6, Zentech inc. (1999).

[10] Franc3D, User manual, version 7.4, Fracture Analysis Consultants Inc. (2019).

[11] M. Schéllmann, M. Fulland, H. A. Richard, Development of a new software for adaptive crack growth simulations
in 3D structures, Engineering Fracture Mechanics 70 (2) (2003) 249-268. doi:10.1016/S0013-7944(02)00028-0.

[12] E. Poursaeidi, H. Bakhtiari, Fatigue crack growth simulation in a first stage of compressor blade, Engineering
Failure Analysis 45 (2014) 314-325. doi:10.1016/j.engfailanal.2014.06.018.

[13] Q. Wu, X. Chen, Z. Fan, D. Nie, J. Pan, Engineering fracture assessment of FV520B steel impeller subjected to
dynamic loading, Engineering Fracture Mechanics 146 (2015) 210-223. doi:10.1016/j.engfracmech.2015.07.045.

20

(5



[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]

T. D. Joy, J. P. Briiggemann, G. Kullmer, Crack growth simulation with Adapcrack3D in 3D structures under the
influence of temperature, Procedia Structural Integrity 13 (2018) 328-333. doi:10.1016/j.prostr.2018.12.055.

D. V. Swenson, A. R. Ingraftea, Modeling mixed-mode dynamic crack propagation using finite elements: Theory
and applications, Computational Mechanics 3 (6) (1988) 381-397. doi:10.1007/BF00301139.

T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, Fourth Edition, 2017.

R. Branco, F. V. Antunes, J. D. Costa, A review on 3D-FE adaptive remeshing techniques for crack growth mod-
elling, Engineering Fracture Mechanics 141 (2015) 170-195. doi:10.1016/j.engfracmech.2015.05.023.

T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for
Numerical Methods in Engineering 45 (1999) 601-620. doi:10.3760/cma.j.issn.0366-6999.2011.18.023.

N. Moés, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Inter-
national Journal for Numerical Methods in Engineering 46 (1) (1999) 131-150. doi:10.1002/(SICI)1097-
0207(19990910)46:1;131:: AID-NME726,3.0.CO;2-J.

N. Sukumar, N. Moés, B. Moran, T. Belytschko, Extended finite element method for three-dimensional crack mod-
elling, International Journal for Numerical Methods in Engineering 48 (11) (2000) 1549-1570. doi:10.1002/1097-
0207(20000820)48:11;1549:: AID-NME955;3.0.CO;2-A.

M. Stolarska, D. L. Chopp, N. Mos, T. Belytschko, Modelling crack growth by level sets in the extended
finite element method, International Journal for Numerical Methods in Engineering 51 (8) (2001) 943-960.
doi:10.1002/nme.201.

J. Shi, D. Chopp, J. Lua, N. Sukumar, T. Belytschko, Abaqus implementation of extended finite element method us-
ing a level set representation for three-dimensional fatigue crack growth and life predictions, Engineering Fracture
Mechanics 77 (14) (2010) 2840-2863. doi:10.1016/j.engfracmech.2010.06.009.

T.-P. Fries, M. Baydoun, Crack propagation with the extended finite element method and a hybrid explicit-implicit
crack description, International Journal for Numerical Methods in Engineering 89 (February) (2012) 1527-1558.
doi:10.1002/nme.

A. Sadeghirad, D. L. Chopp, X. Ren, E. Fang, J. Lua, A novel hybrid approach for level set characterization and
tracking of non-planar 3D cracks in the extended finite element method, Engineering Fracture Mechanics 160
(2016) 1-14. doi:10.1016/j.engfracmech.2016.03.027.

T.-P. Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method
and its applications, International Journal for Numerical Methods in Engineering 84 (April) (2010) 253-304.
doi:10.1002/nme.2914.

F. Rabold, M. Kuna, Automated Finite Element Simulation of Fatigue Crack Growth in Three-
dimensional Structures with the Software System ProCrack, Procedia Materials Science 3 (2014) 1099-1104.
doi:10.1016/j.mspro.2014.06.179.

T. Rabczuk, X. Zhuang, J.-H. Song, C. Anitescu, Extended Finite Element and Meshfree Methods, 2019.
doi:https://doi.org/10.1016/C2017-0-00659-6.

T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element methods for material
modeling, Modelling and Simulation in Materials Science and Engineering 17 (4) (2009). doi:10.1088/0965-
0393/17/4/043001.

N. Sukumar, J. E. Dolbow, N. Moés, Extended finite element method in computational fracture mechanics: a
retrospective examination, International Journal of Fracture 196 (1-2) (2015) 189-206. doi:10.1007/s10704-015-
0064-8.

K. Rege, H. G. Lemu, A review of fatigue crack propagation modelling techniques using FEM and XFEM, I0P
Conference Series: Materials Science and Engineering 276 (1) (2017). doi:10.1088/1757-899X/276/1/012027.

M. Smith, ABAQUS/Standard Users Manual, Version 2020, Dassault Systemes Simulia Corp, United States, 2020.
E. Béchet, H. Minnebo, N. Moés, B. Burgardt, Improved implementation and robustness study of the X-FEM for
stress analysis around cracks, International Journal for Numerical Methods in Engineering 64 (8) (2005) 1033—
1056. doi:10.1002/nme.1386.

P. Laborde, J. Pommier, Y. Renard, M. Salaiin, High-order extended finite element method for cracked domains,
International Journal for Numerical Methods in Engineering 64 (3) (2005) 354-381. doi:10.1002/nme.1370.

J. S. Kim, H. J. Lee, Y. J. Kim, Y. B. Kim, The mesh density effect on stress intensity factor calculation using
ABAQUS XFEM, Journal of Mechanical Science and Technology 33 (10) (2019) 4909-4916. doi:10.1007/s12206-
019-0931-8.

J. H. Pang, K. S. Tsang, H. J. Hoh, 3D stress intensity factors for weld toe semi-elliptical surface cracks using
XFEM, Marine Structures 48 (2016) 1-14. doi:10.1016/j.marstruc.2016.04.001.

K. Tanaka, Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Engineering Fracture Me-
chanics 6 (3) (1974). doi:10.1016/0013-7944(74)90007-1.

S. Sajith, K. S. Murthy, P. S. Robi, Fatigue life prediction under mixed-mode loading using equiv-
alent stress intensity factor models, in: MATEC Web of Conferences, Vol. 172, 2018, pp. 2-6.
doi:10.1051/matecconf/201817203005.

21



[38]
[39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Wang, W. Wang, B. Zhang, C. Q. Li, A review on mixed mode fracture of metals, Engineering Fracture Me-
chanics 235 (June) (2020) 107126. doi:10.1016/j.engfracmech.2020.107126.

J. A. Cottrel, T. J. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley
& Sons, Ltd, 2009.

O. R. Bingol, A. Krishnamurthy, NURBS-Python: An open-source object-oriented NURBS modeling framework
in Python, SoftwareX 9 (2019) 85-94. doi:10.1016/j.s0ftx.2018.12.005.

L. Piegl, W. Tiller, The NURBS book, Springer Science & Business Media, 1996.

F. Erdogan, G. Sih, On the crack extension in plates under plane loading and transverse shear, Journal of Basic
Engineering 86 (4) (1963) 519-525. doi:10.1115/1.3656897.

T. Méller, B. Trumbore, Fast, minimum storage ray-triangle intersection, Journal of Graphics Tools 2 (1) (1997)
21-28. doi:10.1080/10867651.1997.10487468.

A. C. Miranda, M. A. Meggiolaro, J. T. Castro, L. F. Martha, T. N. Bittencourt, Fatigue life and crack path
predictions in generic 2D structural components, Engineering Fracture Mechanics 70 (10) (2003) 1259-1279.
doi:10.1016/S0013-7944(02)00099-1.

Zhang, Jie and Kiekens, Cedric and Hertelé, Stijn and De Waele, Wim, Identification and prediction of mixed-
mode fatigue crack path in high strength low Alloy steel, in: Proceedings of The 18th International Conference on
Experimental Mechanics, Vol. 2, mdpi, 2018, p. 6.

URL http://dx.doi.org/10.3390/ICEM18-05420

Micone, Nahuel and De Waele, Wim, Experimental evaluation of block loading effects on fatigue crack growth in
offshore structural steels, Marine Structures 64 (2019) 463-480.

URL http://dx.doi.org/10.1016/j.marstruc.2018.10.005

F. G. Buchholz, A. Chergui, H. A. Richard, Fracture analyses and experimental results of crack growth
under general mixed mode loading conditions, Engineering Fracture Mechanics 71 (4-6) (2004) 455-468.
doi:10.1016/S0013-7944(03)00015-8.

F. G. Buchholz, V. Just, H. A. Richard, Computational simulation and experimental results on 3D crack growth
in a 3PB-specimen with an inclined crack plane, Key Engineering Materials 251-252 (June) (2003) 85-90.
doi: 10.4028/www.scientific.net/kem.251-252.85.

F. G. Buchholz, V. Just, H. A. Richard, Computational simulation and experimental findings of three-dimensional
fatigue crack growth in a single-edge notched specimen under torsion loading, Fatigue and Fracture of Engineering
Materials and Structures 28 (1-2) (2005) 127-134. doi:10.1111/j.1460-2695.2005.00864 x.

22



Highlights

An X-FEM based framework for 3D fatigue crack growth using a B-spline crack
geometry description

Kris Hectors, Wim De Waele

e A Python based iterative framework for three-dimensional fatigue crack propagation.

e B-spline formulation based crack surface and crack face description.

* Anew, robust, crack front extension method for simulation of 3D crack growth in
complex geometries.

e Good agreement between numerical and experimental results.
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