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RANDOMNESS IS INHERENTLY IMPRECISE

GERT DE COOMAN AND JASPER DE BOCK

ABSTRACT. We use the martingale-theoretic approach of game-theoretic probability to

incorporate imprecision into the study of randomness. In particular, we define several no-

tions of randomness associated with interval, rather than precise, forecasting systems, and

study their properties. The richer mathematical structure that thus arises lets us, amongst

other things, better understand and place existing results for the precise limit. When we

focus on constant interval forecasts, we find that every sequence of binary outcomes has an

associated filter of intervals it is random for. It may happen that none of these intervals is

precise—a single real number—which justifies the title of this paper. We illustrate this by

showing that randomness associated with non-stationary precise forecasting systems can

be captured by a constant interval forecast, which must then be less precise: a gain in model

simplicity is thus paid for by a loss in precision. But imprecise randomness can’t always

be explained away as a result of oversimplification: we show that there are sequences that

are random for a constant interval forecast, but never random for any computable (more)

precise forecasting system. We also show that the set of sequences that are random for a

non-vacuous interval forecasting system is meagre, as it is for precise forecasting systems.

1. INTRODUCTION

This paper documents the first steps in our attempt to incorporate imprecision into the

study of algorithmic randomness. What this means is that we want to allow for, give a

precise mathematical meaning to, and study the mathematical consequences of, associat-

ing randomness with interval rather than precise probabilities and expectations. We will

see that this is a non-trivial problem, argue that it leads to surprising conclusions about

the nature of randomness, and discover that it opens up interesting and hitherto uncharted

territory for mathematical and even philosophical investigation. We believe that our work

provides (the beginnings of) a satisfactory answer to questions raised by a number of re-

searchers [19, 20, 22, 61] about frequentist and ‘objective’ aspects of interval, or imprecise,

probabilities.

To explain what it is we’re after, consider an infinite sequence ω = (z1, . . . ,zn, . . . ),
whose components zk are either zero or one, and are typically considered as successive

outcomes of some experiment. When do we call such a sequence random? There are many

notions of randomness, and many of them have a number of equivalent definitions [1, 4].

We will focus here essentially on Martin-Löf randomness, computable randomness, and

Schnorr randomness.

The randomness of a sequence ω is typically associated with a probability measure

on the sample space of all such infinite sequences, or—which is essentially equivalent

due to Ionescu Tulcea’s extension theorem [5, Theorem II.9.2]—with a so-called fore-
casting system ϕ that associates with each finite sequence of outcomes (x1, . . . ,xn) the

(conditional) expectation ϕ(x1, . . . ,xn) = E(Xn+1|x1, . . . ,xn) for the next, as yet unknown,

outcome Xn+1.1,2 This ϕ(x1, . . . ,xn) is the (precise) forecast for the value of Xn+1 after

Key words and phrases. Martin-Löf randomness; computable randomness; Schnorr randomness; computable

stochasticity; imprecise probabilities; game-theoretic probability; interval forecast; supermartingale; computab-

ility; meagre set.
1We will follow the convention of denoting (as yet) unknown things—variables—with a capital letter.
2The expectation E(X) of a variable X that may only assume the values 0 and 1 is actually the probability

P(X = 1) that it assumes the value 1: E(X) = 0 ·P(X = 0)+1 ·P(X = 1). This observation already explains why,
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observing the values x1, . . . ,xn of the respective variables X1, . . . ,Xn. The sequence ω is

then typically called ‘random’ when it passes some countable number of randomness tests,

where the collection of such randomness tests depends of the forecasting system ϕ .

An alternative and essentially equivalent approach to defining randomness, going back

to Ville [54], sees each forecast ϕ(x1, . . . ,xn) as a fair price for—and therefore a commit-

ment to bet on—the as yet unknown next outcome Xn+1 after observing the first n out-

comes x1, . . . ,xn. The sequence ω is then ‘random’ when there is no ‘allowable’ strategy

for getting infinitely rich by exploiting the bets made available by the forecasting system ϕ
along the sequence, without borrowing. Betting strategies that are made available by the

forecasting system ϕ are called supermartingales. Which supermartingales are considered

‘allowable’ differs in various approaches [1, 4, 18, 28, 39], but typically involves some

(semi)computability requirement—we discuss relevant aspects of computability in Sec-

tion 4. Technically speaking, randomness then requires that all allowable non-negative

supermartingales (that start with unit value) should remain bounded on ω .

It is this last, martingale-theoretic, approach that seems to lend itself most easily to

allowing for interval rather than precise forecasts, and therefore to allowing for ‘impre-

cision’ in the definition of randomness. As we explain in Sections 2 and 3, an inter-

val, or ‘imprecise’, forecasting system ϕ associates with each finite sequence of out-

comes (x1, . . . ,xn) a (conditional) expectation interval ϕ(x1, . . . ,xn) for the next, as yet

unknown, outcome Xn+1. The lower bound of this interval forecast represents a supremum

acceptable buying price, and its upper bound an infimum acceptable selling price, for the

next outcome Xn+1. This idea rests firmly on the common ground between Walley’s [60]

theory of coherent lower previsions and Shafer and Vovk’s [45, 46] game-theoretic ap-

proach to probability that we have helped establishing in recent years, through our research

on imprecise stochastic processes [13, 16]; see also Refs. [2, 53] for more details on so-

called ‘imprecise probabilities’. These theoretical developments allow us here to associate

supermartingales with an interval forecasting system, and therefore in Section 5 to ex-

tend a number of existing notions of randomness to allow for interval, rather than precise,

forecasts: we include in particular Martin-Löf randomness and computable randomness

[1, 4, 18, 39]. In Section 6, we also extend Schnorr randomness [1, 4, 18, 39] to allow

for interval forecasts. We then show in Section 7 that our approach allows us to extend to

interval forecasting some of Dawid’s [7] well-known work on calibration, and to establish

a number of interesting ‘limiting frequencies’ or computable stochasticity results.

We believe the discussion becomes especially interesting in Section 8, where we start

restricting our attention to constant, or stationary, interval forecasts. We see this as an ex-

tension of the more classical accounts of randomness, which typically consider a forecast-

ing system with constant forecast 1/2—corresponding to flipping a fair coin. As we have

by now come to expect from our experience with so-called imprecise probability models,

when we allow for interval forecasts, a mathematical structure appears that is much more

interesting than the rather simpler case of precise forecasts would lead us to suspect. In

the precise case, a given sequence may not be random for any stationary forecast, but as

we will see, in the case of interval forecasting there typically is a filter of intervals that a

given sequence is random for. Furthermore, as we show in Section 9 by means of explicit

examples, this filter may not have a smallest element, and even when it does, this smallest

element may be a non-vanishing interval: this is the first cornerstone for our argument that

randomness is inherently imprecise.

The examples in Section 9 all involve sequences that are random for some comput-

able non-stationary precise forecast, but can’t be random for a stationary forecast unless it

becomes interval-valued, or imprecise. This might lead to the suspicion that this impreci-

sion is perhaps only an artefact, which results from looking at non-stationary phenomena

further on, we will assume that this expectation E(X) lies in the unit interval [0,1]. For reasons that will become

clear later, we prefer to use the language of expectations in this paper.
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through an imperfect stationary lens. We show in Section 10 that this suspicion is unfoun-

ded: there are sequences that are random for a stationary interval forecast, but that aren’t

random for any computable (more) precise forecast, be it stationary or not. This further

corroborates our claim that randomness is, indeed, inherently imprecise.

Finally, in Section 11, we argue that ‘imprecise’ randomness is an interesting extension

of the existing notions of ‘precise’ randomness, because it is equally rare: just as for precise

stationary forecasts, the set of all sequences that are random for a non-vacuous stationary

interval forecast is meagre. This, we will argue, indicates that the essential distinction lies

not between precise and imprecise forecasts (or randomness), but between non-vacuous

and vacuous ones, and provides further evidence for the essentially ‘imprecise’ nature of

the randomness notion.

We conclude with a short discussion of the significance of our findings, and of pos-

sible avenues for further research. In order to maintain focus, we have decided to move

all technical proofs of auxiliary results about computability and growth functions to an ap-

pendix. We have also, as much as possible, tried to make sure that our more complicated

and technical proofs in the main text are preceded by informal arguments, in order to help

the reader build some intuition about why and how they work.

2. A SINGLE INTERVAL FORECAST

The dynamics of making a single forecast can be made very clear, after the fashion first

introduced by Shafer and Vovk [45, 46], by considering a simple game, with three players,

namely Forecaster, Sceptic and Reality. The game involves an initially unknown outcome

in the set {0,1}, which we will denote by X. To stress that it is unknown, we call it a

variable, and use upper-case notation.

Game (Single forecast of an outcome X). In a first step, the first player, Forecaster, spe-

cifies an interval bound I = [p, p] ⊆ [0,1] for the expectation of an as yet unknown out-

come X in {0,1}—or equivalently, for the probability that X = 1. We interpret this so-called

interval forecast I as a commitment, on the part of Forecaster, to adopt p as his supremum
acceptable buying price and p as his infimum acceptable selling price for the gamble (with

reward function) X. This is taken to mean that the second player, Sceptic, can now in

a second step take Forecaster up on any (combination) of the following commitments,

whose uncertain pay-offs are expressed in units of a linear utility:

(i) for all real q ≤ p and all real α ≥ 0, Forecaster is committed to accepting the

gamble α[X − q], leading to a (possibly negative) uncertain reward −α[X − q] for

Sceptic;3

(ii) for all real r ≥ p and all real β ≥ 0, Forecaster is committed to accepting the

gamble β [r −X], leading to a (possibly negative) uncertain reward −β [r −X] for

Sceptic.

Finally, in a third step, the third player, Reality, determines the value x of X in {0,1}, and

the corresponding rewards −α[x− q] or −β [r− x] are paid by Forecaster to Sceptic. �

Elements x of {0,1} are called outcomes, and elements p of the real unit interval [0,1]
will serve as (precise) forecasts. We denote by I the set of non-empty closed subintervals

of the real unit interval [0,1]. Any element I of I will serve as an interval forecast. It has

a smallest element min I and a greatest element max I, so I = [min I,max I]. We will use

the generic notation I for such an interval forecast, and p := min I and p := max I for its

lower and upper bounds, respectively. An interval forecast I = [p, p] is of course precise
when p = p =: p, and we will then make no distinction between the singleton interval

forecast I = {p} ∈ I and the corresponding precise forecast p ∈ [0,1].

3Because we allow q ≤ p rather than q < p, we actually see p as a maximum acceptable buying price, rather

than a supremum one. We do this because it doesn’t affect the conclusions, as we show in the Appendix, but does

simplify the mathematics and the discussion somewhat. Similarly for r ≥ p.
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After Forecaster announces an interval forecast I, what Sceptic can do is essentially to

try and increase her capital by taking a gamble on the unknown outcome X. Any such

gamble can be considered as a map f : {0,1} → R, and can therefore be represented as

a point or vector ( f (1), f (0)) in the two-dimensional vector space R2; see also Figure 1

below. f (X) is then the (possibly negative) increase in Sceptic’s capital after the game has

been played, as a function of the outcome variable X. Of course, not every gamble f (X)
on the unknown outcome X will be available to Sceptic: which gambles she can take is

determined by Forecaster’s interval forecast I. As we indicated above, in their most general

form, they’re given by f (X) =−α[X−q]−β [r−X], where α and β are non-negative real

numbers, q ≤ p and r ≥ p. We see that the gambles that are available to Sceptic constitute

a closed convex cone AI in R2, see also Figure 1:

AI :=
{
−α[X− q]−β [r−X] : q ≤ p, p ≤ r and α,β ∈R≥0

}
,

where we use R≥0 to denote the set of non-negative real numbers.

Let us associate with any precise forecast p ∈ [0,1] the expectation (functional) Ep,

defined by

Ep( f ) := p f (1)+ (1− p) f (0) for any gamble f : {0,1}→ R. (1)

If we also consider the so-called lower expectation (functional) E I associated with an in-

terval forecast I ∈ I , defined by

E I( f ) := min
p∈I

Ep( f ) = min
p∈I

[
p f (1)+ (1− p) f (0)

]
=

{

Ep( f ) if f (1)≥ f (0)

Ep( f ) if f (1)≤ f (0)

for any gamble f : {0,1}→ R, (2)

and similarly, the upper expectation (functional) E I , defined by

E I( f ) := max
p∈I

Ep( f ) =

{

Ep( f ) if f (1)≥ f (0)

Ep( f ) if f (1)≤ f (0)
=−EI(− f )

for any gamble f : {0,1}→ R, (3)

then it is not difficult to see4 that the closed convex cone AI of all gambles f (X) that
are available to Sceptic after Forecaster announces his interval forecast I is completely
determined by the condition E I( f ) ≤ 0, as depicted by the blue regions in Figure 1. In

fact, the condition E I( f )≤ 0 is equivalent to (∀p ∈ I)Ep( f )≤ 0, so the available gambles

belong to the intersection of all half-planes determined by Ep( f )≤ 0 for all p ∈ I.

The functionals E I and EI are easily shown to have the following so-called coherence
properties, typical for the more general lower and upper expectation operators defined on

arbitrary gamble spaces [53, 60]:

Proposition 1. Consider any forecast interval I ∈ I . Then for all gambles f ,g on {0,1},
all µ ∈R and all non-negative λ ∈ R:
C1. min f ≤ EI( f ) ≤ EI( f ) ≤ max f ; [bounds]

C2. E I(λ f ) = λ EI( f ) and EI(λ f ) = λ E I( f ); [non-negative homogeneity]

C3. E I( f + g)≥ E I( f )+EI(g) and E I( f + g)≤ E I( f )+EI(g); [super/subadditivity]

C4. E I( f + µ) = E I( f )+ µ and E I( f + µ) = E I( f )+ µ ; [constant additivity]

C5. if f ≤ g then EI( f ) ≤ EI(g) and E I( f ) ≤ E I(g). [monotonicity]

4Use the characterisation f (X) = −α [X − p]− β [q − X] of the available gambles derived above, and the

properties of the upper expectation E I listed in Proposition 1.
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Ep ( f ) = 0

E
p ( f )

=
0

f (1)

f (0)

f (
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f (
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f (0)
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Ep( f ) = 0

(b)

FIGURE 1. Gambles f available to Sceptic when (a) Forecaster an-

nounces I ∈ I with p < p; and when (b) Forecaster announces I ∈ I

with p = p =: p.

3. INTERVAL FORECASTING SYSTEMS AND IMPRECISE PROBABILITY TREES

We now consider a sequence of repeated versions of the forecasting game in the previous

section. At each successive stage k ∈ N, Forecaster presents an interval forecast Ik =
[pk, pk] for the unknown outcome variable Xk. This effectively allows Sceptic to choose

any gamble fk(Xk) such that E Ik ( fk) ≤ 0. Finally, Reality then chooses a value xk for Xk,

resulting in a gain in capital fk(xk) for Sceptic. This gain fk(xk) can, of course, be negative,

resulting in an actual decrease in Sceptic’s capital.

Here and in what follows, N is the set of all natural numbers, without zero. We will also

use the notation N0 := N∪{0} and the notation Z for the set of all integer numbers.

3.1. The event tree and its forecasting systems. We call (x1,x2, . . . ,xn, . . . ) an outcome

sequence, and we collect all possible outcome sequences in the set Ω := {0,1}N. We collect

the finite outcome sequences x1:n := (x1, . . . ,xn) in the set S := {0,1}∗ =
⋃

n∈N0
{0,1}n.

The finite outcome sequences s in S and infinite outcome sequences ω in Ω constitute the

nodes—also called situations—and paths in an event tree with unbounded horizon, part of

which is depicted below. The empty sequence x1:0 =: � is also called the initial situation.

From now on, we will systematically use the ‘situations’ and ‘paths’ terminology. Keep

in mind that any path ω ∈ Ω is an infinite outcome sequence, and can therefore also be

identified with—the binary expansion of—a real number in the unit interval [0,1].

0

00

000 001

01

010 011

1

10

100 101

11

110 111

In the repeated game described above, Forecaster will only provide interval forecasts Ik

after observing the actual sequence (x1, . . . ,xk−1) that Reality has chosen, and the corres-

ponding sequence of gambles ( f1, . . . , fk−1) that Sceptic has chosen. This is the essence of

so-called prequential forecasting [7, 8, 11]. But for the purposes of the present discussion,

it will be advantageous to consider an alternative, and in some aspects more involved, set-

ting where a forecast Is is specified in each of the possible situations s in the event tree S;

see the figure below:
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We can use this idea to extend the notion of a forecasting system in Refs. [9, 59] from

precise to interval forecasts.

Definition 1 (Forecasting system). A forecasting system is a map ϕ : S→ I , that associ-

ates an interval forecast ϕ(s) ∈ I with every situation s in the event tree S. With any fore-

casting system ϕ we associate two real processes ϕ and ϕ ,5 defined by ϕ(s) := minϕ(s)
and ϕ(s) := maxϕ(s) for all s ∈ S. A forecasting system ϕ is called precise if ϕ = ϕ .

Specifying a forecasting system ϕ requires that Forecaster should imagine in advance all

the moves that Reality (and Sceptic) could make, and that he should devise in advance

what forecast ϕ(s) to give in each imaginable situation s ∈ S.

We will use the notation ϕ ⊆ ϕ∗ to mean that the forecasting system ϕ∗ is at least as
conservative as ϕ , meaning that ϕ(s)⊆ ϕ∗(s) for all s ∈ S.

3.2. Imprecise probability trees and supermartingales. Since in each situation s the

interval forecast Is = ϕ(s) corresponds to a so-called local upper expectation E Is , we can

use the argumentation in our earlier papers [13, 15, 16] on imprecise stochastic processes

to help ϕ turn the event tree into an imprecise probability tree, with an associated global
upper expectation on paths, and a corresponding notion of ‘almost surely’.

In what follows, we recall in some detail how to do this. However, we will limit

ourselves to discussing only those aspects that are essential for a proper understanding of

our treatment of randomness further on; for a much more extensive discussion, we refer to

our earlier papers [13, 15, 16], based on the seminal work by Shafer and Vovk [45–47, 56].

We will denote by Φ the set I S of all forecasting systems, or equivalently, all imprecise

probability trees.

For any path ω ∈ Ω, the initial sequence that consists of its first n elements is a situation

in {0,1}n that is denoted by ω1:n. Its n-th element belongs to {0,1} and is denoted by ωn.

As a convention, we let its 0-th element be the initial situation ω1:0 = ω0 =�.

For any situation s ∈ S and any path ω ∈ Ω, we say that ω goes through s if there

is some n ∈ N0 such that ω1:n = s. We denote by Γ(s) the so-called cylinder set of all

paths ω ∈ Ω that go through s.

We write that s ⊑ t, and say that the situation s precedes the situation t, when every path

that goes through t also goes through s—so s is a precursor of t. An equivalent condition

is of course that Γ(t) ⊆ Γ(s). We say that the situation s strictly precedes the situation t,
and write s ⊏ t, when s ⊑ t and s 6= t, or equivalently, when Γ(t)⊂ Γ(s).

For any situation s = (x1, . . . ,xn) ∈ S, we call n = |s| its depth in the tree. Of course,

|s| ≥ |�| = 0. We will use a similar notational convention for situations as for paths: we

5For a more concrete definition of a ‘process’, we refer to the discussion in Section 3.2.
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let sk := xk and s1:k := (x1, . . . ,xk) for all k ∈ {1, . . . ,n}, and s1:0 = s0 := �. Also, for

any x ∈ {0,1}, we denote by sx the situation (x1, . . . ,xn,x).
A process F is a map defined on S. A real process is a real-valued process: it associates

a real number F(s) ∈R with every situation s ∈ S. With any real process F , we can always

associate a process ∆F , called the process difference. For every situation s ∈ S, ∆F(s) is

the gamble on {0,1} defined by

∆F(s)(x) := F(sx)−F(s) for all x ∈ {0,1}.

The initial value of a process F is its value F(�) in the initial situation �. Any real process

is completely determined by its initial value and its process difference, because

F(x1, . . . ,xn) = F(�)+
n−1

∑
k=0

∆F(x1, . . . ,xk)(xk+1) for all (x1, . . . ,xn) ∈ S.

We call a real process non-negative if it is non-negative in all situations. Similarly, a

positive real process is (strictly) positive in all situations. We call test process any non-

negative real process F with unit initial value F(�) = 1.

We now look at at number of special real processes. In the imprecise probability tree

associated with a given forecasting system ϕ , a supermartingale M for ϕ is a real process

such that

Eϕ(s)(∆M(s)) ≤ 0, or equivalently, Eϕ(s)(M(s·)) ≤ M(s), for all s ∈ S. (4)

In other words, all supermartingale differences have non-positive upper expectation: su-

permartingales are real processes that Forecaster expects to decrease. A real process M is

a submartingale for ϕ if −M is a supermartingale, which means that Eϕ(s)(∆M(s)) ≥ 0

for all s ∈ S: all submartingale differences have non-negative lower expectation, so sub-

martingales are real processes that Forecaster expects to increase. We denote the set of

all supermartingales for a given forecasting system ϕ by M
ϕ

—whether a real process

is a supermartingale depends of course on the forecasts in the situations. Similarly, the

set Mϕ := −M
ϕ

is the set of all submartingales for ϕ , and Mϕ :=M
ϕ ∩M

ϕ
is the set of

all martingales for ϕ—real processes that are at the same time super- and submartingales,

and therefore real processes that Forecaster expects to remain constant.

It ought to be clear from the discussion in Section 2 that the supermartingales for ϕ
are effectively all the possible capital processes M for a Sceptic who starts with an initial

capital M(�), and in each possible subsequent situation s selects a gamble fs = ∆M(s) that

is available there because of Forecaster’s specification of the interval forecast Is = ϕ(s):
E Is( fs) ≤ 0. If Reality chooses the successive outcomes x1, . . . ,xn, then Sceptic will end

up in the corresponding situation s = (x1, . . . ,xn) with a capital

M(x1, . . . ,xn) = M(�)+
n−1

∑
k=0

∆M(x1, . . . ,xk)(xk+1) = M(�)+
n−1

∑
k=0

f(x1,...,xk)
(xk+1).

We call test supermartingale for ϕ any test process that is also a supermartingale for ϕ ,

or in other words, any non-negative supermartingale M for ϕ with initial value M(�) = 1.

It corresponds to Sceptic starting with unit capital and never borrowing. We collect all test

supermartingales for ϕ in the set T
ϕ

.

We will also need to pay attention to a particular way of constructing test supermartin-

gales. We define a gamble process as a map D from S to gambles on {0,1}. If these

gambles D(s) are all non-negative, then we call this D a multiplier process. Given such a

multiplier process D, we can construct the test process D⊚ by the recursion equation

D⊚(�) := 1 and D⊚(sx) := D⊚(s)D(s)(x) for all s ∈ S and x ∈ {0,1},

or equivalently by letting D⊚(x1, . . . ,xn) := ∏n−1
k=0 D(x1, . . . ,xk)(xk+1) for all n ∈ N0 and

(x1, . . . ,xn) ∈ S. We call D⊚ the test process generated by the multiplier process D.
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Any multiplier process D that satisfies the additional condition that Eϕ(s)(D(s))≤ 1 for

all s ∈ S, is called a supermartingale multiplier for the forecasting system ϕ . It is easy to

see that the test process D⊚ generated by D is then a test supermartingale for ϕ : it suffices

to check that

∆D⊚(s) = D⊚(s)[D(s)− 1] and therefore Eϕ(s)(∆D⊚(s)) = D⊚(s)
[
Eϕ(s)(D(s))− 1

]

for all s ∈ S, (5)

due to the coherence properties C2 and C4 of upper expectation operators.

3.3. Upper expectations and null events. In the context of (imprecise) probability trees,

we call variable any map defined on the so-called sample space—the set Ω of all paths.

When this variable is real-valued and bounded, we call it a gamble on Ω, or also a global
gamble. An event A in this context is a subset of Ω, and its indicator IA is the gamble on Ω
that assumes the value 1 on A and 0 elsewhere.

The sub- and supermartingales for a forecasting system ϕ can be used to associate so-

called global lower and upper expectation operators—defined on global gambles—with

the forecasting system ϕ :

Eϕ(g) :=sup
{

M(�) : M ∈M
ϕ and limsupM(ω) ≤ g(ω) for all ω ∈ Ω

}
(6)

Eϕ(g) := inf
{

M(�) : M ∈M
ϕ

and liminfM(ω)≥ g(ω) for all ω ∈ Ω
}

(7)

for all gambles g on Ω. In these expressions, we have used the notations

liminfM(ω) := liminf
n→∞

M(ω1:n) and limsupM(ω) := limsup
n→∞

M(ω1:n) for all ω ∈ Ω.

It is clear that lower and upper expectations are related to each other through the following

conjugacy relationship:

Eϕ(g) =−Eϕ(−g) for all gambles g on Ω. (8)

These lower and upper expectations satisfy coherence properties that are completely sim-

ilar to—direct counterparts of—those in Proposition 1, and we list these properties again

below. Their proofs are by now fairly well-known [45, 46, 50], but for the sake of com-

pleteness, we repeat them in the Appendix.

Proposition 2. Consider any forecasting system ϕ ∈ Φ. Then for all gambles f ,g on Ω,
all µ ∈R and all non-negative λ ∈ R:
E1. inf f ≤ Eϕ( f ) ≤ Eϕ ( f )≤ sup f ;
E2. Eϕ (λ f ) = λ Eϕ ( f ) and Eϕ(λ f ) = λ Eϕ( f );
E3. Eϕ ( f )+Eϕ(g)≤ Eϕ ( f + g)≤ Eϕ( f )+Eϕ(g)≤ Eϕ( f + g)≤ Eϕ( f )+Eϕ(g);
E4. Eϕ ( f + µ) = Eϕ( f )+ µ and Eϕ( f + µ) = Eϕ( f )+ µ;
E5. if f ≤ g then Eϕ ( f )≤ Eϕ(g) and Eϕ( f ) ≤ Eϕ(g).

For extensive discussion about why the expressions (6) and (7) are interesting and use-

ful, we refer to Refs. [13, 16, 45, 46, 48–50, 52]. For our present purposes, it may suffice

to mention that for precise forecasts, they lead to models that coincide with the ones found

in measure-theoretic probability theory; see Refs. [45, Chapter 8] and [46, Chapter 9], as

well as Ref. [52]. In particular, when all Is equal {1/2}, these models coincide on all meas-

urable global gambles with the usual uniform (Lebesgue) expectations. More generally,

for an imprecise forecast ϕ ∈ Φ, the lower and upper expectation Eϕ and Eϕ provide tight

lower and upper bounds on the measure-theoretic expectation of every precise forecasting

system ϕ ′ that is compatible with ϕ , in the sense that ϕ ′ ⊆ ϕ [48].

For an event A ⊆ Ω, the corresponding lower and upper probabilities are defined by

Pϕ(A) := Eϕ (IA) and Pϕ(A) := Eϕ (IA). The following conjugacy relationship for events
follows at once from the property E4 for global lower and upper expectations:

Pϕ (A) = 1−Pϕ(Ac) for all A ⊆ Ω,
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where Ac := Ω\A is the complement of A.

We call an event A ⊆ Ω null for a forecasting system ϕ if Pϕ (A) = 0, or equivalently,

if Pϕ (Ac) = 1. As usual, any property that holds, except perhaps on a null event, is said to

hold almost surely for the forecasting system ϕ . We will then also say that almost all paths
have that property in the imprecise probability tree corresponding to ϕ .

4. BASIC COMPUTABILITY RESULTS

We now give a brief survey of a number of basic notions and results from computability

theory, and a few derived results, that are relevant to the developments in this paper. For a

much more extensive discussion, we refer, for instance, to Refs. [29, 35].

4.1. Basic definitions. A recursive map ψ : N0 → N0 is a map that can be computed by

a Turing machine. By the Church–Turing (hypo)thesis, this is equivalent to the existence

of an algorithm that, upon input of a number n ∈ N0, outputs the number ψ(n) ∈ N0. All

notions of computability that we will need are based on this notion, and we will use the

equivalent condition consistently. It is clear that in this definition, we can replace any of

the N0 with any other countable set that is linked with N0 through a recursive bijection

whose inverse is also recursive.

We start with the definition of a computable real number. We call a sequence of rational

numbers rn recursive if there are three recursive maps a,b,ς from N0 to N0 such that

b(n)> 0 and rn = (−1)ς(n)a(n)

b(n)
for all n ∈N0,

and we say that it converges effectively to a real number x if there is some recursive

map e : N0 →N0 such that

n ≥ e(N)⇒ |rn − x| ≤ 2−N for all n,N ∈N0.

A real number is then called computable if there is some recursive sequence of rational

numbers that converges effectively to it. Of course, every rational number is a computable

real.

We also need a notion of computable real processes, or in other words, computable real-

valued maps F : S→ R defined on the set S of all situations. Because there is an obvious

recursive bijection between N0 and S, whose inverse is also recursive, we can identify

real processes and real sequences, and simply import, mutatis mutandis, the definitions for

computable real sequences common in the literature [35, Chapter 0, Definition 5]. We call

a net of rational numbers rs,n recursive if there are three recursive maps a,b,ς from S×N0

to N0 such that

b(s,n)> 0 and rs,n = (−1)ς(s,n)a(s,n)

b(s,n)
for all s ∈ S and n ∈ N0.

We call a real process F : S → R computable if there is a recursive net of rational num-

bers rs,n and a recursive map e : S×N0 → N0 such that

n ≥ e(s,N)⇒ |rs,n −F(s)| ≤ 2−N for all s ∈ S and n,N ∈ N0.

Again, there is no problem with the notions ‘recursive net of rational numbers’ or ‘recurs-

ive map’ in this definition, because we can identify S×N0 with N0 through a recursive

bijection whose inverse is also recursive.

Obviously, it follows from this definition that in particular F(t) is a computable real

number for any t ∈ S: fix s = t and consider the sequence rt,n, which converges effectively

to the real number F(t) as n → ∞. Also, a constant real process is computable if and only

if its constant real value is.

We also need to mention semicomputable real processes; see for instance [29, 39] for

more details. A real process F is lower semicomputable if it can be approximated from
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below by a recursive net of rational numbers, meaning that there is some recursive net of

rational numbers rs,n such that

(i) rs,n+1 ≥ rs,n for all s ∈ S and n ∈N0;

(ii) F(s) = limn→∞ rs,n for all s ∈ S.

We say that F is upper semicomputable if −F is lower semicomputable. A real number x is

lower semicomputable if the real process with constant value x is, or equivalently, if there

is some recursive sequence of rational numbers rn such that rn ր x.

In the (semi)computability definitions above, as well as in the results that follow in this

section, we can replace the countable set S with any countable set that can be identified

with S through a recursive bijection whose inverse is also recursive. Further on in this

paper, we will for instance have occasion to replace S with N, N0 and S×{0,1}.

4.2. Basic results from the literature. We recall the following standard results; see for

instance Ref. [35, Chapter 0]. The following propositions apply mutatis mutandis also

to computable real numbers and computable real sequences in lieu of computable real

processes. Even though they’re fairly standard, we give their proofs in the Appendix for

the sake of completeness, and to give the reader an idea of why they work.

The condition for computability of a real process can be simplified as follows.

Proposition 3 ([35, Chapter 0, Definition 5a]). A real process F is computable if and only
if there is some recursive net of rational numbers rs,n such that |rs,n − F(s)| ≤ 2−n for
all s ∈ S and n ∈ N0.

If F and G are computable real processes, then so are −F , F +G, FG, F/G (provided

that G(s) 6= 0 for all s ∈ S), max{F,G}, min{F,G}, exp(F), lnF (provided that F(s) > 0

for all s ∈ S), and F
1
m for all m ∈ N (provided that F(s)≥ 0 for all s ∈ S); see for instance

Ref. [35, Chapter 0, Section 2].

Computability can be related to lower and upper semicomputability.

Proposition 4. A real process F is computable if and only if it is both lower and upper
semicomputable.

The set of all (lower or upper semi)computable processes is countable; see for instance

Ref. [59, Lemma 13].

4.3. New material for the present context. We conclude this section with a number of

new definitions and results that are specifically tailored to the discussion further on.

The following definitions should be obvious.

A gamble f on {0,1} is called computable if both its values f (0) and f (1) are comput-

able real numbers.

An interval forecast I = [p, p] ∈ I is called computable if and only if both its lower

bound p and upper bound p are computable real numbers.

A forecasting system ϕ is called computable if the associated real processes ϕ and ϕ
are computable.

Finally, a process difference ∆F is called (lower/upper semi)computable if the real pro-

cesses ∆F(·)(0) and ∆F(·)(1) are (lower/upper semi)computable; and similarly for a mul-

tiplier process D.6

We also list a number of useful propositions that are less immediate, and perhaps require

explicit proofs. We have gathered these proofs in the Appendix.

Proposition 5. For any I = [p, p] ∈ I , the so-called stationary forecasting system γ I ,
defined by γ I(s) := I for all s ∈ S, is computable if and only if the interval I is computable,
and therefore if and only if p and p are.

6These definitions can also be seen as special cases of a more general (lower/upper semi)computability con-

dition, where the set S is replaced by the set S×{0,1}.
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Proposition 6. Consider any real process F, and its process difference ∆F. Then the
following statements hold:

(i) if F(�) and ∆F are lower semicomputable then so is F;
(ii) if F(�) and ∆F are upper semicomputable then so is F;

(iii) F is computable if and only if F(�) and ∆F are.

Proposition 7. Consider any multiplier process D, then the following implications hold:
(i) if D is lower semicomputable, then so is D⊚;

(ii) if D is upper semicomputable, then so is D⊚;
(iii) if D is computable, then so are D⊚ and ∆D⊚.

Proposition 8. Consider a multiplier process D, and the associated real process D⊚. If D⊚

is positive and computable, then so is D. As a consequence, any positive computable real
process F has a positive computable multiplier process D, such that F = F(�)D⊚.

5. RANDOM SEQUENCES IN AN IMPRECISE PROBABILITY TREE

With all the scaffolding now in place, we’re finally ready to associate various notions of

randomness with a forecasting system ϕ—or in other words, with an imprecise probability

tree. We want to be able to introduce and study several versions of randomness, each

connected with a particular class of test supermartingales—capital processes for Sceptic

when she starts with unit capital and never borrows.

5.1. Allowable test processes and test supermartingales. In what follows, we will de-

note by A any countable set of test processes that includes the countable set of all comput-

able positive test processes, which we denote by A
+
C. Examples of such sets A are:

A
+
C all computable positive test processes

AC all computable test processes

AML all lower semicomputable test processes

A
⊚

ML all test processes generated by lower semicomputable multiplier processes.

We will call such test processes in A allowable. Observe that,

A
+
C ⊆ AC and A

+
C ⊆ A

⊚

ML ⊆ AML, (9)

where the second chain of inclusions follows from Propositions 4, 7 and 8.

The test supermartingales for ϕ that belong to this set A will also be called allowable
test supermartingales, and collected in the set T

ϕ
A := A∩T

ϕ
. In particular,

T
ϕ,+
C := A

+
C ∩T

ϕ
all computable positive test supermartingales for ϕ

T
ϕ
C := AC ∩T

ϕ
all computable test supermartingales for ϕ

T
ϕ
ML := AML ∩T

ϕ
all lower semicomputable test supermartingales for ϕ

T
ϕ,⊚
ML := A

⊚

ML ∩T
ϕ

all (lower semicomputable) test supermartingales for ϕ
generated by lower semicomputable supermartingale multipliers.

5.2. Randomness. In the rest of this section (and paper), and unless explicitly stated to

the contrary, A is an arbitrary but fixed set of allowable test processes. We remind the

reader once again that all such sets A and the corresponding sets T
ϕ
A are countable.

Definition 2 (Randomness). Consider any forecasting system ϕ : S→ I and path ω ∈ Ω.

We call ω A-random for ϕ if all (allowable) test supermartingales T in T
ϕ
A remain bounded

above on ω , meaning that there is some BT ∈ R such that T (ω1:n) ≤ BT for all n ∈ N, or

equivalently, that supn∈NT (ω1:n) < ∞. We then also say that the forecasting system ϕ
makes ω A-random.

In other words, A-randomness of a path means that there is no allowable strategy that starts

with unit capital and avoids borrowing, and allows Sceptic to increase her capital without
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bounds by exploiting the bets on the outcomes along the path that are made available to

her by Forecaster’s specification of the forecasting system ϕ .

When the forecasting system ϕ is precise and computable, and A is the set AML of all

lower semicomputable test processes, our definition reduces to that of Martin-Löf random-
ness on the Schnorr–Levin (martingale-theoretic) account [1, 4, 39, 40, 59], because T

ϕ
ML

is the set of all lower semicomputable test supermartingales for ϕ . We will therefore con-

tinue to call AML-randomness Martin-Löf randomness, also when the forecasting system ϕ
is no longer precise or computable.

Similarly, when the forecasting system ϕ is precise and computable, and A is the set AC

of all computable test processes, our definition reduces to that of computable randomness
[1, 4], because T

ϕ
C is the set of all computable test supermartingales for ϕ . We will there-

fore continue to call AC-randomness computable randomness, also when the forecasting

system ϕ is no longer precise or computable.

We denote by

ΦA(ω) := {ϕ ∈ Φ : ω is A-random for ϕ}

the set of all forecasting systems for which the path ω is A-random. We will also use the

special notations Φ+
C(ω), ΦC(ω), Φ⊚

ML(ω) and ΦML(ω) in the cases that A is equal to A
+
C,

AC, A⊚

ML and AML, respectively.

As a special, not unimportant but fairly trivial case, the (computable) vacuous forecast-

ing system ϕv assigns the vacuous forecast ϕv(s) := [0,1] to all situations s ∈ S. Recall

that we have introduced the notation ϕ ⊆ ϕ∗ to mean that ϕ∗ is at least as conservative

as ϕ , so ϕ(s) ⊆ ϕ∗(s) for all s ∈ S. Then clearly ϕ ⊆ ϕv for all ϕ ∈ Φ, so ϕv is the most

conservative forecasting system, with local models Eϕv(s) = max for all s ∈ S. It corres-

ponds to Forecaster making no actual commitments, and the closed convex cone A[0,1] of

gambles f ≤ 0 that are then available to Sceptic at each successive stage is depicted in

Figure 2.

f (1)

f (0)

E0( f ) = 0

E
1 (f)

=
0

f (
1)
≤

f (
0)

f (
1)
≥

f (
0)

FIGURE 2. Gambles f available to Sceptic when Forecaster announces

the vacuous forecast I = [0,1] with p = 0 and p = 1.

The following proposition uses this vacuous forecasting system to conclude that no

ΦA(ω) is empty.

Proposition 9. All paths are A-random for the vacuous forecasting system, so ϕv ∈ ΦA(ω)
for all ω ∈ Ω.

Proof. In the imprecise probability tree associated with the vacuous forecasting system ϕv,

a real process M is a supermartingale if and only if it is non-increasing: ∆M ≤ 0. All test

supermartingales for ϕv are therefore bounded above by 1 on any path ω ∈ Ω. �

The more conservative, or imprecise, the forecasting system, the less stringent is the

corresponding randomness notion.
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Proposition 10. Let ω be A-random for a forecasting system ϕ . Then ω is also A-random
for any forecasting system ϕ∗ such that ϕ ⊆ ϕ∗.

Proof. Since ϕ ⊆ ϕ∗ implies that T
ϕ∗

A ⊆ T
ϕ
A, this follows trivially from Definition 2. �

The larger the set A of allowable test processes, the more stringent is the corresponding

randomness notion, and the ‘fewer’ A-random paths there are. More precisely:

Proposition 11. Consider two sets A,A′ of allowable test processes such that A′ ⊆ A.
If ω is A-random for a forecasting system ϕ , then ω is also A′-random for ϕ , and there-
fore ΦA(ω)⊆ ΦA′(ω).

Proof. Since A′ ⊆ A implies that T
ϕ
A′ ⊆ T

ϕ
A, this follows trivially from Definition 2. �

As a fairly direct consequence of Equation (9), we can now infer from Proposition 11 that

ΦML(ω)⊆ Φ⊚

ML(ω)⊆ Φ+
C(ω) = ΦC(ω), (10)

where only the equality needs more explanation.

Proof of the equality in Equation (10). Since A+
C ⊆AC, Proposition 11 already guarantees

that ΦC(ω) ⊆ Φ+
C(ω). To prove the converse inclusion, assume that the forecasting sys-

tem ϕ makes ω A
+
C-random. Consider any computable test supermartingale T for ϕ , so

T ∈ T
ϕ
C, and assume ex absurdo that T is unbounded on ω , then so is the computable

positive test supermartingale (1+T)/2 ∈ T
ϕ,+
C , a contradiction. �

Because A
⊚

ML-randomness is weaker than Martin-Löf randomness, but has a similar

flavour, we will also call it weak Martin-Löf randomness.

5.3. Real-valued versus extended real-valued supermartingales. Before moving on,

we want to comment on a particular aspect of our randomness definition that differs slightly

from other approaches, such as for instance described in Refs. [39, 59], which allow the

test supermartingales in their randomness definition to be extended real-valued; we restrict

ourselves to real-valued test supermartingales in the present approach. Let us explain what

are the differences between these two approaches, and indicate briefly why we prefer ours.

A process M assuming values in R∪ {∞} that satisfies the extended supermartingale
inequality

Eϕ(s)(M(s·)) ≤ M(s) for all s ∈ S, (11)

is called an extended supermartingale for ϕ . The upper expectation Eϕ(s) in Equation (11)

is defined on maps f : {0,1}→ R∪{∞} by generalising Equation (3): for any I ∈ I ,

E I( f ) := sup
p∈I

Ep( f ) = sup
p∈I

[p f (1)+ (1− p) f (0)], (12)

taking into account the conventions that 0 ·∞ = 0, x+∞ = ∞ for all real x, and ∞+∞ = ∞.

This implies that if f (1) = ∞, then also EI( f ) = ∞, unless I = {0}, in which case we have

that E I( f ) = f (0). Similarly, if f (0) = ∞, then also E I( f ) = ∞, unless I = {1}, in which

case EI( f ) = f (1). This argumentation, in combination with C1, tells us that

EI( f ) ≥ min{ f (0), f (1)} for all f : {0,1}→R∪{∞} and I ∈ I . (13)

The extended supermartingale inequality (11) imposes no requirements on M(s·) whenever

M(s) = ∞. At the same time, it tells us that an extended supermartingale with M(s) ∈ R

can’t jump to ∞ in s1 unless ϕ(s) = 0,7 and similarly, it can’t jump to ∞ in s0 unless

ϕ(s) = 1: infinite jumps upwards in going from one situation to the next are only allowed

when the transition between these situations has upper probability zero, and can therefore

only occur in situations s whose forecast ϕ(s) is degenerate, meaning that ϕ(s) = 0 or

ϕ(s) = 1.

7Recall that we make no distinction between a singleton forecast and its single element.
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If, contrary to our approach, randomness of a path ω means that all allowable extended
test supermartingales must remain bounded, this means that, in addition to the require-

ments on real supermartingales present in our condition, such extended test supermartin-

gales must not be allowed to jump to ∞ anywhere on the path ω . Now, an extended test

supermartingale T starts with the initial value T (�) = 1 in �, so if it is to assume the

value ∞ somewhere, there must be at least one situation s ∈ S and outcome x ∈ {0,1} such

that T makes an infinite jump in going from T (s) ∈ R to T (sx) = ∞. As explained above,

the extended supermartingale condition (11) tells us that this can only happen when

ϕ(s) =

{

0 if x = 1

1 if x = 0,

meaning that the (upper) probability of the transition from s to sx is zero. In other words,

there can only be a difference between the two types of randomness definitions when there
are degenerate transition probabilities in the (imprecise probability) tree.8 And in such

cases, when there is for instance a transition in some path ω that has upper probability

zero, ω can’t be random according to the definition with extended test supermartingales.

So, in principle, whether a path is random on the ‘extended’ definition can in that case

depend on a single outcome, which is something we find unfortunate. Whether such a

path ω will be random according to our definition, will depend on the forecasting system

and the transition behaviour on ω .

6. SCHNORR RANDOMNESS IN AN IMPRECISE PROBABILITY TREE

Next, we concentrate on extending the notion of Schnorr randomness to our present

context. We begin with a definition borrowed from Schnorr’s seminal work [39, 40].

Definition 3 (Growth function). We call a map ρ : N0 → N0 a growth function if

(i) it is recursive;

(ii) it is non-decreasing: (∀n1,n2 ∈ N0)(n1 ≤ n2 ⇒ ρ(n1)≤ ρ(n2));
(iii) it is unbounded.

We say that a real-valued map µ : N0 → R is computably unbounded if there is some

growth function ρ such that limsupn→∞[µ(n)−ρ(n)]> 0, or equivalently,

inf
m∈N0

sup
n≥m

[µ(n)−ρ(n)]> 0. (14)

In what follows, it will often simplify our proofs to work with a more general notion of

growth function.

Definition 4 (Real growth function). A map τ : N0 →R≥0 is a real growth function if

(i) it is computable;

(ii) it is non-decreasing: (∀n1,n2 ∈ N0)(n1 ≤ n2 ⇒ τ(n1)≤ τ(n2));
(iii) it is unbounded.

It turns out that working with this more general definition does not really change what is

important, namely computable unboundedness. Indeed, we can use it to give a number

of equivalent characterisations of this notion that will prove useful further on. The rather

technical proof of these alternative characterisations is deferred to the Appendix.

Proposition 12. Consider a real-valued map µ : N0 → R, then the following statements
are equivalent:

(i) there is a growth function ρ such that limsupn→∞[µ(n)−ρ(n)]> 0;
(ii) there is a real growth function τ such that limsupn→∞[µ(n)− τ(n)]≥ 0;

(iii) there is a real growth function τ such that limsupn→∞
µ(n)/τ(n) > 0.9

8Of course, this argumentation tells us that both types of randomness definition coincide for the ‘fair-coin’

forecasting system typically considered in the literature.
9This expression makes sense because, for large enough n, τ(n)> 0.
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All of these statements characterise the computable unboundedness of µ .

We will also need the following simple results. Their proofs are fairly obvious, but we

have included them in the Appendix for the sake of completeness.

Proposition 13. If a real-valued map µ : N0 → R is computably unbounded, it is also
unbounded above.

Proposition 14. If the point-wise product µ1µ2 of real maps µ1 : N0 →R and µ2 : N0 →R

is computably unbounded, then at least one of the factors µ1 or µ2 is computably unboun-
ded too.

We can now extend Schnorr’s original definition of randomness [39, 40] in a probability

tree with a constant precise forecast I = {1/2} to imprecise probability trees associated with

an arbitrary—and not necessarily precise nor computable—forecasting system.

Definition 5 (Schnorr randomness). Consider any forecasting system ϕ : S→ I . We call

a path ω ∈ Ω Schnorr random for ϕ if no computable test supermartingale T ∈ T
ϕ
C for ϕ is

computably unbounded on ω , or in other words, if limsupn→∞[T (ω1:n)−ρ(n)]≤ 0 for all

computable test supermartingales T ∈ T
ϕ
C for ϕ and all growth functions ρ . We then also

say that the forecasting system ϕ makes ω Schnorr random.

In this definition, we can of course also use the alternative characterisations of computable

unboundedness listed in Proposition 12. Furthermore, without loss of generality, we can

focus on computable positive test supermartingales.

Proposition 15. Consider any forecasting system ϕ : S → I . Then a path ω ∈ Ω is
Schnorr random for ϕ if and only if no computable positive test supermartingale T ∈ T

ϕ
C

for ϕ is computably unbounded on ω .

Proof. It clearly suffices to prove the ‘if’ part. To this end, we consider any path ω ∈ Ω
that isn’t Schnorr random for ϕ and prove that there is some computable positive test super-

martingale for ϕ that is computably unbounded on ω . Since ω ∈ Ω isn’t Schnorr random

for ϕ , there is a computable test supermartingale T for ϕ that is computably unbounded on

ω , meaning that there is some growth function ρ such that limsupn→∞[T (ω1:n)−ρ(n)]> 0.

For the real growth function τ := (1+ρ)/2 and the computable positive test supermartin-

gale T ′ := (1+T )/2 ∈ T
ϕ
C, it then follows that limsupn→∞[T

′(ω1:n)− τ(n)]> 0, so T ′ is

computably unbounded on ω by Proposition 12(ii). �

We denote by

ΦS(ω) := {ϕ ∈ Φ : ω is Schnorr random for ϕ}

the set of all forecasting systems that make the path ω Schnorr random.

The following results are now fairly immediate. The first one shows that Schnorr ran-

domness is the weakest form of randomness that we’re considering here.

Proposition 16. Consider any set A of allowable test processes, any forecasting sys-
tem ϕ : S → I and any path ω ∈ Ω. Then if ω is A-random for ϕ , it is also Schnorr
random for ϕ , and therefore ΦA(ω)⊆ ΦS(ω).

Proof. It follows from Proposition 11 and A
+
C ⊆ A that it suffices to give a proof for the

case that A = A
+
C. Assume that ω isn’t Schnorr random for ϕ . Then it follows from Pro-

position 15 that there is some positive computable test supermartingale T ∈ T
ϕ
C for ϕ that

is computably unbounded on ω . But then Proposition 13 implies that T is also unbounded

on ω , and therefore ω isn’t A+
C-random for ϕ . �

Together with Equation (10), this result tells us that

ΦML(ω)⊆ Φ⊚

ML(ω)⊆ Φ+
C(ω) = ΦC(ω)⊆ ΦS(ω). (15)
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Proposition 17. All paths are Schnorr random for the vacuous forecasting system, so
ϕv ∈ ΦS(ω) for all ω ∈ Ω.

Proof. This is an immediate consequence of Propositions 9 and 16. �

Proposition 18. Let ω be Schnorr random for a forecasting system ϕ . Then ω is also
Schnorr random for any forecasting system ϕ∗ such that ϕ ⊆ ϕ∗.

Proof. Since ϕ ⊆ ϕ∗ implies that T
ϕ∗

C ⊆ T
ϕ
C, this follows trivially from Definition 5. �

7. CONSISTENCY RESULTS

We now turn to a number of important consistency results for the various randomness

notions we have introduced. In the rest of this section, unless explicitly mentioned to the

contrary, A is an arbitrary but fixed set of allowable test processes.

7.1. All paths are almost surely random. We first show that any Forecaster who spe-

cifies a forecasting system is consistent in the sense that he believes himself to be well-

calibrated: in the imprecise probability tree generated by his own forecasts, almost all

paths will be random, so he is ‘almost sure’ that Sceptic will not be able to become infin-

itely rich by exploiting his—Forecaster’s—forecasts.

Theorem 19 (The well-calibrated imprecise Bayesian; strong version). Consider any fore-
casting system ϕ : S → I . Then almost all paths are A-random for ϕ in the imprecise
probability tree that corresponds to ϕ . As a consequence, almost all paths are Schnorr
random for ϕ in the imprecise probability tree corresponding to ϕ .

Proof. We first prove the result for A-randomness. Consider the event

A := {ω ∈ Ω : ω is A-random for ϕ},

then we have to prove that Pϕ (A) = 1, or equivalently, that Pϕ(Ac) = 0: the non-random

paths belong to a null set. It follows from the assumptions that, for every ω in Ac, there is

some allowable test supermartingale Tω ∈ T
ϕ
A that becomes unbounded on ω . Let (Tk)k∈N

be any enumeration of the countable set T
ϕ
A = A∩T

ϕ
of allowable test supermartingales,

and consider any collection of positive real weights (wk)k∈N such that ∑k∈N wk = 1. We use

these to construct the non-negative extended real process F := ∑k∈N wkTk, with F(�) = 1.

We now construct, for any real α > 1, a test supermartingale T (α) for ϕ . Let

T (α)(s) :=

{

α if F(t)≥ α for some precursor t ⊑ s of s

F(s) if F(t)< α for all precursors t ⊑ s of s
for all s ∈ S,

It is a matter of direct verification to show that T (α) is indeed a test supermartingale for ϕ .

It is clear that, for any ω ∈ Ac, some Tk becomes unbounded on ω , and therefore F will

eventually exceed α on ω . Hence, limn→∞ T (α)(ω1:n) = α for all ω ∈ Ac. This implies that

liminfT (α)(ω)≥ αIAc(ω) for all ω ∈ Ω, and therefore

0 ≤ Pϕ(Ac) = Eϕ(IAc) =
1

α
Eϕ (αIAc)≤

1

α
T (α)(�) =

1

α
.

Here, the first inequality follows from the property E1 of the upper expectation Eϕ , the

second equality from the property E2, the second inequality from Equation (7), and the

last equality from the fact that T (α) is a test supermartingale. Since this statement holds for

all real α > 0, this implies that, indeed, Pϕ(Ac) = 0.

To prove the result for Schnorr randomness, it now suffices to recall Proposition 16 and

the monotonicity of the upper expectation Eϕ [property E5]. �

This result is quite powerful, and it guarantees in particular that there always are random

paths, for any forecasting system.
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Corollary 20. For any forecasting system ϕ , there is at least one path that is A-random,
and therefore also Schnorr random, for ϕ .

Proof. We give the proof for A-randomness; the result for Schnorr randomness will then

follow from Proposition 16. In the proof of Theorem 19, we considered the set A of all

paths that are A-random for ϕ , and proved that its complement Ac is null for ϕ , or in

other words, that Pϕ (Ac) = 0. If, ex absurdo, A were empty, this would imply that Ac = Ω
and therefore that Pϕ (Ω) = 0. But it follows from property E1 that, actually, Pϕ(Ω) = 1,

leading to a contradiction. �

In fact, since Theorem 19 tells us that the set of all random paths for a forecasting sys-

tem has lower probability one, there are many such random paths in a ‘measure-theoretic’

sense. But we will see in Section 11 that, in a specific topological sense, random paths

are few, as they typically constitute only a meagre set. This is a known result for pre-

cise randomness, that was, as far as we can judge, first formulated as such in the context

of a much more encompassing discussion on the nature of randomness by Muchnik, Se-

menov and Uspensky [31]. It also appeared in a related form in the wake of discussions

[3, 10, 32, 37, 38] of Philip Dawid’s papers on calibration [7, 9], and was foreshadowed by

some of Terrence Fine’s results [21].

7.2. The well-calibrated imprecise Bayesian. We now turn to a weaker consistency res-

ult that deals with limits (inferior and superior) of relative frequencies. We will see that

it generalises to interval forecasts the arguments and conclusions in an earlier paper on

calibration by Philip Dawid [7].

We start with any real process F : S → R. We consider any so-called selection pro-
cess S : S→{0,1}, and use it to define the real process JFKS : S→R as follows:

JFKS(s) :=







0 if ∑
|s|−1

k=0 S(s1:k) = 0

∑
|s|−1

k=0 S(s1:k)[∆F(s1:k)(sk+1)]

∑
|s|−1

k=0 S(s1:k)
if ∑

|s|−1

k=0 S(s1:k)> 0
for all s ∈ S.

In words, JFKS(s) is the arithmetic average of the process differences ∆F(s1:k) along the

path segment s, where only the actually selected precursor situations s1:k with S(s1:k) = 1

are taken into account.

As a particular example that will be useful further on, fix any gamble h on {0,1}, and

consider the real process Mϕ
h defined by

Mϕ
h (s) :=

|s|

∑
k=1

[
h(sk)−Eϕ(s1:k−1)(h)

]
for all s ∈ S.

On the one hand, we find for the corresponding process difference ∆Mϕ
h that

∆Mϕ
h (s)(x) = Mϕ

h (sx)−Mϕ
h (s) = h(x)−Eϕ(s)(h) for all x ∈ {0,1}, (16)

so ∆Mϕ
h (s) = h−Eϕ(s)(h), and therefore we find on the other hand for its lower expecta-

tions in the imprecise probability tree that

Eϕ(s)(∆Mϕ
h (s)) = Eϕ(s)(h)−Eϕ(s)(h) = 0, (17)

using the coherence property C4 for the first equality. We conclude that Mϕ
h is a sub-

martingale for ϕ . Its process differences ∆Mϕ
h (s) are furthermore uniformly bounded, for

instance by the variation (semi)norm ‖h‖v of h:

|∆Mϕ
h (s)| ≤ maxh−minh =: ‖h‖v for all s ∈ S, (18)
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where the inequality follows from Equation (16) and the coherence property C1. Observe

by the way that in this particular case, for all s ∈ S:

JMϕ
h KS(s) =







0 if ∑
|s|−1

k=0 S(s1:k) = 0

∑
|s|−1

k=0 S(s1:k)
[
h(sk+1)−Eϕ(s1:k)

(h)
]

∑
|s|−1

k=0 S(s1:k)
if ∑

|s|−1

k=0 S(s1:k)> 0.
(19)

We can now apply our law of large numbers for uniformly bounded submartingale dif-

ferences [16, Theorem 7] to get to the following result, which generalises Philip Dawid’s

well-known consistency result for Bayesian Forecasters [7, General Calibration Theorem],

to deal with interval forecasts. In its formulation, we use the following formalised version

of notation that we introduced earlier: for any n ∈ N, we consider the variables—maps

defined on the sample space Ω—X1:n and Xn, defined by

X1:n : Ω →{0,1}n : ω 7→ X1:n(ω) := ω1:n and Xn : Ω → {0,1} : ω 7→ Xn(ω) := ωn,

where we also let, by convention, X1:0(ω) = X0(ω) :=� for all ω ∈ Ω.

Theorem 21 (The well-calibrated imprecise Bayesian). Let ϕ : S→ I be any forecasting
system, let S : S → {0,1} be any selection process, and let h be any gamble on {0,1}.
If limn→∞ ∑n−1

k=0 S(X1:k) = ∞ then also liminfn→∞JMϕ
h KS(X1:n) ≥ 0 almost surely for the

forecasting system ϕ .

Proof. For any submartingale M for ϕ whose process differences are uniformly bounded,

Theorem 7 in Ref. [16] states that, strictly almost surely, limn→∞ ∑n−1
k=0 S(X1:k) = ∞ implies

that liminfn→∞JMKS(X1:n)≥ 0, where ‘strictly almost surely’ means that there is some test

supermartingale that converges to ∞ on all paths where the statement isn’t true. Further-

more, Proposition 4 in Ref. [16] states that any event that holds strictly almost surely, also

holds almost surely. The result therefore follows because, as we have seen in the main text

above, Mϕ
h is a submartingale for ϕ whose process differences are uniformly bounded. �

One important step in the proof of this result—or actually, in the proof of Theorem 7

in Ref. [16] on which our proof above relies—is, stripped to its bare essentials, based on a

surprisingly elegant and effective idea that goes back to Shafer and Vovk [45, Lemma 3.3].

We repeat it here, suitably adapted to the present context, in the lemma below, because it

will next help us prove a related and equally important result—Theorem 23 further on—

that will turn out to be crucial for establishing a number of claims in this paper: that ran-

domness is inherently imprecise in Section 9, and that random paths are few, topologically

speaking, in Section 11.

Lemma 22. Let ϕ : S→ I be any forecasting system, and consider any real B > 0 and
any 0 < ξ < 1

B . Let M be any submartingale for ϕ such that |∆M| ≤ B. Let S : S→{0,1}
be any selection process. Then the real process FM, defined by

FM(s) :=
|s|−1

∏
k=0

[
1− ξ S(s1:k)∆M(s1:k)(sk+1)

]
for all s ∈ S, (20)

is a positive test supermartingale for ϕ . Moreover, if we consider 0 < ε < B and ξ := ε
2B2 ,

so 0 < ξ < 1
2B , then

JMKS(s)≤−ε ⇒ FM(s)≥ exp

(
ε2

4B2

|s|−1

∑
k=0

S(s1:k)

)

, for all s ∈ S.

Finally, if ξ and ∆M are computable and S is recursive, then FM is computable as well.

Proof. Let

DM := 1− ξ S∆M. (21)
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We first show that DM is a positive supermartingale multiplier for ϕ . To this end, consider

any s ∈ S. Then on the one hand, it follows from 0 < ξ B < 1 and |∆M| ≤ B that DM(s) =
1−ξ S(s)∆M(s)≥ 1−ξ B > 0. On the other hand, since ξ > 0 and S(s) ∈ {0,1}, we infer

from the coherence [C4 and C2] and conjugacy properties of lower and upper expectations

that

Eϕ(s)(DM(s)) = Eϕ(s)

(
1− ξ S(s)∆M(s)

)

= 1+Eϕ(s)

(
−ξ S(s)∆M(s)

)
= 1− ξ S(s)Eϕ(s)

(
∆M(s)

)
≤ 1,

where the inequality follows from Eϕ(s)(∆M(s)) ≥ 0, because we assumed that M is a

submartingale for ϕ . So, indeed, DM is a positive supermartingale multiplier for ϕ .

Comparing Equations (20) and (21), we see that FM = D⊚

M, or in other words that FM

is generated by the multiplier process DM. Hence, FM(�) = 1 and, since DM is a positive

supermartingale multiplier, FM = D⊚

M is a positive supermartingale for ϕ . So, indeed, FM

is a positive test supermartingale for ϕ .

For the second statement, consider any 0 < ε < B and let ξ := ε
2B2 . This implies that

0 < ξ < 1
2B , so we can already conclude that the first statement of the lemma holds for

this particular choice of ξ . For all s ∈ S and all real K, since FM and 1− ξ S∆M = DM are

positive, we infer from Equation (20) that

FM(s)≥ exp(K)⇔
|s|−1

∑
k=0

ln
[
1− ξ S(s1:k)∆M(s1:k)(sk+1)

]
≥ K. (22)

Since |∆M| ≤ B and 0 < ε < B, we find that

− ξ S(s1:k)∆M(s1:k)≥−ξ B =−
ε

2B
>−

1

2
for 0 ≤ k ≤ |s|− 1. (23)

We now restrict our attention to those s ∈ S for which JMKS(s) ≤ −ε . Since ln(1+ x) ≥
x− x2 for x >− 1

2
, we infer from Equation (23) that

|s|−1

∑
k=0

ln
[
1− ξ S(s1:k)∆M(s1:k)(sk+1)

]

≥
|s|−1

∑
k=0

[
−ξ S(s1:k)∆M(s1:k)(sk+1)− ξ 2S(s1:k)

2(∆M(s1:k)(sk+1))
2
]

=−ξ JMKS(s)
|s|−1

∑
k=0

S(s1:k)− ξ 2
|s|−1

∑
k=0

S(s1:k)(∆M(s1:k)(sk+1))
2

≥ ξ ε
|s|−1

∑
k=0

S(s1:k)− ξ 2B2
|s|−1

∑
k=0

S(s1:k)

= ξ (ε − ξ B2)
|s|−1

∑
k=0

S(s1:k) =
ε2

4B2

|s|−1

∑
k=0

S(s1:k),

where the first equality holds because S2 = S. Choosing K := ε2

4B2 ∑
|s|−1

k=0 S(s1:k) in Equa-

tion (22) now completes the proof of the second statement.

We now prove the last statement, dealing with the computability of FM. Since ∆M
and ξ are assumed to be computable and S is assumed to be recursive, we infer from Equa-

tion (21) that the multiplier process DM is computable too. If we now invoke Proposition 7,

we find that FM = D⊚

M is therefore computable as well. �

Theorems 19 and 21 provide statements that hold ‘almost surely for a forecasting sys-

tem ϕ’: any path is almost surely random, and the limsup average gain for Sceptic along

any path—where the average is taken over any recursive selection of situations—for bet-

ting on a fixed gamble with rates provided by Forecaster is almost surely non-positive; the
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corresponding liminf average gain for Forecaster is almost surely non-negative. The fol-

lowing theorem connects these two properties, and at the same time gets rid of their ‘almost
sure’ flavour: if we concentrate on a specific path that is random, then the limsup average

gain for Sceptic along that path—where the average is again taken over any recursive se-

lection of situations—for betting on a fixed gamble with rates provided by Forecaster is

surely non-positive. Interestingly, and in contrast with Theorems 19 and 21, we need the

forecasting system to be computable for our argumentation to work. We’re convinced that

this computability requirement can be weakened considerably (but not dropped altogether),

but we refrain from going in that direction here, because doing so would come at the cost

of an even more abstract formulation, and because the version we state below suffices for

our present purposes.

Theorem 23 (Relative frequencies for selection processes). Consider a computable fore-
casting system ϕ : S→I and a path ω ∈ Ω that is A-random for ϕ . Let (I1, . . . , In, . . .) be
the corresponding sequence of interval forecasts In = [pn, pn] := ϕ(ω1:n−1) for the path ω .
If S : S→ {0,1} is a recursive selection process such that limn→∞ ∑n

k=0 S(ω1:k) = ∞, then

liminf
n→∞

∑n−1
k=0 S(ω1:k)

[
h(ωk+1)−EIk+1

(h)
]

∑n−1
k=0 S(ω1:k)

≥ 0 for any gamble h on {0,1}.

In short, the proof by contradiction proceeds in two steps. First, we argue that if the

inequality isn’t satisfied for some gamble h, then we can always find another rational-

valued gamble h′ close to it for which the inequality also fails. In a second step, we show

that we can use the gamble h′ to construct a positive test supermartingale FM for ϕ of

the type considered in Lemma 22, and that this FM is unbounded on ω . Since this FM is

computable because ϕ and h′ are, this contradicts the A
+
C-randomness, and therefore also

the A-randomness, of ω .

Proof of Theorem 23. By Proposition 11, it suffices to prove the result for the special case

that A is the set A+
C of all computable positive test processes. Assume ex absurdo that the

inequality isn’t satisfied for some gamble h on {0,1}. Then there is some rational 0< ε < 1

such that

liminf
n→∞

∑n−1
k=0 S(ω1:k)

[
h(ωk+1)−EIk+1

(h)
]

∑n−1
k=0 S(ω1:k)

<−2ε.

Let h′ be any rational-valued gamble on {0,1} such that h≤ h′ ≤ h+ε . Then for all k ∈N0,

we find that h+ε−EIk+1
(h)≥ h′−EIk+1

(h)≥ h′−EIk+1
(h′), using coherence property C5

for the last inequality. It therefore follows that

liminf
n→∞

JMϕ
h′KS(ω1:n) = liminf

n→∞

∑n−1
k=0 S(ω1:k)

[
h′(ωk+1)−EIk+1

(h′)
]

∑n−1
k=0 S(ω1:k)

≤ liminf
n→∞

∑n−1
k=0 S(ω1:k)

[
h(ωk+1)−EIk+1

(h)
]

∑n−1
k=0 S(ω1:k)

+ ε <−ε,

where we used Equation (19) for the equality.

Let B := max{1,‖h′‖v} > 0. Then on the one hand, we infer from Equation (18) that

B is a uniform real bound on ∆Mϕ
h′ , meaning that |∆Mϕ

h′(s)| ≤ B for all situations s ∈ S.

On the other hand, we also have that 0 < ε < 1 ≤ B. Now, consider the positive test

supermartingale FM for ϕ introduced in Lemma 22, with in particular our present choice

for B, M := Mϕ
h′ and ξ := ε

2B2 < 1
2B .

We start by showing that FM is unbounded on ω . For any m ∈ N0, since we know that

liminfn→∞JMϕ
h′KS(ω1:n) < −ε , there is some nm ≥ m such that JMϕ

h′KS(ω1:nm) < −ε and

therefore also, because of Lemma 22,

FM(ω1:nm)≥ exp

(
ε2

4B2

nm−1

∑
k=0

S(ω1:k)

)

≥ exp

(
ε2

4B2

m−1

∑
k=0

S(ω1:k)

)

. (24)
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Now, consider any real R > 0. Since limn→∞ ∑n
k=0 S(ω1:k) = ∞, there is some mR ∈N0 such

that exp
(

ε2

4B2 ∑
mR−1
k=0 S(ω1:k)

)
> R. Due to Equation (24), this implies that FM(ω1:rR) > R,

with rR := nmR . So, in conclusion, we find that for any R > 0, there is some rR ∈ N0

such that FM(ω1:rR) > R. This tells us that the positive test supermartingale FM is indeed

unbounded on ω .

If we can now show that FM is also computable, this will contradict the assumed A
+
C-

randomness of ω for ϕ . Recall from the argumentation above that FM is the positive

test supermartingale constructed in Lemma 22, for the particular choices M = Mϕ
h′ , B =

max{1,‖h′‖v} and ξ = ε
2B2 . Since the gamble h′ is rational, so is the real number ‖h′‖v =

|h′(1)− h′(0)|. Hence, since ε is rational, the real numbers B and ξ are rational and

therefore definitely computable. Since h′ is rational, the inequalities h′(1) ≥ h′(0) and

h′(1) ≤ h′(0) are decidable. Therefore, and because the computability of ϕ means that ϕ
and ϕ are computable, Equations (2) and (1) imply that the real process Eϕ(s)(h

′), s ∈ S,

is computable. For any x ∈ {0,1}, since we know from Equation (16) that ∆Mϕ
h′(s)(x) =

h′(x)−Eϕ(s)(h
′), the rationality of h′ therefore implies that ∆Mϕ

h′(s)(x), s ∈ S, is comput-

able as well. By definition, this means that ∆Mϕ
h′ is computable. So we have found that

∆Mϕ
h′ and ξ are computable. Since in addition S is assumed to be recursive, we infer from

Lemma 22 that the positive test supermartingale FM is indeed computable. �

If we take a closer look at our argument in this proof, we see that it allows us to derive

the desired result for A-randomness, but that it does not work for Schnorr random paths ω .

Indeed, it follows from the assumptions that the computable test supermartingale FM from

Lemma 22 that does the heavy lifting in the proof, is unbounded on ω , but not neces-

sarily computably so. The argument shows that a sufficient condition for the computable

unboundedness of FM on ω is that the map

ζ : N0 → N0 : n 7→ ζ (n) :=
n−1

∑
k=0

S(ω1:k), (25)

which gives the number ζ (n) of selected outcomes along the segments ω1:n of the Schnorr

random path ω , should be recursive. But, even though the selection process S is assumed to

be recursive, the corresponding ζ in general won’t be, simply because the random path ω
typically isn’t recursive.

This analysis points to a fairly direct way of salvaging the result for Schnorr-random

paths as well: when we make sure that the selection process S depends not on the situ-

ations s themselves, but only on their depth |s| in the event tree, so not on the history of

the outcomes but only on the time that has passed, then ζ will be recursive as soon as S is.

This brings us to a new formulation, where we replace the selection process S : S→{0,1}
by the simpler notion of a selection function σ : N→ {0,1}. At any ‘time point’ k ∈ N, if

σ(k) = 1, then the outcome ωk is selected along the path ω , and if σ(k) = 0, it isn’t.

Theorem 24 (Relative frequencies for selection functions). Consider a computable fore-
casting system ϕ : S→I and a path ω ∈ Ω that is A-random for ϕ . Let (I1, . . . , In, . . .) be
the corresponding sequence of interval forecasts In = [pn, pn] := ϕ(ω1:n−1) for the path ω .
If σ is a recursive selection function such that limn→∞ ∑n

k=1 σ(k) = ∞, then

liminf
n→∞

∑n
k=1 σ(k)

[
h(ωk)−EIk (h)

]

∑n
k=1 σ(k)

≥ 0 for any gamble h on {0,1}.

The same conclusion continues to hold when ω is Schnorr random for ϕ .

Proof. By Proposition 16, it clearly suffices to prove the result for Schnorr randomness.

Consider the selection process S : S → {0,1} defined by S(s) := σ(|s|+ 1) for all s ∈ S.

Since σ is recursive and limn→∞ ∑n
k=1 σ(k) = ∞, it also follows that S is recursive and that

limn→∞ ∑n
k=0 S(ω1:k) = ∞.
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Assume ex absurdo that the inequality isn’t satisfied. This implies that there is some

rational 0 < ε < 1 such that

−2ε > liminf
n→∞

∑n
k=1 σ(k)

[
h(ωk)−EIk (h)

]

∑n
k=1 σ(k)

= liminf
n→∞

∑n−1
k=0 S(ω1:k)

[
h(ωk+1)−EIk+1

(h)
]

∑n−1
k=0 S(ω1:k)

.

As we have shown in the proof of Theorem 23, this implies that there is a computable

positive test supermartingale FM for ϕ and a computable real number B > 0 such that, for

all m ∈ N0, there is some nm ≥ m such that

FM(ω1:nm)≥ exp

(
ε2

4B2

nm−1

∑
k=0

S(ω1:k)

)

= exp

(
ε2

4B2

nm

∑
k=1

σ(k)

)

= τσ (nm),

where we have defined the map τσ : N0 → R≥0 by

τσ (n) := exp

(
ε2

4B2

n

∑
k=1

σ(k)

)

for all n ∈N0.

So for all m ∈N0, there is some nm ≥ m such that FM(ω1:nm)≥ τσ (nm), which implies that

supn≥m[FM(ω1:n)− τσ (n)]≥ 0. Hence,

limsup
n→∞

[FM(ω1:n)− τσ (n)] = inf
m∈N0

sup
n≥m

[FM(ω1:n)− τσ (n)]≥ 0.

Since ε is rational, B > 0 is computable and σ is recursive, we also know that τσ is com-

putable. Furthermore, τσ is non-decreasing because ∑n
k=1 σ(k) is non-decreasing in n, and

it is unbounded because limn→∞ ∑n
k=0 σ(k) = ∞ and ε > 0. We conclude that τσ is a real

growth function such that limsupn→∞[FM(ω1:n)−τσ (n)]≥ 0. Proposition 12(ii) then guar-

antees that the computable test supermartingale FM for ϕ is computably unbounded on ω ,

which contradicts the assumed Schnorr randomness of ω for ϕ . �

8. CONSTANT INTERVAL FORECASTS

From now on, we turn to the special case where the interval forecasts I ∈I are constant,

and don’t depend on the already observed outcomes. This leads to a generalisation of the

classical case I = {1/2} of the randomness associated with a fair coin.

In the rest of this section, unless explicitly stated to the contrary, A is any arbitrary but

fixed set of allowable test processes. For any interval I ∈ I , we denote by γ I : S → I

the corresponding so-called stationary forecasting system that assigns the same interval

forecast I to all situations:

γ I(s) := I for all s ∈ S.

In order to investigate the mathematical properties of imprecise randomness, it will be

helpful to associate, with any path ω , the collection of all interval forecasts for which the

corresponding stationary forecasting system makes ω A-random:

IA(ω) := {I ∈ I : γ I ∈ ΦA(ω)}= {I ∈ I : γ I makes ω A-random},

and we use the special notations I
+

C (ω), IC(ω), I
⊚

ML(ω) and IML(ω) in the cases that

A is equal to A
+
C, AC, A⊚

ML and AML, respectively. Similarly,

IS(ω) := {I ∈ I : γ I ∈ ΦS(ω)} = {I ∈ I : γ I makes ω Schnorr random}.

Proposition 16 and Equation (15) imply that

IA(ω)⊆ IS(ω) and IML(ω)⊆ I
⊚

ML(ω)⊆ IC(ω) = I
+

C (ω)⊆ IS(ω). (26)

Most of our efforts in this section will be devoted to investigating the mathematical struc-

ture of these special sets of interval forecasts.

As immediate consequences of the results proved earlier in Sections 5 and 6, we find

that all these sets of interval forecasts associated with a random path are non-empty and

increasing.
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Proposition 25 (Non-emptiness). For all ω ∈ Ω, [0,1] ∈ IA(ω) ⊆ IS(ω), so any se-
quence of outcomes ω has at least one stationary forecast that makes it A-random and
therefore also Schnorr random: IA(ω) 6= /0 and IS(ω) 6= /0.

Proof. This is an immediate consequence of Proposition 9, with γ [0,1] = ϕv ∈ ΦA(ω), and

Equation (26). �

Proposition 26 (Increasingness). For all ω ∈ Ω and any I,J ∈ I :
(i) if I ∈ IA(ω) and I ⊆ J, then J ∈ IA(ω);

(ii) if I ∈ IS(ω) and I ⊆ J, then J ∈ IS(ω).

Proof. This follows from Propositions 10 and 18, because I ⊆ J implies γ I ⊆ γJ . �

Proposition 27. Consider two sets A,A′ of allowable test processes such that A′ ⊆ A.
Then IA(ω)⊆ IA′(ω)⊆ IS(ω).

Proof. This follows immediately from Proposition 11 and Equation (26). �

8.1. Computable stochasticity. Before we continue our study of the structure of the sets

of interval forecasts associated with a given random path, it will be helpful to make a

small detour, and to consider the behaviour of relative frequencies along random paths.

Interestingly, Theorem 23 implies the consistency property in Corollary 28 below, which

is a counterpart in our more general context of the notion of computable stochasticity or

Church randomness in the precise fair-coin case where I = {1/2} [1]. However, quite

remarkably, and seemingly in contrast with Theorem 23, this corollary does not impose

any computability requirements on the interval forecast I.

Computable stochasticity, or Church randomness, is a notion that goes back to Alonzo

Church’s account of randomness [6]. He required of a random path ω that for any recursive

selection process S such that ∑n
k=0 S(ω1:k)→ ∞,

lim
n→∞

∑n−1
k=0 S(ω1:k)ωk+1

∑n−1
k=0 S(ω1:k)

=
1

2
.

In other words, the relative frequencies of the ones—the successes—in the outcomes that

S selects along the random path ω should converge to the constant probability 1/2 of a

success. It is well-known that all paths that are computably random—and therefore also

all Martin-Löf random paths—for a stationary forecast I = {1/2} are also computably

stochastic, or Church random; see for instance Refs. [1, 62].

In our generalisation, we will see that our notions of randomness no longer necessarily

imply such convergence, but we’re still able to conclude that the limits inferior and superior

of the relative frequencies of the successes in the selected outcomes of a random path must

lie in the forecast interval.

Corollary 28 (Church randomness). Consider any path ω ∈ Ω and any constant interval
forecast I = [p, p] ∈ IA(ω) that makes ω A-random. Then for any recursive selection
process S : S→ {0,1} such that ∑n

k=0 S(ω1:k)→ ∞:

p ≤ liminf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1

∑n−1
k=0 S(ω1:k)

≤ limsup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1

∑n−1
k=0 S(ω1:k)

≤ p.

Proof. First, assume that I is computable. It follows from Proposition 5 that γ I is com-

putable as well. Furthermore, if we let I{1}(x) := x for all x ∈ {0,1}, then I{1} and −I{1}

are clearly gambles on {0,1}. The first and last inequality now follow from Theorem 23,

by successively choosing f := I{1} and f := −I{1}, respectively, since E I(I{1}) = p and

E I(−I{1}) =−p. The second inequality is a standard property of limits inferior and super-

ior.

If I isn’t computable, then for any ε > 0, since all rational numbers are computable,

there is some computable J = [q,q] ∈ I such that p− ε ≤ q ≤ p ≤ p ≤ q ≤ p + ε . Since
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I ⊆ J, it follows from Proposition 26 that also J ∈ IA(ω). Since, moreover, J is comput-

able, it follows from the first part of the proof that

p− ε ≤ q ≤ liminf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1

∑n−1
k=0 S(ω1:k)

≤ limsup
n→∞

∑n−1
k=0 S(ω1:k)ωk+1

∑n−1
k=0 S(ω1:k)

≤ q ≤ p + ε.

Since ε > 0 is arbitrary, this completes the proof. �

For paths that are (only) Schnorr random, we will discuss below that this result needn’t

hold, but we can prove a weaker result, whose proof is completely similar—and therefore

omitted—but now based on Theorem 24.

Corollary 29 (Weak Church randomness). Consider any path ω ∈ Ω and any constant
interval forecast I = [p, p] ∈ IA(ω) that makes ω A-random. Then for any recursive
selection function σ such that limn→∞ ∑n

k=0 σ(k) = ∞:

p ≤ liminf
n→∞

∑n
k=1 σ(k)ωk

∑n
k=1 σ(k)

≤ limsup
n→∞

∑n
k=1 σ(k)ωk

∑n
k=1 σ(k)

≤ p.

The same conclusion continues to hold when I makes ω Schnorr random.

That Corollary 28 needn’t hold for Schnorr randomness, is in accordance with the fact

that, in the particular fair-coin case where I = {1/2}, Schnorr randomness is known not

to imply computable stochasticity either. This was in fact shown by Yongge Wang [62],

who proved the existence of a Schnorr random path ω̂ and a computable test martingale M̂
for γ1/2 such that

(i) M̂ is unbounded—but not computably so—on ω̂ , also implying that ω̂ isn’t comput-

ably random;

(ii) for all s ∈ S, either (∀x ∈ {0,1})M̂(sx) = 2xM̂(s) or (∀x ∈ {0,1})M̂(sx) = M̂(s);
and as a consequence also

(iii) if M̂(ω̂1:n) = 2ω̂nM̂(ω̂1:n−1) then ω̂n = 1, for all n ∈ N.

One immediate conclusion we can draw from these conditions, is that M̂ remains pos-

itive on ω̂ , so M̂(ω̂1:n) > 0 for all n ∈ N0, simply because (ii) implies that if M̂ ever

becomes zero, it remains zero, and can therefore then never become unbounded on ω ,

contradicting (i). Another conclusion we can draw from (ii), is that M̂ assumes values in

the set {0}∪{2m : m ∈ N0}. This implies that, in situations s such that M̂(s) > 0, it is de-

cidable which of the two multiplication rules applies in (ii). Hence, the selection process Ŝ,

defined by

Ŝ(s) :=

{

1 if M̂(s1) = 2M̂(s) and M̂(s)> 0

0 if M̂(s1) = M̂(s)
for all s ∈ S,

is recursive. In combination with (iii), this implies that

Ŝ(ω̂1:n−1) = 1 ⇒ ω̂n = 1 for all n ∈ N. (27)

Since it follows from (i) that the first multiplication rule in (ii) must apply an infinite

number of times on ω̂, we infer from the conclusion (27) that Ŝ selects a subsequence

of ones from ω̂ , so the corresponding sequence of relative frequencies on this recursively

selected subsequence converges to 1, thus violating computable stochasticity: Schnorr
randomness does not imply computable stochasticity.

It also follows from these considerations that M̂ either doubles or remains constant on ω̂ ,

and that it doubles precisely in those situations ω̂1:n where Ŝ(ω̂1:n) = 1. Hence, if we let

ζ̂ (n) := ∑n−1
k=0 Ŝ(ω̂1:k) in accordance with Equation (25), then

M̂(ω̂1:n) = 2ζ̂ (n) for all n ∈N0.

The map ζ̂ can’t be recursive, because if it were, M̂ would be computably unbounded on ω̂ ,

contradicting the Schnorr randomness of ω̂ . So, we see that the sufficient condition for
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‘convergence’ that we mentioned following the proof of Theorem 23, namely the recursive

character of ζ in Equation (25), is perfectly at ease with Wang’s example, as it isn’t satisfied

for this particular case ζ = ζ̂ .

Observe, by the way, that the recursive character of ζ in Equation (25) is equivalent to

the recursive character of the behaviour

σS,ω : N→ {0,1} : n 7→ σ(n) := S(ω1:n−1)

of the selection process S on the random path ω . It should therefore not be surprising that

recursive selection functions, such as this σS,ω , play such an important part in our The-

orem 24 and Corollary 29. This also means that if we were to strengthen the requirements

on the selection processes S in Theorem 23 and Corollary 28 from ‘being recursive’ to

‘being recursive and displaying recursive behaviour on the path under consideration’, then

the corresponding (weaker) computable stochasticity result would still hold for all Schnorr

random paths. This is essentially what we do in Theorem 24 and Corollary 29. Any criti-

cism of Schnorr randomness along the lines of Wang’s argument [62] will therefore have

to include an argumentation for why such a strengthening of the requirements on the se-

lection processes is unreasonable or undesirable, or alternatively, why selection processes

rather than selection functions appear in the requirements.

8.2. The structure of the interval forecasts that make a path random. We return to

our study of the mathematical structure behind constant interval forecasts. Our digression

about Church randomness around Corollary 28 now displays its usefulness, because it

allows us to prove the following consistency result: any collection of constant interval

forecasts that make some path random must have a non-empty intersection.

Proposition 30. For any ω ∈ Ω, IA(ω) and IS(ω) have the intersection property: for
any collection I ′ ⊆ I of interval forecasts:

(i) if I ′ ⊆ IA(ω), then
⋂

I ′ 6= /0;
(ii) if I

′ ⊆ IS(ω), then
⋂

I
′ 6= /0.

In fact,
[

liminf
n→∞

1

n

n

∑
k=1

ωk, limsup
n→∞

1

n

n

∑
k=1

ωk

]

⊆
⋂

IA(ω)⊆
⋂

IS(ω). (28)

Proof. It clearly suffices to prove the inclusions in Equation (28), and Proposition 26 al-

lows us to concentrate on the first inclusion. So, for any I = [p, p] ∈ IA(ω), it follows

from Corollary 29, with σ(n) := 1 for all n ∈ N, that

p ≤ liminf
n→∞

1

n

n

∑
k=1

ωk ≤ limsup
n→∞

1

n

n

∑
k=1

ωk ≤ p.

Hence, indeed,

/0 6=

[

liminf
n→∞

1

n

n

∑
k=1

ωk, limsup
n→∞

1

n

n

∑
k=1

ωk

]

⊆
⋂

I∈IA(ω)

I =
⋂

IA(ω). �

Whether the non-empty closed intervals
⋂

IA(ω) and
⋂

IS(ω) themselves also make

the path ω A-random, respectively Schnorr random, depends on the case at hand: we will

come across an example in Section 9 where they do (Section 9.1), and another example

where they don’t (Section 9.2).

We continue our discussion by introducing the following subsets of [0,1], which re-

spectively collect the left and right boundaries of the interval forecasts that make a given

path ω ∈ Ω random:

LA(ω) := {min I : I ∈ IA(ω)} and UA(ω) := {maxI : I ∈ IA(ω)}

LS(ω) := {minI : I ∈ IS(ω)} and US(ω) := {max I : I ∈ IS(ω)}.
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Proposition 26 guarantees that LA(ω) and LS(ω) are decreasing sets (down-sets), and that

UA(ω) and US(ω) are increasing (up-sets). They are therefore all of them subintervals

of [0,1]. If we also let

pA(ω) := supLA(ω) = min
⋂

IA(ω) and pA(ω) := infUA(ω) = max
⋂

IA(ω)

pS(ω) := supLS(ω) = min
⋂

IS(ω) and pS(ω) := infUS(ω) = max
⋂

IS(ω),

then clearly

LA(ω) = [0, pA(ω)) or LA(ω) = [0, pA(ω)]

UA(ω) = (pA(ω),1] or UA(ω) = [pA(ω),1],

and similarly for the Schnorr variants. Proposition 30 also implies the following consist-

ency property:

pA(ω)≤ pA(ω) and pS(ω)≤ pS(ω).

All of this is illustrated in Figure 3 for the special, but in no way atypical, case that A=AC.

0 1pC(ω) pC(ω)

LC(ω) UC(ω)

FIGURE 3. Some interval forecasts in the set IC(ω) (in blue), and cor-

responding pC(ω) and pC(ω)

It is obvious that, for any I ∈ IA(ω), we have that min I ∈ LA(ω) and max I ∈UA(ω),
and similarly for the Schnorr randomness variants. We’re about to prove, as a result of

Propositions 31–33 below, that for weak Martin-Löf randomness, computable randomness

and Schnorr randomness, the converse is also true. Therefore, in those cases, where A is

equal to AC or A⊚

ML,
{

I ∈ IA(ω)⇔
(
min I ∈ LA(ω) and max I ∈UA(ω)

)

I ∈ IS(ω)⇔
(
min I ∈ LS(ω) and max I ∈US(ω)

)
.

(29)

Proof of Equation (29). We first give a proof of the converse implication for A-random-

ness. Consider any I = [p, p] ∈ I for which p ∈ LA(ω) and p ∈UA(ω). That p ∈ LA(ω)
implies by Proposition 26 that also [p,1] ∈ IA(ω). Similarly, p ∈UA(ω) implies by Pro-

position 26 that also [0, p] ∈ IA(ω). Propositions 31 and 32 then guarantee that, indeed,

I = [p, p] = [p,1]∩ [0, p] ∈ IA(ω).
The proof for Schnorr randomness is completely similar, but uses Proposition 33 rather

than Propositions 31 and 32. �

Propositions 31–33 below can of course be extended straightforwardly to any finite

number of interval forecasts, and they guarantee, together with Proposition 26, that IC(ω),
I

⊚

ML(ω) and IS(ω) are set filters: increasing sets that are closed under finite intersections.

We have no proof for a corresponding result for Martin-Löf randomness: it is an open

problem whether the set of constant interval forecasts IML(ω) that make a path ω Martin-

Löf random is closed under finite intersections, and therefore a set filter.

Proposition 31. For any ω ∈ Ω, I
⊚

ML(ω) is closed under (finite) intersections: for any
two interval forecasts I and J in I

⊚

ML(ω), we have that I ∩ J ∈ I
⊚

ML(ω).
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The idea behind the proof is that we show how to write any lower semicomputable super-

martingale multiplier for γ I∩J as a product of two lower semicomputable supermartingale

multipliers, one for γ I and one for γJ .

Proof of Proposition 31. Let K := I ∩ J. We will prove that K ∈ I
⊚

ML(ω).
Let I = [p, p] and J = [q,q]. Because of symmetry, we may assume without loss of

generality that q ≤ p. Furthermore, due to Proposition 30, we know that then p ≤ q. If we

have that I ⊆ J, then I = I ∩ J and therefore, since I ∈ I
⊚

ML(ω), the result holds trivially.

Hence, we may assume without loss of generality that q ≤ p ≤ q < p, which implies that

K = I ∩ J = [p,q].

p I p

q J q

p
K

q

Consider any test supermartingale T in T
γK ,⊚
ML , then we must show that T remains

bounded on ω . We know that there is some lower semicomputable supermartingale multi-

plier D for γK such that T = D⊚.

Now let DI be the map from situations to gambles on {0,1}, defined by

DI(s)(z) :=

{

min{D(s)(1),1} if z = 1

max{D(s)(0),1} if z = 0
for all s ∈ S and z ∈ {0,1}.

We now show that DI is a supermartingale multiplier for γ I . That it is non-negative follows

from the non-negativity of D. It therefore remains to show that E I(DI(s))≤ 1 for all s ∈ S.

To this end, we consider two cases: D(s)(0) ≤ 1 and D(s)(0) > 1. If D(s)(0) ≤ 1, then

DI(s)≤ 1 and therefore also E I(DI(s))≤ 1, by C1. The case that D(s)(0)> 1 is a bit more

involved. For a start, since D(s)(0) > 1 implies that DI(s)(1) < DI(s)(0) [because then

DI(s)(0) = D(s)(0)> 1, and at the same time always DI(s)(1)≤ 1], we find that

E I(DI(s)) = Ep(DI(s)) = EK(DI(s)).

Furthermore, since we know that D is a supermartingale multiplier for γK and there-

fore EK(D(s)) ≤ 1, D(s)(0) > 1 implies that D(s)(1) ≤ 1, again by C1. We therefore

find that D(s) = DI(s). By combining these two findings, it follows that indeed here also

E I(DI(s)) = EK(DI(s)) = EK(D(s))≤ 1.

Since we now know that DI is a supermartingale multiplier for γ I , we may conclude that

TI :=D⊚

I is a test supermartingale for γ I . Furthermore, since D is lower semicomputable, so

is DI , because taking minima and maxima are continuous and monotone (non-decreasing)

operations. Hence, TI belongs to T
γ I ,⊚
ML . Therefore, and because I ∈ I

⊚

ML(ω), we can

conclude that TI remains bounded on ω .

Also, if we let DJ be a map from situations to gambles on {0,1}, defined by

DJ(s)(z) :=

{

max{D(s)(1),1} if z = 1

min{D(s)(0),1} if z = 0
for all s ∈ S and z ∈ {0,1},

and consider TJ := D⊚

J , a similar course of reasoning leads us to conclude that TJ ∈ T
γJ ,⊚
ML .

Therefore, and because J ∈ I
⊚

ML(ω), can also conclude that TJ remains bounded on ω .

Next, we observe that D = DIDJ , and therefore also T = D⊚ = D⊚

I D⊚

J = TITJ . And

since both TI and TJ remain bounded on ω , so, therefore, does T . �

Proposition 32. For any ω ∈ Ω, IC(ω) is closed under (finite) intersections: for any two
interval forecasts I and J in IC(ω), we have that I ∩ J ∈ IC(ω).
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Proof. The proof is almost completely analogous to that of Proposition 31. After repla-

cing A
⊚

ML and I
⊚

ML(ω) with A
+
C and IC(ω) = I

+
C (ω) [the equality follows from Equa-

tion (26)], respectively, the only steps that require changes are those that are concerned

with lower semicomputability.

First, since T is here a test supermartingale for γ I∩J that belongs to A
+
C and is therefore

positive and computable, we infer from Proposition 8 that there now is some supermartin-

gale multiplier D that is positive and computable, rather than merely lower semicomput-

able, such that T = D⊚. Secondly, we now need to show that the supermartingale multipli-

ers DI and DJ are positive and computable, rather than merely lower semicomputable. But

this is trivially implied by the positive and computable character of D. �

Proposition 33. For any ω ∈ Ω, IS(ω) is closed under (finite) intersections: for any two
interval forecasts I and J in IS(ω), we have that I∩ J ∈ IS(ω).

Proof. The proof starts from the proof of Proposition 32. Taking into account Proposi-

tion 15, the only additional complication is that we now also have to prove that if TI and

TJ are not computably unbounded on ω , then neither is T = TITJ . But this is an imme-

diate consequence of Proposition 14, with µ1(n) := TI(ω1:n) and µ2(n) := TJ(ω1:n) for all

n ∈ N0. �

8.3. A few examples at the extreme ends. We finish the discussion in this section by

giving a few immediate examples of possible sets of interval forecasts.

On the one hand, for any precise forecast p ∈ [0,1], there always are sequences ω that

are A-random, and at least as many that are Schnorr random, for the precise stationary fore-

casting system γ p; see Corollary 20. These types of random sequences have received most

attention in the literature, thus far. For any such sequence, a constant interval forecast I will

make it random if and only if it contains the precise forecast p: IA(ω) = {I ∈ I : p ∈ I}.

Hence, LA(ω) = [0, p] and UA(ω) = [p,0], and therefore also

pA(ω) = pA(ω) = p;

and similarly for Schnorr randomness.

At the other extreme end, any recursive path with infinitely many zeroes and ones will

only be random for the vacuous interval forecast.

Proposition 34. If a path ω ∈ Ω is recursive and has infinitely many zeroes and infinitely
many ones, then IA(ω) =IS(ω) = {[0,1]}, so LA(ω) = LS(ω) = {0}, UA(ω) =US(ω)=
{1}, pA(ω) = pS(ω) = 0 and pA(ω) = pS(ω) = 1.

Proof. Since ω is recursive, the selection functions σ0 and σ1 defined by

σ1(n) := ωn and σ0(n) := 1−ωn for all n ∈ N,

are also recursive. Moreover, since ω has infinitely many zeroes and ones, ∑n
k=1 σ0(k)→ ∞

and ∑n
k=1 σ1(k)→ ∞. For any I ∈ IS(ω), we then infer from Corollary 29 that

min I ≤ liminf
n→∞

∑n
k=1 σ0(k)ωk

∑n
k=1 σ0(k)

= liminf
n→∞

∑n
k=1(1−ωk)ωk

∑n
k=1 σ0(k)

= 0,

since all ωk(1−ωk) = 0, and similarly

max I ≥ limsup
n→∞

∑n
k=1 σ1(k)ωk

∑n
k=1 σ1(k)

≥ limsup
n→∞

∑n
k=1 ω2

k

∑n
k=1 ωk

= 1,

since all ω2
k = ωk. Hence, I = [0,1], and therefore IS(ω) = {[0,1]}. The same argument

works for any I ∈ IA(ω), and leads to the conclusion that also IA(ω) = {[0,1]}. �

We show by means of a number of concrete examples in the next section that, in between

these extremes of total imprecision and maximal precision, there lies a—to the best of our

knowledge—previously uncharted realm of sequences, with ‘similar’ unpredictability to
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the ones traditionally called ‘random’, for which the intervals LA(ω) and UA(ω) need

not always be closed, and more importantly, for which 0 < pA(ω) < pA(ω) < 1—and

similarly for Schnorr randomness. This will provide the first evidence for our claim that

‘randomness is inherently imprecise’.

9. IMPRECISE RANDOMNESS DUE TO NON-STATIONARITY

Our work on imprecise Markov chains [12, 14, 16, 25, 51] has taught us that in some

cases, we can very efficiently compute tight bounds on expectations in non-stationary pre-

cise Markov chains, by replacing them with their stationary imprecise versions. Similarly,

in statistical modelling, when learning from data sampled from a distribution with a vary-

ing (non-stationary) parameter, it seems hard to estimate the time sequence of its values,

but we may be more successful in learning about its (stationary) interval range. Similar

ideas were also considered earlier by Fierens et al. [20], when they argued for a frequentist

interpretation of imprecise probability models based on non-stationarity.

In this section, we explore this idea in the context of our study of imprecise random-

ness, and show in a number of interesting examples that randomness associated with non-

stationary precise forecasting systems can be captured by a stationary forecasting system,

which must then be less precise: we gain simplicity of representation by going from a

non-stationary to a stationary one, but we must then pay for it by losing precision.

9.1. A simple example. Let us begin with a simple example to get some idea of where

we want to go to. In what follows, A is any set of allowable test processes. We discuss

A-randomness here, but completely analogous arguments and conclusions are valid for

Schnorr randomness.

Consider any p and q in [0,1] with p < q, and any path ω that is A-random for the

forecasting system ϕp,q that is defined by

ϕp,q(s) :=

{

p if |s| is odd

q if |s| is even
for all s ∈ S.

We know from Corollary 20 that there is at least one such path.

We now look for the stationary forecasting systems that make this ω A-random, and we

intend to show that for all I ∈ I :

I ∈ IA(ω)⇔ [p,q]⊆ I, (30)

which then also implies that

LA(ω) = [0, p], UA(ω) = [q,1], pA(ω) = p and pA(ω) = q.

Proof of Equation (30). The converse implication follows at once from Proposition 10 and

the fact that for any I ∈ I such that [p,q]⊆ I, the stationary forecasting system γ I is more

conservative than ϕp,q, in the sense that ϕp,q ⊆ γ I .

For the direct implication, assume that I ∈ IA(ω) and fix any ε > 0. Since all rational

numbers are computable, there are computable intervals [p, p] ∈ I and [q,q] ∈ I such

that

p ∈ [p, p]⊆ [p− ε, p+ ε] and q ∈ [q,q]⊆ [q− ε,q+ ε].

Consider now the forecasting system ϕε , defined by

ϕε(s) :=

{

[p, p] if |s| is odd

[q,q] if |s| is even
for all s ∈ S.

Then ϕε is clearly computable and, since ϕp,q ⊆ ϕε , we know from Proposition 10 that ω
is A-random for ϕε . Therefore, we find that

min I ≤ liminf
n→∞

1

n

n

∑
k=1

ω2k ≤ limsup
n→∞

1

n

n

∑
k=1

ω2k ≤ p ≤ p+ ε,
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where the first and third inequality follow from Corollary 29 and Theorem 24, respectively,

for appropriately chosen recursive selection functions, and for h = I{1}. Similarly, but now

with h =−I{1}, we also find that

max I ≥ limsup
n→∞

1

n

n

∑
k=1

ω2k−1 ≥ liminf
n→∞

1

n

n

∑
k=1

ω2k−1 ≥ q ≥ q− ε.

Since ε > 0 is arbitrary, this allows us to conclude that min I ≤ p and max I ≥ q, and,

therefore, that [p,q]⊆ I. �

9.2. A more complicated example. Next, we turn to a more complicated example, where

we look at sequences that are ‘nearly’ random for the constant precise forecast 1/2, but not

quite. We begin by considering the following sequence {pn}n∈N0
of precise forecasts:

pn :=
1

2
+(−1)nδn with δn :=

√

8

n+ 33
for all n ∈ N0.

Since the sequence {δn}n∈N0
decreases towards its limit 0 and δn ∈ (0,1/2) for all n ∈ N0,

we see that pn → 1/2 and that pn ∈ (0,1) for all n ∈ N0.

In this example, we will focus our attention on an arbitrary but fixed path ω that is

AML-random for the computable precise forecasting system ϕ∼1/2 defined by

ϕ∼1/2(s) := p|s| for all s ∈ S.

We know from Corollary 20 that there is at least one such path. We will show, in a number

of successive steps, that for all A such that A+
C ⊆ A⊆ AML:

IA(ω) = IS(ω) =
{

[p, p] ∈ I : p < 1/2 < p
}

,

and therefore

LA(ω) = LS(ω) = [0,1/2) and UA(ω) =US(ω) = (1/2,1]

and

pA(ω) = pS(ω) = pA(ω) = pS(ω) = 1/2.

We first prove that

[p, p] ∈ IML(ω) for all [p, p] ∈ I such that p < 1/2 < p,

and therefore also [p, p] ∈ IA(ω) and [p, p] ∈ IS(ω), by Proposition 27.

Proof that [p, p] ∈ IML(ω) if [p, p] ∈ I and p < 1/2 < p. We provide a proof by contra-

diction. Assume ex absurdo that there is some I := [p, p] ∈ I such that p < 1/2 < p and

I /∈ I
⊚

ML(ω). This implies that there is some lower semicomputable test supermartin-

gale MI for the stationary forecasting system γ I that is unbounded on ω .

Consider any m ∈ N0 such that pn ∈ [p, p] = I for all n ≥ m; this is always possible

because pn converges to 1/2 and p < 1/2 < p. Let α > 0 be any rational number such that

MI(s)≤ α for all s ∈ S with |s|= m+ 1; there always is such an α because the number of

situations of length m+ 1 is finite. We now consider a new process M, defined by

M(s) :=

{
1
α MI(s) if |s|> m

1 if |s| ≤ m
for all s ∈ S,

which is lower semicomputable because MI is lower semicomputable and because α is

rational. This process is furthermore positive because MI and α are, and it has unit initial

value M(�) = 1 by definition. Hence, it is a test process. To see that it is also a super-

martingale for ϕ∼1/2, we verify the condition in Equation (4). Consider any s ∈ S. We

distinguish three cases: |s|> m, |s|= m and |s|< m. If |s|> m, then

Ep|s|(M(s·)) ≤ E I(M(s·)) = EI

( 1

α
MI(s·)

)

=
1

α
EI(MI(s·)) ≤

1

α
MI(s) = M(s),
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where the first inequality holds because p|s| ∈ I, the second equality follows from coherence

property C2, and the second inequality holds because MI is a supermartingale for γ I . If

|s|= m, then MI(s·)≤ α and therefore

Ep|s|(M(s·)) ≤ E I(M(s·)) = E I

( 1

α
MI(s·)

)

≤ E I(1)≤ 1 = M(s),

where the first inequality holds because p|s| ∈ I, and the second and third inequalities follow

from coherence properties C5 and C1, respectively. Finally, if |s|< m, then Ep|s|(M(s·)) =
Ep|s|(1) = 1 = M(s). So we can conclude that Eϕ∼1/2(s)

(M(s·)) = Ep|s|(M(s·)) ≤ M(s) for

all s ∈ S. Hence, M is a lower semicomputable test supermartingale for ϕ∼1/2. However, by

construction, M is unbounded above on ω , simply because MI is unbounded above on ω
and α is positive. This contradicts the fact that ω is AML-random for ϕ∼1/2. �

We complete the argument by showing that

[p, p] /∈ IS(ω) for any [p, p] ∈ I such that p ≥ 1/2 or p ≤ 1/2.

Taking into account Proposition 27, this will then also tell us that [p, p] /∈ IA(ω), for all

A
+
C ⊆A⊆ AML. So it implies in particular that {1/2} /∈ IS(ω) and {1/2} /∈ IA(ω), mean-

ing that the sequence isn’t Schnorr random in the classical ‘fair coin’ sense, nor computably

random or (weakly) Martin-Löf random.

The proof is based on ideas involving Hellinger-like divergences in a beautiful paper by

Volodya Vovk [58]: if the forecast sequences produced by two precise forecasting systems

along a path ω lie ‘far enough’ from each other, then it is possible to construct simple test

supermartingales for these respective forecasting systems whose product becomes unboun-

ded on ω , implying that ω can’t be random for both forecasting systems. Here, we show

that this idea can be extended to the case where one of the forecasting systems is imprecise.

We will have occasion to use this proof method again, in our proof of Theorem 37.

Proof that [p, p] /∈ IS(ω) for any [p, p] ∈ I such that p ≥ 1/2 or p ≤ 1/2. We only prove

the result for p ≥ 1/2; the proof for the other case is entirely analogous, the main difference

with the argument below being that we then need to focus on the even rather than the odd

indices.

Let I := [p, p]. Then, by assumption, I ⊆ [1/2,1]. Consider the two gamble processes DI

and D∼1/2, defined for all s ∈ S by

DI(s) :=

{

f1/2,p|s| if |s| is odd

1 if |s| is even
and D∼1/2(s) :=

{

fp|s|,1/2 if |s| is odd

1 if |s| is even,

where, for any α,β ∈ (0,1), we define the gamble fα ,β on {0,1} by

fα ,β (1) :=

√
β/α

√

αβ +
√

(1−α)(1−β )
and fα ,β (0) :=

√
1−β/1−α

√

αβ +
√

(1−α)(1−β )
. (31)

These gamble processes are computable because the sequence (pn)n∈N0
is computable and

because checking whether |s| is odd is decidable. Furthermore, due to Lemma 35(i), we

also know that they’re positive. So we find that DI and D∼1/2 are computable multiplier

processes. We now proceed to show that they’re in fact computable supermartingale mul-

tipliers for γ I and ϕ∼1/2, respectively. To see that DI is a supermartingale multiplier for γ I ,

observe that

E I(DI(s)) =

{

E I( f1/2,p|s|)≤ 1 if |s| is odd

E I(1)≤ 1 if |s| is even
for all s ∈ S,

where the odd case follows from Lemma 35(iv) because then p|s| < 1/2 ≤ p, and the even

case follows from coherence property C1. To see that D∼1/2 is a supermartingale multiplier
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for ϕ∼1/2, observe that

Ep|s|(D∼1/2(s)) =

{

Ep|s|( fp|s|,1/2) = 1 if |s| is odd

Ep|s|(1) = 1 if |s| is even
for all s ∈ S,

using Lemma 35(i) for the odd case. Taking into account Proposition 7, we conclude

from the above that D⊚

I and D⊚

∼1/2
are computable test supermartingales for γ I and ϕ∼1/2,

respectively.

Let us now take a look at the product of D⊚

I and D⊚

∼1/2
. We start by observing that, for

all n ∈N0,

1

1− 1
4

(
1
2
− pn

)2
=

1

1− 1
4

(
− (−1)nδn

)2
=

1

1− 1
4
δ 2

n

=
1

1− 1
4

8
n+33

=
1

1− 2
n+33

=
n+ 33

n+ 31
.

Because of Lemma 35(v), this implies that, for all n ∈ N0,

DI(ω1:n)D∼1/2(ω1:n) =

{

f1/2,pn fpn,1/2 ≥
(
1− 1

4
(1/2− pn)

2
)−1

= n+33
n+31

if n is odd

1 if n is even.

Hence, for all n ∈ N,

D⊚

I (ω1:2n)D
⊚

∼1/2
(ω1:2n) =

2n−1

∏
k=0

DI(ω1:k)(ωk+1)D∼1/2(ω1:k)(ωk+1)≥
2n−1

∏
k=0
k odd

k+ 33

k+ 31
=

2n+ 32

32
.

Because the map τ : N0 → R≥0 : n 7→ n+32
32

is a real growth function, Proposition 12(ii)

guarantees that the product D⊚

I D⊚

∼1/2
is computably unbounded on ω , so Proposition 14

tells us that at least one of the factor supermartingales D⊚

I and D⊚

∼1/2
must be computably

unbounded on ω too. But since D⊚

∼1/2
is a computable—and therefore also lower semi-

computable due to Proposition 4—test supermartingale multiplier for the forecasting sys-

tem ϕ∼1/2, it follows from the assumed AML-randomness of ω for ϕ∼1/2 that D⊚

∼1/2
can’t be

computably unbounded on ω , so D⊚

I must be. Since D⊚

I is a computable supermartingale

for γ I , we conclude that, indeed, [p, p] = I /∈ IS(ω). �

Lemma 35. For any α,β ∈ (0,1), we consider the gamble fα ,β on {0,1} defined in Equa-
tion (31). Then for any α,β ∈ (0,1) and I = [p, p] ∈ I , the following statements hold:

(i) Eα( fα ,β ) = 1, fα ,β (0)> 0 and fα ,β (1)> 0;
(ii) fα ,β (1)> fα ,β (0) if and only if α < β ;

(iii) if p ≤ α < β , then EI( fα ,β )≤ 1;
(iv) if α < β ≤ p, then EI( fβ ,α)≤ 1;
(v) fα ,β (0) fβ ,α(0) = fα ,β (1) fβ ,α(1)≥

(
1− 1

4
(α −β )2

)−1
.

Proof. Statement (i) is an immediate consequence of the definition of fα ,β and Eα and the

fact that α,β ∈ (0,1). For statement (ii), observe that, indeed, since α,β ∈ (0,1),

fα ,β (1)> fα ,β (0)⇔
√

β/α >
√

1−β/1−α ⇔ β (1−α)> α(1−β )⇔ β > α.

For statements (iii) and (iv), first observe that it follows from α < β and statement (ii)

that fα ,β (1)> fα ,β (0) and fβ ,α(1)≤ fβ ,α(0). Statement (iii) now follows because

EI( fα ,β ) = Ep( fα ,β )≤ Eα( fα ,β ) = 1,

where the first equality and the inequality follow from Equations (3) and (1), respectively,

and the fact that fα ,β (1)> fα ,β (0), and where the last equality follows from statement (i).

Statement (iv) follows because

E I( fβ ,α ) = Ep( fβ ,α)≤ Eβ ( fβ ,α ) = 1,
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where the first equality and the inequality follow from Equations (3) and (1), respectively,

and the fact that fβ ,α(1)≤ fβ ,α(0), and where the last equality follows from statement (i)

with α and β interchanged.

Statement (v) follows from Lemma 36 because

fα ,β (0) fβ ,α(0) = fα ,β (1) fβ ,α(1) =
1

(√

αβ +
√

(1−α)(1−β )
)2

. �

Lemma 36. For any α,β ∈ (0,1), we have that

0 <
(√

αβ +
√

(1−α)(1−β )
)2

≤ 1−
1

4
(α −β )2.

Proof. The first inequality follows trivially from α,β ∈ (0,1). To prove the second, let

a := α +β − 2αβ = α(1−β )+β (1−α)> 0 and b := 2
√

αβ (1−α)(1−β )> 0.

First observe that
(√

αβ +
√

(1−α)(1−β )
)2

= αβ +(1−α)(1−β )+ 2
√

αβ
√

(1−α)(1−β ) = 1+ b− a (32)

and

a2 − b2 =
(
α +β − 2αβ

)2
−
(

2
√

αβ (1−α)(1−β )
)2

=
(
α2 +β 2 + 4α2β 2 + 2αβ − 4α2β − 4αβ 2

)
− 4αβ (1−α)(1−β )

= α2 +β 2 − 2αβ = (α −β )2. (33)

Next, we prove that a−b ≥ 1
4
(α −β )2. On the one hand, since a > 0 and b > 0, we know

that a+ b > 0. On the other hand, we also know that

a+ b = α(1−β )+β (1−α)+ 2
√

αβ (1−α)(1−β )≤ 1+ 1+ 2= 4. (34)

We therefore find that

a− b =
(a− b)(a+ b)

a+ b
=

a2 − b2

a+ b
=

(α −β )2

a+ b
≥

1

4
(α −β )2,

using Equation (33) for the third equality and Equation (34) for the inequality. Combined

with Equation (32), it follows that, indeed,
(√

αβ +
√

(1−α)(1−β )
)2

= 1− a+ b≤ 1−
1

4
(α −β )2. �

10. IMPRECISION CAN’T BE EXPLAINED AWAY

The examples in the previous section illustrate that randomness associated with a non-

stationary precise forecasting system can also be ‘described’ as randomness for a simpler,

stationary but then necessarily imprecise, forecasting system. This observation might lead

to the suspicion that all stationary imprecise forms of randomness can be ‘explained away’

as such simpler representations of non-stationary but precise forms of randomness. This

would imply that the imprecision—or loss of precision—in the stationary forecasts isn’t es-

sential, and can always be dismissed as a mere artefact, a simple effect of using a stationary

representation that isn’t powerful enough to allow for the ideal representation, which must

be, one would suspect, always precise but non-stationary.

We mean to show in this section that this suspicion is misguided, and even flat out wrong

when we focus on computable forecasting systems: we will see that there are paths that are

random for a computable stationary interval forecasting system that are never random for

any computable precise forecasting system, be it stationary or not. This serves to further

corroborate our claim that randomness is indeed inherently imprecise, as its imprecision
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can’t be explained away as an effect of oversimplification. The imprecision involved is

furthermore non-negligible, and can be made arbitrarily large, because besides excluding

the possibility of randomness of such paths for precise computable forecasting systems,

we also show they can’t be random for any computable forecasting system whose highest

imprecision is smaller than that of the original, stationary one.

Theorem 37 (Imprecision can’t be explained away). Consider any set of allowable test
processes A, and any interval forecast I = [p, p] ∈ I . Then there is path ω ∈ Ω that
is A-random—and therefore also Schnorr random—for the stationary interval forecast I,
but that is never Schnorr random—and therefore never A-random—for any computable
forecasting system ϕ whose highest imprecision is smaller than that of I, in the specific
sense that sups∈S

[
ϕ(s)−ϕ(s)

]
< p− p.

Our argument is crucially inspired by Volodya Vovk, who hit upon the essential idea and

provided a first sketch for it. We use the same basic idea, but follow an argumentation

and construction that is different in a number of ways, in order to also—contrary to his

approach—deal with precise computable forecasts that may be irrational or become zero,

and more importantly, with imprecise computable forecasts whose imprecision is smaller

than that of the stationary one. Our proof method also has a more constructive flavour

than his, which was based on an almost sure convergence argument. Interestingly, our

more constructive line of reasoning is inspired by the ideas and techniques he proposed

in another paper [58], and whose extension to our imprecise context we’ve already used

for the example in Section 9.2. Stripped to its bare essentials, the argument is actually

quite simple. We construct a precise forecasting system ϕp,p whose forecasts are included

in I and infinitely often lie ‘far enough’ from each of the countably many computable

forecasting systems ϕm whose highest imprecision is smaller than that of I. This then

guarantees that no path can be simultaneously random for ϕp,p—and therefore for γ I—

and for any such ϕm.

Proof of Theorem 37. To start the argument, we consider any recursive map λ : N0 → N0

such that for each m ∈ N0 there are infinitely many n ∈ N0 that are mapped to m, meaning

that λ (n) = m. For instance, λ (n) could be the number of trailing zeroes in the binary ex-

pansion of n+1, so λ (n) :=max{k ∈N0 : (n+1)2−k ∈N} for all n∈N0, and consequently

λ−1({m}) = {2m(2ℓ+ 1)− 1: ℓ ∈ N0} for all m ∈ N0.

We also let ϕ0, ϕ1, . . . , ϕn, . . . be any enumeration of the (countably many) computable

forecasting systems, and we use this enumeration to let

N0,I :=

{

m ∈ N0 : sup
s∈S

[
ϕm(s)−ϕm(s)

]
< p− p

}

identify the set of all computable forecasting systems whose highest imprecision is smaller

than that of the interval forecast I.

We’re now going to fix any m∈N0,I , or in other words, any such computable forecasting

system ϕm. Let 0 < εm < 1 be any rational number [which there always is] such that

sup
s∈S

[
ϕm(s)−ϕm(s)

]
+ 6εm < p− p. (35)

Also, let pm and pm be any two rational numbers [which there always are] such that

p < pm < p+ εm and p− εm < pm < p,

and consider any Nm ∈ N such that 2−Nm < εm. Since the real process ϕm is computable

[because the forecasting system ϕm is], we know from Proposition 3 and the definition

of a recursive net of rational numbers that there are three recursive maps am, bm and ςm

from S×N0 to N0 such that

bm(s,n)> 0 and

∣
∣
∣
∣
(−1)ςm(s,n) am(s,n)

bm(s,n)
−ϕm(s)

∣
∣
∣
∣
≤ 2−n for all s ∈ S and n ∈ N0.
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Hence, if we let ϕ ′
m be the rational-valued process defined by

ϕ ′
m(s) := (−1)ςm(s,Nm)

am(s,Nm)

bm(s,Nm)
for all s ∈ S,

then clearly |ϕ ′
m(s)−ϕm(s)| ≤ 2−Nm < εm for all s ∈ S.

We also establish a number of inequalities that will be important further on in this proof.

On the one hand, we have that

0 ≤ p < pm < p+ εm < pm + εm < p+ 2εm, (36)

where the first inequality holds because I ⊆ [0,1], the second and third inequalities fol-

low from our choice of pm, the fourth inequality follows from the second, and the fifth

inequality follows from the third. On the other hand, we have that

p− 2εm < pm − εm < p − εm < pm < p ≤ 1, (37)

where the last inequality holds because I ⊆ [0,1], the third and fourth inequalities follow

from our choice of pm, the second inequality follows from the fourth, and the first in-

equality follows from the third. Furthermore, since sups∈S

[
ϕm(s)−ϕm(s)

]
≥ 0, it follows

from Equation (35) that 6εm < p − p, which implies that p + 2εm < p + 4εm < p − 2εm.

Combining these inequalities with the ones in Equations (36) and (37), we finally get that

0 ≤ p < pm < pm + εm < pm − εm < pm < p ≤ 1. (38)

With this set-up phase completed, we’re now ready to use the map λ , and the pm,

pm, εm and ϕ ′
m we have just determined for any m ∈ N0,I , to define the following precise

forecasting system ϕp,p :10

ϕp,p(s) :=







pλ (|s|) if λ (|s|) ∈N0,I and ϕ ′
λ (|s|)(s)≤ pλ (|s|)− 2ελ (|s|)

pλ (|s|) if λ (|s|) ∈N0,I and ϕ ′
λ (|s|)(s)> pλ (|s|)− 2ελ (|s|)

p if λ (|s|) /∈N0,I

for all s ∈ S.

(39)

We also consider any path ω ∈ Ω that is A-random—and therefore, due to Proposition 16,

also Schnorr random—for this precise forecasting system ϕp,p . We know from Corol-

lary 20 that there is at least one such path; in fact, we know from Theorem 19 that the

set of all such paths has lower probability one in the probability tree associated with the

precise forecasting system ϕp,p .

For any m∈N0,I , we know from Equation (38) that p < pm < pm < p, so it follows from

Equation (39) that ϕp,p(s) ∈ [p, p] = I for all s ∈ S. This implies that ϕp,p ⊆ γ I , where γ I

is the stationary forecasting system associated with the constant interval forecast I. Since

ω was assumed to be A-random for ϕp,p , it follows from Proposition 10 that ω is also

A-random for γ I .

We will be done if we can show that the path ω isn’t Schnorr random for any computable

forecasting system ϕm whose highest imprecision is less than that of I. That is, if we can

show that the path ω isn’t Schnorr random for ϕm for any m ∈ N0,I . This is what we now

set out to do.

To this end, we consider an arbitrary but fixed m ∈ N0,I and are going to construct a

computable test supermartingale for ϕm that is computably unbounded on ω . Since we

know from Equation (38) that 0 < pm < pm + εm < pm − εm < pm < 1, we can define a

multiplier process Dm by

Dm(s) :=







fpm−εm,pm if λ (|s|) = m and ϕ ′
m(s)≤ pm − 2εm

fpm+εm,pm if λ (|s|) = m and ϕ ′
m(s)> pm − 2εm

1 if λ (|s|) 6= m

for all s ∈ S,

10Recall that we don’t distinguish between a singleton and its single element.
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where, for any α,β ∈ (0,1), the gamble fα ,β on {0,1} is defined by Equation (31) in

Section 9. For given pm, pm and εm, this multiplier process Dm is computable because pm,

pm and εm are rational and because the recursive character of λ , am, bm and ςm guarantees

that the equalities and inequalities in this expression are decidable. Dm is furthermore

positive by Lemma 35(i).

To prove that Dm is a supermartingale multiplier for ϕm, we show that Eϕm(s)(Dm(s))≤ 1

for all s ∈ S. There are, of course, three possible cases.

If λ (|s|) 6= m, it is immediate that Eϕm(s)(Dm(s)) = Eϕm(s)(1) = 1 [use C1 for the last

equality].

If λ (|s|) = m and ϕ ′
m(s) ≤ pm − 2εm, then also ϕm(s) < ϕ ′

m(s) + εm ≤ pm − εm be-

cause |ϕ ′
m(s)−ϕm(s)|< εm. It therefore follows from Lemma 35(iii) that Eϕm(s)(Dm(s)) =

Eϕm(s)( fpm−εm,pm)≤ 1.

Finally, we consider the case that λ (|s|) = m and ϕ ′
m(s) > pm − 2εm. Since Equa-

tion (35) implies that ϕm(s)−ϕm(s)< p− p− 6εm, we then find that

ϕm(s)> ϕm(s)− p+ p+ 6εm > ϕ ′
m(s)− p+ p+ 5εm > pm − 2εm − p+ p+ 5εm

= pm − p+ p+ 3εm > p + 2εm > pm + εm > pm,

where the second inequality holds because |ϕ ′
m(s)− ϕm(s)| < εm, the fourth inequality

because pm was chosen to make sure that p−εm < pm, and the fifth inequality because pm

was chosen to make sure that pm < p + εm. It therefore follows from Lemma 35(iv) that,

also in this case, Eϕm(s)(Dm(s)) = Eϕm(s)( fpm+εm,pm)≤ 1.

So Dm is indeed a supermartingale multiplier for ϕm. Since we had already established

that Dm is computable and positive, it follows that D⊚
m is a positive computable test super-

martingale for ϕm, also taking into account Proposition 7.

We’re clearly done if we can show that this D⊚
m is computably unbounded on ω . To do

so, consider the multiplier process Dm,p,p defined by

Dm,p,p(s) :=







fpm,pm−εm if λ (|s|) = m and ϕ ′
m(s)≤ pm − 2εm

fpm,pm+εm if λ (|s|) = m and ϕ ′
m(s)> pm − 2εm

1 if λ (|s|) 6= m

for all s ∈ S.

We first prove that, for given pm, pm and εm, this Dm,p,p is a positive computable super-

martingale multiplier for the forecasting system ϕp,p . The argumentation is fairly similar

to the one given above for Dm and ϕm. Computability follows from the rationality of pm,

pm and εm, and the recursive character of the maps λ , am, bm and ςm. Positivity follows

from Lemma 35(i). To prove that Dm,p,p is a supermartingale multiplier for ϕp,p , we need

to show that Eϕp,p (s)(Dm,p,p(s)) ≤ 1 for all s ∈ S.

The case that λ (|s|) 6= m is again trivial.

If λ (|s|) = m and ϕ ′
m(s)≤ pm − 2εm, then ϕp,p(s) = pm and Dm,p,p(s) = fpm,pm−εm , so

it follows from Lemma 35(i) that Eϕp,p (s)(Dm,p,p(s)) = Epm( fpm,pm−εm) = 1.

Similarly, if λ (|s|) = m and ϕ ′
m(s) > pm − 2εm, then ϕp,p(s) = pm and Dm,p,p(s) =

fpm,pm+εm . Hence, Eϕp,p (s)(Dm,p,p(s)) = Epm( fpm,pm+εm) = 1, again by Lemma 35(i).

So, Dm,p,p is indeed a positive computable supermartingale multiplier for ϕp,p . Taking

into account Proposition 7, we can conclude that D⊚
m,p,p is a positive computable test su-

permartingale for ϕp,p . This computable test supermartingale D⊚
m,p,p must furthermore be

bounded above on ω , because of the assumed A-randomness of the path ω for ϕp,p .

The idea for the rest of the proof is now that we’re going to show that the product

process D⊚
m,p,pD⊚

m is computably unbounded on ω , and therefore D⊚
m must be as well.

Let B be any rational upper bound on D⊚
m,p,p along ω . Consider the rational number

δ :=
(
1− 1

4
ε2

m

)−1
. Then δ > 1 because 0 < εm < 1, and Lemma 35(v) guarantees that

{

fpm−εm,pm(1) fpm,pm−εm(1) = fpm−εm,pm(0) fpm,pm−εm(0)≥ δ

fpm+εm,pm(1) fpm,pm+εm(1) = fpm+εm,pm(0) fpm,pm+εm(0)≥ δ .
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Hence, for any s ∈ S, we find that Dm(s)Dm,p ,p(s) ≥ δ if λ (|s|) = m, and, otherwise,

Dm(s)Dm,p ,p(s) = 1. Consider the map ρm : N0 → N0, defined by

ρm(n) :=
∣
∣{k ∈ {0, . . . ,n− 1} : λ (k) = m}

∣
∣ for all n ∈ N0,

which is clearly non-decreasing, recursive because λ is, and unbounded because there are

infinitely many k ∈ N0 for which λ (k) = m. Then, for any n ∈ N0,

D⊚
m(ω1:n)D

⊚
m,p,p(ω1:n) =

n−1

∏
k=0

Dm(ω1:k)(ωk+1)
n−1

∏
k=0

Dm,p,p(ω1:k)(ωk+1)

=
n−1

∏
k=0

[
Dm(ω1:k)(ωk+1)Dm,p,p(ω1:k)(ωk+1)

]
≥

n−1

∏
k=0

λ (k)=m

δ = δ ρm(n),

and therefore, since D⊚
m,p,p is positive and bounded above by B along ω , also

D⊚

m(ω1:n)≥
δ r(n)

D⊚
m,p,p(ω1:n)

≥ B−1δ ρm(n).

Now let the map τm : N0 → R≥0 be defined by τm(n) := B−1δ ρm(n) for all n ∈ N0. Then

τ is computable because ρm is recursive and because δ and B are rational, and τ is non-

decreasing and unbounded because ρm is non-decreasing and unbounded, and because

δ > 1. So, τm is a real growth function for which D⊚
m(ω1:n) ≥ τm(n) for all n ∈ N0, and

therefore also limsupn→∞[D
⊚
m(ω1:n)− τm(n)]≥ 0. We find that the computable test super-

martingale D⊚
m for ϕm is indeed computably unbounded on ω , by Proposition 12(ii). �

For an example showing that the computability condition in this result can’t be dropped,

and a discussion on the theoretical and practical relevance of this condition, we refer to

recent work by Persiau and ourselves [34].

11. THE MEAGRENESS OF RANDOM SEQUENCES

In yet another beautiful paper we came across while researching this topic, Muchnik,

Semenov and Uspensky [31] showed that the set of all paths that correspond to a precise

stationary forecast is meagre.

The essence of their argument is the following. They call a path ω lawful if there is

some algorithm that, given as input any situation s on the path ω , outputs a non-trivial

finite set R(s) of situations t ⊐ s that strictly follow that situation s, such that one of these

‘extensions’ t is also on the path—meaning that ω ∈ Γ(t). By ‘non-trivial’, they mean

that R(s) is restrictive: it actually eliminates possible extensions. They then go on to show

that the set of all lawful paths is meagre, and finally, that random paths, because they satisfy

the law of large numbers, are lawful.

In this section, we show that we can extend this argument to imprecise stationary fore-

casts. This will show that, while, due to Theorem 19, almost all paths are random for a

forecasting system—so the random paths are legion—in a measure-theoretic sense, in the

specific topological sense of meagreness, they are few.

First of all, let us give a definition of lawfulness that makes the formulation above more

precise; see also Figure 4. A partial function on a domain D is a function that need not be

defined on all elements of D, so need not be a map.

Definition 6 (Lawfulness [31, Definition 2.1]). We call algorithm any recursive (partial)

function R from S to the collection of finite subsets of S. A path ω ∈ Ω is called lawful for
an algorithm R if for all m ∈N0:

(i) R is defined in the situation ω1:m;

(ii) R(ω1:m) is a non-empty finite subset of S such that ω1:m ⊏ t for all t ∈ R(ω1:m);
(iii) R(ω1:m) is non-trivial:

⋃

t∈R(ω1:m)
Γ(t)⊂ Γ(ω1:m);

(iv) there is some t ∈ R(ω1:m) such that ω ∈ Γ(t).
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A path ω ∈ Ω is called lawful if it is lawful for some algorithm R. A path that isn’t lawful

is called lawless.

R(s)· · ·

ω
· · ·

s

FIGURE 4. Visualisation of the main ideas behind the lawfulness of a path ω

A set of paths A ⊆ Ω is nowhere dense in Ω [31] if for every s ∈ S, there is some t ∈ S

such that s ⊑ t and A∩Γ(t) = /0. A set of paths B ⊆ Ω is then called meagre, or first
category, it it is a countable union of nowhere dense sets. We will rely on the following

central result in Ref. [31].

Theorem 38 ([31, Corollary 2.3]). Any subset of Ω containing only lawful paths is meagre.

To prove that a set of random paths is meagre, it therefore suffices to prove that these

random paths are all lawful. This turns out to be not too difficult, because the following

proposition shows that relative frequencies along lawless paths behave very ‘wildly’.

Proposition 39. Let ω ∈ Ω be a lawless path. Then

liminf
n→∞

1

n

n

∑
k=1

ωk = 0 and limsup
n→∞

1

n

n

∑
k=1

ωk = 1.

Proof. We give the proof for the limsup. The proof for the liminf is completely analogous.

Assume ex absurdo that limsupn→∞
1
n ∑n

k=1 ωk < 1. Then there are no,ro ∈N with ro > 1

and no > 1 such that
1

m

m

∑
k=1

ωk < 1−
1

ro
for all m ≥ no. (40)

For any given n,r ∈ N with r > 1 and n > 1, we construct an algorithm Rn,r as follows.

For any s ∈ S with m := |s| ≥ n, we let Rn,r(s) be the set of all situations t ∈ S such that

|t|= rm and s ⊑ t and
rm

∑
k=1

tk < mr−m. (41)

We also let Rn,r(s) := Rn,r(ω1:n) for all s ∈ S with |s|< n. It is clear that Rn,r is a recursive

map, because the conditions in Equation (41) are decidable.

If we can now show that ω is lawful for Rno,ro , and therefore lawful, we will have a

contradiction. To do so, fix any m ∈ N0. It follows from the construction of the Rn,r that

Rno,ro(ω1:m)

=

{

t ∈ S : |t|= ro max{no,m},ω1:max{no,m} ⊑ t and
1

ro max{no,m}

ro max{no,m}

∑
k=1

tk < 1−
1

ro

}

,

(42)

so Rno,ro is indeed defined on ω1:m, which implies that Rno,ro satisfies requirement (i) in

Definition 6.

Combining Equations (40) and (42) tells us that ω1:ro max{no,m} ∈ Rno,ro(ω1:m), so re-

quirement (iv) in Definition 6 is also satisfied.

We also gather from Equation (42) that the depth |t| of all situations t in Rno,ro(ω1:m)
is ro max{no,m}, so Rno,ro(ω1:m) is finite. Since ro > 1, we see that ro max{no,m}> m, so
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all situations in Rno,ro(ω1:m) are strictly preceded by ω1:m. Moreover, we have just proved

above that Rno,ro(ω1:m) is non-empty. This tells us that Rno,ro satisfies requirement (ii) in

Definition 6.

Finally, consider the situation t defined by |t| := ro max{no,m} and

t1:max{no,m} := ω1:max{no,m} and tk := 1 for max{no,m}+ 1 ≤ k ≤ ro max{no,m},

then t /∈ Rno,ro(ω1:m) by Equation (42), because

1

ro max{no,m}

ro max{no,m}

∑
k=1

tk ≥
ro max{no,m}−max{no,m}

ro max{no,m}
= 1−

1

ro

where the inequality follows from tk ≥ 0 for 1 ≤ k ≤ max{no,m}. This tells us that Rno,ro

satisfies requirement (iii) in Definition 6.

We conclude that ω is indeed lawful for Rno,ro . �

So, in order to prove our result, it now suffices to consider that relative frequencies along

random paths can’t behave so wildly, because they’re constrained by our ‘weak computable

stochasticity’ result in Corollary 29. Random paths are typically lawful.

Theorem 40. Let I = [p, p] ∈ I be any closed subinterval of [0,1] strictly included
in [0,1], so p > 0 or p < 1. Then the set of all paths that are A-random for the sta-
tionary forecasting system γ I is meagre. Similarly, the set of all Schnorr random paths
for γ I is meagre.

Proof. Consider any ω that is A-random for the stationary forecasting system γ I . Then

it clearly suffices to show that ω is lawful, by Theorem 38. Assume ex absurdo that it is

lawless. By combining Proposition 39 with Corollary 29 [with recursive selection function

σ := 1], we find that p ≤ 0 and p ≥ 1, a contradiction. The proof for Schnorr randomness

is identical. �

Our argumentation shows that the important distinction for random paths does not lie

between precise and imprecise stationary forecasts, but rather between vacuous and non-

vacuous forecasts: for any non-vacuous stationary forecast, the set of random paths is

meagre, whereas for the vacuous stationary forecast, all paths are random, and therefore

the corresponding set of random paths is co-meagre—the complement of a meagre set.

We also see that the paths that are random for non-vacuous interval forecasts are ‘equally

rare’ as those that are random for precise forecasts, which, we believe, only adds to their

mathematical interest.

12. CONCLUSION

The probability of an event is often seen as a precise, or at least ideally precise, number.

Apart from a few notable exceptions in earlier accounts [17, 24, 43, 44], a more determined

investigation into reasons for letting go of this idealisation, and into mathematical ways to

achieve this, only started in the later decades of the 20th century [26, 27, 41, 42, 45, 60];

see also Refs. [2, 53] for overviews. Most of this work centred on the decision-theoretic

and epistemic aspects of probability [27, 60], while some contributions were more agnostic

in this respect [45, 46], but a few attempts were also made [19, 20, 22, 61] to justify letting

go of precision also for probabilities with a more physical, or frequentist, interpretation.

We believe this paper is the first systematic attempt at reconciling imprecision with

the study of (frequency-based or algorithmic) randomness along the lines of von Mises

[55], Church [6], Kolmogorov [23], Ville [54], Martin-Löf [30], Levin [28] and Schnorr

[39, 40], to name only a few of the early protagonists. We show that this is both possible

and interesting. We see that, besides the sequences that are random for precise forecasts,

new realms of sequences arise that are random for interval forecasts. They have intriguing

properties, and are as topologically rare as their precise counterparts, in the sense that they
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also constitute meagre sets. Even with the limited number of examples we have examined

here, it should be apparent that incorporating imprecision—or interval forecasts—into the

study of randomness allows for more mathematical structure to arise. This is relevant in

and of itself, but we would argue that our treatment also allows us to better understand

and place, as special cases, the existing results in the precise limit. This, by the way, also

holds true for the more epistemic accounts of imprecision in probability; see for instance

Ref. [53] for a more detailed account.

This leads us to our rather provocative title for this paper. A number of people, while not

averse to the idea of allowing for imprecision in the study of randomness, advised us to tone

down our claim that ‘Randomness is inherently imprecise’, and suggested replacing it by

something weaker, such as ‘Some aspects of randomness cannot be adequately dealt with

using precise forecasts only’. Evidently, we have decided against that, and it behoves us

here to explain our reasons for doing so, other than the plainly polemic or merely rhetorical

ones. Simply stated, we are actually convinced that the statement in our title holds true,

and that there is more to randomness than the by now classical account for precise forecasts

would have us suspect.

First off, we have seen in Section 9 that on the one hand, ‘imprecise randomness’ can

arise as a useful stationary model simplification when dealing with non-stationarity, which

points to practical reasons for allowing imprecision in the study of randomness. But, on the

other hand, we’ve also been led, in Section 10, to the conclusion that imprecise randomness

has a more fundamental role, because there are sequences that are random for a given

computable interval forecast, but not for any computable (more) precise forecast.

Of course, we agree that the initial ideas for characterising what randomness is, were

based on probabilistic limit laws such as the convergence of relative frequencies, which as

Corollaries 28 and 29 suggest, are harder to guarantee in exactly the same form in our im-

precise context. But the seminal martingale-theoretic accounts of Ville [54], Schnorr [39,

40] and Levin [28], as well as the prequential approach by Vovk and Shen [59], have

opened up the path towards useful alternative characterisations, which are much more

amenable to letting go of the ideal of precision, as we have shown here.

We see very few reasons for holding on to that perceived ideal, neither from a prac-

tical (forecasting and calibration) point of view, nor from a more formal mathematical

stance. We have already hinted above at the formal mathematical reasons for allowing for

imprecision in the study of randomness: restricting ourselves to precise forecasts hides in-
teresting and useful mathematical structure that, as we see in this paper but also have come

to witness in our most recent—still largely unpublished—research efforts, reveals relev-

ant facts even about the precise aspects of randomness. Again, such structural arguments

for allowing for imprecision can, incidentally, also be brought to bear in more epistemic

and decision-theoretic accounts of uncertainty; see for instance Ref. [53] for examples

and related discussion. And as randomness in more recent accounts has been linked with

forecasting and calibration, many of the arguments for allowing for imprecision and inde-

cision (see for instance [60, Chapter 5] for extensive discussion) in epistemic uncertainty

modelling become relevant to the study of randomness also.

One aspect of what we are saying then, can be summarised as follows: (algorithmic)

randomness seems to have acquired a broader meaning and to have become more strongly

connected to other issues than only probabilistic convergence laws, and this change of

focus makes allowing for imprecision in its foundations much more intuitive and less far-

fetched than it may once have seemed.

What else do we mean when we say that ‘randomness is inherently imprecise’? Ran-

domness, as we perceive it, is about outcome sequences (paths) and forecasting systems

‘going together well’. And this going together well has certain implications, which for a

given forecasting system, impose restrictions on the behaviour of the successive outcomes

in a random path, such as the limit laws in Theorems 23 and 24, and in Corollaries 28
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and 29 for stationary forecasts. It is of crucial importance to our argument that these re-

strictions do not all of a sudden disappear when going from point to interval forecasts.

They weaken, perhaps, but don’t disappear, as is also made very clear by our discussion

in Section 11: the hard cut-off there lies not between precise and imprecise forecasts, but

between non-vacuous and vacuous ones. For any non-vacuous stationary forecast, be it

precise or imprecise, the restrictions on the corresponding sets of random paths are sub-

stantial, and result in these sets being meagre, as Theorem 40 testifies. It is only for vacu-

ous forecasts that the restrictions disappear and that the corresponding randomness notion

becomes vacuous as well: all paths are random for such forecasts. Thus, the difference

between non-vacuous imprecise and precise randomness may be a matter of degree, per-

haps and in certain respects, but not of quality. Why then single out the precise limit case

as the only one worthy of the moniker ‘randomness’?

This work may seem promising, but we’re well aware that it is only a humble beginning.

We see many extensions in many directions, so let us briefly discuss a few.

First of all, our preliminary exploration suggests that it will be possible to formulate

equivalent randomness definitions in terms of randomness tests, rather than supermartin-

gales. We believe it would be relevant to work this out in much more detail.

Secondly, the approach we follow here is not prequential: we assume that our Forecaster

specifies an entire forecasting system ϕ , or in other words an interval forecast in all possible

situations (x1, . . . ,xn), rather than only interval forecasts in those situations (z1, . . . ,zn) of

the sequence ω = (z1, . . . ,zn, . . . ) whose potential randomness we’re considering. The

prequential approach, which we eventually will want to come to, looks at the randomness

of a sequence of interval forecasts and outcomes (I1,z1, I2,z2, . . . , In,zn, . . .), where each Ik

is an interval forecast for the as yet unknown Xk, which is afterwards revealed to be zk,

without the need for a specification of forecasts in other situations that are never reached;

see the paper by Vovk and Shen [59] for an account of how this works for precise forecasts

and Martin-Löf randomness.

Thirdly, we perceive the need to connect our work more firmly with earlier approaches

to associating imprecision with randomness through unstable relative frequencies and non-

stationarity, most notably by Terrence Fine’s group [19, 20, 61].

And finally, and perhaps most importantly, we believe this research could be a very early

starting point for a more systematic approach to statistics that takes imprecise or set-valued

parameters more seriously, when learning from finite amounts of data. Ahead of this, more

work must be done to extend our mathematical formulation to non-binary outcomes, to

name just one important generalisation; see Ref. [33] for a step in this direction.
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APPENDIX A. PROOFS OF RESULTS ABOUT LOWER AND UPPER EXPECTATIONS,

COMPUTABILITY AND GROWTH FUNCTIONS

Proof of the claims about infimum/minimum selling prices. In Section 2, we advanced the

claim that working with infimum acceptable selling prices is, in the context of this paper,

equivalent to working with minimum acceptable selling prices, and similarly for supremum

and maximum acceptable buying prices. Let us spend some effort here to understand why

that is.

If E I( f ) is interpreted as a minimum acceptable selling price for f (X), this means that

Forecaster is willing to sell the uncertain reward f (X) for any price β down to and includ-
ing E I( f ). If, on the other hand, EI( f ) is only interpreted as an infimum acceptable selling

price for f (X), then this means that Forecaster is willing to sell the uncertain reward f (X)
for any price β strictly higher than EI( f ), but nothing is stated about his actual willingness

to sell for the price E I( f ) itself.

To clarify this idea, let us denote by S the set of all gambles f : {0,1}→ R that Fore-

caster accepts to give away, and that are therefore available to Sceptic. If pay-offs are

expressed in units of linear utility, this set S will arguably be a convex cone, and it will

include the non-positive gambles f ≤ 0, simply because it is rational for Forecaster to give

away a partial loss [36, 53, 60].

An upper expectation E I( f ) is typically interpreted as Forecaster’s infimum acceptable

selling price for the gamble f (X), meaning that [53, 60]

E I( f ) = inf{β ∈ R : Forecaster accepts to sell f (X) for price β}

= inf{β ∈ R : f −β ∈ S }. (43)

We then see that the functional E I can be used to characterise the convex cone S , but only
up to border behaviour, as Figure 5 and the following argumentation clarify. Indeed, we

can readily infer the following implications from Equation (43) and the fact that S is a

convex cone that includes all non-positive gambles:

( f ∈ S ⇒ E I( f ) ≤ 0) and
(
( f ≤ 0 or E I( f )< 0)⇒ f ∈ S

)
.

So we see that the marginal gambles g—those gambles for which E I(g) = 0—are the only

ones for which the difference in interpretation between infimum and minimum acceptable

buying prices matters in the context of this paper. When E I(g) is interpreted as a min-
imum acceptable selling price, this implies that Forecaster will actually make the marginal

gamble g available to Sceptic. But when E I(g) is interpreted only as an infimum accept-

able selling price, then the fact that E I(g) = 0 tells us nothing about whether Forecaster

will make g available to Sceptic: he may, or he may not.

The interpretation of E I( f ) as a minimum acceptable selling price is essentially reflected

in Equation (4), where we define a supermartingale M by requiring that in each situation s
its process difference ∆M(s) must be available to Sceptic, because Forecaster is willing to

sell it (to Sceptic) for some price lower than or equal to 0:

Eϕ(s)(∆M(s)) ≤ 0.

Were we to interpret E I( f ) only as an infimum acceptable selling price, this would es-

sentially mean that in each situation s the uncertain reward ∆M(s)− δ must be available

to Sceptic for all δ > 0, but not necessarily for δ = 0; but now, of course, as indicated

above, we must also take into account that a non-positive ∆M(s) ≤ 0 will also be avail-

able to Sceptic. We could have this reflected conservatively in the strict supermartingale
condition:

∆M(s)≤ 0 or Eϕ(s)(∆M(s)) < 0 for all s ∈ S. (44)

We will call any process satisfying this requirement (44) a strict supermartingale for ϕ .

Proving our statement about the equivalence of infimum and minimum acceptable selling

prices in this randomness context then amounts to showing that our randomness notions
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EI ( f ) = 0

E
I ( f )

=
0

f (1)

f (0)

FIGURE 5. Depiction of the convex cone of gambles that Forecaster ac-

cepts to give away, and that are therefore available to Sceptic. The region

that is shaded (lighter or darker) blue, with the exclusion of the bor-

der (in red), depicts the gambles f that Forecaster will definitely accept

to give away, because they have a negative infimum acceptable selling

price EI( f ) < 0 or because they’re non-positive (the darker blue ones).

The marginal gambles f (in red) are the ones for which the infimum

acceptable selling price E I( f ) is zero.

remain unaffected by replacing supermartingales with strict supermartingales in their defin-

ition.

Because the strict supermartingale condition is stronger than the supermartingale condi-

tion, it is clearly enough to show that any path ω that is not random in the supermartingale

sense, also can’t be random in the strict supermartingale sense. To prove this, consider any

test supermartingale T , and define the real process T ′ by

T ′(s) :=
T (s)+ 1

|s|+1

2
for all s ∈ S.

Since

∆T ′(s) =
1

2
∆T (s)+

1

2

(
1

|s|+ 2
−

1

|s|+ 1

)

=
1

2
∆T (s)−

1

2

1

(|s|+ 1)(|s|+ 2)
,

it follows readily [from C2 and C4] that T ′ is a strict test supermartingale. It is moreover

(lower semi)computable when T is, and it is (computably) unbounded on the same paths

as T . This implies that our notions of Martin-Löf randomness, computable randomness and

Schnorr randomness indeed remain unaffected by replacing supermartingales with strict

supermartingales in their definition.

For weak Martin-Löf randomness, we need a slightly different argument. Consider any

lower semicomputable supermartingale multiplier D, and the related multiplier process D′

defined by

D′(s) := D(s)
(|s|+ 1)(|s|+ 3)

(|s|+ 2)2
for all s ∈ S.

Then D′ is clearly also lower semicomputable, and

Eϕ(s)(D
′(s)) =

(|s|+ 1)(|s|+ 3)

(|s|+ 2)2

︸ ︷︷ ︸

<1

Eϕ(s)(D(s))< 1 for all s ∈ S, (45)

where the equality follows from C2, and the strict inequality from the assumption that D
is a supermartingale multiplier, and C1. Hence, D′ is a supermartingale multiplier as well.

Now, consider the real process T ′ defined by

T ′(s) := D⊚(s)
1

2

|s|+ 2

|s|+ 1
for all s ∈ S. (46)
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Then T ′ is non-negative since D⊚ is, and T ′(�) = 1, so T ′ is a test process. Also,

T ′(s·) = D⊚(s·)
1

2

|s|+ 3

|s|+ 2
= D⊚(s)D(s)

1

2

|s|+ 3

|s|+ 2

= T ′(s)D(s)
(|s|+ 1)(|s|+ 3)

(|s|+ 2)2
= T ′(s)D′(s) for all s ∈ S,

which shows that T ′ is the test supermartingale generated by the supermartingale multi-

plier D′. Equation (5) now tells us that

Eϕ(s)(∆T ′(s)) = T ′(s)
[
Eϕ(s)(D

′(s))− 1
]

for all s ∈ S.

The same Equation (5) also guarantees that if T ′(s) = 0, then also ∆T ′(s) = 0, and there-

fore it follows readily from Equation (45) that T ′ satisfies the strict supermartingale con-

dition (44). Finally, Equation (46) guarantees that T ′ and D⊚ become unbounded on the

same paths. �

Proof of Proposition 2. We begin by proving that inf f ≤ Eϕ ( f ) ≤ sup f . Conjugacy will

then imply that also inf f ≤ Eϕ( f ) ≤ sup f , and therefore that both Eϕ( f ) and Eϕ ( f ) are

real numbers. This fact will then be used further on. The remainder of statement E1 will

be proved further below. Since all constant real processes are supermartingales [by C1],

we infer from Equation (7) that, almost trivially,

Eϕ( f )≤ inf{α ∈ R : α ≥ f (ω) for all ω ∈ Ω}= sup f .

For the other inequality, consider any supermartingale M ∈ M
ϕ

such that liminfM ≥ f .

We derive from Equation (4) and C1 that M(s) ≥ min{M(s0),M(s1)} for all s ∈ S. This

implies that there is some path ϖ ∈ Ω such that M(�) ≥ M(ϖ1:n) for all n ∈ N0,11 and

therefore also that M(�) ≥ liminfM(ϖ) ≥ f (ϖ) ≥ inf f . Equation (7) then guarantees

that, indeed,

Eϕ( f ) = inf
{

M(�) : M ∈M
ϕ

and liminfM ≥ f
}
≥ inf f .

In particular, we find for f = 0 that

Eϕ (0) = Eϕ(0) = 0. (47)

E3. We prove the third and fourth inequalities; the remaining inequalities will then fol-

low from conjugacy. For the fourth inequality, we consider any real α and β such that

α > Eϕ ( f ) and β > Eϕ(g). Then it follows from Equation (7) that there are supermartin-

gales M1,M2 ∈M
ϕ

such that liminfM1 ≥ f , liminfM2 ≥ g, α > M1(�) and β > M2(�).
But then M := M1 +M2 is a supermartingale for ϕ with

liminfM = liminf(M1 +M2)≥ liminfM1 + liminfM2 ≥ f + g,

and we therefore infer from Equation (7) that

Eϕ( f + g)≤ M(�) = M1(�)+M2(�)< α +β .

Since this inequality holds for all real α > Eϕ( f ) and β > Eϕ(g), and since we have

proved above that upper expectations of gambles are real-valued, we find that, indeed,

Eϕ( f + g)≤ Eϕ ( f )+Eϕ(g).
For the third inequality, observe that g = ( f + g)− f , so we infer from the inequality

we have just proved that

Eϕ(g) = Eϕ (( f + g)− f )≤ Eϕ( f + g)+Eϕ (− f ) = Eϕ ( f + g)−Eϕ ( f ),

whence, indeed, Eϕ( f + g) ≥ Eϕ ( f ) +Eϕ(g), since we have already proved above that

lower and upper expectations are real-valued.

E2. We prove the second equality; the first equality then follows from conjugacy. It

follows from Equation (47) that we may assume without loss of generality that λ > 0. The

11This argument requires the axiom of dependent choice.
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desired equality now follows at once from Equation (7) and the equivalences M ∈M
ϕ
⇔

λ−1M ∈M
ϕ

and liminfM ≥ λ f ⇔ liminfλ−1M ≥ f .

E1. It is only left to prove that Eϕ( f ) ≤ Eϕ( f ). Since f − f = 0, we infer from E3

and Equation (47) that 0 = Eϕ( f − f )≤ Eϕ( f )+Eϕ (− f ) = Eϕ ( f )−Eϕ( f ). The desired

inequality now follows from the fact that lower and upper expectations are real-valued, as

proved above.

E4. We prove the first equality; the second will then follow from conjugacy. Infer

from E1 that Eϕ(µ) = Eϕ(µ) = µ , and then E3 indeed leads to

Eϕ( f )+ µ = Eϕ ( f )+Eϕ(µ)≤ Eϕ( f + µ)≤ Eϕ( f )+Eϕ (µ) = Eϕ( f )+ µ .

E5. We prove the first implication; the second will then follow from conjugacy. Assume

that f ≤ g, then inf(g− f )≥ 0, so we infer from E1 and E3 that, indeed,

0 ≤ inf(g− f )≤ Eϕ(g− f )≤ Eϕ(g)+Eϕ(− f ) = Eϕ (g)−Eϕ( f ).

The desired inequality now follows from the fact that lower and upper expectations are

real-valued, as proved above. �

Proof of Proposition 3. The ‘if’ part is immediate when we let e(s,N) := N for all s ∈ S

and N ∈ N0, so we proceed to the ‘only if’ part. That F is computable means that there

is some recursive net of rational numbers r′s,n and some recursive map e : S×N0 → N0

such that n ≥ e(s,N) implies that |r′s,n −F(s)| ≤ 2−N for all s ∈ S and N ∈ N0. The net

of rational numbers defined by rs,n := r′s,e(s,n) for all s ∈ S and n ∈ N0 is recursive because

the function e is recursive, and it indeed satisfies |rs,n −F(s)|= |r′s,e(s,n)−F(s)| ≤ 2−n for

all s ∈ S and n ∈N0. �

Proof of Proposition 4. We begin with the ‘if’ part. Assume that F is both lower and upper

semicomputable. This implies that there are two recursive nets of rational numbers rs,n and

rs,n such that rt,n ր F(t) and rt,n ց F(t) for any fixed t ∈ S. Consider the recursive nets

of rational numbers defined by δs,n := rs,n − rs,n ≥ 0 and rs,n := (rs,n + rs,n)/2. For any

fixed t ∈ S, the sequence δt,n ց 0, which implies that for any N ∈N0 there is some natural

number e(t,N) such that δt,n ≤ 2−N for all n ≥ e(t,N). Clearly, the map e : S×N0 → N0

can be defined recursively, and we see that n ≥ e(s,N) also implies that |F(s)− rs,n| ≤
|rs,n − rs,n| = δs,n ≤ 2−N , for all s ∈ S and n,N ∈ N0. Hence, the real process F is also

computable.

We continue with the ‘only if’ part. Assume that F is computable, so there is a recursive

net of rational numbers rs,n and a recursive map e : S×N0 → N0 such that n ≥ e(s,N)
implies that |rs,n − F(s)| ≤ 2−N for all s ∈ S and n,N ∈ N0. We prove that F is lower

semicomputable; the proof that F is upper semicomputable is completely similar. Consider

the recursive net of rational numbers defined by r′s,n := rs,e(s,n+2)− 3 ·2−(n+2) for all s ∈ S

and n ∈N0. Then we know that |r′s,n + 3 ·2−(n+2)−F(s)| ≤ 2−(n+2) and therefore also

−2−n =−2−(n+2)− 3 ·2−(n+2) ≤ r′s,n −F(s)≤ 2−(n+2)− 3 ·2−(n+2) =−2−(n+1) ≤ 2−n,

for all s ∈ S and n ∈ N0, which then tells us that r′s,n ≤ F(s)− 2−(n+1) ≤ r′s,n+1 and that

|r′s,n −F(s)| ≤ 2−n, again for all s ∈ S and n ∈ N0.12 Hence, we find for the recursive net

of rational numbers r′s,n that r′s,n ր F(s) for all s ∈ S, which implies that F is indeed lower

semicomputable. �

Proof of Proposition 5. Obviously, the constant real processes γ
I
(s) := p and γ I(s) := p

are computable if and only if their constant values p and p are. �

12Note that this implies that we can always assume without loss of generality from the outset for our original

net rs,n that it is non-decreasing as a function of n, that rs,n < F(s) and that e(s,n) = n for all s ∈ S and n ∈ N0.
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Proof of Proposition 6. We only prove the third statement. The proof for the first and

second statements are similar to the proof of the ‘if’ part of the third one, but simpler.

There are a number of ways to prove the third statement, but we will use Proposition 3.

For the ‘if’ part, we assume that F(�) and ∆F are computable. Proposition 3 then

implies that there are a recursive sequence of rational numbers r�,n and two recursive nets

of rational numbers rx
s,n such that |F(�)− r�,n| ≤ 2−n and |∆F(s)(x)− rx

s,n| ≤ 2−n for

all s ∈ S, n ∈ N0 and x ∈ {0,1}. We now define the recursive net of rational numbers rs,n

as follows: for any s ∈ S and any n ∈ N0, let

rs,n := r�,n +
|s|

∑
k=1

rsk
s1:k−1,n.

Then, since also

F(s) = F(�)+
|s|

∑
k=1

∆F(s1:k−1)(sk),

we see that

|F(s)− rs,n| ≤ |F(�)− r�,n|+
|s|

∑
k=1

∣
∣∆F(s1:k−1)(sk)− rsk

s1:k−1,n

∣
∣≤ (|s|+ 1)2−n,

so if we define the (clearly) recursive map e by

e(s,N) := N + |s| ≥ N + log2(|s|+ 1) for all s ∈ S and N ∈N0,

then n ≥ e(s,N) implies that |F(s)− rs,n| ≤ 2−N for all s ∈ S and n ∈ N0. Hence, F is

computable.

For the ‘only if’ part, assume that F is computable. Then definitely in particular also

its value F(�) in the initial situation � is computable, so it only remains to prove that the

process difference ∆F is computable. Consider, to this effect, any x ∈ {0,1}. It follows

from the computability of F and Proposition 3 that there is some recursive net of rational

numbers r′s,n such that |F(s)− r′s,n| ≤ 2−n and |F(sx)− r′sx,n| ≤ 2−n and therefore also

r′sx,n − r′s,n − 2−(n−1) ≤ F(sx)−F(s)≤ r′sx,n − r′s,n + 2−(n−1) for all s ∈ S and n ∈ N0.

If we now let rx
s,n := r′sx,n+1 − r′s,n+1, then this defines a recursive net of rational num-

bers rx
s,n that satisfies |∆F(s)(x)− rx

s,n| ≤ 2−n for all s ∈ S and all n ∈ N0. Hence, the real

process ∆F(·)(x) is computable by Proposition 3, and so is, therefore, the process differ-

ence ∆F . �

Proof of Proposition 7. We only give the proof for the first statement. The proof for the

second statement is similar but simpler, and the third statement then follows readily from

the first and the second, and Propositions 4 and 6.

Assume that the multiplier process D is lower semicomputable. This implies that there

are two recursive nets of rational numbers rx
s,n such that rx

s,n ր D(s)(x), for x ∈ {0,1}.

Since D(s)(x) ≥ 0, we may assume without loss of generality that rx
s,n ≥ 0 too [oth-

erwise replace this recursive net of rational numbers with the recursive net of rational

numbers max{0,rx
s,n}]. We now construct a recursive net of rational numbers rs,n as fol-

lows: for any s ∈ S and for any n ∈ N0, we let rs,n := ∏
|s|−1

k=0 r
sk+1
s1:k,n. Then, since also

D⊚(s) = ∏m−1
k=0 D(s1:k)(sk+1) and r

sk+1
s1:k,n ր D(s1:k)(sk+1) for all k ∈ {0,1, . . . , |s| − 1}, we

find that rs,n ր D⊚(s) for all s ∈ S, so D⊚ is indeed lower semicomputable. �

Proof of Proposition 8. Since D⊚ is positive, it follows trivially that D is positive as well.

Consider now any x ∈ {0,1}. Since D⊚ is computable, it follows from Proposition 6 that

∆D⊚ is computable, and therefore, we know that ∆D⊚(s)(x) is computable as well. Hence,

since D⊚ is computable and positive, and

D(s)(x) =
D⊚(s)+∆D⊚(s)(x)

D⊚(s)
= 1+

∆D⊚(s)(x)

D⊚(s)
for all s ∈ S,
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we find that the real process D(s)(x), s ∈ S is computable, and so is therefore D.

For the second statement, consider any positive computable real process F , and let

D(s)(x) :=
F(sx)

F(s)
> 0 for all s ∈ S and x ∈ {0,1},

then D is clearly a positive multiplier process with D⊚ = F/F(�). This implies that D⊚ is

computable. The first part of the proposition now implies that D is computable. �

Proof of Proposition 12. We prove that (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). Trivial, because for any growth function ρ , the map τ := ρ is a real growth

function.

(ii)⇒(iii). Fix any r ∈ N. Because the real growth function τ is non-decreasing and

unbounded, there is some mr ∈ N0 such that τ(m) > 2/r for all natural m ≥ mr. For any

such m ≥ mr, it follows from the assumption that there is some natural nr,m ≥ m for which

µ(nr,m)> τ(nr,m)− 1/r, and therefore, since also τ(nr,m)≥ τ(m) > 2/r,

µ(nr,m)

τ(nr,m)
> 1−

1

rτ(nr,m)
>

1

2
.

This implies that, indeed, limsupn→∞
µ(n)/τ(n) > 0.

(iii)⇒(i). We begin by showing that there is some real growth function τ ′ such that

limsupn→∞[µ(n)− τ ′(n)] > 0. It follows from the assumption that there is some r ∈ N

such that limsupn→∞
µ(n)/τ(n) > 1/r, and also that there is some no ∈ N0 such that τ(n)> 0

for all n ≥ no. If we now let τ ′ := τ/2r for all n ∈ N0, then it is clear that τ ′ is a real growth

function, and that limsupn→∞
µ(n)/τ ′(n) > 2. This implies that for all n ∈ N0 with n ≥ no,

there is some mn ≥ n in N0 such that µ(mn)/τ ′(mn) > 2, and therefore also

µ(mn)− τ ′(mn)> τ ′(mn)≥ τ ′(n)≥ τ ′(no).

This implies that, indeed, limsupn→∞[µ(n)− τ ′(n)] ≥ τ ′(no) > 0. Because τ ′ is comput-

able, we know from Proposition 3 [after identifying the countably infinite sets S and N0]

that there is some recursive net of rational numbers r′k,n such that

|r′k,n − τ ′(k)| ≤ 2−n for all k,n ∈ N0.

If we now define the sequence of rational numbers rk := r′k,k+1 − 3 · 2−k, then this se-

quence is clearly a recursive sequence of rational numbers for which |rk+3 ·2−k−τ ′(k)| ≤
2−(k+1) < 2−k and therefore also

τ ′(k)− 4 ·2−k < rk < τ ′(k)− 2 ·2−k for all k ∈N0. (48)

Hence also

rk+1 > τ ′(k+ 1)− 4 ·2−(k+1) ≥ τ ′(k)− 2 ·2−k > rk for all k ∈N0,

where the strict inequalities follow from Equation (48), and the weak inequality from the

non-decreasing character of the real growth function τ ′. This tells us that the sequence rk

is increasing. Equation (48) tells us that it is also unbounded, because τ ′ is. If we there-

fore define the map ρ ′ : N0 → Z by letting ρ ′(k) := ⌊rk⌋ for all k ∈ N0, then this map is

recursive because rk is a recursive sequence of rational numbers, non-decreasing because

the sequence rk is increasing, and unbounded because the sequence rk is. Since

−ρ ′(k) =−⌊rk⌋= ⌈−rk⌉ ≥ −rk >−τ ′(k)+ 2 ·2−k,

where we have used Equation (48), we find that

µ(k)−ρ ′(k)≥ µ(k)− τ ′(k)+ 2 ·2−k for all k ∈N0,

and therefore limsupn→∞[µ(n)− ρ ′(n)] ≥ limsupn→∞[µ(n)− τ ′(n)] > 0. The same in-

equality of course also holds if we replace ρ ′ by the growth function ρ := max{0,ρ ′}. �
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Proof of Proposition 13. Consider any real R > 0. Since µ is computably unbounded,

there is some growth function ρ such that Equation (14) holds. Since ρ is unbounded,

there is some mR ∈ N0 such that ρ(mR) > R, and then Equation (14) implies that there is

some natural nR ≥ mR such that µ(nR)> ρ(nR)≥ ρ(mR)> R [the weak inequality follows

from the non-decreasing character of the growth function ρ]. Hence, µ is unbounded

above. �

Proof of Proposition 14. Assume ex absurdo that both µ1 and µ2 are not computably un-

bounded. That the product µ1µ2 is computably unbounded implies, by Proposition 12(iii),

that there is some real growth function τ and some natural number r > 0 such that

(∀m ∈ N0)(∃nm ≥ m)
µ1(nm)µ2(nm)

τ(nm)
>

1

r2
. (49)

If we consider the real growth functions τ1 and τ2 defined by τ1(n) = τ2(n) :=
√

τ(n)
for all n ∈ N0, then clearly τ(n) = τ1(n)τ2(n) for all n ∈ N0, and therefore Equation (49)

guarantees that

(∀m ∈ N0)(∃nm ≥ m)
µ1(nm)

τ1(nm)

µ2(nm)

τ2(nm)
>

1

r2
. (50)

But the assumption that µ1 and µ2 are not computably unbounded, in combination with

Proposition 12(iii), guarantees in particular that there are m1,m2 ∈ N0 such that

(∀n ≥ m1)
µ1(n)

τ1(n)
≤

1

r
and (∀n ≥ m2)

µ2(n)

τ2(n)
≤

1

r
,

and therefore

(∀n ≥ max{m1,m2})
µ1(n)

τ1(n)

µ2(n)

τ2(n)
≤

1

r2
,

contradicting Equation (50). �

GHENT UNIVERSITY, FOUNDATIONS LAB FOR IMPRECISE PROBABILITIES, TECHNOLOGIEPARK–ZWIJNAARDE

125, 9052 ZWIJNAARDE, BELGIUM

Email address: gert.decooman@ugent.be

GHENT UNIVERSITY, FOUNDATIONS LAB FOR IMPRECISE PROBABILITIES, TECHNOLOGIEPARK–ZWIJNAARDE

125, 9052 ZWIJNAARDE, BELGIUM

Email address: jasper.debock@ugent.be


	1. Introduction
	2. A single interval forecast
	3. Interval forecasting systems and imprecise probability trees
	3.1. The event tree and its forecasting systems
	3.2. Imprecise probability trees and supermartingales
	3.3. Upper expectations and null events

	4. Basic computability results
	4.1. Basic definitions
	4.2. Basic results from the literature
	4.3. New material for the present context

	5. Random sequences in an imprecise probability tree
	5.1. Allowable test processes and test supermartingales
	5.2. Randomness
	5.3. Real-valued versus extended real-valued supermartingales

	6. Schnorr randomness in an imprecise probability tree
	7. Consistency results
	7.1. All paths are almost surely random.
	7.2. The well-calibrated imprecise Bayesian

	8. Constant interval forecasts
	8.1. Computable stochasticity
	8.2. The structure of the interval forecasts that make a path random
	8.3. A few examples at the extreme ends

	9. Imprecise randomness due to non-stationarity
	9.1. A simple example
	9.2. A more complicated example

	10. Imprecision can't be explained away
	11. The meagreness of random sequences
	12. Conclusion
	Acknowledgements
	References
	Appendix A. Proofs of results about lower and upper expectations, computability and growth functions

