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Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and 
long-term cognitive deterioration, commonly referred to as ‘chemo fog’. This therapy-related damage to otherwise normal-
appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring 
therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes 
appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially 
permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.
This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, 
potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were 
obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue 
using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind 
of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also 
the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides 
the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, 
a set of recommendations is proposed to support future research.
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Introduction

Cancer therapy is associated with a multitude of adverse 
effects such as cognitive dysfunction and a lower quality of 
life. These effects most likely have a multifactorial origin 
and are associated with several components of the treatment. 
For example, the use of brain radiotherapy (RTx) [1] and 
various chemotherapy (CTx) agents in both central nerv-
ous system (CNS) and non-CNS cancer are associated with 
normal tissue damage in the brain and subsequent cognitive 
decline [2, 3]. Despite a co-factoring genetic predisposition 
[4, 5], the amount of damage and related cognitive dete-
rioration from cancer therapy cannot yet be predicted on 

an individual level [6], and the cellular mechanisms behind 
these changes are not well understood. Non-invasive bio-
markers of treatment response to cancer therapy in normal-
appearing brain tissue (NABT) are thus needed to (i) study 
the etiology of damage and (ii) obtain early-markers of tis-
sue damage, allowing timely adjustment of the treatment or 
start of supportive therapy to reduce the risks of associated 
long-term cognitive and quality-of-life deterioration. Effects 
on cognition and quality of life become increasingly impor-
tant issues as new therapies for cancer in the body lead to 
prolonged survival with cerebral oligometastatic conditions 
kept stable also due to focused radiotherapy.

Currently, brain imaging research of cancer-therapy 
adverse effects is primarily focused on changes in brain 
tissue composition [7] measured with T1-weighted, 
T2-weighted, FLAIR, and susceptibility-weighted imag-
ing (SWI) sequences. These sequences are conventionally 
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used in the clinical context of tumors, are more studied in 
the context of adverse effects in normal tissues, and were 
reviewed several times. More specifically, dose-related 
changes in gray matter (GM) volume and thickness have 
been documented a few months after RTx in CNS [8, 9] 
and CTx in non-CNS cancer [10]. Susceptibility of differ-
ent brain structures to damage and exact dose tolerance 
are, however, still unknown [11]. Moreover, cognitive 
decline after RTx has been associated with microvascular 
damage [12]. These are hallmarks of vascular-related cog-
nitive changes, typically observed in dementia, and their 
appearance after RTx points to similarities with neuro-
degenerative diseases in an accelerated form. Structural 
changes in white matter (WM), measured with diffusion 
tensor imaging, have also shown a decrease in fractional 
anisotropy, potentially reflecting a decrease in fiber density 
and myelin content, after CTx in breast cancer, associated 
with cognitive decline [13]. Similar findings after CTx 
in acute lymphoblastic leukemia [14], and after RTx in 
CNS tumors [15] are also reported. Since diffusion tensor 
imaging (DTI) and functional MRI (fMRI) have been used 
clinically in the context of brain surgery—mapping the 
networks that need to be kept intact—these sequences have 
also been reviewed several times for their ability to pick 
up treatment-induced brain changes [11, 13, 14, 16, 17].

To complement these existing reviews of conventional 
MRI biomarkers, we set out to review new quantitative 
imaging biomarkers that are usually not part of the clini-
cal tumor workup. These imaging sequences, measuring 
physiology and metabolism, may provide early markers of 
treatment damage, yet, they are usually not considered for 
evaluation of cancer therapy side effects [18]. The com-
mon reasons for this are a lack of insight into the biologi-
cal specificity of these advanced sequences, the limited 
available scanning time beyond the standard protocol, and 
the fact that the complexity of some of these protocols 
makes them unfit for some of the patients. Insufficient 
clinical implementation [19], due to difficult acquisition 
and analysis, often leads to low levels of evidence in this 
context [20]. To trigger change, more attention needs to 
be devoted to these techniques, starting by reviewing the 
current body of literature.

This systematic review explores the current level of 
knowledge on quantitative imaging techniques for perfu-
sion, metabolism, relaxometry, spectroscopy, advanced 
diffusion, and susceptibility imaging to evaluate longitu-
dinal alterations in the NABT, in the sense of a visual 
absence of the tumor, due to both CNS and non-CNS can-
cer treatment in participants of all sexes and ages. It also 
assesses the correlation of cross-sectional and longitudinal 
changes obtained using quantitative measurements with 
cognitive function changes.

Methods

This systematic review was registered at PROSPERO num-
ber 224196 and followed the PRISMA and PRISMA-P 
guidelines [21, 22]. The literature search was based on the 
PICOS tool [23]. The protocols are included in Supplemen-
tary Materials.

Literature search and selection

Briefly, the structure of the search term was

• Neoplasm: e.g., liquid tumors, body tumors, CNS 
tumors, cancer;

• Normal tissue effect: e.g., normal brain, adverse effects, 
cognitive impairment;

• Neuroimaging: e.g., MRI, advanced MRI, Positron 
emission tomography (PET);

• Cancer therapy: e.g., RTx, immunotherapy, CTx, hor-
mone therapy.

The exact search strategy is provided in Supplementary 
Materials and PICOS. Two databases were searched—Medi-
cal Literature Analysis and Retrieval System Online (MED-
LINE) through PubMed search engine, and Web of Science 
core collection—on October 13, 2021, without restriction 
on publication date.

Two reviewers (JP and VK) sorted all publications by 
titles into four categories and reassessed them in a consensus 
meeting:

• A—Fits most likely with the inclusion/exclusion criteria 
(Table 1);

• B—Reasonable chance that part of data fits with the 
inclusion/exclusion criteria;

• C—Unlikely to contain data on the review subject, but 
no clear exclusion criteria;

• D—Exclusion criteria identified or clearly a different 
topic.

Studies in categories D were excluded based on title 
only. Studies in groups A, B, C were reassessed for compli-
ance with the inclusion and exclusion criteria by screening 
their abstracts. The full text was consulted in unclear cases 
(Fig. 1).

Critical appraisal

To assess the quality of the included studies, the QUADAS-2 
tool [24] was modified to assess observational imaging 
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studies (Table 2). This modified QUADAS-2 tool represents 
a list of questions from five different domains that repre-
sent the “risk of bias” associated with each study. Complete 
details and guidelines for scoring can be found in the Sup-
plementary material.

Data extraction

Bibliography, patient demographics, tumor type and 
grade, therapy type (RTx, CTx, hormone, immunotherapy, 

or other therapies) and doses, imaging modality and 
sequence, modified QUADAS-2 score, timeline of imag-
ing, a summary of main imaging findings, and association 
with cognition and QoL were extracted from each study. 
The following notation was used for reporting the timing 
of the adverse effect:

• TS—time of surgery/biopsy before the start of treatment
• T0—baseline measurement before the start of the RCTx/

immuno/hormone therapy

Table 1  Inclusion and exclusion criteria

Publications that fulfill all inclusion criteria and neither exclusion criteria were considered. Publications containing additional results to 
advanced imaging of normal tissue—e.g. extra structural imaging, tumor imaging—were considered

Inclusion criteria Exclusion criteria

● Human patients of all ages and sexes
● Longitudinal data before and after treatment OR cross-sectional 

design with an appropriate control group or a different treatment arm 
that allows evaluating the treatment effects after treatment

● Present or past neoplasia anywhere in the body
● Local or systemic treatment by RTx, CTx, or hormone therapy
● Advanced quantitative computed tomography, MRI (i.e. ASL, 

CEST, DCE, DSC, DKI, IVIM, mcDESPOT, MRS, MRSI, MWI, 
NODDI, qMT, QSM, relaxometry, VERDICT), PET/SPECT (DOPA, 
FDG, TRODAT, HMPAO, TSPO, 15O-H2O) imaging in the brain

● Dedicated description of imaging findings in NABT as a reaction to 
cancer treatment

● Not an original research article (e.g. review, conference proceedings, 
case study, protocol)

● Preclinical research
● Animal research
● Language other than English
● Study containing results only from structural MRI (e.g. DWI, DTI, 

brain volumetry, T1w, T2w, FLAIR, STI, SWI) or functional MRI
● Findings are reported in normal tissue only in close vicinity of the 

tumor

Fig. 1  Workflow of the study search and selection. Two databases 
were searched using the predefined search strategy—MEDLINE, 
Medical Literature Analysis and Retrieval System Online (PubMed), 
and Web of Science database (WoS). After excluding the duplicates 

the studies were initially screened by title (excluding n = 446 studies), 
abstract (excluding n = 96 studies), and full text (excluding n = 25 
studies), leaving 60 studies. Six more studies were discovered by 
screening the reference sections of selected studies
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• T1—acute effects during therapy or until 1 month after 
the therapy start

• T2—early delayed effects at 1–6  months after the 
therapy end

• T3—late-delayed effects at more than 6 months after 
the therapy end

Co-authors were assigned so that each modality would 
be reviewed by the same person—DSC (KE), DCE 
(JK), ASL (LH), DKI (JK), relaxometry (RN), QSM/
qMT/NODDI (VK), PET/SPECT (PN), MRS (MC, RJ, 
GS, EW). For papers with more than one modality, the 
imaging data were reviewed separately for each modal-
ity by the relevant reviewers and non-imaging data were 
reviewed by only one of the reviewers. Non-imaging data 
from pediatric studies (ML, EW) and breast cancer stud-
ies (SD, GS) were extracted separately. Cognitive tests 
and QoL were assessed separately by (LAF, FBP, and 
CP). All entries were verified by one co-author (JP). The 
studies were reviewed, scored, and summarized focus-
ing on the level of evidence for finding tissue damage in 
different methods and methodological issues that could 
explain heterogeneous findings. Also, the correlation of 
the imaging changes with changes revealed using cogni-
tive testing was reviewed. QUADAS scores and extracted 
data were filled in an online Google-Sheet to allow all co-
authors to fill the data in parallel and prevent conflicting 
entries, especially for publications containing results for 
multiple sequences.

Results

The search resulted in 746 records of which 70 studies were 
eligible for review (Fig. 1).

Perfusion imaging

Animal studies have shown that acute vascular injury after 
radiotherapy leads to vessel dilation and damage of the 
vessel endothelium [25, 26]. This is followed by thrombi 
causing microvascular occlusions [27] as a possible trig-
ger for WM-lesion formation [28]. However, a potentially 
more sensitive marker of microvascular damage is perfu-
sion imaging, comprising methods with and without exog-
enous tracers: single-photon emission computed tomogra-
phy (SPECT), PET, dynamic susceptibility contrast (DSC), 
dynamic contrast-enhanced (DCE), and arterial spin labeling 
(ASL) MRI. SPECT and PET use 99Tc-HMPAO and 15O-
H2O radiotracers, the latter being the gold standard in cer-
ebral perfusion imaging. However, 15O-H2O PET is costly 
and clinically impractical due to the short tracer half-life 
and the need for arterial blood sampling. More clinically 
feasible are dynamic gadolinium-based MRI measurements 
focusing on changes in T2* (DSC) or T1 (DCE) relaxation. 
The main advantage of DSC is its widespread use [19] with 
contrast agents available as part of the routine application 
for most MRI tumor protocols. DSC may, however, under-
estimate perfusion in the absence of an intact BBB. In con-
trast, DCE is a widely used technique to assess apparent 
contrast agent extravasation across BBB but is less sensitive 
in regions with an intact BBB. The main challenge to both 
DSC and DCE is the limited reproducibility of arterial input 
function estimation, rendering the perfusion measurement 
semi-quantitative only [29]. ASL perfusion MRI addresses 
most of these issues as it is non-invasive using magnetically 
labeled blood as an endogenous tracer. ASL is fully quanti-
tative with accuracy and reproducibility [30] comparable to 
15O-H2O-PET [31]. One disadvantage of ASL is its limited 
SNR and low sensitivity in regions with low CBF such as 
the white matter.

The review contains 28 studies on perfusion imaging: 
PET/SPECT (n = 4), DSC (n = 11), DCE (n = 5), ASL (n = 9) 
imaging. Results are summarized in Table 3 and the modi-
fied QUADAS-2 scores are in Supplementary Table 1.

Positron emission and single‑photon emission 
tomographies (PET/SPECT)

Cerebral blood flow (CBF) decreases were observed at low 
radiation dose: by 4–7% (absolute CBF, 2-5 Gy at 2 weeks 
and 3 months after stereotactic radiosurgery (SRS) [32]) 

Table 2  Modified QUADAS-2 tool

The quality of the reporting for each study was assessed in five 
domains. For each domain, one to three aspects were scored as having 
low, medium, or high risk of bias. A detailed explanation is provided 
in Supplementary Materials

QUADAS domain Risk of bias questions

Domain 1: Patient selection Study design (retrospective vs pro-
spective)

Patient selection
Clear description of selection criteria
Case description

Domain 2: Index test Image acquisition description
Image analysis description
Region of interest and data extraction

Doman 3: Reference test Tumor classification quality
Treatment details description

Domain 4: Flow and timing Timing of treatment and imaging 
described

Domain 5: Data analysis, 
processing, and reporting

Withdrawals and exclusions explained
Statistical tests reported and sufficient
Data availability
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Table 3  Perfusion results

Study Modality/MRI field Number/female 
(age ± SD y)

Tumor Type/WHO 
grade

Treatment Imaging Main finding

Bian [39] 3T 18/8F (44 ± 12) HGG III–IV IMRTx 60 Gy, 
TMZ 75 mg/m2

DSC CBV↓ after 1y in 
corpus callosum 
vs T0

Fahlström [43] 1.5T 10/?F (59 ± 8) HGG III–IV IMRTx 60 Gy, 
TMZ 75 mg/m2

DSC CBV↓4.6–6.7%, 
CBF↓ 5.1–12.5% 
in GM at 1 m 
vs < 5 Gy,T0

Fuss [37] 1.5T 25/7F (41 ± ?) LGG II RTx 60 Gy, DXM 
1.5-8 mg/day

DSC CBV↓ 30% 
for > 24 Gy after 
1.5-24 m vs T0

Jakubovic [40] 1.5T 19/9F (? ± ?) Metastasis SRS 16-24 Gy DSC CBV↑ 43%, CBF↑ 
34% after 1 m in 
5-10 Gy vs T0

Lee [41] 1.5T 22/9F (49 ± ?) HGG III–IV RTx 60 Gy DSC CBV↓ non-signifi-
cant vs T0

Nilsen [44] 3T 40/24F (63 ± ?) Metastasis SRS 15-21 Gy DSC CBF, CBV↓ 5%, 
vessel caliber↑ 5% 
after 6–9 m vs T0

Price [38] 3T 3/1F (? ± ?) LGG II RTx 54 Gy DSC CBV↓ 16–21%, 
CBF↓ in 
WM > 33 Gy vs T0

Singh [45] 3T 25/11F (55 ± ?) recGBM IV BEV escalating 
2–15 mg/kg

DSC  ↔ CBF, CBV in 
WM after 6-12 m 
vs T0

Stadlbauer [46] 3T 18/8F (54 ± 11) recGBM IV BEV 10 mg/kg DSC CBV↓ 20–30% after 
3 m, 7 m vs T0 and 
vs no-BEV

18/6F (53 ± 15) No BEV

Weber [42] 1.5T 25/11F (57 ± ?) Metastasis SRS 16-20 Gy DSC  ↔ CBF in WM/GM 
after 1.5-6 m vs T0

Wenz [36] 1.5T 19/3F (40 ± 12) LGG II CRTx 60 Gy DSC CBV↓ 30% in WM 
and GM after 6 m 
vs T0

13/3F (56 ± 9) Metastasis WBRTx 30-40 Gy

Andre [54] 1.5/3T 18/8F (57 ± ?) recGBM IV RTx 60 Gy, TMZ, 
BEV 7.5-10 mg/
kg

pCASL Acute CBF↓ 13% in 
MCA region vs T0

Chen [55] 3T 31/31F (47 ± 5) Breast II–III DXR 60, CP 600, 
DTX 100 mg/m

pCASL CBF↑ 7–12% after 
1 m vs T0 and HC

34/34F (46 ± 4) HC No
Li [53] 3T 21/4F (14 ± ?) MB IV RTx 55 Gy, CPT, 

CP
pCASL CBF↓ up to 23% 

after 0.3-15y vs HC 
and PA group18/9F (12 ± ?) PA I No

64/41F (12 ± ?) HC No
Nudelman [56] 3T 27/27F (50 ± 8) Breast I–III RTx 2, DXR 11, 

CP,DTX, HTx 3
PASL CBF↑ 7–12% after 

1 m vs CTx- and 
HC group; CBF↑ 
35% in CTx + , 
CBF↑ 13% in CTx- 
both in precentral 
gyrus vs HC

26/26F (52 ± 9) Breast 0–II RTx 6, HTx
26/26F (48 ± 10) HC No

Nudelman [57] 3T 24/24F (49 ± 8) Breast I–III RTx 2, DXR 11, 
CP, DTX, HTx

PASL CBF↑ after 1 m and 
12 m in CTx + vs 
T023/23F (59 ± 9) Breast 0–II HTx

Petr [140] 3T 24/? (54 ± 14) GBM IV IMRTx 60 Gy, 
TMZ 75 mg/m2

pCASL CBF↓ 9.8% in GM 
after 3 and 6 m 
vs T0
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and by 18.5% (relative CBF normalized to the contralat-
eral region, < 3 Gy at 0.5–6 months after RTx [33]). After 
high-dose radiation, contradicting results were reported 
in relative CBF: 22.5% decrease (> 3 Gy, normalization 

to the contralateral region [33]) and 0.6–5.1% increase 
(> 10 Gy, normalized to < 5 Gy, 3 weeks after 3D-CRTx) 
[34]. Qualitatively evaluated regions with hypoperfusion 
in cortex and cerebellum were reported in acute myeloid 

Tumor type: AAL acute lymphoid leukemia, AML acute myeloid leukemia, AVM arteriovenous malformation, CNS central nervous system, 
GBM glioblastoma, HC healthy control, HGG high-grade glioma, LGG low-grade glioma, MB medulloblastoma, PA pilocytic astrocytoma, 
recGBM recurrent GBM, WHO World Health Organization
Treatment type: BEV bevacizumab, CTx chemotherapy, CPT cisplatin, CRTx conformal RTx, CP cyclophosphamide, DXM dexamethasone, 
DTX docetaxel, DXR doxorubicin, HTx hormone therapy, IMRTx intensity-modulated RTx, RTx radiotherapy, SRS stereotactic radiosurgery, 
TMZ temozolomide, WBRTx whole-brain RTx
Imaging: ASL arterial spin labeling, DSC dynamic susceptibility contrast, DCE dynamic contrast enhanced, pCASL pseudo-continuous ASL, 
PASL pulsed ASL
Findings: CBF cerebral blood flow, CBV cerebral blood volume, Ktrans exchange rate between  Ve and  Vp, Ve extravascular, extracellular frac-
tional volume, GM gray matter, Vp intravascular blood plasma fractional volume, MCA middle cerebral artery, T0 pre-therapy baseline, WM 
white matter

Table 3  (continued)

Study Modality/MRI field Number/female 
(age ± SD y)

Tumor Type/WHO 
grade

Treatment Imaging Main finding

Petr [9] 3T 44/20F (55 ± 13) GBM IV RTx 60 Gy, TMZ 
75 mg/m2

pCASL CBF↓ 10–11% in 
GM after 3 and 
6 m, proton and 
photon therapy 
comparable ↓ vs T0

16/5F (52 ± 16) Proton 60 Gy, TMZ 
75 mg/m2

Wang [52] 3T 16/? (65 ± 9) LGG I–II RTx 36-63 Gy pCASL CBF↓ 7–18% after 
2-4 m vs T0

19/? (62 ± 9) HGG III–IV CBF↑ 0–18% after 
2-4 m vs T0

Weber [42] 1.5T 25/11F (25–73) Metastases SRS 16-20 Gy PASL  ↔ CBF WM/GM 
until 6 m vs T0

Artzi [50] 3T 26/16 (51 ± 12) HGG III–IV RTx, BEV DCE  ↔  Vp in WM or GM 
vs T011/? (37 ± 11) HC No

Cao [47] 1.5T 10/1F (45 ± 16) CNS I–III 3D-CRTx 
50-60 Gy

DCE Vp↑ 12% after 1 m, 
 Ktrans↑ 52% at w6 
of therapy vs T0

Fahlström [48] 1.5T 12/?F (56 ± 11) HGG III–IV IMRTx 60 Gy, 
TMZ 75 mg/m2, 
BEV

DCE Ve↑ 8% after 3 m 
vs T0

Farjam [49] 1.5T 27/10F (50 ± 12) CNS I–III IMRT/3DCRTx 
50-60 Gy

DCE Ktrans ↑ in hippocam-
pus after 1 m vs T0

Wong [51] 3T 14/9F (?) Metastases WBRTx 37.5 Gy DCE  ↔ after 1–5 months 
vs T0

Gulaldi [33] SPECT 18/5F (42 ± 13) Glioma II–IV RTx 54-64 Gy, 
CTx

Tc-99 m-HMPAO CBF↓ 18.5% 
in < 3 Gy, 22.5% 
in > 3 Gy after 
3-6 m vs T0

Hahn [34] PET 11/5F (48 ± ?) CNS I–III 3DCRTx 50-60 Gy 15O-H2O CBF↑ 0.6–5.1% 
in > 10 Gy at 3w 
vs < 5 Gy, T0; 
resolved after 6 m 
vs T0

Taki [32] SPECT 13/8F (52 ± ?) CNS, AVM, metas-
tases

SRS 14-25 Gy Tc-99 m-HMPAO CBF↓ 4, 7% whole 
brain after 2w and 
3 m in 2-5 Gy vs 
T0

Vera [35] SPECT 12/5F (11 ± ?) AML, AAL WBRTx 12-18 Gy, 
HD ara-C 
18–36 g/m2

Tc-99 m-HMPAO Heterogeneous CBF 
in cortex, cerebel-
lum after 1 m vs T0
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and lymphoid leukemia (AML and ALL) patients after 
CTx, and whole-brain RTx (WBRTx) or total-body RTx 
[35].

Dynamic susceptibility contrast (DSC)

Default DSC assessment provides relative CBF and CBV 
values only. These estimates can be either semi-quanti-
tative absolute values using normalization to individual 
integrated arterial input function (AIF), or normalized to a 
reference region. Using AIF-based quantification in brain-
tumor patients, a 30% decrease in CBV was documented 
6 months after WBRTx [36], and after fractionated RTx 
[37], and with reductions of 16–21% in both CBV and 
CBF at 3 months post-therapy [38]. Up to 40% CBV reduc-
tion in the corpus callosum was observed one year after 
therapy, however, the exact CBV normalization was not 
mentioned and the regional values were highly variable 
across time points and brain regions [39]. One of the few 
contradictory findings showed a large CBV (42.2%) and 
CBF (33.9%) increase at 1 month after SRS, but only in 
regions receiving between 5 and 10 Gy [40].

A series of studies used normalization to regions 
receiving low doses of radiation in brain tumor patients. 
Normalization to regions < 15 Gy and < 0.5 Gy yielded 
only non-significant changes 2 months after RTx [41] and 
3 months after SRS [42]. Fahlström et al. normalized to 
a 0–5 Gy region in WM, and reported a CBV decrease of 
4.6–6.7% in GM, and CBF decreases of 5.1–12.5% in GM 
and 3.1–7.4% in WM. Interestingly, changes were not sig-
nificant when normalizing to a GM region [43]. Transient 
reductions of 5% in microvascular CBV and CBF were 
observed in low-dose regions at 6–9 months normalized 
to < 1 Gy region. A corresponding 5% increase in the aver-
age vessel caliber was observed when using a combined 
gradient-echo spin-echo based readout scheme [44].

Some of the studies above looked at mean regional 
imaging values at regions defined by their dose from the 
dose-distribution maps and reported non-significant RT-
dose dependence [37, 38, 41], whereas an inverse correla-
tion of CBV and CBF to dose in WM was observed only 
by Fahlström et al. [43]. While some studies report that 
CBV plateaus several months after brain RTx and does not 
resolve for years [37], resolution of perfusion changes in 
the period of 9–18 months after therapy was also observed, 
though without adjusting for subgroups at baseline [44].

Mixed results were reported in NABT following anti-
angiogenic treatment in glioblastoma patients varying 
from no perfusion change [45] to a 20–30% CBV decrease 
3–7 months after therapy onset compared to both baseline 
and to bevacizumab-naive patients [46].

Dynamic contrast enhanced (DCE)

DCE primarily measures the intravascular blood plasma 
fractional volume  (Vp), the extravascular, extracellular frac-
tional volume  (Ve), and exchange rate, i.e. BBB leakage, 
between these two compartments  (Ktrans). The reviewed stud-
ies reported DCE changes solely in patients with primary 
brain tumors or metastases receiving cranial radiation.

A  Vp increase of 4–10% was observed at therapy week 
3 of RTx, peaking at 12% 1 month after therapy, resolving 
to 3-week values at 6 months.  Ktrans increase of 39–52% 
at week 6 of therapy resolved to pre-therapy values at 
6 months, showing correlation to the regional dose and 
overall irradiated volume [47]. No other DCE studies gave 
clear results. Transient  Ve increase by 8% was observed in 
GM 3 months post-RTx, but  Ktrans and  Ve at other times had 
similar magnitudes but were not significant [48]. A longi-
tudinal  Ktrans increase in the hippocampus was claimed one 
month after RTx, without providing details of the effect size 
[49]. No changes in  Vp were observed after RCTx [50], nor 
in the non-normalized area under the curve (AUC) 6 months 
after WBRTx [51].

Arterial spin labeling (ASL)

ASL did not show CBF changes in NABT at 3 months after 
SRS in brain metastases patients [42], and unclear findings 
of both increase and decrease were reported in patients 
diagnosed with high-grade (HGG) and low-grade gliomas 
(LGG), respectively [52]. A larger prospective study in glio-
blastoma patients was, however, in line with the majority of 
DSC results showing 10–11% CBF decrease 3 and 6 months 
after photon RCTx at both low and high-dose regions, with 
a comparable decrease seen in proton-therapy patients alone 
[9]. CBF decrease was shown in pediatric patients with pos-
terior fossa tumors 7 years after RCTx. CBF in patients with 
medulloblastoma undergoing RCTx was both lower than in 
controls and in RCTx-free patients with astrocytoma [53]. 
Bevacizumab-related acute CBF decrease of 13% was also 
shown with ASL in glioblastoma patients [54]. In metas-
tasis-free breast cancer patients 1 month after CTx, a CBF 
increase of 7–12% was shown with respect to both baseline 
and healthy controls, despite the anti-angiogenic effects of 
CTx [55], and a similar increase was confirmed by another 
group compared with both the CTx-naive patients and 
healthy controls [56, 57].

Perfusion imaging discussion

Perfusion decrease after brain RTx was demonstrated by 
most quantitative perfusion studies, although absolute per-
fusion values were not always obtained. Using PET (and, to 
some extent, SPECT) absolute values can only be provided 
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when a properly calibrated acquisition and processing is 
performed. And DSC and DCE can provide semi-quanti-
tative values only. Therefore, most of the included studies 
normalized the acquired perfusion results to whole-brain 
values, a reference anatomical region, or to a low-dose 
region assuming to be relatively unaffected by the therapy. 
However, either of these assumptions might be invalid as 
effects of therapy were shown across the entire brain and 
in the low-dose regions as well. Such normalization might 
then mask overall perfusion changes. None of the reviewed 
studies were able to distinguish between the separate effects 
of CTx and RTx, although both were independently shown 
to affect perfusion. Most studies investigated acute or early 
delayed changes in perfusion and did not investigate late-
delayed effects. While a few studies suggested that perfusion 
changes might resolve after several months, these have to be 
interpreted with care as the group sizes typically decrease 
at later time points, and no larger studies with observing 
longitudinal perfusion deficits after 1 year exist.

Technique repeatability is an important aspect needed 
for assessing and comparing the significance of the find-
ings between studies. We provide here the literature values 
of repeatability of techniques in normal tissue for all tech-
niques with at least two reviewed references and a single 
positive imaging finding. 99mTc-HMPAO SPECT repeatabil-
ity of absolute flow on rescan was 15.0 ± 1.5% [58]. Very 
good repeatability of CBV,  Ktrans, and CBF, respectively, 
was reported for DSC (3–11%) [59], DCE (7.7%) [60] and 
ASL (6.6–14.8%) [30]. These, however, greatly depend on 
the used parameters, sequence implementation, or models 
used for quantification and can vary substantially between 
studies [61, 62].

Metabolic imaging

Magnetic resonance spectroscopy (MRS) enables the detec-
tion of MR signals generated by chemical compounds other 
than water, such as N-acetyl aspartate (NAA), creatine 
(Cr), choline (Cho), glutamate, myo-inositol (mI), lactate, 
and γ-aminobutyric acid. MRS provides an MR spectrum, 
originating from the nuclei in atoms (e.g. 1H), graphically 
displaying measured signal intensity as a function of their 
resonance frequency. The relative area under each peak is 
directly proportional to the tissue concentration of the cor-
responding nuclei [63]. MRS allows assessing the in-situ tis-
sue biochemistry, which may relate to tumor characteristics 
from different brain-tumor types. The typical excitation and 
localization scheme is PRESS (point resolved spectroscopy). 
Increased choline and decreased NAA levels are typically 
seen in tumors, whereas decreased NAA in NABT indicates 
decreased neuronal density. Additionally, 1H-MRS is highly 
sensitive to metabolic abnormalities underlying cognitive 
deficits [64]. Besides MRS, PET is the most used modality 

to measure brain metabolism. Fluorodeoxyglucose (FDG), 
18 kDa translocator protein (TSPO), and tropen derivative 
(TRODAT) based tracers can be used, respectively, to meas-
ure brain glucose uptake, microglia and astrocyte activa-
tion, and the presence of dopamine active transporter. CTx 
is suspected to elevate inflammatory cytokine levels [65], 
possibly detected by FDG-PET, decrease dopamine release 
[66], measurable by TRODAT-SPECT, or directly by TSPO-
PET through microglia and astrocyte [67], all mechanisms 
possibly contributing to cognitive decline.

This review contains 39 studies on metabolic imaging: 
MRS (n = 23), FDG-PET (n = 6), DOPA-PET (n = 1), TSPO-
PET (n = 1), and TRODAT-SPECT (n = 1). Results are sum-
marized in Table 4 and the modified QUADAS-2 scores are 
presented in Supplementary Table 2.

Magnetic resonance spectroscopy (MRS)

Only two studies did not find significant changes in NAA, 
choline, or creatinine, or their ratios in NABT following cra-
nial RTx—in brain metastasis patients after 1 to 12 months 
[68], and in CNS and leukemia patients after 10 and 8 years 
[69]. Almost all others reported a decrease in NAA, Cr, or 
NAA/Cr, or an increase in Cho or Cho/Cr. While one of the 
first cross-sectional studies on 1H-MRS changes in NABT 
in ALL subjects showed changes only at dose > 59 Gy [70], 
later studies in gliomas patients found changes even in doses 
below 6 Gy, compared with healthy controls and pre-therapy 
baseline [71], or as early as 1 week after WBRTx [72]. Lim-
ited evidence of dose effect was available comparing low 
and high-dose regions after RCTx [73], and patients with 
and without RTx [74]. Combined RCTx seemed to worsen 
the effect in pediatric brain tumor patients in comparison 
with RTx only [75]. While these studies mainly focused on 
regions contralateral to the tumor, metabolic changes were 
also reported in specific anatomical regions irrespective 
of tumor location. Hippocampal metabolic changes were 
reported 1 month [76] and 4 months after WBRTx [77, 
78]. Additionally, a progressive worsening was reported 
between week 4 of 3D-CRTx until 6 months after, with 
NAA/Cr in the corpus callosum further decreased from 10 
to up to 18% [79]. However, the decrease of NAA/Cho by 
19% 4 months after RTx resolved to pre-therapeutic levels 
another 4 months later in another study [80]. Only two stud-
ies were in partial conflict with the results above. A decrease 
of both NAA/Cr and Cho/Cr in NABT was reported until 
6 months after 3D-CRTx [81]. A lower Cho/Cr, and higher 
NAA/Cr and NAA/Cho in normal-appearing WM (NAWM) 
after RTx was reported with respect to healthy controls [82].

Besides a single pediatric study with ALL patients, 
reporting decreased choline levels [83], metabolic changes 
following CTx treatment of non-CNS tumors were mostly 
consistent with brain RT-related changes. ALL patients 
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receiving methotrexate and cranial RTx at 34 years after the 
diagnosis showed a decrease of NAA/Cr and an increase of 
myo-inositol (mI) in deep WM and parieto-occipital GM 
[84]. Metabolic changes were also shown cross-sectionally 
in four studies including breast cancer patients undergoing 
locoregional chest RCTx and hormone therapy. Higher mI 
and choline, and lower NAA/Cho were reported 5 years after 
therapy compared with healthy controls [85]. But NAA/Cr 
decrease was shown also after 10 years in comparison with 
CTx-naïve patients treated with RTx only [86], or after 
12 years in comparison with healthy controls or patients 
without chemo- or hormone-therapy [87]. Lastly, NAA 
and Cr decrease in the posterior cingulate gyrus and dorsal 
thalamus at 2–3 weeks after therapy was shown compared 
with baseline in patients with RCTx but not in patients with 
hormone therapy only [88].

Finally, the influence of anti-angiogenic therapy on 
NABT was studied longitudinally in recurrent glioblastoma 
in two studies after 3 and 7 months [46] and after 2 months 
[89]. Neither study found significant changes in either NAA, 
Cr, or Cho, and the second study also reported a lack of 
changes in 31P results of pH, adenosine triphosphate, phos-
phomonoesters, phosphodiesters, phosphocreatine, and inor-
ganic phosphate.

PET and SPECT metabolic imaging

Similar to the perfusion findings, the metabolic measure-
ments were mostly normalized to whole brain or low-dose 
region values. Consistent with other findings after brain 
RTx, glucose uptake decreased 3 weeks and 6 months post-
treatment in the region > 10 Gy when normalized to < 5 Gy 
region [34]. No clear findings were obtained with FDG-PET 
in three studies with breast cancer patients. No uptake dif-
ferences between baseline and 1y after chemo and hormone 
therapy were observed when normalizing to the global 
mean [90]. No differences were observed between CTx and 
control groups 7 years after the therapy, although a 7–8% 
decrease was observed in the lentiform nucleus between the 
hormone and CTx and hormone-therapy only groups when 
normalized to the all-ROIs mean [91]. Higher uptake than 
in controls was observed 16 years after chemo and hormone 
therapy in postcentral gyrus and corpus callosum after a 
global normalization, but the effect was opposite in fron-
tal gyri, substantia nigra, and brainstem [92]. Breast cancer 
survivors reporting chemo-fog were examined using 99Tc-
TRODAT-1 SPECT measuring dopamine transport, report-
ing a 20–23% decrease in the putamen, caudate, and striatum 
[93], and TSPO-PET showed signs of neuroinflammation 
in the occipital and parietal lobes both compared to non-
treated patients and a healthy group 4 weeks after (6 months 
of) CTx [94]. Finally, two studies reported on CTx effects 
in patients with non-Hodgkin lymphoma. A glucose uptake 

increase was measured in the parietal and cingulate cortex, 
and a decrease in basal ganglia, brainstem, and thalamus 
when normalized to whole-brain activity [95]. In one of the 
two studies that used non-normalized standard uptake val-
ues (SUV), mean cortical glucose uptake decreased 20% 
between pre-therapy and 1 to 14 months post-therapy [96]. 
The other study reported a brief 21% increase of 18F-DOPA 
SUV during TMZ therapy in female glioma patients [97].

Metabolic imaging discussion

Absolute quantification of 1H-MRS signals requires normali-
zation to the concentration of an internal or external refer-
ence metabolite, of which stability is of utmost importance. 
In the reviewed studies, typically an internal reference was 
used, either the tissue-water concentration or an individual 
metabolite (e.g. creatinine). Notably, several studies reported 
creatinine changes in NABT after cancer treatment, which 
may confound metabolic ratios. Moreover, despite that most 
studies with non-CNS tumors placed the MRS ROI at an 
anatomical location in deep WM, the majority of studies 
with CNS tumors specified the location as contralateral to 
the tumor, without providing the detailed anatomical loca-
tion of the tumor, the distance from the tumor, or WM and 
GM content. This may have led to signal contamination with 
tumor-related changes, and the mixing of signals from differ-
ent tissue types. Consistent voxel prescription and anatomi-
cal landmarks are recommended to improve inter-patient and 
inter-study reproducibility and to comply with the recent 
consensus on MRS reporting standards [98]. Additionally, 
a further consensus recommends the sLASER sequence for 
3T MRI [99], while PRESS was used in the majority of the 
reviewed studies. Another main shortcoming was that hor-
mone therapy with tamoxifen is known to influence brain 
metabolites [100] and most studies reviewed here were not 
designed to easily disentangle the effect of different chemo-
therapeutics and tamoxifen. Finally, more attention should 
be given to other metabolites than NAA, choline, and cre-
atinine since changes related to cognitive performance were 
reported in other metabolites, e.g., mI.

Reproducibility of MRS at 3 T with PRESS sequence 
showed a median between-session coefficient of variation 
for the five major metabolites — NAA, tCr, Glu, tCho, and 
Ins—between 2.5 and 5.3% [101], and similar values below 
5% were obtained at 7T with semi-LASER sequence [102]. 
In oncological patients, the test–retest coefficient of varia-
tion in 18F-FDG PET was estimated to be 10.0 ± 3.1% for 
tumor SUV mean [103] and can be expected to be lower in 
normal brain tissue, although no clinical studies are avail-
able to confirm this assumption.

The main concern for PET/SPECT was that its results 
were normalized to the whole brain or a region receiving a 
low dose of radiation. For treatments that are likely to affect 
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the entire brain—e.g., chemo- or hormone therapy—this 
may have masked true metabolic changes. The use of SUV 
might be a better solution for future studies if additional care 
is taken to alleviate the shortcomings of SUV [104].

Advanced diffusion, susceptibility, and relaxation 
imaging

Diffusion-weighted imaging (DWI) and diffusion tensor 
imaging (DTI) models are most commonly used for diffu-
sion imaging of WM in the clinical context. While sensi-
tive to changes in the tissue microstructure, specificity to 
individual microstructural features appears to be insuf-
ficient. Two other models—neurite orientation dispersion 
and density imaging (NODDI) [105] and diffusion kurtosis 
imaging (DKI) [106]—are tackling this drawback by analyz-
ing multi-shell diffusion data with b-values above 1500 s/
mm2 [107]. NODDI attempts to disentangle the micro-
structural complexity of nerve fibers in vivo by delivering 
multi-compartmental maps of neurite orientation dispersion 
index (ODI) and neurite density index (NDI). DKI delivers 
a unitless apparent kurtosis factor K describing the share 
of non-Gaussian water movement. A clinical application 
for NODDI in oncological brain MRI is the quantification 
of white matter structural loss due to treatment, as neural 
density is expected to decrease due to brain radiation. DKI 
reveals tissue inhomogeneities, which can be used to evalu-
ate tumor and NABT response to treatment through its pre-
sumed sensitivity to cell density and heterogeneity [108], 
such as in inflammation or apoptosis. However, within the 
limited scanning time, it is important to consider what fea-
tures are of interest as multi-shell sequences (e.g. NODDI) 
typically have longer scanning times.

Quantitative susceptibility mapping (QSM) and myelin 
water imaging (MWI) are two techniques based on the 
quantification of T2* relaxation. QSM modifies suscepti-
bility-weighted imaging (SWI) to detect weak susceptibil-
ity changes and generates maps of quantified susceptibility 
parameters, for example, based on multi-echo acquisitions 
[109]. QSM, or directly T2* mapping, can be used to quanti-
tatively assess (micro)hemorrhages and iron deposition from 
blood, as an association between microbleed incidence with 
RTx dose and cognitive decline was previously shown on the 
qualitative evaluation of SWI [12]. MWI is based on decon-
volution of myelin-water components of T2-decay curves 
[110, 111], and is ideal for imaging de- and remyelination 
as well as gliosis. While atrophy after cancer therapy can 
be identified in T1-weighted images, T1-time mapping can 
possibly identify more subtle changes in tissue density, glio-
sis, or edema. Finally, quantitative magnetization transfer 
(qMT) is a technique that can be used to estimate the amount 
of magnetization transfer between the semi-solid macromo-
lecular pool—including myelin—and the free water pool but 

needs additional multi-frequency acquisition to generate the 
MT spectrum [112].

This review contains 12 studies on advanced diffusion, 
susceptibility, and relaxation imaging: NODDI (n = 3), DKI 
(n = 7), qMT (n = 1), QSM (n = 2), MWI (n = 1), and relax-
ometry (n = 2). Results are summarized in Table 5 and the 
modified QUADAS-2 scores are in Supplementary Table 3.

Advanced diffusion imaging

Limited evidence on cancer-therapy-related changes in 
NABT measured by advanced diffusion models appears to 
be available. While a baseline correlation of NDI with tumor 
volume was shown [113], no significant difference in mean 
kurtosis was reported in WM contralateral to the tumor both 
in glioblastoma patients [114] and breast cancer patients 
[115]. The latter study also showed no changes in myelin 
water fraction, or ODI, NDI, or isotropic volume (Viso) 
derived from NODDI [115]. However, 11–12% decreases 
in mean kurtosis in the temporal lobe were measured in GM 
and WM in patients with nasopharyngeal carcinoma 1 week 
after RCTx with a further decrease to 34–39% after 1 year 
[116], and a decrease in WM, but not in GM was also found 
1.2–12.2y after pediatric germ cell tumor [117]. An increase 
of radial kurtosis by 9% in NAWM was reported in testicular 
cancer survivors after CTx [118]. Last, an elevated Viso in 
central WM and higher NDI in the corticospinal tract was 
found in survivors of pediatric sarcoma at 2 to 20 years after 
CTx [119].

Quantitative susceptibility and relaxation mapping

No QSM changes were observed in breast cancer patients at 
1 and 5 months after CTx in comparison with a CTx-group 
[120] nor longitudinally in glioblastoma patients [121]. No 
longitudinal changes were detected in NAWM of glioblas-
toma patients using qMT or T2* mapping [122]. Finally, a 
4.5% decrease of T1-time was detected both in GM and WM 
of pediatric brain tumor patients after fractionated RTx at an 
average of 0.8y follow-up [123].

Advanced diffusion, susceptibility, and relaxation imaging 
discussion

The level of evidence for therapy-related changes in NABT 
as identified by advanced diffusion techniques (NODDI, 
DKI) techniques was low as the findings were often non-sig-
nificant or inconsistent. A potential explanation is that study 
sample sizes were small and the study designs were mostly 
cross-sectional. This was similarly true for QSM, qMT, 
MWI, and T1 and T2* mapping studies. More specifically, 
only a single T1-mapping study identified treatment-related 
effects in NABT. Nevertheless, first encouraging results do 
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exist, and result consistency may rise with increasing num-
bers of studies. It is, therefore, crucial to harmonize study 
protocols and adhere to the highest quality of acquisition, 
analysis, and reporting for these techniques.

For NODDI, the inter-session reproducibility of NDI 
and ODI parameters is below 5% voxel-wise and under 2% 
regionally. However, ISO has above 40% voxel-wise and 
above 10% regional repeatability [124]. The repeatability 

Table 5  Advanced diffusion, susceptibility, and relaxation imaging results

Tumor type: CNS central nervous system, GBM glioblastoma, GCT  germ cell tumor, HC healthy control, NPC nasopharyngeal carcinoma, 
WHO World Health Organization
Treatment type: FEC 5 fluorouracil, epirubicin, and CP, ASCH ascorbate, BEP bleomycin, etoposide, and CPT, CTx chemotherapy, CPT cispl-
atin, CRTx conformal RTx, DTX docetaxel, IMRTx intensity-modulated RTx, RTx radiotherapy, TMX tamoxifen, TMZ temozolomide
Imaging: DKI diffusion kurtosis imaging, MWI myelin water imaging, NODDI neurite orientation dispersion and density imaging, qMT quanti-
tative magnetization transfer, QSM quantitative susceptibility mapping
Findings: GM gray matter, MK mean kurtosis, MWI myelin water fraction, NDI neurite density index, NAWM normal-appearing WM, ODI ori-
entation dispersion index, Viso volume isotropy, WM white matter

Study Modality/ 
MRI field

Number/female 
(age ± SD y)

Tumor 
Type/WHO 
grade

Treatment Imaging Main finding

Chen [120] 3T 14/14F (66 ± 5) Breast I-III CTx QSM  ↔ QSM in caudate, 
globus pallidus, puta-
men, thalamus at 1 m, 
5 m vs HC

13/13F (68 ± 6) HC No

Cushing [121] 3T 20/?F (?) GBM IV RTx 60 Gy, TMZ, 
ASCH

QSM  ↔ QSM in 
ASCH + and ASCH- 
group at T1 vs T0

Mehrabian [122] 3T 16/3F (55 ± ?) GBM IV RTx 60 Gy, TMZ qMT  ↔ qMT in NAWM at 
3-8 m vs T0

Cushing [121] 3T 20/?F (?) GBM IV RTx 60 Gy, TMZ, 
ASCH

T2*  ↔ T2* in ASCH + and 
ASCH- group at T1 
vs T0

Steen [123] 1.5T 21/?F (10 ± ?) CNS I-IV 3D-CRTx 56 Gy, CTx T1 T1↓ 4.5% in GM and 
WM at 0.8y vs T0

Billiet [115] 3T 25/25F (44 ± 6) Breast I-III RTx 92%, TMX 60%, 
FEC

MWI, DKI, NODDI  ↔ MK, ODI, NDI, 
Viso, MWF at 3-4y

14/14F (43 ± 6) Breast I-II RTx 79%, TMX 79%
15/15F (42 ± 5) HC No

Chakhoyan [114] 3T 23/?F (57 ± ?) GBM IV RTx 60 Gy, TMZ DKI  ↔ MK in NAWM 
contralateral to the 
tumor vs T0

Romero-Garcia [113] 3T 17/8F (36 ± 10) Glioma I-IV RCTx 71% NODDI Pre-operative NDI cor-
related with recovered 
memory, recovery in 
NDI correlated with 
memory scores

Sleurs [119] 3T 33/?F (23 ± 4) non-CNS CTx NODDI, DKI Viso↑ in central WM, 
NDI↑ in corticospinal 
tract vs HC at 9y

34/?F (22 ± 4) HC No

Stouten-Kemperman 
[118]

3T 27/0F (43 ± 8) Testicules BEP DKI Radial kurtosis↑ 9% vs 
CTx-18/0F (48 ± 10) HC No

Tso [117] 3T 20/5F (14 ± 3) GCT RCTx (30-54 Gy), 
Surgery (30%)

DKI MK↓ in WM, ↔ in 
GM, at 6.5y (range 
1.2–12.2y)

Wu [116] 3T 56/22F (47 ± 11) NPC II-IV IMRTx 68-72 Gy, 
CPT, DTX

DKI MK↓ 11%,34% in WM; 
12%,39% in GM at 
1w,12 m vs T0

Wu [126] 3T 54/15F (49 ± 13) NPC II-IV IMRTx 68-72 Gy, 
CPT, DTX

DKI Axial, radial MK↓ at 
1 m in cogn-decline 
vs non-decline at 2y
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of DKI is not widely established, but the first results report 
a coefficient of variation between 4% and 5.2% for both RK 
and MK parameters [125].

Clinical‑imaging association

Several studies investigated either cognition or quality-
of-life, together with imaging changes without assessing 
their association. Either: (a) no cognitive or quality-of-life 
effects were found [39, 56, 83], (b) no imaging changes were 
detected [120], (c) the correlations between imaging and 
clinical findings were not reported [84, 86, 87].

Most studies reported an association of perfusion changes 
(CBF and CBV decrease, or  Vp,  Ktrans increase) with cogni-
tive or quality-of-life deterioration after brain radio(chemo)
therapy. While no correlation of ASL-CBF with full-scale 
IQ was found in patients with posterior fossa tumors [53], a 
decrease in 15O-H2O-PET signal at 6 months post-treatment 
correlated with retained cognitive function [51]. CBF and 
CBV decrease and mean vessel caliber increase obtained 
with DSC after SRS were more pronounced in patients 
with ECOG (Eastern Cooperative Oncology Group) per-
formance score > 0 on the pre-SRS baseline, hinting that 
the vasculature of those patients was already impaired at 
baseline and thus more susceptible to radiation-induced 
damage [44]. An acute increase of  Vp in the left temporal 
and frontal lobes and  Ktrans in the left frontal lobe was cor-
related with decreased verbal learning rates, and  Ktrans also 
with decreased recall scores [47].  Ktrans changes in the hip-
pocampus 1 month post-RTx were correlated with memory 
function at 6 months (r = − 0.95, p < 0.0006) and 18 months 
(r = − 0.88, p < 0.02) [49]. In breast cancer patients after 
CTx, ASL-CBF increased and this negatively correlated with 
a decrease in alerting network score (− 0.452 < r < − 0.550) 
and in the executive control network (0.507 < r < 0.680) [55]. 
An increase in frontal-cortex CBF from 15O-H2O-PET meas-
urements was associated with symptoms of CTx-induced 
peripheral neuropathy at 1 month but not at 1 year after 
therapy [57].

The metabolic changes reported in brain-RTx patients 
correlated with a decrease in cognitive performance in most 
studies. NAA/Cr in corpus callosum after 1 month corre-
lated positively with verbal fluency score and visuospatial 
functioning at 6 months, while Cho/Cr correlated nega-
tively with the memory functioning score [79]. Hippocam-
pal NAA/Cr correlated positively with the visuospatial 
memory test scores (r = 0.66; p = 0.008) [78]. And choline 
levels in NAWM correlated positively with IQ in pediat-
ric patients 10 years after therapy [69]. Brain spectroscopy 
changes and their correlation to cognitive changes in breast 
cancer patients were similar to that of patients undergoing 
brain irradiation. Multifactorial memory score correlated 
negatively with choline level (r = − 0.62, p = 0.005) and 

mI (r = − 0.55, p = 0.02), but not with NAA/Cho or NAA/
mI 5 years after therapy. And no imaging correlations were 
found with the decreased executive function [85]. Auditory 
verbal learning scores correlated with NAA in posterior 
cingulate gyrus (r2 = 0.470–0.5, p < 0.01) [88]. Finally, a 
higher global deficit score (GDS) was weakly associated 
with inflammation on TSPO-PET in the frontal lobe after 
CTx in breast cancer [94].

Regional decreases in glucose uptake positively corre-
lated with cognitive function in three studies of breast cancer 
patients undergoing CTx. Rey-Osterrieth Complex Figure 
(ROCF) performance was correlated with glucose metabo-
lism in the left inferior frontal gyrus [91] and in the posterior 
orbital gyrus [92]. Additionally, acute changes in glucose 
uptake in anterior temporal and medial frontal correlated 
positively with memory test scores [90]; however, neither of 
those studies presented treatment-related imaging changes 
in those regions [90, 91] or both increases and decreases in 
glucose uptake across different regions were reported [92]. 
Thus the validity of cognitive-imaging correlations should 
be investigated in the future in larger studies with multiple 
comparison corrections. A clear longitudinal decrease in 
FDG-PET SUV negatively correlated with scores from the 
Symptom Checklist-90-R 6 months after brain RTx [34].

Finally, association results between diffusion kurtosis 
and cognitive performance or quality-of-life scores var-
ied between no correlation [118] and a correlation with 
Montreal Cognitive Assessment (MoCA) score as early as 
6 months post-RCTx [116]. A stratification to decline and 
non-decline groups by MoCA test at 2 years showed higher 
diffusion kurtosis in WM at 1 and 3 months in the non-
decline group, which received 20% lower radiation dose to 
the brain [126]. One of the rare studies that looked at base-
line values reported that memory recover at follow-up cor-
related both with pre-operative NDI and NDI recovery on 
follow-up [113]. In survivors of pediatric germ cell tumors, 
mean kurtosis correlated positively with Karnofsky’s per-
formance score and IQ in several cortical regions, but not 
on the whole-brain level [117].

Most of the reviewed studies evaluated cognitive and 
quality-of-life changes using several tests often with several 
subdomains. However, the correlation with imaging bio-
markers was not always corrected for multiple comparisons, 
possibly invalidating the positive findings. Only nine studies 
have either described that a proper correction for multiple 
comparisons was used [44, 51, 79, 90, 117] or examined a 
correlation with a single test only [69, 91, 116, 126].

Clinical‑imaging association discussion

Approximately one-third of the reviewed studies contained 
reports on cognitive or quality-of-life changes, but one-third 
of those did not find any correlations with imaging findings 
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or did not report them, mostly as no association between the 
change of cognitive scores and treatment was found. Despite 
the variable findings between studies, consistent effects of 
treatment on the NABT for most biomarkers could be found. 
For the studies including cognition or quality-of-life tests in 
addition to these imaging biomarkers, decline in these clini-
cal scores consistently correlated with these biomarkers. For 
example, brain RTx was associated with perfusion decrease 
and BBB permeability increase, both correlating with cog-
nitive decline. Paradoxically, breast cancer CTx resulted in 
perfusion increase but was still associated with cognitive 
decline. In MRS, NAA decreases, and choline increases 
were observed for both brain RTx and CTx in non-CNS 
tumors, which in turn correlated to cognitive decrease.

In general, a large number of cognition and quality-of-
life tests were calculated per study and multiple comparison 
correction was not always applied, which can easily result 
in spurious findings. In combination with a legion of cancer 
and therapy combinations, different ways to image the brain, 
and arbitrary assessment intervals, this resulted in a mani-
fold of potential experiments, which are difficult to compare. 
Therefore, no clear pattern of correlation of imaging find-
ings with a specific cognitive sub-domain or a quality-of-life 
score could be confirmed. In the future, alignment of the 
techniques would be beneficial to permit confirmation of 
these pilot results in larger multi-center studies.

Discussion

In this systematic review, changes in normal-appearing brain 
tissue following cancer therapy were summarised, measured 
using different quantitative imaging techniques in either a 
cross-sectional or longitudinal design. Taken together, all 
studies mainly presented evidence on adverse effects of brain 
RTx in CNS tumors, CTx in tumors outside CNS, and anti-
angiogenic treatment in recurrent glioblastomas. Regarding 
CTx it is currently unknown how inhomogeneities in focal 
metabolism and vascularization of the brain affect the phar-
maco-metabolite distribution and therefore adverse effects as 
revealed by imaging biomarkers. After cranial RTx, NABT 
showed perfusion decrease relatively consistently with all 
modalities after both RTx and combined RCTx, and with 
only a slight inverse correlation to dose. 1H-MRS very con-
sistently reported a decrease of NAA, Cr, and NAA/Cr, and 
an increase in Cho and Cho/Cr. There was some evidence 
of correlation to dose, as well as trends towards normaliza-
tion of changes after several months. However, the effects 
of dose and anatomical locations of the measured changes 
are still understudied—mostly because the acquisitions were 
executed in a single voxel contralateral to the tumor—and 
future studies with multi-voxel MRS imaging are required 
to provide more insight. Also, the T1 times in normal tissue 

only decreased in a single study, and T2*, QSM, or qMT 
measurements were inconclusive. Only weak evidence for 
diffusion kurtosis decreases could be found.

In breast cancer patients after CTx, metabolic changes 
measured with 1H-MRS were similar to changes in patients 
undergoing brain RTx: NAA, Cr, and NAA/Cr decrease, 
and Cho and Cho/Cr increase. Higher dosage of CTx and 
inclusion of hormone therapy aggravated these effects. 
Interestingly, perfusion increases were reported to correlate 
with cognitive decline. While this was shown both longi-
tudinally and cross-sectionally in two independent studies 
using ASL, validation is still required to confirm the oppo-
site effects compared with brain RTx. Additionally, no or 
inconclusive metabolic changes were observed with FDG-
PET, which could probably be explained by the use of global 
normalization of the values. Finally, inconclusive findings 
from advanced diffusion models were reported in patients 
receiving CTx for non-CNS tumors: one study reported neu-
rite density increase, while two others reported increase and 
decrease of diffusion kurtosis—see the summary in Table 6.

Recommendations

Based on the finding of this systematic review further quan-
titative imaging studies should be encouraged, addressing 
the main study-design weaknesses: inhomogeneity of patient 
populations in terms of both tumor type and treatment; 
missing descriptive characteristics of study population and 
treatment details; missing details on the study timeline; not 
adhering to the acquisition, processing, and reporting stand-
ards of the imaging; and incomplete and thorough report-
ing of the findings. The modified-QUADAS-2 criteria used 
to assess the published work in this review can serve as a 
guideline on how to improve the study design, and how to 
report the methodology and results in future studies aiming 
at reducing the risk of bias. The acquisition and process-
ing should be performed and described according to cur-
rent standards: ASL [127, 128], DSC [129], and MRS [98]. 
Moreover, normalization to whole-brain or low-dose regions 
can potentially mask changes as the entire NABT might be 
affected by the treatment. Using an intact brain region based 
on previous findings or using the full quantitative potential 
of the imaging techniques may reduce the risk of not detect-
ing subtle changes. All reported MRI techniques are sensi-
tive to tissue type, providing a different contrast and also 
different performance characteristics in GM, WM, and CSF. 
The task of ROI delineation should take this into account, 
and a detailed description of the delineation should be pro-
vided to ease the identification of potential biases. Lastly, 
including a power analysis with negative findings could help 
the interpretation of results, if the study population size was 
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large enough to observe significant changes, especially in 
studies with several treatment subgroups.

A general concern is that many studies were explorative 
only, with small sample size, and did not show statistically 
significant changes. Still, interesting trends were reported, 
and the effect sizes may provide a good starting point for 
power analyses needed in the preparation of larger future 
studies. Also for some techniques, only a few studies were 
available, partly caused by the limited availability of quanti-
tative imaging [19]. The general challenge of these kinds of 
studies is to separate the effect of treatment from the effect 
of having a tumor, which puts further pressure on the quality 
of the study design to minimize confounders. At the same 
time, further research is needed to separate the individual 
effects of different types of chemo-, radio-, and immuno-
therapies, as well as their synergies. While specific study 
design, like head-and-neck tumors or proton vs photon radi-
ochemotherapy, can help to separate the tumor from radia-
tion effects or radio- from chemotherapy, respectively, more 
evidence from pooled large studies will be needed. Several 
community-driven initiatives, for example, Open Source Ini-
tiative for Perfusion Imaging (OSIPI—www. osipi. org) and 
Glioma MR Imaging 2.0 (GliMR, COST Action CA18206) 
[20], aim at making knowledge and tools for acquisition and 
analysis of quantitative MRI widely available to advance 
the field. Additionally, pooling datasets might be indispen-
sable to investigate subtle therapy effects and their regional 
variations, and to disentangle the interaction of different 

treatments, possibly with the help of machine learning meth-
ods. To this end, it is necessary to obtain patients’ consent 
to share their data in a secured, controlled manner, ensur-
ing GDPR compliance [130], and using the standardized 
BIDS format [131] following existing extensions for e.g. 
PET [132] or ASL [133]. Finally, it is important to con-
sider that brains already differ in their capacity to cope with 
therapy-related damage prior to cancer therapy, which can 
be considered a traumatic event. For example, patients with 
pre-existent small vessel disease or changes leading to sub-
clinical dementia might have a decreased chance to recover 
from acute cancer therapy effects on the brain compared 
with an otherwise healthy individual. Here, lifestyle and age, 
presence of radio-necrosis, but also the baseline status of the 
biomarker should be considered as co-factors influencing the 
biomarker gradient when monitoring cancer therapy effects 
on the brain.

To summarize the recommendations, we advise that 
future studies investigating the normal tissue changes fol-
lowing cancer therapy should:

• Provide a complete description of the study population, 
treatment details and timeline, as well as details of acqui-
sition and processing—the modified-QUADAS-2 criteria 
in supplementary materials provide guidance for this;

• adhere to the latest recommendations for image acquisi-
tion and processing—ASL [127, 128], DSC [129, 134, 
135], MRS [98];

Table 6  Aggregated findings per sequence and tumor type

Tumor type: CNS central nervous system, NHL non-Hodgkin lymphoma
Treatment type: BEV bevacizumab, CTx chemotherapy, RTx radiotherapy, RCTx radiochemotherapy
Imaging: ASL arterial spin labeling, DKI diffusion kurtosis imaging, DSC dynamic susceptibility contrast, DCE dynamic contrast enhanced, 
FDG fluoro-deoxy-glucose, MRS magnetic resonance spectroscopy
Findings: CBF cerebral blood flow, CBV cerebral blood volume, Cho choline, Cr creatine, MK mean kurtosis, NAA N-acetyl aspartate, Ktrans 
extravascular and Ve extracellular fractional volume, wsCoV within-subject coefficient of variation
Summary results are given for each imaging technique and tumor type when the majority of studies that reported an observed parameter had 
results in concordance. Single studies, or studies where majority of findings were inconclusive or not in an agreement were not reported. The 
total number of studies and patients in concordance—out of the total number of studies and subject reporting comparable results—are given. 
Lastly, the within-subject across session coefficient of variation is provided to provide a reference of repeatability in healthy volunteers

Modality Tumor/Treatment Studies Patients Effects wsCoV

DSC Brain/RTx 4/5 123/142 ↓ CBV 4.6–30% 2.5–3.5%
Brain/BEV ½ 18/43 ↓ CBF 20–30%

ASL Breast/CTx 3/3 82/82 ↑ CBF 7–12% 6.6–14.8%
Glioma III–IV/RCTx 4/5 123/142 ↓ CBF 10–23%

DCE Brain/RCTx 3/5 49/89 ↑  Ve 8–12%, ↑  Ktrans 52% 7.7%
Tc-99 m-HMPAO Brain/RTx + SRS 2/3 31/42 ↓ CBF 4–22.5% 15%
1H-MRS Breast/CTx 4/4 79/79 ↓NAA, NAA/Cr, or NAA/Cho 1–15% 2.5–5.3%

Brain/RCTx 12/13 244/284 ↓ NAA/Cr 5–31%, NAA/Cho 15–19%, 
NAA 4–16%; ↑ Cho/Cr 4–20%

FDG-PET NHL/CTx ½ 21/35 ↓ FDG 20% 10%
DKI Non-CNS/RCTx ¾ 130/169 ↓ MK 11–34% 4–5.2%

http://www.osipi.org
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• avoid mixed cohorts with inhomogeneous tumor and 
treatment types;

• correct for multiple comparisons and perform a power 
analysis to avoid spurious findings and to help interpret 
negative findings;

• support community efforts for data sharing and col-
laboration (e.g. OSIPI, BIDS [131], OpenNeuro [136], 
GliMR [20], or ENBIT – www. enbit. ac. uk) to enable 
future data pooling in larger studies.

Limitations

This review has several limitations. First, not all quantitative 
imaging techniques were represented. For example, blood 
microcirculation measurement with Intravoxel Incoherent 
Motion (IVIM) [137], or amino-acid measured glucose 
metabolism with chemical exchange saturation transfer 
(CEST) could yield interesting results. However, no such 
publications matching the inclusion criteria were identified 
during the search. Second, some of the reviewed studies 
were primarily focusing on the tumor and NABT changes 
were reported for the sake of normalization or normaliza-
tion reproducibility. Thus, the quality of the reporting on 
these side effects was not always optimal, not being the 
main focus of the study. However, NABT changes in the 
vicinity of the tumor were ignored so the reported results 
were not influenced by tumor growth, infiltration, or radio-
necrosis. Still, besides under-reporting, there is no reason 
to believe that the reported values are structurally biased. 
Third, we did not compare the results of the quantitative 
imaging methods with the conventional structural imag-
ing biomarkers. From the dementia field, there is evidence 
that physiological and metabolic biomarkers can pick up 
changes in brain pathology earlier than structural biomark-
ers [138, 139]. We hypothesize that this is also the case for 
RCTx-induced tissue damage, but this needs to be proven 
yet. Fourth, the acquisition and evaluation of the advanced 
MRI techniques reviewed here is typically more complex 
than is the case for standard MRI. There are large differ-
ences between the available sequences [61] and models 
[62] used for their processing and quantification, leading 
to substantial instrumental variability [134] of the meas-
ured parameters. Currently, there are several initiatives that 
try to propose standards for acquisition [127], processing 

[128], reference regions [135], and quantification [129] of 
the advanced MRI data for different sequences. However, 
most of these were proposed only after the reviewed studies 
were published, which further complicates a fair compari-
son of fidelity of individual results presented here. Finally, 
it should be acknowledged that group-effect results do not 
guarantee clinical benefit on the single-patient level. This is 
expected to be especially challenging for biomarkers with 
high temporal variability—such as physiological fluctuations 
in cerebral blood flow—but the effect size may even be too 
small for existing structural biomarkers; especially in the 
early stages of treatment-induced damage. Therefore, this 
needs to be carefully studied in the future.

Conclusion

Quantitative imaging techniques have the potential to detect 
cancer therapy-related changes in the NABT and correlate 
with long-term cognitive decline or quality-of-life deteri-
oration. To date, a relatively small number of studies are 
published that may provide an estimate of the effect size 
of treatment. However, the evolution of these quantitative 
changes in time and dependency on dosing and location is 
still unclear and needs to be evaluated to establish quan-
titative imaging as an early marker of tissue damage or a 
predictor of long-term cognitive outcome. Regardless of its 
limitations, all reviewed imaging techniques showed prom-
ise to measure treatment-related damage in NABT, and most 
evidence is available for 1H-MRS and perfusion imaging 
with DSC and ASL. However, additional care for correct 
image acquisition, analysis, and interpretation is highly 
recommended, especially with respect to reaching suffi-
cient statistical power during study planning. Standardizing 
methodology and pooling of datasets or adding dedicated 
imaging sequences to existing large-scale studies might be 
necessary to address this shortcoming, especially for less 
common imaging techniques.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 021- 00985-2.
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